123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185 |
- //===- InstCombineVectorOps.cpp -------------------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements instcombine for ExtractElement, InsertElement and
- // ShuffleVector.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/PatternMatch.h"
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "instcombine"
- /// CheapToScalarize - Return true if the value is cheaper to scalarize than it
- /// is to leave as a vector operation. isConstant indicates whether we're
- /// extracting one known element. If false we're extracting a variable index.
- static bool CheapToScalarize(Value *V, bool isConstant) {
- if (Constant *C = dyn_cast<Constant>(V)) {
- if (isConstant) return true;
- // If all elts are the same, we can extract it and use any of the values.
- if (Constant *Op0 = C->getAggregateElement(0U)) {
- for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e;
- ++i)
- if (C->getAggregateElement(i) != Op0)
- return false;
- return true;
- }
- }
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
- // Insert element gets simplified to the inserted element or is deleted if
- // this is constant idx extract element and its a constant idx insertelt.
- if (I->getOpcode() == Instruction::InsertElement && isConstant &&
- isa<ConstantInt>(I->getOperand(2)))
- return true;
- if (I->getOpcode() == Instruction::Load && I->hasOneUse())
- return true;
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
- if (BO->hasOneUse() &&
- (CheapToScalarize(BO->getOperand(0), isConstant) ||
- CheapToScalarize(BO->getOperand(1), isConstant)))
- return true;
- if (CmpInst *CI = dyn_cast<CmpInst>(I))
- if (CI->hasOneUse() &&
- (CheapToScalarize(CI->getOperand(0), isConstant) ||
- CheapToScalarize(CI->getOperand(1), isConstant)))
- return true;
- return false;
- }
- // If we have a PHI node with a vector type that has only 2 uses: feed
- // itself and be an operand of extractelement at a constant location,
- // try to replace the PHI of the vector type with a PHI of a scalar type.
- Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
- // Verify that the PHI node has exactly 2 uses. Otherwise return NULL.
- if (!PN->hasNUses(2))
- return nullptr;
- // If so, it's known at this point that one operand is PHI and the other is
- // an extractelement node. Find the PHI user that is not the extractelement
- // node.
- auto iu = PN->user_begin();
- Instruction *PHIUser = dyn_cast<Instruction>(*iu);
- if (PHIUser == cast<Instruction>(&EI))
- PHIUser = cast<Instruction>(*(++iu));
- // Verify that this PHI user has one use, which is the PHI itself,
- // and that it is a binary operation which is cheap to scalarize.
- // otherwise return NULL.
- if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
- !(isa<BinaryOperator>(PHIUser)) || !CheapToScalarize(PHIUser, true))
- return nullptr;
- // Create a scalar PHI node that will replace the vector PHI node
- // just before the current PHI node.
- PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
- PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
- // Scalarize each PHI operand.
- for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
- Value *PHIInVal = PN->getIncomingValue(i);
- BasicBlock *inBB = PN->getIncomingBlock(i);
- Value *Elt = EI.getIndexOperand();
- // If the operand is the PHI induction variable:
- if (PHIInVal == PHIUser) {
- // Scalarize the binary operation. Its first operand is the
- // scalar PHI, and the second operand is extracted from the other
- // vector operand.
- BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
- unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
- Value *Op = InsertNewInstWith(
- ExtractElementInst::Create(B0->getOperand(opId), Elt,
- B0->getOperand(opId)->getName() + ".Elt"),
- *B0);
- Value *newPHIUser = InsertNewInstWith(
- BinaryOperator::Create(B0->getOpcode(), scalarPHI, Op), *B0);
- scalarPHI->addIncoming(newPHIUser, inBB);
- } else {
- // Scalarize PHI input:
- Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
- // Insert the new instruction into the predecessor basic block.
- Instruction *pos = dyn_cast<Instruction>(PHIInVal);
- BasicBlock::iterator InsertPos;
- if (pos && !isa<PHINode>(pos)) {
- InsertPos = pos;
- ++InsertPos;
- } else {
- InsertPos = inBB->getFirstInsertionPt();
- }
- InsertNewInstWith(newEI, *InsertPos);
- scalarPHI->addIncoming(newEI, inBB);
- }
- }
- return ReplaceInstUsesWith(EI, scalarPHI);
- }
- Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
- if (Value *V = SimplifyExtractElementInst(
- EI.getVectorOperand(), EI.getIndexOperand(), DL, TLI, DT, AC))
- return ReplaceInstUsesWith(EI, V);
- // If vector val is constant with all elements the same, replace EI with
- // that element. We handle a known element # below.
- if (Constant *C = dyn_cast<Constant>(EI.getOperand(0)))
- if (CheapToScalarize(C, false))
- return ReplaceInstUsesWith(EI, C->getAggregateElement(0U));
- // If extracting a specified index from the vector, see if we can recursively
- // find a previously computed scalar that was inserted into the vector.
- if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
- unsigned IndexVal = IdxC->getZExtValue();
- unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
- // InstSimplify handles cases where the index is invalid.
- assert(IndexVal < VectorWidth);
- // This instruction only demands the single element from the input vector.
- // If the input vector has a single use, simplify it based on this use
- // property.
- if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
- APInt UndefElts(VectorWidth, 0);
- APInt DemandedMask(VectorWidth, 0);
- DemandedMask.setBit(IndexVal);
- if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), DemandedMask,
- UndefElts)) {
- EI.setOperand(0, V);
- return &EI;
- }
- }
- // If the this extractelement is directly using a bitcast from a vector of
- // the same number of elements, see if we can find the source element from
- // it. In this case, we will end up needing to bitcast the scalars.
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
- if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
- if (VT->getNumElements() == VectorWidth)
- if (Value *Elt = findScalarElement(BCI->getOperand(0), IndexVal))
- return new BitCastInst(Elt, EI.getType());
- }
- // If there's a vector PHI feeding a scalar use through this extractelement
- // instruction, try to scalarize the PHI.
- if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) {
- Instruction *scalarPHI = scalarizePHI(EI, PN);
- if (scalarPHI)
- return scalarPHI;
- }
- }
- if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
- // Push extractelement into predecessor operation if legal and
- // profitable to do so
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
- if (I->hasOneUse() &&
- CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
- Value *newEI0 =
- Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
- EI.getName()+".lhs");
- Value *newEI1 =
- Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
- EI.getName()+".rhs");
- return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
- }
- } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
- // Extracting the inserted element?
- if (IE->getOperand(2) == EI.getOperand(1))
- return ReplaceInstUsesWith(EI, IE->getOperand(1));
- // If the inserted and extracted elements are constants, they must not
- // be the same value, extract from the pre-inserted value instead.
- if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
- Worklist.AddValue(EI.getOperand(0));
- EI.setOperand(0, IE->getOperand(0));
- return &EI;
- }
- } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
- // If this is extracting an element from a shufflevector, figure out where
- // it came from and extract from the appropriate input element instead.
- if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
- int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
- Value *Src;
- unsigned LHSWidth =
- SVI->getOperand(0)->getType()->getVectorNumElements();
- if (SrcIdx < 0)
- return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
- if (SrcIdx < (int)LHSWidth)
- Src = SVI->getOperand(0);
- else {
- SrcIdx -= LHSWidth;
- Src = SVI->getOperand(1);
- }
- Type *Int32Ty = Type::getInt32Ty(EI.getContext());
- return ExtractElementInst::Create(Src,
- ConstantInt::get(Int32Ty,
- SrcIdx, false));
- }
- } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
- // Canonicalize extractelement(cast) -> cast(extractelement)
- // bitcasts can change the number of vector elements and they cost nothing
- if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
- Value *EE = Builder->CreateExtractElement(CI->getOperand(0),
- EI.getIndexOperand());
- Worklist.AddValue(EE);
- return CastInst::Create(CI->getOpcode(), EE, EI.getType());
- }
- } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
- if (SI->hasOneUse()) {
- // TODO: For a select on vectors, it might be useful to do this if it
- // has multiple extractelement uses. For vector select, that seems to
- // fight the vectorizer.
- // If we are extracting an element from a vector select or a select on
- // vectors, a select on the scalars extracted from the vector arguments.
- Value *TrueVal = SI->getTrueValue();
- Value *FalseVal = SI->getFalseValue();
- Value *Cond = SI->getCondition();
- if (Cond->getType()->isVectorTy()) {
- Cond = Builder->CreateExtractElement(Cond,
- EI.getIndexOperand(),
- Cond->getName() + ".elt");
- }
- Value *V1Elem
- = Builder->CreateExtractElement(TrueVal,
- EI.getIndexOperand(),
- TrueVal->getName() + ".elt");
- Value *V2Elem
- = Builder->CreateExtractElement(FalseVal,
- EI.getIndexOperand(),
- FalseVal->getName() + ".elt");
- return SelectInst::Create(Cond,
- V1Elem,
- V2Elem,
- SI->getName() + ".elt");
- }
- }
- }
- return nullptr;
- }
- /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
- /// elements from either LHS or RHS, return the shuffle mask and true.
- /// Otherwise, return false.
- static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
- SmallVectorImpl<Constant*> &Mask) {
- assert(LHS->getType() == RHS->getType() &&
- "Invalid CollectSingleShuffleElements");
- unsigned NumElts = V->getType()->getVectorNumElements();
- if (isa<UndefValue>(V)) {
- Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
- return true;
- }
- if (V == LHS) {
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
- return true;
- }
- if (V == RHS) {
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
- i+NumElts));
- return true;
- }
- if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
- // If this is an insert of an extract from some other vector, include it.
- Value *VecOp = IEI->getOperand(0);
- Value *ScalarOp = IEI->getOperand(1);
- Value *IdxOp = IEI->getOperand(2);
- if (!isa<ConstantInt>(IdxOp))
- return false;
- unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
- if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
- // We can handle this if the vector we are inserting into is
- // transitively ok.
- if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
- // If so, update the mask to reflect the inserted undef.
- Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
- return true;
- }
- } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
- if (isa<ConstantInt>(EI->getOperand(1))) {
- unsigned ExtractedIdx =
- cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
- unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
- // This must be extracting from either LHS or RHS.
- if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
- // We can handle this if the vector we are inserting into is
- // transitively ok.
- if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
- // If so, update the mask to reflect the inserted value.
- if (EI->getOperand(0) == LHS) {
- Mask[InsertedIdx % NumElts] =
- ConstantInt::get(Type::getInt32Ty(V->getContext()),
- ExtractedIdx);
- } else {
- assert(EI->getOperand(0) == RHS);
- Mask[InsertedIdx % NumElts] =
- ConstantInt::get(Type::getInt32Ty(V->getContext()),
- ExtractedIdx + NumLHSElts);
- }
- return true;
- }
- }
- }
- }
- }
- return false;
- }
- /// We are building a shuffle to create V, which is a sequence of insertelement,
- /// extractelement pairs. If PermittedRHS is set, then we must either use it or
- /// not rely on the second vector source. Return a std::pair containing the
- /// left and right vectors of the proposed shuffle (or 0), and set the Mask
- /// parameter as required.
- ///
- /// Note: we intentionally don't try to fold earlier shuffles since they have
- /// often been chosen carefully to be efficiently implementable on the target.
- typedef std::pair<Value *, Value *> ShuffleOps;
- static ShuffleOps CollectShuffleElements(Value *V,
- SmallVectorImpl<Constant *> &Mask,
- Value *PermittedRHS) {
- assert(V->getType()->isVectorTy() && "Invalid shuffle!");
- unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
- if (isa<UndefValue>(V)) {
- Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
- return std::make_pair(
- PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
- }
- if (isa<ConstantAggregateZero>(V)) {
- Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
- return std::make_pair(V, nullptr);
- }
- if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
- // If this is an insert of an extract from some other vector, include it.
- Value *VecOp = IEI->getOperand(0);
- Value *ScalarOp = IEI->getOperand(1);
- Value *IdxOp = IEI->getOperand(2);
- if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
- if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
- unsigned ExtractedIdx =
- cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
- unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
- // Either the extracted from or inserted into vector must be RHSVec,
- // otherwise we'd end up with a shuffle of three inputs.
- if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
- Value *RHS = EI->getOperand(0);
- ShuffleOps LR = CollectShuffleElements(VecOp, Mask, RHS);
- assert(LR.second == nullptr || LR.second == RHS);
- if (LR.first->getType() != RHS->getType()) {
- // We tried our best, but we can't find anything compatible with RHS
- // further up the chain. Return a trivial shuffle.
- for (unsigned i = 0; i < NumElts; ++i)
- Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
- return std::make_pair(V, nullptr);
- }
- unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
- Mask[InsertedIdx % NumElts] =
- ConstantInt::get(Type::getInt32Ty(V->getContext()),
- NumLHSElts+ExtractedIdx);
- return std::make_pair(LR.first, RHS);
- }
- if (VecOp == PermittedRHS) {
- // We've gone as far as we can: anything on the other side of the
- // extractelement will already have been converted into a shuffle.
- unsigned NumLHSElts =
- EI->getOperand(0)->getType()->getVectorNumElements();
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(ConstantInt::get(
- Type::getInt32Ty(V->getContext()),
- i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
- return std::make_pair(EI->getOperand(0), PermittedRHS);
- }
- // If this insertelement is a chain that comes from exactly these two
- // vectors, return the vector and the effective shuffle.
- if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
- CollectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
- Mask))
- return std::make_pair(EI->getOperand(0), PermittedRHS);
- }
- }
- }
- // Otherwise, can't do anything fancy. Return an identity vector.
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
- return std::make_pair(V, nullptr);
- }
- /// Try to find redundant insertvalue instructions, like the following ones:
- /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0
- /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0
- /// Here the second instruction inserts values at the same indices, as the
- /// first one, making the first one redundant.
- /// It should be transformed to:
- /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0
- Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
- bool IsRedundant = false;
- ArrayRef<unsigned int> FirstIndices = I.getIndices();
- // If there is a chain of insertvalue instructions (each of them except the
- // last one has only one use and it's another insertvalue insn from this
- // chain), check if any of the 'children' uses the same indices as the first
- // instruction. In this case, the first one is redundant.
- Value *V = &I;
- unsigned Depth = 0;
- while (V->hasOneUse() && Depth < 10) {
- User *U = V->user_back();
- auto UserInsInst = dyn_cast<InsertValueInst>(U);
- if (!UserInsInst || U->getOperand(0) != V)
- break;
- if (UserInsInst->getIndices() == FirstIndices) {
- IsRedundant = true;
- break;
- }
- V = UserInsInst;
- Depth++;
- }
- if (IsRedundant)
- return ReplaceInstUsesWith(I, I.getOperand(0));
- return nullptr;
- }
- Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
- Value *VecOp = IE.getOperand(0);
- Value *ScalarOp = IE.getOperand(1);
- Value *IdxOp = IE.getOperand(2);
- // Inserting an undef or into an undefined place, remove this.
- if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
- ReplaceInstUsesWith(IE, VecOp);
- // If the inserted element was extracted from some other vector, and if the
- // indexes are constant, try to turn this into a shufflevector operation.
- if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
- if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
- unsigned NumInsertVectorElts = IE.getType()->getNumElements();
- unsigned NumExtractVectorElts =
- EI->getOperand(0)->getType()->getVectorNumElements();
- unsigned ExtractedIdx =
- cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
- unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
- if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract.
- return ReplaceInstUsesWith(IE, VecOp);
- if (InsertedIdx >= NumInsertVectorElts) // Out of range insert.
- return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
- // If we are extracting a value from a vector, then inserting it right
- // back into the same place, just use the input vector.
- if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
- return ReplaceInstUsesWith(IE, VecOp);
- // If this insertelement isn't used by some other insertelement, turn it
- // (and any insertelements it points to), into one big shuffle.
- if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) {
- SmallVector<Constant*, 16> Mask;
- ShuffleOps LR = CollectShuffleElements(&IE, Mask, nullptr);
- // The proposed shuffle may be trivial, in which case we shouldn't
- // perform the combine.
- if (LR.first != &IE && LR.second != &IE) {
- // We now have a shuffle of LHS, RHS, Mask.
- if (LR.second == nullptr)
- LR.second = UndefValue::get(LR.first->getType());
- return new ShuffleVectorInst(LR.first, LR.second,
- ConstantVector::get(Mask));
- }
- }
- }
- }
- unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
- APInt UndefElts(VWidth, 0);
- APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
- if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
- if (V != &IE)
- return ReplaceInstUsesWith(IE, V);
- return &IE;
- }
- return nullptr;
- }
- /// Return true if we can evaluate the specified expression tree if the vector
- /// elements were shuffled in a different order.
- static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask,
- unsigned Depth = 5) {
- // We can always reorder the elements of a constant.
- if (isa<Constant>(V))
- return true;
- // We won't reorder vector arguments. No IPO here.
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
- // Two users may expect different orders of the elements. Don't try it.
- if (!I->hasOneUse())
- return false;
- if (Depth == 0) return false;
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::ICmp:
- case Instruction::FCmp:
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::GetElementPtr: {
- for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
- if (!CanEvaluateShuffled(I->getOperand(i), Mask, Depth-1))
- return false;
- }
- return true;
- }
- case Instruction::InsertElement: {
- ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
- if (!CI) return false;
- int ElementNumber = CI->getLimitedValue();
- // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
- // can't put an element into multiple indices.
- bool SeenOnce = false;
- for (int i = 0, e = Mask.size(); i != e; ++i) {
- if (Mask[i] == ElementNumber) {
- if (SeenOnce)
- return false;
- SeenOnce = true;
- }
- }
- return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1);
- }
- }
- return false;
- }
- /// Rebuild a new instruction just like 'I' but with the new operands given.
- /// In the event of type mismatch, the type of the operands is correct.
- static Value *BuildNew(Instruction *I, ArrayRef<Value*> NewOps) {
- // We don't want to use the IRBuilder here because we want the replacement
- // instructions to appear next to 'I', not the builder's insertion point.
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- BinaryOperator *BO = cast<BinaryOperator>(I);
- assert(NewOps.size() == 2 && "binary operator with #ops != 2");
- BinaryOperator *New =
- BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
- NewOps[0], NewOps[1], "", BO);
- if (isa<OverflowingBinaryOperator>(BO)) {
- New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
- New->setHasNoSignedWrap(BO->hasNoSignedWrap());
- }
- if (isa<PossiblyExactOperator>(BO)) {
- New->setIsExact(BO->isExact());
- }
- if (isa<FPMathOperator>(BO))
- New->copyFastMathFlags(I);
- return New;
- }
- case Instruction::ICmp:
- assert(NewOps.size() == 2 && "icmp with #ops != 2");
- return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
- NewOps[0], NewOps[1]);
- case Instruction::FCmp:
- assert(NewOps.size() == 2 && "fcmp with #ops != 2");
- return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
- NewOps[0], NewOps[1]);
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt: {
- // It's possible that the mask has a different number of elements from
- // the original cast. We recompute the destination type to match the mask.
- Type *DestTy =
- VectorType::get(I->getType()->getScalarType(),
- NewOps[0]->getType()->getVectorNumElements());
- assert(NewOps.size() == 1 && "cast with #ops != 1");
- return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
- "", I);
- }
- case Instruction::GetElementPtr: {
- Value *Ptr = NewOps[0];
- ArrayRef<Value*> Idx = NewOps.slice(1);
- GetElementPtrInst *GEP = GetElementPtrInst::Create(
- cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
- GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
- return GEP;
- }
- }
- llvm_unreachable("failed to rebuild vector instructions");
- }
- Value *
- InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
- // Mask.size() does not need to be equal to the number of vector elements.
- assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
- if (isa<UndefValue>(V)) {
- return UndefValue::get(VectorType::get(V->getType()->getScalarType(),
- Mask.size()));
- }
- if (isa<ConstantAggregateZero>(V)) {
- return ConstantAggregateZero::get(
- VectorType::get(V->getType()->getScalarType(),
- Mask.size()));
- }
- if (Constant *C = dyn_cast<Constant>(V)) {
- SmallVector<Constant *, 16> MaskValues;
- for (int i = 0, e = Mask.size(); i != e; ++i) {
- if (Mask[i] == -1)
- MaskValues.push_back(UndefValue::get(Builder->getInt32Ty()));
- else
- MaskValues.push_back(Builder->getInt32(Mask[i]));
- }
- return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
- ConstantVector::get(MaskValues));
- }
- Instruction *I = cast<Instruction>(V);
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::ICmp:
- case Instruction::FCmp:
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::Select:
- case Instruction::GetElementPtr: {
- SmallVector<Value*, 8> NewOps;
- bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
- for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
- Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask);
- NewOps.push_back(V);
- NeedsRebuild |= (V != I->getOperand(i));
- }
- if (NeedsRebuild) {
- return BuildNew(I, NewOps);
- }
- return I;
- }
- case Instruction::InsertElement: {
- int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
- // The insertelement was inserting at Element. Figure out which element
- // that becomes after shuffling. The answer is guaranteed to be unique
- // by CanEvaluateShuffled.
- bool Found = false;
- int Index = 0;
- for (int e = Mask.size(); Index != e; ++Index) {
- if (Mask[Index] == Element) {
- Found = true;
- break;
- }
- }
- // If element is not in Mask, no need to handle the operand 1 (element to
- // be inserted). Just evaluate values in operand 0 according to Mask.
- if (!Found)
- return EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
- Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
- return InsertElementInst::Create(V, I->getOperand(1),
- Builder->getInt32(Index), "", I);
- }
- }
- llvm_unreachable("failed to reorder elements of vector instruction!");
- }
- static void RecognizeIdentityMask(const SmallVectorImpl<int> &Mask,
- bool &isLHSID, bool &isRHSID) {
- isLHSID = isRHSID = true;
- for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
- if (Mask[i] < 0) continue; // Ignore undef values.
- // Is this an identity shuffle of the LHS value?
- isLHSID &= (Mask[i] == (int)i);
- // Is this an identity shuffle of the RHS value?
- isRHSID &= (Mask[i]-e == i);
- }
- }
- // Returns true if the shuffle is extracting a contiguous range of values from
- // LHS, for example:
- // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
- // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
- // Shuffles to: |EE|FF|GG|HH|
- // +--+--+--+--+
- static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
- SmallVector<int, 16> &Mask) {
- unsigned LHSElems =
- cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements();
- unsigned MaskElems = Mask.size();
- unsigned BegIdx = Mask.front();
- unsigned EndIdx = Mask.back();
- if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
- return false;
- for (unsigned I = 0; I != MaskElems; ++I)
- if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
- return false;
- return true;
- }
- Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
- Value *LHS = SVI.getOperand(0);
- Value *RHS = SVI.getOperand(1);
- SmallVector<int, 16> Mask = SVI.getShuffleMask();
- Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
- bool MadeChange = false;
- // Undefined shuffle mask -> undefined value.
- if (isa<UndefValue>(SVI.getOperand(2)))
- return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
- unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
- APInt UndefElts(VWidth, 0);
- APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
- if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
- if (V != &SVI)
- return ReplaceInstUsesWith(SVI, V);
- LHS = SVI.getOperand(0);
- RHS = SVI.getOperand(1);
- MadeChange = true;
- }
- unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
- // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
- // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
- if (LHS == RHS || isa<UndefValue>(LHS)) {
- if (isa<UndefValue>(LHS) && LHS == RHS) {
- // shuffle(undef,undef,mask) -> undef.
- Value *Result = (VWidth == LHSWidth)
- ? LHS : UndefValue::get(SVI.getType());
- return ReplaceInstUsesWith(SVI, Result);
- }
- // Remap any references to RHS to use LHS.
- SmallVector<Constant*, 16> Elts;
- for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
- if (Mask[i] < 0) {
- Elts.push_back(UndefValue::get(Int32Ty));
- continue;
- }
- if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
- (Mask[i] < (int)e && isa<UndefValue>(LHS))) {
- Mask[i] = -1; // Turn into undef.
- Elts.push_back(UndefValue::get(Int32Ty));
- } else {
- Mask[i] = Mask[i] % e; // Force to LHS.
- Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
- }
- }
- SVI.setOperand(0, SVI.getOperand(1));
- SVI.setOperand(1, UndefValue::get(RHS->getType()));
- SVI.setOperand(2, ConstantVector::get(Elts));
- LHS = SVI.getOperand(0);
- RHS = SVI.getOperand(1);
- MadeChange = true;
- }
- if (VWidth == LHSWidth) {
- // Analyze the shuffle, are the LHS or RHS and identity shuffles?
- bool isLHSID, isRHSID;
- RecognizeIdentityMask(Mask, isLHSID, isRHSID);
- // Eliminate identity shuffles.
- if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
- if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
- }
- if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) {
- Value *V = EvaluateInDifferentElementOrder(LHS, Mask);
- return ReplaceInstUsesWith(SVI, V);
- }
- // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
- // a non-vector type. We can instead bitcast the original vector followed by
- // an extract of the desired element:
- //
- // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
- // <4 x i32> <i32 0, i32 1, i32 2, i32 3>
- // %1 = bitcast <4 x i8> %sroa to i32
- // Becomes:
- // %bc = bitcast <16 x i8> %in to <4 x i32>
- // %ext = extractelement <4 x i32> %bc, i32 0
- //
- // If the shuffle is extracting a contiguous range of values from the input
- // vector then each use which is a bitcast of the extracted size can be
- // replaced. This will work if the vector types are compatible, and the begin
- // index is aligned to a value in the casted vector type. If the begin index
- // isn't aligned then we can shuffle the original vector (keeping the same
- // vector type) before extracting.
- //
- // This code will bail out if the target type is fundamentally incompatible
- // with vectors of the source type.
- //
- // Example of <16 x i8>, target type i32:
- // Index range [4,8): v-----------v Will work.
- // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
- // <16 x i8>: | | | | | | | | | | | | | | | | |
- // <4 x i32>: | | | | |
- // +-----------+-----------+-----------+-----------+
- // Index range [6,10): ^-----------^ Needs an extra shuffle.
- // Target type i40: ^--------------^ Won't work, bail.
- if (isShuffleExtractingFromLHS(SVI, Mask)) {
- Value *V = LHS;
- unsigned MaskElems = Mask.size();
- unsigned BegIdx = Mask.front();
- VectorType *SrcTy = cast<VectorType>(V->getType());
- unsigned VecBitWidth = SrcTy->getBitWidth();
- unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
- assert(SrcElemBitWidth && "vector elements must have a bitwidth");
- unsigned SrcNumElems = SrcTy->getNumElements();
- SmallVector<BitCastInst *, 8> BCs;
- DenseMap<Type *, Value *> NewBCs;
- for (User *U : SVI.users())
- if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
- if (!BC->use_empty())
- // Only visit bitcasts that weren't previously handled.
- BCs.push_back(BC);
- for (BitCastInst *BC : BCs) {
- Type *TgtTy = BC->getDestTy();
- unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
- if (!TgtElemBitWidth)
- continue;
- unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
- bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
- bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
- if (!VecBitWidthsEqual)
- continue;
- if (!VectorType::isValidElementType(TgtTy))
- continue;
- VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
- if (!BegIsAligned) {
- // Shuffle the input so [0,NumElements) contains the output, and
- // [NumElems,SrcNumElems) is undef.
- SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
- UndefValue::get(Int32Ty));
- for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
- ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
- V = Builder->CreateShuffleVector(V, UndefValue::get(V->getType()),
- ConstantVector::get(ShuffleMask),
- SVI.getName() + ".extract");
- BegIdx = 0;
- }
- unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
- assert(SrcElemsPerTgtElem);
- BegIdx /= SrcElemsPerTgtElem;
- bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
- auto *NewBC =
- BCAlreadyExists
- ? NewBCs[CastSrcTy]
- : Builder->CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
- if (!BCAlreadyExists)
- NewBCs[CastSrcTy] = NewBC;
- auto *Ext = Builder->CreateExtractElement(
- NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
- // The shufflevector isn't being replaced: the bitcast that used it
- // is. InstCombine will visit the newly-created instructions.
- ReplaceInstUsesWith(*BC, Ext);
- MadeChange = true;
- }
- }
- // If the LHS is a shufflevector itself, see if we can combine it with this
- // one without producing an unusual shuffle.
- // Cases that might be simplified:
- // 1.
- // x1=shuffle(v1,v2,mask1)
- // x=shuffle(x1,undef,mask)
- // ==>
- // x=shuffle(v1,undef,newMask)
- // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
- // 2.
- // x1=shuffle(v1,undef,mask1)
- // x=shuffle(x1,x2,mask)
- // where v1.size() == mask1.size()
- // ==>
- // x=shuffle(v1,x2,newMask)
- // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
- // 3.
- // x2=shuffle(v2,undef,mask2)
- // x=shuffle(x1,x2,mask)
- // where v2.size() == mask2.size()
- // ==>
- // x=shuffle(x1,v2,newMask)
- // newMask[i] = (mask[i] < x1.size())
- // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
- // 4.
- // x1=shuffle(v1,undef,mask1)
- // x2=shuffle(v2,undef,mask2)
- // x=shuffle(x1,x2,mask)
- // where v1.size() == v2.size()
- // ==>
- // x=shuffle(v1,v2,newMask)
- // newMask[i] = (mask[i] < x1.size())
- // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
- //
- // Here we are really conservative:
- // we are absolutely afraid of producing a shuffle mask not in the input
- // program, because the code gen may not be smart enough to turn a merged
- // shuffle into two specific shuffles: it may produce worse code. As such,
- // we only merge two shuffles if the result is either a splat or one of the
- // input shuffle masks. In this case, merging the shuffles just removes
- // one instruction, which we know is safe. This is good for things like
- // turning: (splat(splat)) -> splat, or
- // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
- ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
- ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
- if (LHSShuffle)
- if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
- LHSShuffle = nullptr;
- if (RHSShuffle)
- if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
- RHSShuffle = nullptr;
- if (!LHSShuffle && !RHSShuffle)
- return MadeChange ? &SVI : nullptr;
- Value* LHSOp0 = nullptr;
- Value* LHSOp1 = nullptr;
- Value* RHSOp0 = nullptr;
- unsigned LHSOp0Width = 0;
- unsigned RHSOp0Width = 0;
- if (LHSShuffle) {
- LHSOp0 = LHSShuffle->getOperand(0);
- LHSOp1 = LHSShuffle->getOperand(1);
- LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
- }
- if (RHSShuffle) {
- RHSOp0 = RHSShuffle->getOperand(0);
- RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
- }
- Value* newLHS = LHS;
- Value* newRHS = RHS;
- if (LHSShuffle) {
- // case 1
- if (isa<UndefValue>(RHS)) {
- newLHS = LHSOp0;
- newRHS = LHSOp1;
- }
- // case 2 or 4
- else if (LHSOp0Width == LHSWidth) {
- newLHS = LHSOp0;
- }
- }
- // case 3 or 4
- if (RHSShuffle && RHSOp0Width == LHSWidth) {
- newRHS = RHSOp0;
- }
- // case 4
- if (LHSOp0 == RHSOp0) {
- newLHS = LHSOp0;
- newRHS = nullptr;
- }
- if (newLHS == LHS && newRHS == RHS)
- return MadeChange ? &SVI : nullptr;
- SmallVector<int, 16> LHSMask;
- SmallVector<int, 16> RHSMask;
- if (newLHS != LHS)
- LHSMask = LHSShuffle->getShuffleMask();
- if (RHSShuffle && newRHS != RHS)
- RHSMask = RHSShuffle->getShuffleMask();
- unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
- SmallVector<int, 16> newMask;
- bool isSplat = true;
- int SplatElt = -1;
- // Create a new mask for the new ShuffleVectorInst so that the new
- // ShuffleVectorInst is equivalent to the original one.
- for (unsigned i = 0; i < VWidth; ++i) {
- int eltMask;
- if (Mask[i] < 0) {
- // This element is an undef value.
- eltMask = -1;
- } else if (Mask[i] < (int)LHSWidth) {
- // This element is from left hand side vector operand.
- //
- // If LHS is going to be replaced (case 1, 2, or 4), calculate the
- // new mask value for the element.
- if (newLHS != LHS) {
- eltMask = LHSMask[Mask[i]];
- // If the value selected is an undef value, explicitly specify it
- // with a -1 mask value.
- if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
- eltMask = -1;
- } else
- eltMask = Mask[i];
- } else {
- // This element is from right hand side vector operand
- //
- // If the value selected is an undef value, explicitly specify it
- // with a -1 mask value. (case 1)
- if (isa<UndefValue>(RHS))
- eltMask = -1;
- // If RHS is going to be replaced (case 3 or 4), calculate the
- // new mask value for the element.
- else if (newRHS != RHS) {
- eltMask = RHSMask[Mask[i]-LHSWidth];
- // If the value selected is an undef value, explicitly specify it
- // with a -1 mask value.
- if (eltMask >= (int)RHSOp0Width) {
- assert(isa<UndefValue>(RHSShuffle->getOperand(1))
- && "should have been check above");
- eltMask = -1;
- }
- } else
- eltMask = Mask[i]-LHSWidth;
- // If LHS's width is changed, shift the mask value accordingly.
- // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
- // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
- // If newRHS == newLHS, we want to remap any references from newRHS to
- // newLHS so that we can properly identify splats that may occur due to
- // obfuscation across the two vectors.
- if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
- eltMask += newLHSWidth;
- }
- // Check if this could still be a splat.
- if (eltMask >= 0) {
- if (SplatElt >= 0 && SplatElt != eltMask)
- isSplat = false;
- SplatElt = eltMask;
- }
- newMask.push_back(eltMask);
- }
- // If the result mask is equal to one of the original shuffle masks,
- // or is a splat, do the replacement.
- if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
- SmallVector<Constant*, 16> Elts;
- for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
- if (newMask[i] < 0) {
- Elts.push_back(UndefValue::get(Int32Ty));
- } else {
- Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
- }
- }
- if (!newRHS)
- newRHS = UndefValue::get(newLHS->getType());
- return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
- }
- // If the result mask is an identity, replace uses of this instruction with
- // corresponding argument.
- bool isLHSID, isRHSID;
- RecognizeIdentityMask(newMask, isLHSID, isRHSID);
- if (isLHSID && VWidth == LHSOp0Width) return ReplaceInstUsesWith(SVI, newLHS);
- if (isRHSID && VWidth == RHSOp0Width) return ReplaceInstUsesWith(SVI, newRHS);
- return MadeChange ? &SVI : nullptr;
- }
|