123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830 |
- //===- InstCombineShifts.cpp ----------------------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the visitShl, visitLShr, and visitAShr functions.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/PatternMatch.h"
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "instcombine"
- Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
- assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- // See if we can fold away this shift.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
- // Try to fold constant and into select arguments.
- if (isa<Constant>(Op0))
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
- if (Constant *CUI = dyn_cast<Constant>(Op1))
- if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
- return Res;
- // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
- // Because shifts by negative values (which could occur if A were negative)
- // are undefined.
- Value *A; const APInt *B;
- if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
- // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
- // demand the sign bit (and many others) here??
- Value *Rem = Builder->CreateAnd(A, ConstantInt::get(I.getType(), *B-1),
- Op1->getName());
- I.setOperand(1, Rem);
- return &I;
- }
- return nullptr;
- }
- /// CanEvaluateShifted - See if we can compute the specified value, but shifted
- /// logically to the left or right by some number of bits. This should return
- /// true if the expression can be computed for the same cost as the current
- /// expression tree. This is used to eliminate extraneous shifting from things
- /// like:
- /// %C = shl i128 %A, 64
- /// %D = shl i128 %B, 96
- /// %E = or i128 %C, %D
- /// %F = lshr i128 %E, 64
- /// where the client will ask if E can be computed shifted right by 64-bits. If
- /// this succeeds, the GetShiftedValue function will be called to produce the
- /// value.
- static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
- InstCombiner &IC, Instruction *CxtI) {
- // We can always evaluate constants shifted.
- if (isa<Constant>(V))
- return true;
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
- // If this is the opposite shift, we can directly reuse the input of the shift
- // if the needed bits are already zero in the input. This allows us to reuse
- // the value which means that we don't care if the shift has multiple uses.
- // TODO: Handle opposite shift by exact value.
- ConstantInt *CI = nullptr;
- if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
- (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
- if (CI->getZExtValue() == NumBits) {
- // TODO: Check that the input bits are already zero with MaskedValueIsZero
- #if 0
- // If this is a truncate of a logical shr, we can truncate it to a smaller
- // lshr iff we know that the bits we would otherwise be shifting in are
- // already zeros.
- uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
- uint32_t BitWidth = Ty->getScalarSizeInBits();
- if (MaskedValueIsZero(I->getOperand(0),
- APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
- CI->getLimitedValue(BitWidth) < BitWidth) {
- return CanEvaluateTruncated(I->getOperand(0), Ty);
- }
- #endif
- }
- }
- // We can't mutate something that has multiple uses: doing so would
- // require duplicating the instruction in general, which isn't profitable.
- if (!I->hasOneUse()) return false;
- switch (I->getOpcode()) {
- default: return false;
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
- return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC, I) &&
- CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC, I);
- case Instruction::Shl: {
- // We can often fold the shift into shifts-by-a-constant.
- CI = dyn_cast<ConstantInt>(I->getOperand(1));
- if (!CI) return false;
- // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
- if (isLeftShift) return true;
- // We can always turn shl(c)+shr(c) -> and(c2).
- if (CI->getValue() == NumBits) return true;
- unsigned TypeWidth = I->getType()->getScalarSizeInBits();
- // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
- // profitable unless we know the and'd out bits are already zero.
- if (CI->getZExtValue() > NumBits) {
- unsigned LowBits = TypeWidth - CI->getZExtValue();
- if (IC.MaskedValueIsZero(I->getOperand(0),
- APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits,
- 0, CxtI))
- return true;
- }
- return false;
- }
- case Instruction::LShr: {
- // We can often fold the shift into shifts-by-a-constant.
- CI = dyn_cast<ConstantInt>(I->getOperand(1));
- if (!CI) return false;
- // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
- if (!isLeftShift) return true;
- // We can always turn lshr(c)+shl(c) -> and(c2).
- if (CI->getValue() == NumBits) return true;
- unsigned TypeWidth = I->getType()->getScalarSizeInBits();
- // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
- // profitable unless we know the and'd out bits are already zero.
- if (CI->getValue().ult(TypeWidth) && CI->getZExtValue() > NumBits) {
- unsigned LowBits = CI->getZExtValue() - NumBits;
- if (IC.MaskedValueIsZero(I->getOperand(0),
- APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits,
- 0, CxtI))
- return true;
- }
- return false;
- }
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift,
- IC, SI) &&
- CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC, SI);
- }
- case Instruction::PHI: {
- // We can change a phi if we can change all operands. Note that we never
- // get into trouble with cyclic PHIs here because we only consider
- // instructions with a single use.
- PHINode *PN = cast<PHINode>(I);
- for (Value *IncValue : PN->incoming_values())
- if (!CanEvaluateShifted(IncValue, NumBits, isLeftShift,
- IC, PN))
- return false;
- return true;
- }
- }
- }
- /// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
- /// this value inserts the new computation that produces the shifted value.
- static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
- InstCombiner &IC, const DataLayout &DL) {
- // We can always evaluate constants shifted.
- if (Constant *C = dyn_cast<Constant>(V)) {
- if (isLeftShift)
- V = IC.Builder->CreateShl(C, NumBits);
- else
- V = IC.Builder->CreateLShr(C, NumBits);
- // If we got a constantexpr back, try to simplify it with TD info.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- V = ConstantFoldConstantExpression(CE, DL, IC.getTargetLibraryInfo());
- return V;
- }
- Instruction *I = cast<Instruction>(V);
- IC.Worklist.Add(I);
- switch (I->getOpcode()) {
- default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
- I->setOperand(
- 0, GetShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
- I->setOperand(
- 1, GetShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
- return I;
- case Instruction::Shl: {
- BinaryOperator *BO = cast<BinaryOperator>(I);
- unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
- // We only accept shifts-by-a-constant in CanEvaluateShifted.
- ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
- // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
- if (isLeftShift) {
- // If this is oversized composite shift, then unsigned shifts get 0.
- unsigned NewShAmt = NumBits+CI->getZExtValue();
- if (NewShAmt >= TypeWidth)
- return Constant::getNullValue(I->getType());
- BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
- BO->setHasNoUnsignedWrap(false);
- BO->setHasNoSignedWrap(false);
- return I;
- }
- // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
- // zeros.
- if (CI->getValue() == NumBits) {
- APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits));
- V = IC.Builder->CreateAnd(BO->getOperand(0),
- ConstantInt::get(BO->getContext(), Mask));
- if (Instruction *VI = dyn_cast<Instruction>(V)) {
- VI->moveBefore(BO);
- VI->takeName(BO);
- }
- return V;
- }
- // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
- // the and won't be needed.
- assert(CI->getZExtValue() > NumBits);
- BO->setOperand(1, ConstantInt::get(BO->getType(),
- CI->getZExtValue() - NumBits));
- BO->setHasNoUnsignedWrap(false);
- BO->setHasNoSignedWrap(false);
- return BO;
- }
- case Instruction::LShr: {
- BinaryOperator *BO = cast<BinaryOperator>(I);
- unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
- // We only accept shifts-by-a-constant in CanEvaluateShifted.
- ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
- // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
- if (!isLeftShift) {
- // If this is oversized composite shift, then unsigned shifts get 0.
- unsigned NewShAmt = NumBits+CI->getZExtValue();
- if (NewShAmt >= TypeWidth)
- return Constant::getNullValue(BO->getType());
- BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
- BO->setIsExact(false);
- return I;
- }
- // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
- // zeros.
- if (CI->getValue() == NumBits) {
- APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits));
- V = IC.Builder->CreateAnd(I->getOperand(0),
- ConstantInt::get(BO->getContext(), Mask));
- if (Instruction *VI = dyn_cast<Instruction>(V)) {
- VI->moveBefore(I);
- VI->takeName(I);
- }
- return V;
- }
- // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
- // the and won't be needed.
- assert(CI->getZExtValue() > NumBits);
- BO->setOperand(1, ConstantInt::get(BO->getType(),
- CI->getZExtValue() - NumBits));
- BO->setIsExact(false);
- return BO;
- }
- case Instruction::Select:
- I->setOperand(
- 1, GetShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
- I->setOperand(
- 2, GetShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
- return I;
- case Instruction::PHI: {
- // We can change a phi if we can change all operands. Note that we never
- // get into trouble with cyclic PHIs here because we only consider
- // instructions with a single use.
- PHINode *PN = cast<PHINode>(I);
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i), NumBits,
- isLeftShift, IC, DL));
- return PN;
- }
- }
- }
- Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
- BinaryOperator &I) {
- bool isLeftShift = I.getOpcode() == Instruction::Shl;
- ConstantInt *COp1 = nullptr;
- if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(Op1))
- COp1 = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
- else if (ConstantVector *CV = dyn_cast<ConstantVector>(Op1))
- COp1 = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
- else
- COp1 = dyn_cast<ConstantInt>(Op1);
- if (!COp1)
- return nullptr;
- // See if we can propagate this shift into the input, this covers the trivial
- // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
- if (I.getOpcode() != Instruction::AShr &&
- CanEvaluateShifted(Op0, COp1->getZExtValue(), isLeftShift, *this, &I)) {
- DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
- " to eliminate shift:\n IN: " << *Op0 << "\n SH: " << I <<"\n");
- return ReplaceInstUsesWith(
- I, GetShiftedValue(Op0, COp1->getZExtValue(), isLeftShift, *this, DL));
- }
- // See if we can simplify any instructions used by the instruction whose sole
- // purpose is to compute bits we don't care about.
- uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
- assert(!COp1->uge(TypeBits) &&
- "Shift over the type width should have been removed already");
- // ((X*C1) << C2) == (X * (C1 << C2))
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
- if (BO->getOpcode() == Instruction::Mul && isLeftShift)
- if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
- return BinaryOperator::CreateMul(BO->getOperand(0),
- ConstantExpr::getShl(BOOp, Op1));
- // Try to fold constant and into select arguments.
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
- if (isa<PHINode>(Op0))
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
- // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
- if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
- Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
- // If 'shift2' is an ashr, we would have to get the sign bit into a funny
- // place. Don't try to do this transformation in this case. Also, we
- // require that the input operand is a shift-by-constant so that we have
- // confidence that the shifts will get folded together. We could do this
- // xform in more cases, but it is unlikely to be profitable.
- if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
- isa<ConstantInt>(TrOp->getOperand(1))) {
- // Okay, we'll do this xform. Make the shift of shift.
- Constant *ShAmt = ConstantExpr::getZExt(COp1, TrOp->getType());
- // (shift2 (shift1 & 0x00FF), c2)
- Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
- // For logical shifts, the truncation has the effect of making the high
- // part of the register be zeros. Emulate this by inserting an AND to
- // clear the top bits as needed. This 'and' will usually be zapped by
- // other xforms later if dead.
- unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
- unsigned DstSize = TI->getType()->getScalarSizeInBits();
- APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
- // The mask we constructed says what the trunc would do if occurring
- // between the shifts. We want to know the effect *after* the second
- // shift. We know that it is a logical shift by a constant, so adjust the
- // mask as appropriate.
- if (I.getOpcode() == Instruction::Shl)
- MaskV <<= COp1->getZExtValue();
- else {
- assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
- MaskV = MaskV.lshr(COp1->getZExtValue());
- }
- // shift1 & 0x00FF
- Value *And = Builder->CreateAnd(NSh,
- ConstantInt::get(I.getContext(), MaskV),
- TI->getName());
- // Return the value truncated to the interesting size.
- return new TruncInst(And, I.getType());
- }
- }
- if (Op0->hasOneUse()) {
- if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
- // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
- Value *V1, *V2;
- ConstantInt *CC;
- switch (Op0BO->getOpcode()) {
- default: break;
- case Instruction::Add:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // These operators commute.
- // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
- if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
- match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
- m_Specific(Op1)))) {
- Value *YS = // (Y << C)
- Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
- // (X + (Y << C))
- Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
- Op0BO->getOperand(1)->getName());
- uint32_t Op1Val = COp1->getLimitedValue(TypeBits);
- APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
- Constant *Mask = ConstantInt::get(I.getContext(), Bits);
- if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
- Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
- return BinaryOperator::CreateAnd(X, Mask);
- }
- // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
- Value *Op0BOOp1 = Op0BO->getOperand(1);
- if (isLeftShift && Op0BOOp1->hasOneUse() &&
- match(Op0BOOp1,
- m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
- m_ConstantInt(CC)))) {
- Value *YS = // (Y << C)
- Builder->CreateShl(Op0BO->getOperand(0), Op1,
- Op0BO->getName());
- // X & (CC << C)
- Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
- V1->getName()+".mask");
- return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
- }
- }
- // FALL THROUGH.
- case Instruction::Sub: {
- // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
- if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
- match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
- m_Specific(Op1)))) {
- Value *YS = // (Y << C)
- Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
- // (X + (Y << C))
- Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
- Op0BO->getOperand(0)->getName());
- uint32_t Op1Val = COp1->getLimitedValue(TypeBits);
- APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
- Constant *Mask = ConstantInt::get(I.getContext(), Bits);
- if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
- Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
- return BinaryOperator::CreateAnd(X, Mask);
- }
- // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
- if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
- match(Op0BO->getOperand(0),
- m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
- m_ConstantInt(CC))) && V2 == Op1) {
- Value *YS = // (Y << C)
- Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
- // X & (CC << C)
- Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
- V1->getName()+".mask");
- return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
- }
- break;
- }
- }
- // If the operand is a bitwise operator with a constant RHS, and the
- // shift is the only use, we can pull it out of the shift.
- if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
- bool isValid = true; // Valid only for And, Or, Xor
- bool highBitSet = false; // Transform if high bit of constant set?
- switch (Op0BO->getOpcode()) {
- default: isValid = false; break; // Do not perform transform!
- case Instruction::Add:
- isValid = isLeftShift;
- break;
- case Instruction::Or:
- case Instruction::Xor:
- highBitSet = false;
- break;
- case Instruction::And:
- highBitSet = true;
- break;
- }
- // If this is a signed shift right, and the high bit is modified
- // by the logical operation, do not perform the transformation.
- // The highBitSet boolean indicates the value of the high bit of
- // the constant which would cause it to be modified for this
- // operation.
- //
- if (isValid && I.getOpcode() == Instruction::AShr)
- isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
- if (isValid) {
- Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
- Value *NewShift =
- Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
- NewShift->takeName(Op0BO);
- return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
- NewRHS);
- }
- }
- }
- }
- // Find out if this is a shift of a shift by a constant.
- BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
- if (ShiftOp && !ShiftOp->isShift())
- ShiftOp = nullptr;
- if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
- // This is a constant shift of a constant shift. Be careful about hiding
- // shl instructions behind bit masks. They are used to represent multiplies
- // by a constant, and it is important that simple arithmetic expressions
- // are still recognizable by scalar evolution.
- //
- // The transforms applied to shl are very similar to the transforms applied
- // to mul by constant. We can be more aggressive about optimizing right
- // shifts.
- //
- // Combinations of right and left shifts will still be optimized in
- // DAGCombine where scalar evolution no longer applies.
- ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
- uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
- uint32_t ShiftAmt2 = COp1->getLimitedValue(TypeBits);
- assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
- if (ShiftAmt1 == 0) return nullptr; // Will be simplified in the future.
- Value *X = ShiftOp->getOperand(0);
- IntegerType *Ty = cast<IntegerType>(I.getType());
- // Check for (X << c1) << c2 and (X >> c1) >> c2
- if (I.getOpcode() == ShiftOp->getOpcode()) {
- uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
- // If this is oversized composite shift, then unsigned shifts get 0, ashr
- // saturates.
- if (AmtSum >= TypeBits) {
- if (I.getOpcode() != Instruction::AShr)
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- AmtSum = TypeBits-1; // Saturate to 31 for i32 ashr.
- }
- return BinaryOperator::Create(I.getOpcode(), X,
- ConstantInt::get(Ty, AmtSum));
- }
- if (ShiftAmt1 == ShiftAmt2) {
- // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
- if (I.getOpcode() == Instruction::LShr &&
- ShiftOp->getOpcode() == Instruction::Shl) {
- APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
- return BinaryOperator::CreateAnd(X,
- ConstantInt::get(I.getContext(), Mask));
- }
- } else if (ShiftAmt1 < ShiftAmt2) {
- uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
- // (X >>?,exact C1) << C2 --> X << (C2-C1)
- // The inexact version is deferred to DAGCombine so we don't hide shl
- // behind a bit mask.
- if (I.getOpcode() == Instruction::Shl &&
- ShiftOp->getOpcode() != Instruction::Shl &&
- ShiftOp->isExact()) {
- assert(ShiftOp->getOpcode() == Instruction::LShr ||
- ShiftOp->getOpcode() == Instruction::AShr);
- ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
- BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
- X, ShiftDiffCst);
- NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
- NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
- return NewShl;
- }
- // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
- if (I.getOpcode() == Instruction::LShr &&
- ShiftOp->getOpcode() == Instruction::Shl) {
- ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
- // (X <<nuw C1) >>u C2 --> X >>u (C2-C1)
- if (ShiftOp->hasNoUnsignedWrap()) {
- BinaryOperator *NewLShr = BinaryOperator::Create(Instruction::LShr,
- X, ShiftDiffCst);
- NewLShr->setIsExact(I.isExact());
- return NewLShr;
- }
- Value *Shift = Builder->CreateLShr(X, ShiftDiffCst);
- APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
- return BinaryOperator::CreateAnd(Shift,
- ConstantInt::get(I.getContext(),Mask));
- }
- // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
- // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
- if (I.getOpcode() == Instruction::AShr &&
- ShiftOp->getOpcode() == Instruction::Shl) {
- if (ShiftOp->hasNoSignedWrap()) {
- // (X <<nsw C1) >>s C2 --> X >>s (C2-C1)
- ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
- BinaryOperator *NewAShr = BinaryOperator::Create(Instruction::AShr,
- X, ShiftDiffCst);
- NewAShr->setIsExact(I.isExact());
- return NewAShr;
- }
- }
- } else {
- assert(ShiftAmt2 < ShiftAmt1);
- uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
- // (X >>?exact C1) << C2 --> X >>?exact (C1-C2)
- // The inexact version is deferred to DAGCombine so we don't hide shl
- // behind a bit mask.
- if (I.getOpcode() == Instruction::Shl &&
- ShiftOp->getOpcode() != Instruction::Shl &&
- ShiftOp->isExact()) {
- ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
- BinaryOperator *NewShr = BinaryOperator::Create(ShiftOp->getOpcode(),
- X, ShiftDiffCst);
- NewShr->setIsExact(true);
- return NewShr;
- }
- // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
- if (I.getOpcode() == Instruction::LShr &&
- ShiftOp->getOpcode() == Instruction::Shl) {
- ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
- if (ShiftOp->hasNoUnsignedWrap()) {
- // (X <<nuw C1) >>u C2 --> X <<nuw (C1-C2)
- BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
- X, ShiftDiffCst);
- NewShl->setHasNoUnsignedWrap(true);
- return NewShl;
- }
- Value *Shift = Builder->CreateShl(X, ShiftDiffCst);
- APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
- return BinaryOperator::CreateAnd(Shift,
- ConstantInt::get(I.getContext(),Mask));
- }
- // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
- // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
- if (I.getOpcode() == Instruction::AShr &&
- ShiftOp->getOpcode() == Instruction::Shl) {
- if (ShiftOp->hasNoSignedWrap()) {
- // (X <<nsw C1) >>s C2 --> X <<nsw (C1-C2)
- ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
- BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
- X, ShiftDiffCst);
- NewShl->setHasNoSignedWrap(true);
- return NewShl;
- }
- }
- }
- }
- return nullptr;
- }
- Instruction *InstCombiner::visitShl(BinaryOperator &I) {
- if (Value *V = SimplifyVectorOp(I))
- return ReplaceInstUsesWith(I, V);
- if (Value *V =
- SimplifyShlInst(I.getOperand(0), I.getOperand(1), I.hasNoSignedWrap(),
- I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
- return ReplaceInstUsesWith(I, V);
- if (Instruction *V = commonShiftTransforms(I))
- return V;
- if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) {
- unsigned ShAmt = Op1C->getZExtValue();
- // If the shifted-out value is known-zero, then this is a NUW shift.
- if (!I.hasNoUnsignedWrap() &&
- MaskedValueIsZero(I.getOperand(0),
- APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt),
- 0, &I)) {
- I.setHasNoUnsignedWrap();
- return &I;
- }
- // If the shifted out value is all signbits, this is a NSW shift.
- if (!I.hasNoSignedWrap() &&
- ComputeNumSignBits(I.getOperand(0), 0, &I) > ShAmt) {
- I.setHasNoSignedWrap();
- return &I;
- }
- }
- // (C1 << A) << C2 -> (C1 << C2) << A
- Constant *C1, *C2;
- Value *A;
- if (match(I.getOperand(0), m_OneUse(m_Shl(m_Constant(C1), m_Value(A)))) &&
- match(I.getOperand(1), m_Constant(C2)))
- return BinaryOperator::CreateShl(ConstantExpr::getShl(C1, C2), A);
- return nullptr;
- }
- Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
- if (Value *V = SimplifyVectorOp(I))
- return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
- DL, TLI, DT, AC))
- return ReplaceInstUsesWith(I, V);
- if (Instruction *R = commonShiftTransforms(I))
- return R;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
- unsigned ShAmt = Op1C->getZExtValue();
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
- unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
- // ctlz.i32(x)>>5 --> zext(x == 0)
- // cttz.i32(x)>>5 --> zext(x == 0)
- // ctpop.i32(x)>>5 --> zext(x == -1)
- if ((II->getIntrinsicID() == Intrinsic::ctlz ||
- II->getIntrinsicID() == Intrinsic::cttz ||
- II->getIntrinsicID() == Intrinsic::ctpop) &&
- isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt) {
- bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop;
- Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0);
- Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS);
- return new ZExtInst(Cmp, II->getType());
- }
- }
- // If the shifted-out value is known-zero, then this is an exact shift.
- if (!I.isExact() &&
- MaskedValueIsZero(Op0, APInt::getLowBitsSet(Op1C->getBitWidth(), ShAmt),
- 0, &I)){
- I.setIsExact();
- return &I;
- }
- }
- return nullptr;
- }
- Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
- if (Value *V = SimplifyVectorOp(I))
- return ReplaceInstUsesWith(I, V);
- if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
- DL, TLI, DT, AC))
- return ReplaceInstUsesWith(I, V);
- if (Instruction *R = commonShiftTransforms(I))
- return R;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
- unsigned ShAmt = Op1C->getZExtValue();
- // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
- // have a sign-extend idiom.
- Value *X;
- if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) {
- // If the input is an extension from the shifted amount value, e.g.
- // %x = zext i8 %A to i32
- // %y = shl i32 %x, 24
- // %z = ashr %y, 24
- // then turn this into "z = sext i8 A to i32".
- if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) {
- uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits();
- uint32_t DestBits = ZI->getType()->getScalarSizeInBits();
- if (Op1C->getZExtValue() == DestBits-SrcBits)
- return new SExtInst(ZI->getOperand(0), ZI->getType());
- }
- }
- // If the shifted-out value is known-zero, then this is an exact shift.
- if (!I.isExact() &&
- MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt),
- 0, &I)){
- I.setIsExact();
- return &I;
- }
- }
- // See if we can turn a signed shr into an unsigned shr.
- if (MaskedValueIsZero(Op0,
- APInt::getSignBit(I.getType()->getScalarSizeInBits()),
- 0, &I))
- return BinaryOperator::CreateLShr(Op0, Op1);
- return nullptr;
- }
|