123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899 |
- //===- InstCombinePHI.cpp -------------------------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the visitPHINode function.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- using namespace llvm;
- #define DEBUG_TYPE "instcombine"
- /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
- /// adds all have a single use, turn this into a phi and a single binop.
- Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
- Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
- assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
- unsigned Opc = FirstInst->getOpcode();
- Value *LHSVal = FirstInst->getOperand(0);
- Value *RHSVal = FirstInst->getOperand(1);
- Type *LHSType = LHSVal->getType();
- Type *RHSType = RHSVal->getType();
- bool isNUW = false, isNSW = false, isExact = false;
- if (OverflowingBinaryOperator *BO =
- dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
- isNUW = BO->hasNoUnsignedWrap();
- isNSW = BO->hasNoSignedWrap();
- } else if (PossiblyExactOperator *PEO =
- dyn_cast<PossiblyExactOperator>(FirstInst))
- isExact = PEO->isExact();
- // Scan to see if all operands are the same opcode, and all have one use.
- for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
- Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
- if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
- // Verify type of the LHS matches so we don't fold cmp's of different
- // types.
- I->getOperand(0)->getType() != LHSType ||
- I->getOperand(1)->getType() != RHSType)
- return nullptr;
- // If they are CmpInst instructions, check their predicates
- if (CmpInst *CI = dyn_cast<CmpInst>(I))
- if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
- return nullptr;
- if (isNUW)
- isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
- if (isNSW)
- isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- if (isExact)
- isExact = cast<PossiblyExactOperator>(I)->isExact();
- // Keep track of which operand needs a phi node.
- if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
- if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
- }
- // If both LHS and RHS would need a PHI, don't do this transformation,
- // because it would increase the number of PHIs entering the block,
- // which leads to higher register pressure. This is especially
- // bad when the PHIs are in the header of a loop.
- if (!LHSVal && !RHSVal)
- return nullptr;
- // Otherwise, this is safe to transform!
- Value *InLHS = FirstInst->getOperand(0);
- Value *InRHS = FirstInst->getOperand(1);
- PHINode *NewLHS = nullptr, *NewRHS = nullptr;
- if (!LHSVal) {
- NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
- FirstInst->getOperand(0)->getName() + ".pn");
- NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
- InsertNewInstBefore(NewLHS, PN);
- LHSVal = NewLHS;
- }
- if (!RHSVal) {
- NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
- FirstInst->getOperand(1)->getName() + ".pn");
- NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
- InsertNewInstBefore(NewRHS, PN);
- RHSVal = NewRHS;
- }
- // Add all operands to the new PHIs.
- if (NewLHS || NewRHS) {
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
- Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
- if (NewLHS) {
- Value *NewInLHS = InInst->getOperand(0);
- NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
- }
- if (NewRHS) {
- Value *NewInRHS = InInst->getOperand(1);
- NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
- }
- }
- }
- if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
- CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
- LHSVal, RHSVal);
- NewCI->setDebugLoc(FirstInst->getDebugLoc());
- return NewCI;
- }
- BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
- BinaryOperator *NewBinOp =
- BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
- if (isNUW) NewBinOp->setHasNoUnsignedWrap();
- if (isNSW) NewBinOp->setHasNoSignedWrap();
- if (isExact) NewBinOp->setIsExact();
- NewBinOp->setDebugLoc(FirstInst->getDebugLoc());
- return NewBinOp;
- }
- Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
- GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
- SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
- FirstInst->op_end());
- // This is true if all GEP bases are allocas and if all indices into them are
- // constants.
- bool AllBasePointersAreAllocas = true;
- // We don't want to replace this phi if the replacement would require
- // more than one phi, which leads to higher register pressure. This is
- // especially bad when the PHIs are in the header of a loop.
- bool NeededPhi = false;
- bool AllInBounds = true;
- // Scan to see if all operands are the same opcode, and all have one use.
- for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
- GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
- if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
- GEP->getNumOperands() != FirstInst->getNumOperands())
- return nullptr;
- AllInBounds &= GEP->isInBounds();
- // Keep track of whether or not all GEPs are of alloca pointers.
- if (AllBasePointersAreAllocas &&
- (!isa<AllocaInst>(GEP->getOperand(0)) ||
- !GEP->hasAllConstantIndices()))
- AllBasePointersAreAllocas = false;
- // Compare the operand lists.
- for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
- if (FirstInst->getOperand(op) == GEP->getOperand(op))
- continue;
- // Don't merge two GEPs when two operands differ (introducing phi nodes)
- // if one of the PHIs has a constant for the index. The index may be
- // substantially cheaper to compute for the constants, so making it a
- // variable index could pessimize the path. This also handles the case
- // for struct indices, which must always be constant.
- if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
- isa<ConstantInt>(GEP->getOperand(op)))
- return nullptr;
- if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
- return nullptr;
- // If we already needed a PHI for an earlier operand, and another operand
- // also requires a PHI, we'd be introducing more PHIs than we're
- // eliminating, which increases register pressure on entry to the PHI's
- // block.
- if (NeededPhi)
- return nullptr;
- FixedOperands[op] = nullptr; // Needs a PHI.
- NeededPhi = true;
- }
- }
- // If all of the base pointers of the PHI'd GEPs are from allocas, don't
- // bother doing this transformation. At best, this will just save a bit of
- // offset calculation, but all the predecessors will have to materialize the
- // stack address into a register anyway. We'd actually rather *clone* the
- // load up into the predecessors so that we have a load of a gep of an alloca,
- // which can usually all be folded into the load.
- if (AllBasePointersAreAllocas)
- return nullptr;
- // Otherwise, this is safe to transform. Insert PHI nodes for each operand
- // that is variable.
- SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
- bool HasAnyPHIs = false;
- for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
- if (FixedOperands[i]) continue; // operand doesn't need a phi.
- Value *FirstOp = FirstInst->getOperand(i);
- PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
- FirstOp->getName()+".pn");
- InsertNewInstBefore(NewPN, PN);
- NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
- OperandPhis[i] = NewPN;
- FixedOperands[i] = NewPN;
- HasAnyPHIs = true;
- }
- // Add all operands to the new PHIs.
- if (HasAnyPHIs) {
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
- GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
- BasicBlock *InBB = PN.getIncomingBlock(i);
- for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
- if (PHINode *OpPhi = OperandPhis[op])
- OpPhi->addIncoming(InGEP->getOperand(op), InBB);
- }
- }
- Value *Base = FixedOperands[0];
- GetElementPtrInst *NewGEP =
- GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base,
- makeArrayRef(FixedOperands).slice(1));
- if (AllInBounds) NewGEP->setIsInBounds();
- NewGEP->setDebugLoc(FirstInst->getDebugLoc());
- return NewGEP;
- }
- /// Return true if we know that it is safe to sink the load out of the block
- /// that defines it. This means that it must be obvious the value of the load is
- /// not changed from the point of the load to the end of the block it is in.
- ///
- /// Finally, it is safe, but not profitable, to sink a load targeting a
- /// non-address-taken alloca. Doing so will cause us to not promote the alloca
- /// to a register.
- static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
- BasicBlock::iterator BBI = L, E = L->getParent()->end();
- for (++BBI; BBI != E; ++BBI)
- if (BBI->mayWriteToMemory())
- return false;
- // Check for non-address taken alloca. If not address-taken already, it isn't
- // profitable to do this xform.
- if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
- bool isAddressTaken = false;
- for (User *U : AI->users()) {
- if (isa<LoadInst>(U)) continue;
- if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- // If storing TO the alloca, then the address isn't taken.
- if (SI->getOperand(1) == AI) continue;
- }
- isAddressTaken = true;
- break;
- }
- if (!isAddressTaken && AI->isStaticAlloca())
- return false;
- }
- // If this load is a load from a GEP with a constant offset from an alloca,
- // then we don't want to sink it. In its present form, it will be
- // load [constant stack offset]. Sinking it will cause us to have to
- // materialize the stack addresses in each predecessor in a register only to
- // do a shared load from register in the successor.
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
- if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
- if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
- return false;
- return true;
- }
- Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
- // HLSL Change Begin - Do not create phi on pointer.
- return nullptr;
- // HLSL Change End.
- LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
- // FIXME: This is overconservative; this transform is allowed in some cases
- // for atomic operations.
- if (FirstLI->isAtomic())
- return nullptr;
- // When processing loads, we need to propagate two bits of information to the
- // sunk load: whether it is volatile, and what its alignment is. We currently
- // don't sink loads when some have their alignment specified and some don't.
- // visitLoadInst will propagate an alignment onto the load when TD is around,
- // and if TD isn't around, we can't handle the mixed case.
- bool isVolatile = FirstLI->isVolatile();
- unsigned LoadAlignment = FirstLI->getAlignment();
- unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
- // We can't sink the load if the loaded value could be modified between the
- // load and the PHI.
- if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
- !isSafeAndProfitableToSinkLoad(FirstLI))
- return nullptr;
- // If the PHI is of volatile loads and the load block has multiple
- // successors, sinking it would remove a load of the volatile value from
- // the path through the other successor.
- if (isVolatile &&
- FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
- return nullptr;
- // Check to see if all arguments are the same operation.
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
- LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
- if (!LI || !LI->hasOneUse())
- return nullptr;
- // We can't sink the load if the loaded value could be modified between
- // the load and the PHI.
- if (LI->isVolatile() != isVolatile ||
- LI->getParent() != PN.getIncomingBlock(i) ||
- LI->getPointerAddressSpace() != LoadAddrSpace ||
- !isSafeAndProfitableToSinkLoad(LI))
- return nullptr;
- // If some of the loads have an alignment specified but not all of them,
- // we can't do the transformation.
- if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
- return nullptr;
- LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
- // If the PHI is of volatile loads and the load block has multiple
- // successors, sinking it would remove a load of the volatile value from
- // the path through the other successor.
- if (isVolatile &&
- LI->getParent()->getTerminator()->getNumSuccessors() != 1)
- return nullptr;
- }
- // Okay, they are all the same operation. Create a new PHI node of the
- // correct type, and PHI together all of the LHS's of the instructions.
- PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
- PN.getNumIncomingValues(),
- PN.getName()+".in");
- Value *InVal = FirstLI->getOperand(0);
- NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
- // Add all operands to the new PHI.
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
- Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0);
- if (NewInVal != InVal)
- InVal = nullptr;
- NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
- }
- Value *PhiVal;
- if (InVal) {
- // The new PHI unions all of the same values together. This is really
- // common, so we handle it intelligently here for compile-time speed.
- PhiVal = InVal;
- delete NewPN;
- } else {
- InsertNewInstBefore(NewPN, PN);
- PhiVal = NewPN;
- }
- // If this was a volatile load that we are merging, make sure to loop through
- // and mark all the input loads as non-volatile. If we don't do this, we will
- // insert a new volatile load and the old ones will not be deletable.
- if (isVolatile)
- for (Value *IncValue : PN.incoming_values())
- cast<LoadInst>(IncValue)->setVolatile(false);
- LoadInst *NewLI = new LoadInst(PhiVal, "", isVolatile, LoadAlignment);
- NewLI->setDebugLoc(FirstLI->getDebugLoc());
- return NewLI;
- }
- /// If all operands to a PHI node are the same "unary" operator and they all are
- /// only used by the PHI, PHI together their inputs, and do the operation once,
- /// to the result of the PHI.
- Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
- Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
- if (isa<GetElementPtrInst>(FirstInst))
- return FoldPHIArgGEPIntoPHI(PN);
- if (isa<LoadInst>(FirstInst))
- return FoldPHIArgLoadIntoPHI(PN);
- // Scan the instruction, looking for input operations that can be folded away.
- // If all input operands to the phi are the same instruction (e.g. a cast from
- // the same type or "+42") we can pull the operation through the PHI, reducing
- // code size and simplifying code.
- Constant *ConstantOp = nullptr;
- Type *CastSrcTy = nullptr;
- bool isNUW = false, isNSW = false, isExact = false;
- if (isa<CastInst>(FirstInst)) {
- CastSrcTy = FirstInst->getOperand(0)->getType();
- // Be careful about transforming integer PHIs. We don't want to pessimize
- // the code by turning an i32 into an i1293.
- if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
- if (!ShouldChangeType(PN.getType(), CastSrcTy))
- return nullptr;
- }
- } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
- // Can fold binop, compare or shift here if the RHS is a constant,
- // otherwise call FoldPHIArgBinOpIntoPHI.
- ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
- if (!ConstantOp)
- return FoldPHIArgBinOpIntoPHI(PN);
- if (OverflowingBinaryOperator *BO =
- dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
- isNUW = BO->hasNoUnsignedWrap();
- isNSW = BO->hasNoSignedWrap();
- } else if (PossiblyExactOperator *PEO =
- dyn_cast<PossiblyExactOperator>(FirstInst))
- isExact = PEO->isExact();
- } else {
- return nullptr; // Cannot fold this operation.
- }
- // Check to see if all arguments are the same operation.
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
- Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
- if (!I || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
- return nullptr;
- if (CastSrcTy) {
- if (I->getOperand(0)->getType() != CastSrcTy)
- return nullptr; // Cast operation must match.
- } else if (I->getOperand(1) != ConstantOp) {
- return nullptr;
- }
- if (isNUW)
- isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
- if (isNSW)
- isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- if (isExact)
- isExact = cast<PossiblyExactOperator>(I)->isExact();
- }
- // Okay, they are all the same operation. Create a new PHI node of the
- // correct type, and PHI together all of the LHS's of the instructions.
- PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
- PN.getNumIncomingValues(),
- PN.getName()+".in");
- Value *InVal = FirstInst->getOperand(0);
- NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
- // Add all operands to the new PHI.
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
- Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
- if (NewInVal != InVal)
- InVal = nullptr;
- NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
- }
- Value *PhiVal;
- if (InVal) {
- // The new PHI unions all of the same values together. This is really
- // common, so we handle it intelligently here for compile-time speed.
- PhiVal = InVal;
- delete NewPN;
- } else {
- InsertNewInstBefore(NewPN, PN);
- PhiVal = NewPN;
- }
- // Insert and return the new operation.
- if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
- CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
- PN.getType());
- NewCI->setDebugLoc(FirstInst->getDebugLoc());
- return NewCI;
- }
- if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
- BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
- if (isNUW) BinOp->setHasNoUnsignedWrap();
- if (isNSW) BinOp->setHasNoSignedWrap();
- if (isExact) BinOp->setIsExact();
- BinOp->setDebugLoc(FirstInst->getDebugLoc());
- return BinOp;
- }
- CmpInst *CIOp = cast<CmpInst>(FirstInst);
- CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
- PhiVal, ConstantOp);
- NewCI->setDebugLoc(FirstInst->getDebugLoc());
- return NewCI;
- }
- /// Return true if this PHI node is only used by a PHI node cycle that is dead.
- static bool DeadPHICycle(PHINode *PN,
- SmallPtrSetImpl<PHINode*> &PotentiallyDeadPHIs) {
- if (PN->use_empty()) return true;
- if (!PN->hasOneUse()) return false;
- // Remember this node, and if we find the cycle, return.
- if (!PotentiallyDeadPHIs.insert(PN).second)
- return true;
- // Don't scan crazily complex things.
- if (PotentiallyDeadPHIs.size() == 16)
- return false;
- if (PHINode *PU = dyn_cast<PHINode>(PN->user_back()))
- return DeadPHICycle(PU, PotentiallyDeadPHIs);
- return false;
- }
- /// Return true if this phi node is always equal to NonPhiInVal.
- /// This happens with mutually cyclic phi nodes like:
- /// z = some value; x = phi (y, z); y = phi (x, z)
- static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
- SmallPtrSetImpl<PHINode*> &ValueEqualPHIs) {
- // See if we already saw this PHI node.
- if (!ValueEqualPHIs.insert(PN).second)
- return true;
- // Don't scan crazily complex things.
- if (ValueEqualPHIs.size() == 16)
- return false;
- // Scan the operands to see if they are either phi nodes or are equal to
- // the value.
- for (Value *Op : PN->incoming_values()) {
- if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
- if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
- return false;
- } else if (Op != NonPhiInVal)
- return false;
- }
- return true;
- }
- namespace {
- struct PHIUsageRecord {
- unsigned PHIId; // The ID # of the PHI (something determinstic to sort on)
- unsigned Shift; // The amount shifted.
- Instruction *Inst; // The trunc instruction.
- PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
- : PHIId(pn), Shift(Sh), Inst(User) {}
- bool operator<(const PHIUsageRecord &RHS) const {
- if (PHIId < RHS.PHIId) return true;
- if (PHIId > RHS.PHIId) return false;
- if (Shift < RHS.Shift) return true;
- if (Shift > RHS.Shift) return false;
- return Inst->getType()->getPrimitiveSizeInBits() <
- RHS.Inst->getType()->getPrimitiveSizeInBits();
- }
- };
- struct LoweredPHIRecord {
- PHINode *PN; // The PHI that was lowered.
- unsigned Shift; // The amount shifted.
- unsigned Width; // The width extracted.
- LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
- : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
- // Ctor form used by DenseMap.
- LoweredPHIRecord(PHINode *pn, unsigned Sh)
- : PN(pn), Shift(Sh), Width(0) {}
- };
- }
- namespace llvm {
- template<>
- struct DenseMapInfo<LoweredPHIRecord> {
- static inline LoweredPHIRecord getEmptyKey() {
- return LoweredPHIRecord(nullptr, 0);
- }
- static inline LoweredPHIRecord getTombstoneKey() {
- return LoweredPHIRecord(nullptr, 1);
- }
- static unsigned getHashValue(const LoweredPHIRecord &Val) {
- return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
- (Val.Width>>3);
- }
- static bool isEqual(const LoweredPHIRecord &LHS,
- const LoweredPHIRecord &RHS) {
- return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
- LHS.Width == RHS.Width;
- }
- };
- }
- /// This is an integer PHI and we know that it has an illegal type: see if it is
- /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
- /// the various pieces being extracted. This sort of thing is introduced when
- /// SROA promotes an aggregate to large integer values.
- ///
- /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
- /// inttoptr. We should produce new PHIs in the right type.
- ///
- Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
- // PHIUsers - Keep track of all of the truncated values extracted from a set
- // of PHIs, along with their offset. These are the things we want to rewrite.
- SmallVector<PHIUsageRecord, 16> PHIUsers;
- // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
- // nodes which are extracted from. PHIsToSlice is a set we use to avoid
- // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
- // check the uses of (to ensure they are all extracts).
- SmallVector<PHINode*, 8> PHIsToSlice;
- SmallPtrSet<PHINode*, 8> PHIsInspected;
- PHIsToSlice.push_back(&FirstPhi);
- PHIsInspected.insert(&FirstPhi);
- for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
- PHINode *PN = PHIsToSlice[PHIId];
- // Scan the input list of the PHI. If any input is an invoke, and if the
- // input is defined in the predecessor, then we won't be split the critical
- // edge which is required to insert a truncate. Because of this, we have to
- // bail out.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
- if (!II) continue;
- if (II->getParent() != PN->getIncomingBlock(i))
- continue;
- // If we have a phi, and if it's directly in the predecessor, then we have
- // a critical edge where we need to put the truncate. Since we can't
- // split the edge in instcombine, we have to bail out.
- return nullptr;
- }
- for (User *U : PN->users()) {
- Instruction *UserI = cast<Instruction>(U);
- // If the user is a PHI, inspect its uses recursively.
- if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
- if (PHIsInspected.insert(UserPN).second)
- PHIsToSlice.push_back(UserPN);
- continue;
- }
- // Truncates are always ok.
- if (isa<TruncInst>(UserI)) {
- PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
- continue;
- }
- // Otherwise it must be a lshr which can only be used by one trunc.
- if (UserI->getOpcode() != Instruction::LShr ||
- !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
- !isa<ConstantInt>(UserI->getOperand(1)))
- return nullptr;
- unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
- PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
- }
- }
- // If we have no users, they must be all self uses, just nuke the PHI.
- if (PHIUsers.empty())
- return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
- // If this phi node is transformable, create new PHIs for all the pieces
- // extracted out of it. First, sort the users by their offset and size.
- array_pod_sort(PHIUsers.begin(), PHIUsers.end());
- DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
- for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
- dbgs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] << '\n';
- );
- // PredValues - This is a temporary used when rewriting PHI nodes. It is
- // hoisted out here to avoid construction/destruction thrashing.
- DenseMap<BasicBlock*, Value*> PredValues;
- // ExtractedVals - Each new PHI we introduce is saved here so we don't
- // introduce redundant PHIs.
- DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
- for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
- unsigned PHIId = PHIUsers[UserI].PHIId;
- PHINode *PN = PHIsToSlice[PHIId];
- unsigned Offset = PHIUsers[UserI].Shift;
- Type *Ty = PHIUsers[UserI].Inst->getType();
- PHINode *EltPHI;
- // If we've already lowered a user like this, reuse the previously lowered
- // value.
- if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
- // Otherwise, Create the new PHI node for this user.
- EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
- PN->getName()+".off"+Twine(Offset), PN);
- assert(EltPHI->getType() != PN->getType() &&
- "Truncate didn't shrink phi?");
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *Pred = PN->getIncomingBlock(i);
- Value *&PredVal = PredValues[Pred];
- // If we already have a value for this predecessor, reuse it.
- if (PredVal) {
- EltPHI->addIncoming(PredVal, Pred);
- continue;
- }
- // Handle the PHI self-reuse case.
- Value *InVal = PN->getIncomingValue(i);
- if (InVal == PN) {
- PredVal = EltPHI;
- EltPHI->addIncoming(PredVal, Pred);
- continue;
- }
- if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
- // If the incoming value was a PHI, and if it was one of the PHIs we
- // already rewrote it, just use the lowered value.
- if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
- PredVal = Res;
- EltPHI->addIncoming(PredVal, Pred);
- continue;
- }
- }
- // Otherwise, do an extract in the predecessor.
- Builder->SetInsertPoint(Pred, Pred->getTerminator());
- Value *Res = InVal;
- if (Offset)
- Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(),
- Offset), "extract");
- Res = Builder->CreateTrunc(Res, Ty, "extract.t");
- PredVal = Res;
- EltPHI->addIncoming(Res, Pred);
- // If the incoming value was a PHI, and if it was one of the PHIs we are
- // rewriting, we will ultimately delete the code we inserted. This
- // means we need to revisit that PHI to make sure we extract out the
- // needed piece.
- if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
- if (PHIsInspected.count(OldInVal)) {
- unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(),
- OldInVal)-PHIsToSlice.begin();
- PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
- cast<Instruction>(Res)));
- ++UserE;
- }
- }
- PredValues.clear();
- DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": "
- << *EltPHI << '\n');
- ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
- }
- // Replace the use of this piece with the PHI node.
- ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
- }
- // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
- // with undefs.
- Value *Undef = UndefValue::get(FirstPhi.getType());
- for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
- ReplaceInstUsesWith(*PHIsToSlice[i], Undef);
- return ReplaceInstUsesWith(FirstPhi, Undef);
- }
- // PHINode simplification
- //
- Instruction *InstCombiner::visitPHINode(PHINode &PN) {
- if (Value *V = SimplifyInstruction(&PN, DL, TLI, DT, AC))
- return ReplaceInstUsesWith(PN, V);
- // If all PHI operands are the same operation, pull them through the PHI,
- // reducing code size.
- if (isa<Instruction>(PN.getIncomingValue(0)) &&
- isa<Instruction>(PN.getIncomingValue(1)) &&
- cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
- cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
- // FIXME: The hasOneUse check will fail for PHIs that use the value more
- // than themselves more than once.
- PN.getIncomingValue(0)->hasOneUse())
- if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
- return Result;
- // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
- // this PHI only has a single use (a PHI), and if that PHI only has one use (a
- // PHI)... break the cycle.
- if (PN.hasOneUse()) {
- Instruction *PHIUser = cast<Instruction>(PN.user_back());
- if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
- SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
- PotentiallyDeadPHIs.insert(&PN);
- if (DeadPHICycle(PU, PotentiallyDeadPHIs))
- return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
- }
- // If this phi has a single use, and if that use just computes a value for
- // the next iteration of a loop, delete the phi. This occurs with unused
- // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
- // common case here is good because the only other things that catch this
- // are induction variable analysis (sometimes) and ADCE, which is only run
- // late.
- if (PHIUser->hasOneUse() &&
- (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
- PHIUser->user_back() == &PN) {
- return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
- }
- }
- // We sometimes end up with phi cycles that non-obviously end up being the
- // same value, for example:
- // z = some value; x = phi (y, z); y = phi (x, z)
- // where the phi nodes don't necessarily need to be in the same block. Do a
- // quick check to see if the PHI node only contains a single non-phi value, if
- // so, scan to see if the phi cycle is actually equal to that value.
- {
- unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
- // Scan for the first non-phi operand.
- while (InValNo != NumIncomingVals &&
- isa<PHINode>(PN.getIncomingValue(InValNo)))
- ++InValNo;
- if (InValNo != NumIncomingVals) {
- Value *NonPhiInVal = PN.getIncomingValue(InValNo);
- // Scan the rest of the operands to see if there are any conflicts, if so
- // there is no need to recursively scan other phis.
- for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
- Value *OpVal = PN.getIncomingValue(InValNo);
- if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
- break;
- }
- // If we scanned over all operands, then we have one unique value plus
- // phi values. Scan PHI nodes to see if they all merge in each other or
- // the value.
- if (InValNo == NumIncomingVals) {
- SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
- if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
- return ReplaceInstUsesWith(PN, NonPhiInVal);
- }
- }
- }
- // If there are multiple PHIs, sort their operands so that they all list
- // the blocks in the same order. This will help identical PHIs be eliminated
- // by other passes. Other passes shouldn't depend on this for correctness
- // however.
- PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
- if (&PN != FirstPN)
- for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *BBA = PN.getIncomingBlock(i);
- BasicBlock *BBB = FirstPN->getIncomingBlock(i);
- if (BBA != BBB) {
- Value *VA = PN.getIncomingValue(i);
- unsigned j = PN.getBasicBlockIndex(BBB);
- Value *VB = PN.getIncomingValue(j);
- PN.setIncomingBlock(i, BBB);
- PN.setIncomingValue(i, VB);
- PN.setIncomingBlock(j, BBA);
- PN.setIncomingValue(j, VA);
- // NOTE: Instcombine normally would want us to "return &PN" if we
- // modified any of the operands of an instruction. However, since we
- // aren't adding or removing uses (just rearranging them) we don't do
- // this in this case.
- }
- }
- // If this is an integer PHI and we know that it has an illegal type, see if
- // it is only used by trunc or trunc(lshr) operations. If so, we split the
- // PHI into the various pieces being extracted. This sort of thing is
- // introduced when SROA promotes an aggregate to a single large integer type.
- if (PN.getType()->isIntegerTy() &&
- !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
- if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
- return Res;
- return nullptr;
- }
|