12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208 |
- //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the visit functions for load, store and alloca.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/Loads.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "dxc/DXIL/DxilOperations.h" // HLSL Change - avoid unpack for dxil types.
- using namespace llvm;
- #define DEBUG_TYPE "instcombine"
- STATISTIC(NumDeadStore, "Number of dead stores eliminated");
- STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
- /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
- /// some part of a constant global variable. This intentionally only accepts
- /// constant expressions because we can't rewrite arbitrary instructions.
- static bool pointsToConstantGlobal(Value *V) {
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
- return GV->isConstant();
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- if (CE->getOpcode() == Instruction::BitCast ||
- CE->getOpcode() == Instruction::AddrSpaceCast ||
- CE->getOpcode() == Instruction::GetElementPtr)
- return pointsToConstantGlobal(CE->getOperand(0));
- }
- return false;
- }
- /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
- /// pointer to an alloca. Ignore any reads of the pointer, return false if we
- /// see any stores or other unknown uses. If we see pointer arithmetic, keep
- /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
- /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
- /// the alloca, and if the source pointer is a pointer to a constant global, we
- /// can optimize this.
- static bool
- isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
- SmallVectorImpl<Instruction *> &ToDelete) {
- // We track lifetime intrinsics as we encounter them. If we decide to go
- // ahead and replace the value with the global, this lets the caller quickly
- // eliminate the markers.
- SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
- ValuesToInspect.push_back(std::make_pair(V, false));
- while (!ValuesToInspect.empty()) {
- auto ValuePair = ValuesToInspect.pop_back_val();
- const bool IsOffset = ValuePair.second;
- for (auto &U : ValuePair.first->uses()) {
- Instruction *I = cast<Instruction>(U.getUser());
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- // Ignore non-volatile loads, they are always ok.
- if (!LI->isSimple()) return false;
- continue;
- }
- if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
- // If uses of the bitcast are ok, we are ok.
- ValuesToInspect.push_back(std::make_pair(I, IsOffset));
- continue;
- }
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
- // If the GEP has all zero indices, it doesn't offset the pointer. If it
- // doesn't, it does.
- ValuesToInspect.push_back(
- std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices()));
- continue;
- }
- if (auto CS = CallSite(I)) {
- // If this is the function being called then we treat it like a load and
- // ignore it.
- if (CS.isCallee(&U))
- continue;
- // Inalloca arguments are clobbered by the call.
- unsigned ArgNo = CS.getArgumentNo(&U);
- if (CS.isInAllocaArgument(ArgNo))
- return false;
- // If this is a readonly/readnone call site, then we know it is just a
- // load (but one that potentially returns the value itself), so we can
- // ignore it if we know that the value isn't captured.
- if (CS.onlyReadsMemory() &&
- (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
- continue;
- // If this is being passed as a byval argument, the caller is making a
- // copy, so it is only a read of the alloca.
- if (CS.isByValArgument(ArgNo))
- continue;
- }
- // Lifetime intrinsics can be handled by the caller.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
- II->getIntrinsicID() == Intrinsic::lifetime_end) {
- assert(II->use_empty() && "Lifetime markers have no result to use!");
- ToDelete.push_back(II);
- continue;
- }
- }
- // If this is isn't our memcpy/memmove, reject it as something we can't
- // handle.
- MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
- if (!MI)
- return false;
- // If the transfer is using the alloca as a source of the transfer, then
- // ignore it since it is a load (unless the transfer is volatile).
- if (U.getOperandNo() == 1) {
- if (MI->isVolatile()) return false;
- continue;
- }
- // If we already have seen a copy, reject the second one.
- if (TheCopy) return false;
- // If the pointer has been offset from the start of the alloca, we can't
- // safely handle this.
- if (IsOffset) return false;
- // If the memintrinsic isn't using the alloca as the dest, reject it.
- if (U.getOperandNo() != 0) return false;
- // If the source of the memcpy/move is not a constant global, reject it.
- if (!pointsToConstantGlobal(MI->getSource()))
- return false;
- // Otherwise, the transform is safe. Remember the copy instruction.
- TheCopy = MI;
- }
- }
- return true;
- }
- /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
- /// modified by a copy from a constant global. If we can prove this, we can
- /// replace any uses of the alloca with uses of the global directly.
- static MemTransferInst *
- isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
- SmallVectorImpl<Instruction *> &ToDelete) {
- MemTransferInst *TheCopy = nullptr;
- if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
- return TheCopy;
- return nullptr;
- }
- static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
- // Check for array size of 1 (scalar allocation).
- if (!AI.isArrayAllocation()) {
- // i32 1 is the canonical array size for scalar allocations.
- if (AI.getArraySize()->getType()->isIntegerTy(32))
- return nullptr;
- // Canonicalize it.
- Value *V = IC.Builder->getInt32(1);
- AI.setOperand(0, V);
- return &AI;
- }
- // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
- if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
- Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
- AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName());
- New->setAlignment(AI.getAlignment());
- // Scan to the end of the allocation instructions, to skip over a block of
- // allocas if possible...also skip interleaved debug info
- //
- BasicBlock::iterator It = New;
- while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
- ++It;
- // Now that I is pointing to the first non-allocation-inst in the block,
- // insert our getelementptr instruction...
- //
- Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
- Value *NullIdx = Constant::getNullValue(IdxTy);
- Value *Idx[2] = {NullIdx, NullIdx};
- Instruction *GEP =
- GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
- IC.InsertNewInstBefore(GEP, *It);
- // Now make everything use the getelementptr instead of the original
- // allocation.
- return IC.ReplaceInstUsesWith(AI, GEP);
- }
- if (isa<UndefValue>(AI.getArraySize()))
- return IC.ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
- // Ensure that the alloca array size argument has type intptr_t, so that
- // any casting is exposed early.
- Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
- if (AI.getArraySize()->getType() != IntPtrTy) {
- Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false);
- AI.setOperand(0, V);
- return &AI;
- }
- return nullptr;
- }
- Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
- if (auto *I = simplifyAllocaArraySize(*this, AI))
- return I;
- if (AI.getAllocatedType()->isSized()) {
- // If the alignment is 0 (unspecified), assign it the preferred alignment.
- if (AI.getAlignment() == 0)
- AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
- // Move all alloca's of zero byte objects to the entry block and merge them
- // together. Note that we only do this for alloca's, because malloc should
- // allocate and return a unique pointer, even for a zero byte allocation.
- if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
- // For a zero sized alloca there is no point in doing an array allocation.
- // This is helpful if the array size is a complicated expression not used
- // elsewhere.
- if (AI.isArrayAllocation()) {
- AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
- return &AI;
- }
- // Get the first instruction in the entry block.
- BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
- Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
- if (FirstInst != &AI) {
- // If the entry block doesn't start with a zero-size alloca then move
- // this one to the start of the entry block. There is no problem with
- // dominance as the array size was forced to a constant earlier already.
- AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
- if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
- DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
- AI.moveBefore(FirstInst);
- return &AI;
- }
- // If the alignment of the entry block alloca is 0 (unspecified),
- // assign it the preferred alignment.
- if (EntryAI->getAlignment() == 0)
- EntryAI->setAlignment(
- DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
- // Replace this zero-sized alloca with the one at the start of the entry
- // block after ensuring that the address will be aligned enough for both
- // types.
- unsigned MaxAlign = std::max(EntryAI->getAlignment(),
- AI.getAlignment());
- EntryAI->setAlignment(MaxAlign);
- if (AI.getType() != EntryAI->getType())
- return new BitCastInst(EntryAI, AI.getType());
- return ReplaceInstUsesWith(AI, EntryAI);
- }
- }
- }
- if (AI.getAlignment()) {
- // Check to see if this allocation is only modified by a memcpy/memmove from
- // a constant global whose alignment is equal to or exceeds that of the
- // allocation. If this is the case, we can change all users to use
- // the constant global instead. This is commonly produced by the CFE by
- // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
- // is only subsequently read.
- SmallVector<Instruction *, 4> ToDelete;
- if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
- unsigned SourceAlign = getOrEnforceKnownAlignment(
- Copy->getSource(), AI.getAlignment(), DL, &AI, AC, DT);
- if (AI.getAlignment() <= SourceAlign) {
- DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
- DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
- for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
- EraseInstFromFunction(*ToDelete[i]);
- Constant *TheSrc = cast<Constant>(Copy->getSource());
- Constant *Cast
- = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType());
- Instruction *NewI = ReplaceInstUsesWith(AI, Cast);
- EraseInstFromFunction(*Copy);
- ++NumGlobalCopies;
- return NewI;
- }
- }
- }
- // At last, use the generic allocation site handler to aggressively remove
- // unused allocas.
- return visitAllocSite(AI);
- }
- /// \brief Helper to combine a load to a new type.
- ///
- /// This just does the work of combining a load to a new type. It handles
- /// metadata, etc., and returns the new instruction. The \c NewTy should be the
- /// loaded *value* type. This will convert it to a pointer, cast the operand to
- /// that pointer type, load it, etc.
- ///
- /// Note that this will create all of the instructions with whatever insert
- /// point the \c InstCombiner currently is using.
- static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
- const Twine &Suffix = "") {
- Value *Ptr = LI.getPointerOperand();
- unsigned AS = LI.getPointerAddressSpace();
- SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
- LI.getAllMetadata(MD);
- LoadInst *NewLoad = IC.Builder->CreateAlignedLoad(
- IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)),
- LI.getAlignment(), LI.getName() + Suffix);
- MDBuilder MDB(NewLoad->getContext());
- for (const auto &MDPair : MD) {
- unsigned ID = MDPair.first;
- MDNode *N = MDPair.second;
- // Note, essentially every kind of metadata should be preserved here! This
- // routine is supposed to clone a load instruction changing *only its type*.
- // The only metadata it makes sense to drop is metadata which is invalidated
- // when the pointer type changes. This should essentially never be the case
- // in LLVM, but we explicitly switch over only known metadata to be
- // conservatively correct. If you are adding metadata to LLVM which pertains
- // to loads, you almost certainly want to add it here.
- switch (ID) {
- case LLVMContext::MD_dbg:
- case LLVMContext::MD_tbaa:
- case LLVMContext::MD_prof:
- case LLVMContext::MD_fpmath:
- case LLVMContext::MD_tbaa_struct:
- case LLVMContext::MD_invariant_load:
- case LLVMContext::MD_alias_scope:
- case LLVMContext::MD_noalias:
- case LLVMContext::MD_nontemporal:
- case LLVMContext::MD_mem_parallel_loop_access:
- // All of these directly apply.
- NewLoad->setMetadata(ID, N);
- break;
- case LLVMContext::MD_nonnull:
- // This only directly applies if the new type is also a pointer.
- if (NewTy->isPointerTy()) {
- NewLoad->setMetadata(ID, N);
- break;
- }
- // If it's integral now, translate it to !range metadata.
- if (NewTy->isIntegerTy()) {
- auto *ITy = cast<IntegerType>(NewTy);
- auto *NullInt = ConstantExpr::getPtrToInt(
- ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
- auto *NonNullInt =
- ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
- NewLoad->setMetadata(LLVMContext::MD_range,
- MDB.createRange(NonNullInt, NullInt));
- }
- break;
- case LLVMContext::MD_range:
- // FIXME: It would be nice to propagate this in some way, but the type
- // conversions make it hard. If the new type is a pointer, we could
- // translate it to !nonnull metadata.
- break;
- }
- }
- return NewLoad;
- }
- /// \brief Combine a store to a new type.
- ///
- /// Returns the newly created store instruction.
- static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
- Value *Ptr = SI.getPointerOperand();
- unsigned AS = SI.getPointerAddressSpace();
- SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
- SI.getAllMetadata(MD);
- StoreInst *NewStore = IC.Builder->CreateAlignedStore(
- V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
- SI.getAlignment());
- for (const auto &MDPair : MD) {
- unsigned ID = MDPair.first;
- MDNode *N = MDPair.second;
- // Note, essentially every kind of metadata should be preserved here! This
- // routine is supposed to clone a store instruction changing *only its
- // type*. The only metadata it makes sense to drop is metadata which is
- // invalidated when the pointer type changes. This should essentially
- // never be the case in LLVM, but we explicitly switch over only known
- // metadata to be conservatively correct. If you are adding metadata to
- // LLVM which pertains to stores, you almost certainly want to add it
- // here.
- switch (ID) {
- case LLVMContext::MD_dbg:
- case LLVMContext::MD_tbaa:
- case LLVMContext::MD_prof:
- case LLVMContext::MD_fpmath:
- case LLVMContext::MD_tbaa_struct:
- case LLVMContext::MD_alias_scope:
- case LLVMContext::MD_noalias:
- case LLVMContext::MD_nontemporal:
- case LLVMContext::MD_mem_parallel_loop_access:
- // All of these directly apply.
- NewStore->setMetadata(ID, N);
- break;
- case LLVMContext::MD_invariant_load:
- case LLVMContext::MD_nonnull:
- case LLVMContext::MD_range:
- // These don't apply for stores.
- break;
- }
- }
- return NewStore;
- }
- /// \brief Combine loads to match the type of value their uses after looking
- /// through intervening bitcasts.
- ///
- /// The core idea here is that if the result of a load is used in an operation,
- /// we should load the type most conducive to that operation. For example, when
- /// loading an integer and converting that immediately to a pointer, we should
- /// instead directly load a pointer.
- ///
- /// However, this routine must never change the width of a load or the number of
- /// loads as that would introduce a semantic change. This combine is expected to
- /// be a semantic no-op which just allows loads to more closely model the types
- /// of their consuming operations.
- ///
- /// Currently, we also refuse to change the precise type used for an atomic load
- /// or a volatile load. This is debatable, and might be reasonable to change
- /// later. However, it is risky in case some backend or other part of LLVM is
- /// relying on the exact type loaded to select appropriate atomic operations.
- static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
- #if 0 // HLSL Change - bitcast to i32* won't help HLSL.
- // FIXME: We could probably with some care handle both volatile and atomic
- // loads here but it isn't clear that this is important.
- if (!LI.isSimple())
- return nullptr;
- if (LI.use_empty())
- return nullptr;
- Type *Ty = LI.getType();
- const DataLayout &DL = IC.getDataLayout();
- // Try to canonicalize loads which are only ever stored to operate over
- // integers instead of any other type. We only do this when the loaded type
- // is sized and has a size exactly the same as its store size and the store
- // size is a legal integer type.
- if (!Ty->isIntegerTy() && Ty->isSized() &&
- DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
- DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty)) {
- if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) {
- auto *SI = dyn_cast<StoreInst>(U);
- return SI && SI->getPointerOperand() != &LI;
- })) {
- LoadInst *NewLoad = combineLoadToNewType(
- IC, LI,
- Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
- // Replace all the stores with stores of the newly loaded value.
- for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
- auto *SI = cast<StoreInst>(*UI++);
- IC.Builder->SetInsertPoint(SI);
- combineStoreToNewValue(IC, *SI, NewLoad);
- IC.EraseInstFromFunction(*SI);
- }
- assert(LI.use_empty() && "Failed to remove all users of the load!");
- // Return the old load so the combiner can delete it safely.
- return &LI;
- }
- }
- // Fold away bit casts of the loaded value by loading the desired type.
- // We can do this for BitCastInsts as well as casts from and to pointer types,
- // as long as those are noops (i.e., the source or dest type have the same
- // bitwidth as the target's pointers).
- if (LI.hasOneUse())
- if (auto* CI = dyn_cast<CastInst>(LI.user_back())) {
- if (CI->isNoopCast(DL)) {
- LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy());
- CI->replaceAllUsesWith(NewLoad);
- IC.EraseInstFromFunction(*CI);
- return &LI;
- }
- }
- // FIXME: We should also canonicalize loads of vectors when their elements are
- // cast to other types.
- return nullptr;
- #else
- return nullptr;
- #endif // HLSL Change - bitcast to i32* won't help HLSL.
- }
- static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
- // FIXME: We could probably with some care handle both volatile and atomic
- // stores here but it isn't clear that this is important.
- if (!LI.isSimple())
- return nullptr;
- Type *T = LI.getType();
- if (!T->isAggregateType())
- return nullptr;
- assert(LI.getAlignment() && "Alignement must be set at this point");
- if (auto *ST = dyn_cast<StructType>(T)) {
- // If the struct only have one element, we unpack.
- if (ST->getNumElements() == 1
- && false // HLSL Change - avoid unpack dxil types.
- ) {
- LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
- ".unpack");
- return IC.ReplaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
- UndefValue::get(T), NewLoad, 0, LI.getName()));
- }
- }
- if (auto *AT = dyn_cast<ArrayType>(T)) {
- // If the array only have one element, we unpack.
- if (AT->getNumElements() == 1) {
- LoadInst *NewLoad = combineLoadToNewType(IC, LI, AT->getElementType(),
- ".unpack");
- return IC.ReplaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
- UndefValue::get(T), NewLoad, 0, LI.getName()));
- }
- }
- return nullptr;
- }
- // If we can determine that all possible objects pointed to by the provided
- // pointer value are, not only dereferenceable, but also definitively less than
- // or equal to the provided maximum size, then return true. Otherwise, return
- // false (constant global values and allocas fall into this category).
- //
- // FIXME: This should probably live in ValueTracking (or similar).
- static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
- const DataLayout &DL) {
- SmallPtrSet<Value *, 4> Visited;
- SmallVector<Value *, 4> Worklist(1, V);
- do {
- Value *P = Worklist.pop_back_val();
- P = P->stripPointerCasts();
- if (!Visited.insert(P).second)
- continue;
- if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
- Worklist.push_back(SI->getTrueValue());
- Worklist.push_back(SI->getFalseValue());
- continue;
- }
- if (PHINode *PN = dyn_cast<PHINode>(P)) {
- for (Value *IncValue : PN->incoming_values())
- Worklist.push_back(IncValue);
- continue;
- }
- if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
- if (GA->mayBeOverridden())
- return false;
- Worklist.push_back(GA->getAliasee());
- continue;
- }
- // If we know how big this object is, and it is less than MaxSize, continue
- // searching. Otherwise, return false.
- if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
- if (!AI->getAllocatedType()->isSized())
- return false;
- ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
- if (!CS)
- return false;
- uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
- // Make sure that, even if the multiplication below would wrap as an
- // uint64_t, we still do the right thing.
- if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
- return false;
- continue;
- }
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
- if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
- return false;
- uint64_t InitSize = DL.getTypeAllocSize(GV->getType()->getElementType());
- if (InitSize > MaxSize)
- return false;
- continue;
- }
- return false;
- } while (!Worklist.empty());
- return true;
- }
- // If we're indexing into an object of a known size, and the outer index is
- // not a constant, but having any value but zero would lead to undefined
- // behavior, replace it with zero.
- //
- // For example, if we have:
- // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
- // ...
- // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
- // ... = load i32* %arrayidx, align 4
- // Then we know that we can replace %x in the GEP with i64 0.
- //
- // FIXME: We could fold any GEP index to zero that would cause UB if it were
- // not zero. Currently, we only handle the first such index. Also, we could
- // also search through non-zero constant indices if we kept track of the
- // offsets those indices implied.
- static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
- Instruction *MemI, unsigned &Idx) {
- if (GEPI->getNumOperands() < 2)
- return false;
- // Find the first non-zero index of a GEP. If all indices are zero, return
- // one past the last index.
- auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
- unsigned I = 1;
- for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
- Value *V = GEPI->getOperand(I);
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
- if (CI->isZero())
- continue;
- break;
- }
- return I;
- };
- // Skip through initial 'zero' indices, and find the corresponding pointer
- // type. See if the next index is not a constant.
- Idx = FirstNZIdx(GEPI);
- if (Idx == GEPI->getNumOperands())
- return false;
- if (isa<Constant>(GEPI->getOperand(Idx)))
- return false;
- SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
- Type *AllocTy = GetElementPtrInst::getIndexedType(
- cast<PointerType>(GEPI->getOperand(0)->getType()->getScalarType())
- ->getElementType(),
- Ops);
- if (!AllocTy || !AllocTy->isSized())
- return false;
- const DataLayout &DL = IC.getDataLayout();
- uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
- // If there are more indices after the one we might replace with a zero, make
- // sure they're all non-negative. If any of them are negative, the overall
- // address being computed might be before the base address determined by the
- // first non-zero index.
- auto IsAllNonNegative = [&]() {
- for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
- bool KnownNonNegative, KnownNegative;
- IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative,
- KnownNegative, 0, MemI);
- if (KnownNonNegative)
- continue;
- return false;
- }
- return true;
- };
- // FIXME: If the GEP is not inbounds, and there are extra indices after the
- // one we'll replace, those could cause the address computation to wrap
- // (rendering the IsAllNonNegative() check below insufficient). We can do
- // better, ignoring zero indicies (and other indicies we can prove small
- // enough not to wrap).
- if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
- return false;
- // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
- // also known to be dereferenceable.
- return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
- IsAllNonNegative();
- }
- // If we're indexing into an object with a variable index for the memory
- // access, but the object has only one element, we can assume that the index
- // will always be zero. If we replace the GEP, return it.
- template <typename T>
- static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
- T &MemI) {
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
- unsigned Idx;
- if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
- Instruction *NewGEPI = GEPI->clone();
- NewGEPI->setOperand(Idx,
- ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
- NewGEPI->insertBefore(GEPI);
- MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
- return NewGEPI;
- }
- }
- return nullptr;
- }
- Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
- Value *Op = LI.getOperand(0);
- // Try to canonicalize the loaded type.
- if (Instruction *Res = combineLoadToOperationType(*this, LI))
- return Res;
- // Attempt to improve the alignment.
- unsigned KnownAlign = getOrEnforceKnownAlignment(
- Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, AC, DT);
- unsigned LoadAlign = LI.getAlignment();
- unsigned EffectiveLoadAlign =
- LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
- if (KnownAlign > EffectiveLoadAlign)
- LI.setAlignment(KnownAlign);
- else if (LoadAlign == 0)
- LI.setAlignment(EffectiveLoadAlign);
- // Replace GEP indices if possible.
- if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
- Worklist.Add(NewGEPI);
- return &LI;
- }
- // None of the following transforms are legal for volatile/atomic loads.
- // FIXME: Some of it is okay for atomic loads; needs refactoring.
- if (!LI.isSimple()) return nullptr;
- if (Instruction *Res = unpackLoadToAggregate(*this, LI))
- return Res;
- // Do really simple store-to-load forwarding and load CSE, to catch cases
- // where there are several consecutive memory accesses to the same location,
- // separated by a few arithmetic operations.
- BasicBlock::iterator BBI = &LI;
- AAMDNodes AATags;
- if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,
- 6, AA, &AATags)) {
- if (LoadInst *NLI = dyn_cast<LoadInst>(AvailableVal)) {
- unsigned KnownIDs[] = {
- LLVMContext::MD_tbaa,
- LLVMContext::MD_alias_scope,
- LLVMContext::MD_noalias,
- LLVMContext::MD_range,
- LLVMContext::MD_invariant_load,
- LLVMContext::MD_nonnull,
- };
- combineMetadata(NLI, &LI, KnownIDs);
- };
- return ReplaceInstUsesWith(
- LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(),
- LI.getName() + ".cast"));
- }
- // load(gep null, ...) -> unreachable
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
- const Value *GEPI0 = GEPI->getOperand(0);
- // TODO: Consider a target hook for valid address spaces for this xform.
- if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
- // Insert a new store to null instruction before the load to indicate
- // that this code is not reachable. We do this instead of inserting
- // an unreachable instruction directly because we cannot modify the
- // CFG.
- new StoreInst(UndefValue::get(LI.getType()),
- Constant::getNullValue(Op->getType()), &LI);
- return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
- }
- }
- // load null/undef -> unreachable
- // TODO: Consider a target hook for valid address spaces for this xform.
- if (isa<UndefValue>(Op) ||
- (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
- // Insert a new store to null instruction before the load to indicate that
- // this code is not reachable. We do this instead of inserting an
- // unreachable instruction directly because we cannot modify the CFG.
- new StoreInst(UndefValue::get(LI.getType()),
- Constant::getNullValue(Op->getType()), &LI);
- return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
- }
- if (Op->hasOneUse()) {
- // Change select and PHI nodes to select values instead of addresses: this
- // helps alias analysis out a lot, allows many others simplifications, and
- // exposes redundancy in the code.
- //
- // Note that we cannot do the transformation unless we know that the
- // introduced loads cannot trap! Something like this is valid as long as
- // the condition is always false: load (select bool %C, int* null, int* %G),
- // but it would not be valid if we transformed it to load from null
- // unconditionally.
- //
- if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
- // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
- unsigned Align = LI.getAlignment();
- if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align) &&
- isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align)) {
- LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
- SI->getOperand(1)->getName()+".val");
- LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
- SI->getOperand(2)->getName()+".val");
- V1->setAlignment(Align);
- V2->setAlignment(Align);
- return SelectInst::Create(SI->getCondition(), V1, V2);
- }
- // load (select (cond, null, P)) -> load P
- if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
- LI.getPointerAddressSpace() == 0) {
- LI.setOperand(0, SI->getOperand(2));
- return &LI;
- }
- // load (select (cond, P, null)) -> load P
- if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
- LI.getPointerAddressSpace() == 0) {
- LI.setOperand(0, SI->getOperand(1));
- return &LI;
- }
- }
- }
- return nullptr;
- }
- /// \brief Combine stores to match the type of value being stored.
- ///
- /// The core idea here is that the memory does not have any intrinsic type and
- /// where we can we should match the type of a store to the type of value being
- /// stored.
- ///
- /// However, this routine must never change the width of a store or the number of
- /// stores as that would introduce a semantic change. This combine is expected to
- /// be a semantic no-op which just allows stores to more closely model the types
- /// of their incoming values.
- ///
- /// Currently, we also refuse to change the precise type used for an atomic or
- /// volatile store. This is debatable, and might be reasonable to change later.
- /// However, it is risky in case some backend or other part of LLVM is relying
- /// on the exact type stored to select appropriate atomic operations.
- ///
- /// \returns true if the store was successfully combined away. This indicates
- /// the caller must erase the store instruction. We have to let the caller erase
- /// the store instruction sas otherwise there is no way to signal whether it was
- /// combined or not: IC.EraseInstFromFunction returns a null pointer.
- static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
- // FIXME: We could probably with some care handle both volatile and atomic
- // stores here but it isn't clear that this is important.
- if (!SI.isSimple())
- return false;
- Value *V = SI.getValueOperand();
- // Fold away bit casts of the stored value by storing the original type.
- if (auto *BC = dyn_cast<BitCastInst>(V)) {
- V = BC->getOperand(0);
- combineStoreToNewValue(IC, SI, V);
- return true;
- }
- // FIXME: We should also canonicalize loads of vectors when their elements are
- // cast to other types.
- return false;
- }
- static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
- // FIXME: We could probably with some care handle both volatile and atomic
- // stores here but it isn't clear that this is important.
- if (!SI.isSimple())
- return false;
- Value *V = SI.getValueOperand();
- Type *T = V->getType();
- if (!T->isAggregateType())
- return false;
- if (auto *ST = dyn_cast<StructType>(T)) {
- // If the struct only have one element, we unpack.
- if (ST->getNumElements() == 1
- && false // HLSL Change - avoid unpack dxil types.
- ) {
- V = IC.Builder->CreateExtractValue(V, 0);
- combineStoreToNewValue(IC, SI, V);
- return true;
- }
- }
- if (auto *AT = dyn_cast<ArrayType>(T)) {
- // If the array only have one element, we unpack.
- if (AT->getNumElements() == 1) {
- V = IC.Builder->CreateExtractValue(V, 0);
- combineStoreToNewValue(IC, SI, V);
- return true;
- }
- }
- return false;
- }
- /// equivalentAddressValues - Test if A and B will obviously have the same
- /// value. This includes recognizing that %t0 and %t1 will have the same
- /// value in code like this:
- /// %t0 = getelementptr \@a, 0, 3
- /// store i32 0, i32* %t0
- /// %t1 = getelementptr \@a, 0, 3
- /// %t2 = load i32* %t1
- ///
- static bool equivalentAddressValues(Value *A, Value *B) {
- // Test if the values are trivially equivalent.
- if (A == B) return true;
- // Test if the values come form identical arithmetic instructions.
- // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
- // its only used to compare two uses within the same basic block, which
- // means that they'll always either have the same value or one of them
- // will have an undefined value.
- if (isa<BinaryOperator>(A) ||
- isa<CastInst>(A) ||
- isa<PHINode>(A) ||
- isa<GetElementPtrInst>(A))
- if (Instruction *BI = dyn_cast<Instruction>(B))
- if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
- return true;
- // Otherwise they may not be equivalent.
- return false;
- }
- Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
- Value *Val = SI.getOperand(0);
- Value *Ptr = SI.getOperand(1);
- // Try to canonicalize the stored type.
- if (combineStoreToValueType(*this, SI))
- return EraseInstFromFunction(SI);
- // Attempt to improve the alignment.
- unsigned KnownAlign = getOrEnforceKnownAlignment(
- Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT);
- unsigned StoreAlign = SI.getAlignment();
- unsigned EffectiveStoreAlign =
- StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
- if (KnownAlign > EffectiveStoreAlign)
- SI.setAlignment(KnownAlign);
- else if (StoreAlign == 0)
- SI.setAlignment(EffectiveStoreAlign);
- // Try to canonicalize the stored type.
- if (unpackStoreToAggregate(*this, SI))
- return EraseInstFromFunction(SI);
- // Replace GEP indices if possible.
- if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
- Worklist.Add(NewGEPI);
- return &SI;
- }
- // Don't hack volatile/atomic stores.
- // FIXME: Some bits are legal for atomic stores; needs refactoring.
- if (!SI.isSimple()) return nullptr;
- // If the RHS is an alloca with a single use, zapify the store, making the
- // alloca dead.
- if (Ptr->hasOneUse()) {
- if (isa<AllocaInst>(Ptr))
- return EraseInstFromFunction(SI);
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
- if (isa<AllocaInst>(GEP->getOperand(0))) {
- if (GEP->getOperand(0)->hasOneUse())
- return EraseInstFromFunction(SI);
- }
- }
- }
- // Do really simple DSE, to catch cases where there are several consecutive
- // stores to the same location, separated by a few arithmetic operations. This
- // situation often occurs with bitfield accesses.
- BasicBlock::iterator BBI = &SI;
- for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
- --ScanInsts) {
- --BBI;
- // Don't count debug info directives, lest they affect codegen,
- // and we skip pointer-to-pointer bitcasts, which are NOPs.
- if (isa<DbgInfoIntrinsic>(BBI) ||
- (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
- ScanInsts++;
- continue;
- }
- if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
- // Prev store isn't volatile, and stores to the same location?
- if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
- SI.getOperand(1))) {
- ++NumDeadStore;
- ++BBI;
- EraseInstFromFunction(*PrevSI);
- continue;
- }
- break;
- }
- // If this is a load, we have to stop. However, if the loaded value is from
- // the pointer we're loading and is producing the pointer we're storing,
- // then *this* store is dead (X = load P; store X -> P).
- if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
- if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
- LI->isSimple())
- return EraseInstFromFunction(SI);
- // Otherwise, this is a load from some other location. Stores before it
- // may not be dead.
- break;
- }
- // Don't skip over loads or things that can modify memory.
- if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
- break;
- }
- // store X, null -> turns into 'unreachable' in SimplifyCFG
- if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
- if (!isa<UndefValue>(Val)) {
- SI.setOperand(0, UndefValue::get(Val->getType()));
- if (Instruction *U = dyn_cast<Instruction>(Val))
- Worklist.Add(U); // Dropped a use.
- }
- return nullptr; // Do not modify these!
- }
- // store undef, Ptr -> noop
- if (isa<UndefValue>(Val))
- return EraseInstFromFunction(SI);
- // If this store is the last instruction in the basic block (possibly
- // excepting debug info instructions), and if the block ends with an
- // unconditional branch, try to move it to the successor block.
- BBI = &SI;
- do {
- ++BBI;
- } while (isa<DbgInfoIntrinsic>(BBI) ||
- (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
- if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
- if (BI->isUnconditional())
- if (SimplifyStoreAtEndOfBlock(SI))
- return nullptr; // xform done!
- return nullptr;
- }
- /// SimplifyStoreAtEndOfBlock - Turn things like:
- /// if () { *P = v1; } else { *P = v2 }
- /// into a phi node with a store in the successor.
- ///
- /// Simplify things like:
- /// *P = v1; if () { *P = v2; }
- /// into a phi node with a store in the successor.
- ///
- bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
- BasicBlock *StoreBB = SI.getParent();
- // Check to see if the successor block has exactly two incoming edges. If
- // so, see if the other predecessor contains a store to the same location.
- // if so, insert a PHI node (if needed) and move the stores down.
- BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
- // Determine whether Dest has exactly two predecessors and, if so, compute
- // the other predecessor.
- pred_iterator PI = pred_begin(DestBB);
- BasicBlock *P = *PI;
- BasicBlock *OtherBB = nullptr;
- if (P != StoreBB)
- OtherBB = P;
- if (++PI == pred_end(DestBB))
- return false;
- P = *PI;
- if (P != StoreBB) {
- if (OtherBB)
- return false;
- OtherBB = P;
- }
- if (++PI != pred_end(DestBB))
- return false;
- // Bail out if all the relevant blocks aren't distinct (this can happen,
- // for example, if SI is in an infinite loop)
- if (StoreBB == DestBB || OtherBB == DestBB)
- return false;
- // Verify that the other block ends in a branch and is not otherwise empty.
- BasicBlock::iterator BBI = OtherBB->getTerminator();
- BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
- if (!OtherBr || BBI == OtherBB->begin())
- return false;
- // If the other block ends in an unconditional branch, check for the 'if then
- // else' case. there is an instruction before the branch.
- StoreInst *OtherStore = nullptr;
- if (OtherBr->isUnconditional()) {
- --BBI;
- // Skip over debugging info.
- while (isa<DbgInfoIntrinsic>(BBI) ||
- (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
- if (BBI==OtherBB->begin())
- return false;
- --BBI;
- }
- // If this isn't a store, isn't a store to the same location, or is not the
- // right kind of store, bail out.
- OtherStore = dyn_cast<StoreInst>(BBI);
- if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
- !SI.isSameOperationAs(OtherStore))
- return false;
- } else {
- // Otherwise, the other block ended with a conditional branch. If one of the
- // destinations is StoreBB, then we have the if/then case.
- if (OtherBr->getSuccessor(0) != StoreBB &&
- OtherBr->getSuccessor(1) != StoreBB)
- return false;
- // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
- // if/then triangle. See if there is a store to the same ptr as SI that
- // lives in OtherBB.
- for (;; --BBI) {
- // Check to see if we find the matching store.
- if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
- if (OtherStore->getOperand(1) != SI.getOperand(1) ||
- !SI.isSameOperationAs(OtherStore))
- return false;
- break;
- }
- // If we find something that may be using or overwriting the stored
- // value, or if we run out of instructions, we can't do the xform.
- if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
- BBI == OtherBB->begin())
- return false;
- }
- // In order to eliminate the store in OtherBr, we have to
- // make sure nothing reads or overwrites the stored value in
- // StoreBB.
- for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
- // FIXME: This should really be AA driven.
- if (I->mayReadFromMemory() || I->mayWriteToMemory())
- return false;
- }
- }
- // Insert a PHI node now if we need it.
- Value *MergedVal = OtherStore->getOperand(0);
- if (MergedVal != SI.getOperand(0)) {
- PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
- PN->addIncoming(SI.getOperand(0), SI.getParent());
- PN->addIncoming(OtherStore->getOperand(0), OtherBB);
- MergedVal = InsertNewInstBefore(PN, DestBB->front());
- }
- // Advance to a place where it is safe to insert the new store and
- // insert it.
- BBI = DestBB->getFirstInsertionPt();
- StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
- SI.isVolatile(),
- SI.getAlignment(),
- SI.getOrdering(),
- SI.getSynchScope());
- InsertNewInstBefore(NewSI, *BBI);
- NewSI->setDebugLoc(OtherStore->getDebugLoc());
- // If the two stores had AA tags, merge them.
- AAMDNodes AATags;
- SI.getAAMetadata(AATags);
- if (AATags) {
- OtherStore->getAAMetadata(AATags, /* Merge = */ true);
- NewSI->setAAMetadata(AATags);
- }
- // Nuke the old stores.
- EraseInstFromFunction(SI);
- EraseInstFromFunction(*OtherStore);
- return true;
- }
|