123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024 |
- //===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- /// \file
- /// This file is a part of MemorySanitizer, a detector of uninitialized
- /// reads.
- ///
- /// The algorithm of the tool is similar to Memcheck
- /// (http://goo.gl/QKbem). We associate a few shadow bits with every
- /// byte of the application memory, poison the shadow of the malloc-ed
- /// or alloca-ed memory, load the shadow bits on every memory read,
- /// propagate the shadow bits through some of the arithmetic
- /// instruction (including MOV), store the shadow bits on every memory
- /// write, report a bug on some other instructions (e.g. JMP) if the
- /// associated shadow is poisoned.
- ///
- /// But there are differences too. The first and the major one:
- /// compiler instrumentation instead of binary instrumentation. This
- /// gives us much better register allocation, possible compiler
- /// optimizations and a fast start-up. But this brings the major issue
- /// as well: msan needs to see all program events, including system
- /// calls and reads/writes in system libraries, so we either need to
- /// compile *everything* with msan or use a binary translation
- /// component (e.g. DynamoRIO) to instrument pre-built libraries.
- /// Another difference from Memcheck is that we use 8 shadow bits per
- /// byte of application memory and use a direct shadow mapping. This
- /// greatly simplifies the instrumentation code and avoids races on
- /// shadow updates (Memcheck is single-threaded so races are not a
- /// concern there. Memcheck uses 2 shadow bits per byte with a slow
- /// path storage that uses 8 bits per byte).
- ///
- /// The default value of shadow is 0, which means "clean" (not poisoned).
- ///
- /// Every module initializer should call __msan_init to ensure that the
- /// shadow memory is ready. On error, __msan_warning is called. Since
- /// parameters and return values may be passed via registers, we have a
- /// specialized thread-local shadow for return values
- /// (__msan_retval_tls) and parameters (__msan_param_tls).
- ///
- /// Origin tracking.
- ///
- /// MemorySanitizer can track origins (allocation points) of all uninitialized
- /// values. This behavior is controlled with a flag (msan-track-origins) and is
- /// disabled by default.
- ///
- /// Origins are 4-byte values created and interpreted by the runtime library.
- /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
- /// of application memory. Propagation of origins is basically a bunch of
- /// "select" instructions that pick the origin of a dirty argument, if an
- /// instruction has one.
- ///
- /// Every 4 aligned, consecutive bytes of application memory have one origin
- /// value associated with them. If these bytes contain uninitialized data
- /// coming from 2 different allocations, the last store wins. Because of this,
- /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
- /// practice.
- ///
- /// Origins are meaningless for fully initialized values, so MemorySanitizer
- /// avoids storing origin to memory when a fully initialized value is stored.
- /// This way it avoids needless overwritting origin of the 4-byte region on
- /// a short (i.e. 1 byte) clean store, and it is also good for performance.
- ///
- /// Atomic handling.
- ///
- /// Ideally, every atomic store of application value should update the
- /// corresponding shadow location in an atomic way. Unfortunately, atomic store
- /// of two disjoint locations can not be done without severe slowdown.
- ///
- /// Therefore, we implement an approximation that may err on the safe side.
- /// In this implementation, every atomically accessed location in the program
- /// may only change from (partially) uninitialized to fully initialized, but
- /// not the other way around. We load the shadow _after_ the application load,
- /// and we store the shadow _before_ the app store. Also, we always store clean
- /// shadow (if the application store is atomic). This way, if the store-load
- /// pair constitutes a happens-before arc, shadow store and load are correctly
- /// ordered such that the load will get either the value that was stored, or
- /// some later value (which is always clean).
- ///
- /// This does not work very well with Compare-And-Swap (CAS) and
- /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
- /// must store the new shadow before the app operation, and load the shadow
- /// after the app operation. Computers don't work this way. Current
- /// implementation ignores the load aspect of CAS/RMW, always returning a clean
- /// value. It implements the store part as a simple atomic store by storing a
- /// clean shadow.
- #include "llvm/Transforms/Instrumentation.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/SmallString.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/ADT/Triple.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/IR/InstVisitor.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/ValueMap.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/ModuleUtils.h"
- using namespace llvm;
- #define DEBUG_TYPE "msan"
- static const unsigned kOriginSize = 4;
- static const unsigned kMinOriginAlignment = 4;
- static const unsigned kShadowTLSAlignment = 8;
- // These constants must be kept in sync with the ones in msan.h.
- static const unsigned kParamTLSSize = 800;
- static const unsigned kRetvalTLSSize = 800;
- // Accesses sizes are powers of two: 1, 2, 4, 8.
- static const size_t kNumberOfAccessSizes = 4;
- /// \brief Track origins of uninitialized values.
- ///
- /// Adds a section to MemorySanitizer report that points to the allocation
- /// (stack or heap) the uninitialized bits came from originally.
- static cl::opt<int> ClTrackOrigins("msan-track-origins",
- cl::desc("Track origins (allocation sites) of poisoned memory"),
- cl::Hidden, cl::init(0));
- static cl::opt<bool> ClKeepGoing("msan-keep-going",
- cl::desc("keep going after reporting a UMR"),
- cl::Hidden, cl::init(false));
- static cl::opt<bool> ClPoisonStack("msan-poison-stack",
- cl::desc("poison uninitialized stack variables"),
- cl::Hidden, cl::init(true));
- static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
- cl::desc("poison uninitialized stack variables with a call"),
- cl::Hidden, cl::init(false));
- static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
- cl::desc("poison uninitialized stack variables with the given patter"),
- cl::Hidden, cl::init(0xff));
- static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
- cl::desc("poison undef temps"),
- cl::Hidden, cl::init(true));
- static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
- cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
- cl::Hidden, cl::init(true));
- static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
- cl::desc("exact handling of relational integer ICmp"),
- cl::Hidden, cl::init(false));
- // This flag controls whether we check the shadow of the address
- // operand of load or store. Such bugs are very rare, since load from
- // a garbage address typically results in SEGV, but still happen
- // (e.g. only lower bits of address are garbage, or the access happens
- // early at program startup where malloc-ed memory is more likely to
- // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
- static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
- cl::desc("report accesses through a pointer which has poisoned shadow"),
- cl::Hidden, cl::init(true));
- static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
- cl::desc("print out instructions with default strict semantics"),
- cl::Hidden, cl::init(false));
- static cl::opt<int> ClInstrumentationWithCallThreshold(
- "msan-instrumentation-with-call-threshold",
- cl::desc(
- "If the function being instrumented requires more than "
- "this number of checks and origin stores, use callbacks instead of "
- "inline checks (-1 means never use callbacks)."),
- cl::Hidden, cl::init(3500));
- // This is an experiment to enable handling of cases where shadow is a non-zero
- // compile-time constant. For some unexplainable reason they were silently
- // ignored in the instrumentation.
- static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
- cl::desc("Insert checks for constant shadow values"),
- cl::Hidden, cl::init(false));
- static const char *const kMsanModuleCtorName = "msan.module_ctor";
- static const char *const kMsanInitName = "__msan_init";
- namespace {
- // Memory map parameters used in application-to-shadow address calculation.
- // Offset = (Addr & ~AndMask) ^ XorMask
- // Shadow = ShadowBase + Offset
- // Origin = OriginBase + Offset
- struct MemoryMapParams {
- uint64_t AndMask;
- uint64_t XorMask;
- uint64_t ShadowBase;
- uint64_t OriginBase;
- };
- struct PlatformMemoryMapParams {
- const MemoryMapParams *bits32;
- const MemoryMapParams *bits64;
- };
- // i386 Linux
- static const MemoryMapParams Linux_I386_MemoryMapParams = {
- 0x000080000000, // AndMask
- 0, // XorMask (not used)
- 0, // ShadowBase (not used)
- 0x000040000000, // OriginBase
- };
- // x86_64 Linux
- static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
- 0x400000000000, // AndMask
- 0, // XorMask (not used)
- 0, // ShadowBase (not used)
- 0x200000000000, // OriginBase
- };
- // mips64 Linux
- static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
- 0x004000000000, // AndMask
- 0, // XorMask (not used)
- 0, // ShadowBase (not used)
- 0x002000000000, // OriginBase
- };
- // ppc64 Linux
- static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
- 0x200000000000, // AndMask
- 0x100000000000, // XorMask
- 0x080000000000, // ShadowBase
- 0x1C0000000000, // OriginBase
- };
- // i386 FreeBSD
- static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
- 0x000180000000, // AndMask
- 0x000040000000, // XorMask
- 0x000020000000, // ShadowBase
- 0x000700000000, // OriginBase
- };
- // x86_64 FreeBSD
- static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
- 0xc00000000000, // AndMask
- 0x200000000000, // XorMask
- 0x100000000000, // ShadowBase
- 0x380000000000, // OriginBase
- };
- static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
- &Linux_I386_MemoryMapParams,
- &Linux_X86_64_MemoryMapParams,
- };
- static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
- NULL,
- &Linux_MIPS64_MemoryMapParams,
- };
- static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
- NULL,
- &Linux_PowerPC64_MemoryMapParams,
- };
- static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
- &FreeBSD_I386_MemoryMapParams,
- &FreeBSD_X86_64_MemoryMapParams,
- };
- /// \brief An instrumentation pass implementing detection of uninitialized
- /// reads.
- ///
- /// MemorySanitizer: instrument the code in module to find
- /// uninitialized reads.
- class MemorySanitizer : public FunctionPass {
- public:
- MemorySanitizer(int TrackOrigins = 0)
- : FunctionPass(ID),
- TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
- WarningFn(nullptr) {}
- const char *getPassName() const override { return "MemorySanitizer"; }
- bool runOnFunction(Function &F) override;
- bool doInitialization(Module &M) override;
- static char ID; // Pass identification, replacement for typeid.
- private:
- void initializeCallbacks(Module &M);
- /// \brief Track origins (allocation points) of uninitialized values.
- int TrackOrigins;
- LLVMContext *C;
- Type *IntptrTy;
- Type *OriginTy;
- /// \brief Thread-local shadow storage for function parameters.
- GlobalVariable *ParamTLS;
- /// \brief Thread-local origin storage for function parameters.
- GlobalVariable *ParamOriginTLS;
- /// \brief Thread-local shadow storage for function return value.
- GlobalVariable *RetvalTLS;
- /// \brief Thread-local origin storage for function return value.
- GlobalVariable *RetvalOriginTLS;
- /// \brief Thread-local shadow storage for in-register va_arg function
- /// parameters (x86_64-specific).
- GlobalVariable *VAArgTLS;
- /// \brief Thread-local shadow storage for va_arg overflow area
- /// (x86_64-specific).
- GlobalVariable *VAArgOverflowSizeTLS;
- /// \brief Thread-local space used to pass origin value to the UMR reporting
- /// function.
- GlobalVariable *OriginTLS;
- /// \brief The run-time callback to print a warning.
- Value *WarningFn;
- // These arrays are indexed by log2(AccessSize).
- Value *MaybeWarningFn[kNumberOfAccessSizes];
- Value *MaybeStoreOriginFn[kNumberOfAccessSizes];
- /// \brief Run-time helper that generates a new origin value for a stack
- /// allocation.
- Value *MsanSetAllocaOrigin4Fn;
- /// \brief Run-time helper that poisons stack on function entry.
- Value *MsanPoisonStackFn;
- /// \brief Run-time helper that records a store (or any event) of an
- /// uninitialized value and returns an updated origin id encoding this info.
- Value *MsanChainOriginFn;
- /// \brief MSan runtime replacements for memmove, memcpy and memset.
- Value *MemmoveFn, *MemcpyFn, *MemsetFn;
- /// \brief Memory map parameters used in application-to-shadow calculation.
- const MemoryMapParams *MapParams;
- MDNode *ColdCallWeights;
- /// \brief Branch weights for origin store.
- MDNode *OriginStoreWeights;
- /// \brief An empty volatile inline asm that prevents callback merge.
- InlineAsm *EmptyAsm;
- Function *MsanCtorFunction;
- friend struct MemorySanitizerVisitor;
- friend struct VarArgAMD64Helper;
- friend struct VarArgMIPS64Helper;
- };
- } // namespace
- char MemorySanitizer::ID = 0;
- INITIALIZE_PASS(MemorySanitizer, "msan",
- "MemorySanitizer: detects uninitialized reads.",
- false, false)
- FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) {
- return new MemorySanitizer(TrackOrigins);
- }
- /// \brief Create a non-const global initialized with the given string.
- ///
- /// Creates a writable global for Str so that we can pass it to the
- /// run-time lib. Runtime uses first 4 bytes of the string to store the
- /// frame ID, so the string needs to be mutable.
- static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
- StringRef Str) {
- Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
- return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
- GlobalValue::PrivateLinkage, StrConst, "");
- }
- /// \brief Insert extern declaration of runtime-provided functions and globals.
- void MemorySanitizer::initializeCallbacks(Module &M) {
- // Only do this once.
- if (WarningFn)
- return;
- IRBuilder<> IRB(*C);
- // Create the callback.
- // FIXME: this function should have "Cold" calling conv,
- // which is not yet implemented.
- StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
- : "__msan_warning_noreturn";
- WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr);
- for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
- AccessSizeIndex++) {
- unsigned AccessSize = 1 << AccessSizeIndex;
- std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
- MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
- FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
- IRB.getInt32Ty(), nullptr);
- FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
- MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
- FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
- IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr);
- }
- MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
- "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
- IRB.getInt8PtrTy(), IntptrTy, nullptr);
- MsanPoisonStackFn =
- M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
- IRB.getInt8PtrTy(), IntptrTy, nullptr);
- MsanChainOriginFn = M.getOrInsertFunction(
- "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr);
- MemmoveFn = M.getOrInsertFunction(
- "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
- IRB.getInt8PtrTy(), IntptrTy, nullptr);
- MemcpyFn = M.getOrInsertFunction(
- "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
- IntptrTy, nullptr);
- MemsetFn = M.getOrInsertFunction(
- "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
- IntptrTy, nullptr);
- // Create globals.
- RetvalTLS = new GlobalVariable(
- M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false,
- GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr,
- GlobalVariable::InitialExecTLSModel);
- RetvalOriginTLS = new GlobalVariable(
- M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr,
- "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
- ParamTLS = new GlobalVariable(
- M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
- GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr,
- GlobalVariable::InitialExecTLSModel);
- ParamOriginTLS = new GlobalVariable(
- M, ArrayType::get(OriginTy, kParamTLSSize / 4), false,
- GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls",
- nullptr, GlobalVariable::InitialExecTLSModel);
- VAArgTLS = new GlobalVariable(
- M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
- GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr,
- GlobalVariable::InitialExecTLSModel);
- VAArgOverflowSizeTLS = new GlobalVariable(
- M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
- "__msan_va_arg_overflow_size_tls", nullptr,
- GlobalVariable::InitialExecTLSModel);
- OriginTLS = new GlobalVariable(
- M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
- "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
- // We insert an empty inline asm after __msan_report* to avoid callback merge.
- EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
- StringRef(""), StringRef(""),
- /*hasSideEffects=*/true);
- }
- /// \brief Module-level initialization.
- ///
- /// inserts a call to __msan_init to the module's constructor list.
- bool MemorySanitizer::doInitialization(Module &M) {
- auto &DL = M.getDataLayout();
- Triple TargetTriple(M.getTargetTriple());
- switch (TargetTriple.getOS()) {
- case Triple::FreeBSD:
- switch (TargetTriple.getArch()) {
- case Triple::x86_64:
- MapParams = FreeBSD_X86_MemoryMapParams.bits64;
- break;
- case Triple::x86:
- MapParams = FreeBSD_X86_MemoryMapParams.bits32;
- break;
- default:
- report_fatal_error("unsupported architecture");
- }
- break;
- case Triple::Linux:
- switch (TargetTriple.getArch()) {
- case Triple::x86_64:
- MapParams = Linux_X86_MemoryMapParams.bits64;
- break;
- case Triple::x86:
- MapParams = Linux_X86_MemoryMapParams.bits32;
- break;
- case Triple::mips64:
- case Triple::mips64el:
- MapParams = Linux_MIPS_MemoryMapParams.bits64;
- break;
- case Triple::ppc64:
- case Triple::ppc64le:
- MapParams = Linux_PowerPC_MemoryMapParams.bits64;
- break;
- default:
- report_fatal_error("unsupported architecture");
- }
- break;
- default:
- report_fatal_error("unsupported operating system");
- }
- C = &(M.getContext());
- IRBuilder<> IRB(*C);
- IntptrTy = IRB.getIntPtrTy(DL);
- OriginTy = IRB.getInt32Ty();
- ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
- OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
- std::tie(MsanCtorFunction, std::ignore) =
- createSanitizerCtorAndInitFunctions(M, kMsanModuleCtorName, kMsanInitName,
- /*InitArgTypes=*/{},
- /*InitArgs=*/{});
- appendToGlobalCtors(M, MsanCtorFunction, 0);
- if (TrackOrigins)
- new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
- IRB.getInt32(TrackOrigins), "__msan_track_origins");
- if (ClKeepGoing)
- new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
- IRB.getInt32(ClKeepGoing), "__msan_keep_going");
- return true;
- }
- namespace {
- /// \brief A helper class that handles instrumentation of VarArg
- /// functions on a particular platform.
- ///
- /// Implementations are expected to insert the instrumentation
- /// necessary to propagate argument shadow through VarArg function
- /// calls. Visit* methods are called during an InstVisitor pass over
- /// the function, and should avoid creating new basic blocks. A new
- /// instance of this class is created for each instrumented function.
- struct VarArgHelper {
- /// \brief Visit a CallSite.
- virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
- /// \brief Visit a va_start call.
- virtual void visitVAStartInst(VAStartInst &I) = 0;
- /// \brief Visit a va_copy call.
- virtual void visitVACopyInst(VACopyInst &I) = 0;
- /// \brief Finalize function instrumentation.
- ///
- /// This method is called after visiting all interesting (see above)
- /// instructions in a function.
- virtual void finalizeInstrumentation() = 0;
- virtual ~VarArgHelper() {}
- };
- struct MemorySanitizerVisitor;
- VarArgHelper*
- CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
- MemorySanitizerVisitor &Visitor);
- unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
- if (TypeSize <= 8) return 0;
- return Log2_32_Ceil(TypeSize / 8);
- }
- /// This class does all the work for a given function. Store and Load
- /// instructions store and load corresponding shadow and origin
- /// values. Most instructions propagate shadow from arguments to their
- /// return values. Certain instructions (most importantly, BranchInst)
- /// test their argument shadow and print reports (with a runtime call) if it's
- /// non-zero.
- struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
- Function &F;
- MemorySanitizer &MS;
- SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
- ValueMap<Value*, Value*> ShadowMap, OriginMap;
- std::unique_ptr<VarArgHelper> VAHelper;
- // The following flags disable parts of MSan instrumentation based on
- // blacklist contents and command-line options.
- bool InsertChecks;
- bool PropagateShadow;
- bool PoisonStack;
- bool PoisonUndef;
- bool CheckReturnValue;
- struct ShadowOriginAndInsertPoint {
- Value *Shadow;
- Value *Origin;
- Instruction *OrigIns;
- ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
- : Shadow(S), Origin(O), OrigIns(I) { }
- };
- SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
- SmallVector<Instruction*, 16> StoreList;
- MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
- : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
- bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
- InsertChecks = SanitizeFunction;
- PropagateShadow = SanitizeFunction;
- PoisonStack = SanitizeFunction && ClPoisonStack;
- PoisonUndef = SanitizeFunction && ClPoisonUndef;
- // FIXME: Consider using SpecialCaseList to specify a list of functions that
- // must always return fully initialized values. For now, we hardcode "main".
- CheckReturnValue = SanitizeFunction && (F.getName() == "main");
- DEBUG(if (!InsertChecks)
- dbgs() << "MemorySanitizer is not inserting checks into '"
- << F.getName() << "'\n");
- }
- Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
- if (MS.TrackOrigins <= 1) return V;
- return IRB.CreateCall(MS.MsanChainOriginFn, V);
- }
- Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
- const DataLayout &DL = F.getParent()->getDataLayout();
- unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
- if (IntptrSize == kOriginSize) return Origin;
- assert(IntptrSize == kOriginSize * 2);
- Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
- return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
- }
- /// \brief Fill memory range with the given origin value.
- void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
- unsigned Size, unsigned Alignment) {
- const DataLayout &DL = F.getParent()->getDataLayout();
- unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy);
- unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
- assert(IntptrAlignment >= kMinOriginAlignment);
- assert(IntptrSize >= kOriginSize);
- unsigned Ofs = 0;
- unsigned CurrentAlignment = Alignment;
- if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
- Value *IntptrOrigin = originToIntptr(IRB, Origin);
- Value *IntptrOriginPtr =
- IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
- for (unsigned i = 0; i < Size / IntptrSize; ++i) {
- Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
- : IntptrOriginPtr;
- IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
- Ofs += IntptrSize / kOriginSize;
- CurrentAlignment = IntptrAlignment;
- }
- }
- for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
- Value *GEP =
- i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr;
- IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
- CurrentAlignment = kMinOriginAlignment;
- }
- }
- void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
- unsigned Alignment, bool AsCall) {
- const DataLayout &DL = F.getParent()->getDataLayout();
- unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
- unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
- if (isa<StructType>(Shadow->getType())) {
- paintOrigin(IRB, updateOrigin(Origin, IRB),
- getOriginPtr(Addr, IRB, Alignment), StoreSize,
- OriginAlignment);
- } else {
- Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
- Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
- if (ConstantShadow) {
- if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
- paintOrigin(IRB, updateOrigin(Origin, IRB),
- getOriginPtr(Addr, IRB, Alignment), StoreSize,
- OriginAlignment);
- return;
- }
- unsigned TypeSizeInBits =
- DL.getTypeSizeInBits(ConvertedShadow->getType());
- unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
- if (AsCall && SizeIndex < kNumberOfAccessSizes) {
- Value *Fn = MS.MaybeStoreOriginFn[SizeIndex];
- Value *ConvertedShadow2 = IRB.CreateZExt(
- ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
- IRB.CreateCall(Fn, {ConvertedShadow2,
- IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
- Origin});
- } else {
- Value *Cmp = IRB.CreateICmpNE(
- ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
- Instruction *CheckTerm = SplitBlockAndInsertIfThen(
- Cmp, IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
- IRBuilder<> IRBNew(CheckTerm);
- paintOrigin(IRBNew, updateOrigin(Origin, IRBNew),
- getOriginPtr(Addr, IRBNew, Alignment), StoreSize,
- OriginAlignment);
- }
- }
- }
- void materializeStores(bool InstrumentWithCalls) {
- for (auto Inst : StoreList) {
- StoreInst &SI = *dyn_cast<StoreInst>(Inst);
- IRBuilder<> IRB(&SI);
- Value *Val = SI.getValueOperand();
- Value *Addr = SI.getPointerOperand();
- Value *Shadow = SI.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
- Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
- StoreInst *NewSI =
- IRB.CreateAlignedStore(Shadow, ShadowPtr, SI.getAlignment());
- DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
- (void)NewSI;
- if (ClCheckAccessAddress) insertShadowCheck(Addr, &SI);
- if (SI.isAtomic()) SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
- if (MS.TrackOrigins && !SI.isAtomic())
- storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI.getAlignment(),
- InstrumentWithCalls);
- }
- }
- void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
- bool AsCall) {
- IRBuilder<> IRB(OrigIns);
- DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
- Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
- DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
- Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
- if (ConstantShadow) {
- if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
- if (MS.TrackOrigins) {
- IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
- MS.OriginTLS);
- }
- IRB.CreateCall(MS.WarningFn, {});
- IRB.CreateCall(MS.EmptyAsm, {});
- // FIXME: Insert UnreachableInst if !ClKeepGoing?
- // This may invalidate some of the following checks and needs to be done
- // at the very end.
- }
- return;
- }
- const DataLayout &DL = OrigIns->getModule()->getDataLayout();
- unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
- unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
- if (AsCall && SizeIndex < kNumberOfAccessSizes) {
- Value *Fn = MS.MaybeWarningFn[SizeIndex];
- Value *ConvertedShadow2 =
- IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
- IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin
- ? Origin
- : (Value *)IRB.getInt32(0)});
- } else {
- Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
- getCleanShadow(ConvertedShadow), "_mscmp");
- Instruction *CheckTerm = SplitBlockAndInsertIfThen(
- Cmp, OrigIns,
- /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
- IRB.SetInsertPoint(CheckTerm);
- if (MS.TrackOrigins) {
- IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
- MS.OriginTLS);
- }
- IRB.CreateCall(MS.WarningFn, {});
- IRB.CreateCall(MS.EmptyAsm, {});
- DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
- }
- }
- void materializeChecks(bool InstrumentWithCalls) {
- for (const auto &ShadowData : InstrumentationList) {
- Instruction *OrigIns = ShadowData.OrigIns;
- Value *Shadow = ShadowData.Shadow;
- Value *Origin = ShadowData.Origin;
- materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
- }
- DEBUG(dbgs() << "DONE:\n" << F);
- }
- /// \brief Add MemorySanitizer instrumentation to a function.
- bool runOnFunction() {
- MS.initializeCallbacks(*F.getParent());
- // In the presence of unreachable blocks, we may see Phi nodes with
- // incoming nodes from such blocks. Since InstVisitor skips unreachable
- // blocks, such nodes will not have any shadow value associated with them.
- // It's easier to remove unreachable blocks than deal with missing shadow.
- removeUnreachableBlocks(F);
- // Iterate all BBs in depth-first order and create shadow instructions
- // for all instructions (where applicable).
- // For PHI nodes we create dummy shadow PHIs which will be finalized later.
- for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
- visit(*BB);
- // Finalize PHI nodes.
- for (PHINode *PN : ShadowPHINodes) {
- PHINode *PNS = cast<PHINode>(getShadow(PN));
- PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
- size_t NumValues = PN->getNumIncomingValues();
- for (size_t v = 0; v < NumValues; v++) {
- PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
- if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
- }
- }
- VAHelper->finalizeInstrumentation();
- bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
- InstrumentationList.size() + StoreList.size() >
- (unsigned)ClInstrumentationWithCallThreshold;
- // Delayed instrumentation of StoreInst.
- // This may add new checks to be inserted later.
- materializeStores(InstrumentWithCalls);
- // Insert shadow value checks.
- materializeChecks(InstrumentWithCalls);
- return true;
- }
- /// \brief Compute the shadow type that corresponds to a given Value.
- Type *getShadowTy(Value *V) {
- return getShadowTy(V->getType());
- }
- /// \brief Compute the shadow type that corresponds to a given Type.
- Type *getShadowTy(Type *OrigTy) {
- if (!OrigTy->isSized()) {
- return nullptr;
- }
- // For integer type, shadow is the same as the original type.
- // This may return weird-sized types like i1.
- if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
- return IT;
- const DataLayout &DL = F.getParent()->getDataLayout();
- if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
- uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
- return VectorType::get(IntegerType::get(*MS.C, EltSize),
- VT->getNumElements());
- }
- if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
- return ArrayType::get(getShadowTy(AT->getElementType()),
- AT->getNumElements());
- }
- if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
- SmallVector<Type*, 4> Elements;
- for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
- Elements.push_back(getShadowTy(ST->getElementType(i)));
- StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
- DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
- return Res;
- }
- uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
- return IntegerType::get(*MS.C, TypeSize);
- }
- /// \brief Flatten a vector type.
- Type *getShadowTyNoVec(Type *ty) {
- if (VectorType *vt = dyn_cast<VectorType>(ty))
- return IntegerType::get(*MS.C, vt->getBitWidth());
- return ty;
- }
- /// \brief Convert a shadow value to it's flattened variant.
- Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
- Type *Ty = V->getType();
- Type *NoVecTy = getShadowTyNoVec(Ty);
- if (Ty == NoVecTy) return V;
- return IRB.CreateBitCast(V, NoVecTy);
- }
- /// \brief Compute the integer shadow offset that corresponds to a given
- /// application address.
- ///
- /// Offset = (Addr & ~AndMask) ^ XorMask
- Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
- uint64_t AndMask = MS.MapParams->AndMask;
- assert(AndMask != 0 && "AndMask shall be specified");
- Value *OffsetLong =
- IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
- ConstantInt::get(MS.IntptrTy, ~AndMask));
- uint64_t XorMask = MS.MapParams->XorMask;
- if (XorMask != 0)
- OffsetLong = IRB.CreateXor(OffsetLong,
- ConstantInt::get(MS.IntptrTy, XorMask));
- return OffsetLong;
- }
- /// \brief Compute the shadow address that corresponds to a given application
- /// address.
- ///
- /// Shadow = ShadowBase + Offset
- Value *getShadowPtr(Value *Addr, Type *ShadowTy,
- IRBuilder<> &IRB) {
- Value *ShadowLong = getShadowPtrOffset(Addr, IRB);
- uint64_t ShadowBase = MS.MapParams->ShadowBase;
- if (ShadowBase != 0)
- ShadowLong =
- IRB.CreateAdd(ShadowLong,
- ConstantInt::get(MS.IntptrTy, ShadowBase));
- return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
- }
- /// \brief Compute the origin address that corresponds to a given application
- /// address.
- ///
- /// OriginAddr = (OriginBase + Offset) & ~3ULL
- Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) {
- Value *OriginLong = getShadowPtrOffset(Addr, IRB);
- uint64_t OriginBase = MS.MapParams->OriginBase;
- if (OriginBase != 0)
- OriginLong =
- IRB.CreateAdd(OriginLong,
- ConstantInt::get(MS.IntptrTy, OriginBase));
- if (Alignment < kMinOriginAlignment) {
- uint64_t Mask = kMinOriginAlignment - 1;
- OriginLong = IRB.CreateAnd(OriginLong,
- ConstantInt::get(MS.IntptrTy, ~Mask));
- }
- return IRB.CreateIntToPtr(OriginLong,
- PointerType::get(IRB.getInt32Ty(), 0));
- }
- /// \brief Compute the shadow address for a given function argument.
- ///
- /// Shadow = ParamTLS+ArgOffset.
- Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
- int ArgOffset) {
- Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
- Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
- return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
- "_msarg");
- }
- /// \brief Compute the origin address for a given function argument.
- Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
- int ArgOffset) {
- if (!MS.TrackOrigins) return nullptr;
- Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
- Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
- return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
- "_msarg_o");
- }
- /// \brief Compute the shadow address for a retval.
- Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
- Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
- return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
- "_msret");
- }
- /// \brief Compute the origin address for a retval.
- Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
- // We keep a single origin for the entire retval. Might be too optimistic.
- return MS.RetvalOriginTLS;
- }
- /// \brief Set SV to be the shadow value for V.
- void setShadow(Value *V, Value *SV) {
- assert(!ShadowMap.count(V) && "Values may only have one shadow");
- ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
- }
- /// \brief Set Origin to be the origin value for V.
- void setOrigin(Value *V, Value *Origin) {
- if (!MS.TrackOrigins) return;
- assert(!OriginMap.count(V) && "Values may only have one origin");
- DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
- OriginMap[V] = Origin;
- }
- /// \brief Create a clean shadow value for a given value.
- ///
- /// Clean shadow (all zeroes) means all bits of the value are defined
- /// (initialized).
- Constant *getCleanShadow(Value *V) {
- Type *ShadowTy = getShadowTy(V);
- if (!ShadowTy)
- return nullptr;
- return Constant::getNullValue(ShadowTy);
- }
- /// \brief Create a dirty shadow of a given shadow type.
- Constant *getPoisonedShadow(Type *ShadowTy) {
- assert(ShadowTy);
- if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
- return Constant::getAllOnesValue(ShadowTy);
- if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
- SmallVector<Constant *, 4> Vals(AT->getNumElements(),
- getPoisonedShadow(AT->getElementType()));
- return ConstantArray::get(AT, Vals);
- }
- if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
- SmallVector<Constant *, 4> Vals;
- for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
- Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
- return ConstantStruct::get(ST, Vals);
- }
- llvm_unreachable("Unexpected shadow type");
- }
- /// \brief Create a dirty shadow for a given value.
- Constant *getPoisonedShadow(Value *V) {
- Type *ShadowTy = getShadowTy(V);
- if (!ShadowTy)
- return nullptr;
- return getPoisonedShadow(ShadowTy);
- }
- /// \brief Create a clean (zero) origin.
- Value *getCleanOrigin() {
- return Constant::getNullValue(MS.OriginTy);
- }
- /// \brief Get the shadow value for a given Value.
- ///
- /// This function either returns the value set earlier with setShadow,
- /// or extracts if from ParamTLS (for function arguments).
- Value *getShadow(Value *V) {
- if (!PropagateShadow) return getCleanShadow(V);
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- // For instructions the shadow is already stored in the map.
- Value *Shadow = ShadowMap[V];
- if (!Shadow) {
- DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
- (void)I;
- assert(Shadow && "No shadow for a value");
- }
- return Shadow;
- }
- if (UndefValue *U = dyn_cast<UndefValue>(V)) {
- Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
- DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
- (void)U;
- return AllOnes;
- }
- if (Argument *A = dyn_cast<Argument>(V)) {
- // For arguments we compute the shadow on demand and store it in the map.
- Value **ShadowPtr = &ShadowMap[V];
- if (*ShadowPtr)
- return *ShadowPtr;
- Function *F = A->getParent();
- IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
- unsigned ArgOffset = 0;
- const DataLayout &DL = F->getParent()->getDataLayout();
- for (auto &FArg : F->args()) {
- if (!FArg.getType()->isSized()) {
- DEBUG(dbgs() << "Arg is not sized\n");
- continue;
- }
- unsigned Size =
- FArg.hasByValAttr()
- ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType())
- : DL.getTypeAllocSize(FArg.getType());
- if (A == &FArg) {
- bool Overflow = ArgOffset + Size > kParamTLSSize;
- Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
- if (FArg.hasByValAttr()) {
- // ByVal pointer itself has clean shadow. We copy the actual
- // argument shadow to the underlying memory.
- // Figure out maximal valid memcpy alignment.
- unsigned ArgAlign = FArg.getParamAlignment();
- if (ArgAlign == 0) {
- Type *EltType = A->getType()->getPointerElementType();
- ArgAlign = DL.getABITypeAlignment(EltType);
- }
- if (Overflow) {
- // ParamTLS overflow.
- EntryIRB.CreateMemSet(
- getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
- Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign);
- } else {
- unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
- Value *Cpy = EntryIRB.CreateMemCpy(
- getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
- CopyAlign);
- DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
- (void)Cpy;
- }
- *ShadowPtr = getCleanShadow(V);
- } else {
- if (Overflow) {
- // ParamTLS overflow.
- *ShadowPtr = getCleanShadow(V);
- } else {
- *ShadowPtr =
- EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
- }
- }
- DEBUG(dbgs() << " ARG: " << FArg << " ==> " <<
- **ShadowPtr << "\n");
- if (MS.TrackOrigins && !Overflow) {
- Value *OriginPtr =
- getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
- setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
- } else {
- setOrigin(A, getCleanOrigin());
- }
- }
- ArgOffset += RoundUpToAlignment(Size, kShadowTLSAlignment);
- }
- assert(*ShadowPtr && "Could not find shadow for an argument");
- return *ShadowPtr;
- }
- // For everything else the shadow is zero.
- return getCleanShadow(V);
- }
- /// \brief Get the shadow for i-th argument of the instruction I.
- Value *getShadow(Instruction *I, int i) {
- return getShadow(I->getOperand(i));
- }
- /// \brief Get the origin for a value.
- Value *getOrigin(Value *V) {
- if (!MS.TrackOrigins) return nullptr;
- if (!PropagateShadow) return getCleanOrigin();
- if (isa<Constant>(V)) return getCleanOrigin();
- assert((isa<Instruction>(V) || isa<Argument>(V)) &&
- "Unexpected value type in getOrigin()");
- Value *Origin = OriginMap[V];
- assert(Origin && "Missing origin");
- return Origin;
- }
- /// \brief Get the origin for i-th argument of the instruction I.
- Value *getOrigin(Instruction *I, int i) {
- return getOrigin(I->getOperand(i));
- }
- /// \brief Remember the place where a shadow check should be inserted.
- ///
- /// This location will be later instrumented with a check that will print a
- /// UMR warning in runtime if the shadow value is not 0.
- void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
- assert(Shadow);
- if (!InsertChecks) return;
- #ifndef NDEBUG
- Type *ShadowTy = Shadow->getType();
- assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
- "Can only insert checks for integer and vector shadow types");
- #endif
- InstrumentationList.push_back(
- ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
- }
- /// \brief Remember the place where a shadow check should be inserted.
- ///
- /// This location will be later instrumented with a check that will print a
- /// UMR warning in runtime if the value is not fully defined.
- void insertShadowCheck(Value *Val, Instruction *OrigIns) {
- assert(Val);
- Value *Shadow, *Origin;
- if (ClCheckConstantShadow) {
- Shadow = getShadow(Val);
- if (!Shadow) return;
- Origin = getOrigin(Val);
- } else {
- Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
- if (!Shadow) return;
- Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
- }
- insertShadowCheck(Shadow, Origin, OrigIns);
- }
- AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
- switch (a) {
- case NotAtomic:
- return NotAtomic;
- case Unordered:
- case Monotonic:
- case Release:
- return Release;
- case Acquire:
- case AcquireRelease:
- return AcquireRelease;
- case SequentiallyConsistent:
- return SequentiallyConsistent;
- }
- llvm_unreachable("Unknown ordering");
- }
- AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
- switch (a) {
- case NotAtomic:
- return NotAtomic;
- case Unordered:
- case Monotonic:
- case Acquire:
- return Acquire;
- case Release:
- case AcquireRelease:
- return AcquireRelease;
- case SequentiallyConsistent:
- return SequentiallyConsistent;
- }
- llvm_unreachable("Unknown ordering");
- }
- // ------------------- Visitors.
- /// \brief Instrument LoadInst
- ///
- /// Loads the corresponding shadow and (optionally) origin.
- /// Optionally, checks that the load address is fully defined.
- void visitLoadInst(LoadInst &I) {
- assert(I.getType()->isSized() && "Load type must have size");
- IRBuilder<> IRB(I.getNextNode());
- Type *ShadowTy = getShadowTy(&I);
- Value *Addr = I.getPointerOperand();
- if (PropagateShadow && !I.getMetadata("nosanitize")) {
- Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
- setShadow(&I,
- IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
- } else {
- setShadow(&I, getCleanShadow(&I));
- }
- if (ClCheckAccessAddress)
- insertShadowCheck(I.getPointerOperand(), &I);
- if (I.isAtomic())
- I.setOrdering(addAcquireOrdering(I.getOrdering()));
- if (MS.TrackOrigins) {
- if (PropagateShadow) {
- unsigned Alignment = I.getAlignment();
- unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
- setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment),
- OriginAlignment));
- } else {
- setOrigin(&I, getCleanOrigin());
- }
- }
- }
- /// \brief Instrument StoreInst
- ///
- /// Stores the corresponding shadow and (optionally) origin.
- /// Optionally, checks that the store address is fully defined.
- void visitStoreInst(StoreInst &I) {
- StoreList.push_back(&I);
- }
- void handleCASOrRMW(Instruction &I) {
- assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
- IRBuilder<> IRB(&I);
- Value *Addr = I.getOperand(0);
- Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
- if (ClCheckAccessAddress)
- insertShadowCheck(Addr, &I);
- // Only test the conditional argument of cmpxchg instruction.
- // The other argument can potentially be uninitialized, but we can not
- // detect this situation reliably without possible false positives.
- if (isa<AtomicCmpXchgInst>(I))
- insertShadowCheck(I.getOperand(1), &I);
- IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
- setShadow(&I, getCleanShadow(&I));
- setOrigin(&I, getCleanOrigin());
- }
- void visitAtomicRMWInst(AtomicRMWInst &I) {
- handleCASOrRMW(I);
- I.setOrdering(addReleaseOrdering(I.getOrdering()));
- }
- void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
- handleCASOrRMW(I);
- I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
- }
- // Vector manipulation.
- void visitExtractElementInst(ExtractElementInst &I) {
- insertShadowCheck(I.getOperand(1), &I);
- IRBuilder<> IRB(&I);
- setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
- "_msprop"));
- setOrigin(&I, getOrigin(&I, 0));
- }
- void visitInsertElementInst(InsertElementInst &I) {
- insertShadowCheck(I.getOperand(2), &I);
- IRBuilder<> IRB(&I);
- setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
- I.getOperand(2), "_msprop"));
- setOriginForNaryOp(I);
- }
- void visitShuffleVectorInst(ShuffleVectorInst &I) {
- insertShadowCheck(I.getOperand(2), &I);
- IRBuilder<> IRB(&I);
- setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
- I.getOperand(2), "_msprop"));
- setOriginForNaryOp(I);
- }
- // Casts.
- void visitSExtInst(SExtInst &I) {
- IRBuilder<> IRB(&I);
- setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
- setOrigin(&I, getOrigin(&I, 0));
- }
- void visitZExtInst(ZExtInst &I) {
- IRBuilder<> IRB(&I);
- setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
- setOrigin(&I, getOrigin(&I, 0));
- }
- void visitTruncInst(TruncInst &I) {
- IRBuilder<> IRB(&I);
- setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
- setOrigin(&I, getOrigin(&I, 0));
- }
- void visitBitCastInst(BitCastInst &I) {
- IRBuilder<> IRB(&I);
- setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
- setOrigin(&I, getOrigin(&I, 0));
- }
- void visitPtrToIntInst(PtrToIntInst &I) {
- IRBuilder<> IRB(&I);
- setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
- "_msprop_ptrtoint"));
- setOrigin(&I, getOrigin(&I, 0));
- }
- void visitIntToPtrInst(IntToPtrInst &I) {
- IRBuilder<> IRB(&I);
- setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
- "_msprop_inttoptr"));
- setOrigin(&I, getOrigin(&I, 0));
- }
- void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
- void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
- void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
- void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
- void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
- void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
- /// \brief Propagate shadow for bitwise AND.
- ///
- /// This code is exact, i.e. if, for example, a bit in the left argument
- /// is defined and 0, then neither the value not definedness of the
- /// corresponding bit in B don't affect the resulting shadow.
- void visitAnd(BinaryOperator &I) {
- IRBuilder<> IRB(&I);
- // "And" of 0 and a poisoned value results in unpoisoned value.
- // 1&1 => 1; 0&1 => 0; p&1 => p;
- // 1&0 => 0; 0&0 => 0; p&0 => 0;
- // 1&p => p; 0&p => 0; p&p => p;
- // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
- Value *S1 = getShadow(&I, 0);
- Value *S2 = getShadow(&I, 1);
- Value *V1 = I.getOperand(0);
- Value *V2 = I.getOperand(1);
- if (V1->getType() != S1->getType()) {
- V1 = IRB.CreateIntCast(V1, S1->getType(), false);
- V2 = IRB.CreateIntCast(V2, S2->getType(), false);
- }
- Value *S1S2 = IRB.CreateAnd(S1, S2);
- Value *V1S2 = IRB.CreateAnd(V1, S2);
- Value *S1V2 = IRB.CreateAnd(S1, V2);
- setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
- setOriginForNaryOp(I);
- }
- void visitOr(BinaryOperator &I) {
- IRBuilder<> IRB(&I);
- // "Or" of 1 and a poisoned value results in unpoisoned value.
- // 1|1 => 1; 0|1 => 1; p|1 => 1;
- // 1|0 => 1; 0|0 => 0; p|0 => p;
- // 1|p => 1; 0|p => p; p|p => p;
- // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
- Value *S1 = getShadow(&I, 0);
- Value *S2 = getShadow(&I, 1);
- Value *V1 = IRB.CreateNot(I.getOperand(0));
- Value *V2 = IRB.CreateNot(I.getOperand(1));
- if (V1->getType() != S1->getType()) {
- V1 = IRB.CreateIntCast(V1, S1->getType(), false);
- V2 = IRB.CreateIntCast(V2, S2->getType(), false);
- }
- Value *S1S2 = IRB.CreateAnd(S1, S2);
- Value *V1S2 = IRB.CreateAnd(V1, S2);
- Value *S1V2 = IRB.CreateAnd(S1, V2);
- setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
- setOriginForNaryOp(I);
- }
- /// \brief Default propagation of shadow and/or origin.
- ///
- /// This class implements the general case of shadow propagation, used in all
- /// cases where we don't know and/or don't care about what the operation
- /// actually does. It converts all input shadow values to a common type
- /// (extending or truncating as necessary), and bitwise OR's them.
- ///
- /// This is much cheaper than inserting checks (i.e. requiring inputs to be
- /// fully initialized), and less prone to false positives.
- ///
- /// This class also implements the general case of origin propagation. For a
- /// Nary operation, result origin is set to the origin of an argument that is
- /// not entirely initialized. If there is more than one such arguments, the
- /// rightmost of them is picked. It does not matter which one is picked if all
- /// arguments are initialized.
- template <bool CombineShadow>
- class Combiner {
- Value *Shadow;
- Value *Origin;
- IRBuilder<> &IRB;
- MemorySanitizerVisitor *MSV;
- public:
- Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
- Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {}
- /// \brief Add a pair of shadow and origin values to the mix.
- Combiner &Add(Value *OpShadow, Value *OpOrigin) {
- if (CombineShadow) {
- assert(OpShadow);
- if (!Shadow)
- Shadow = OpShadow;
- else {
- OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
- Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
- }
- }
- if (MSV->MS.TrackOrigins) {
- assert(OpOrigin);
- if (!Origin) {
- Origin = OpOrigin;
- } else {
- Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
- // No point in adding something that might result in 0 origin value.
- if (!ConstOrigin || !ConstOrigin->isNullValue()) {
- Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
- Value *Cond =
- IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
- Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
- }
- }
- }
- return *this;
- }
- /// \brief Add an application value to the mix.
- Combiner &Add(Value *V) {
- Value *OpShadow = MSV->getShadow(V);
- Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
- return Add(OpShadow, OpOrigin);
- }
- /// \brief Set the current combined values as the given instruction's shadow
- /// and origin.
- void Done(Instruction *I) {
- if (CombineShadow) {
- assert(Shadow);
- Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
- MSV->setShadow(I, Shadow);
- }
- if (MSV->MS.TrackOrigins) {
- assert(Origin);
- MSV->setOrigin(I, Origin);
- }
- }
- };
- typedef Combiner<true> ShadowAndOriginCombiner;
- typedef Combiner<false> OriginCombiner;
- /// \brief Propagate origin for arbitrary operation.
- void setOriginForNaryOp(Instruction &I) {
- if (!MS.TrackOrigins) return;
- IRBuilder<> IRB(&I);
- OriginCombiner OC(this, IRB);
- for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
- OC.Add(OI->get());
- OC.Done(&I);
- }
- size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
- assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
- "Vector of pointers is not a valid shadow type");
- return Ty->isVectorTy() ?
- Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
- Ty->getPrimitiveSizeInBits();
- }
- /// \brief Cast between two shadow types, extending or truncating as
- /// necessary.
- Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
- bool Signed = false) {
- Type *srcTy = V->getType();
- if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
- return IRB.CreateIntCast(V, dstTy, Signed);
- if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
- dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
- return IRB.CreateIntCast(V, dstTy, Signed);
- size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
- size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
- Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
- Value *V2 =
- IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
- return IRB.CreateBitCast(V2, dstTy);
- // TODO: handle struct types.
- }
- /// \brief Cast an application value to the type of its own shadow.
- Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
- Type *ShadowTy = getShadowTy(V);
- if (V->getType() == ShadowTy)
- return V;
- if (V->getType()->isPtrOrPtrVectorTy())
- return IRB.CreatePtrToInt(V, ShadowTy);
- else
- return IRB.CreateBitCast(V, ShadowTy);
- }
- /// \brief Propagate shadow for arbitrary operation.
- void handleShadowOr(Instruction &I) {
- IRBuilder<> IRB(&I);
- ShadowAndOriginCombiner SC(this, IRB);
- for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
- SC.Add(OI->get());
- SC.Done(&I);
- }
- // \brief Handle multiplication by constant.
- //
- // Handle a special case of multiplication by constant that may have one or
- // more zeros in the lower bits. This makes corresponding number of lower bits
- // of the result zero as well. We model it by shifting the other operand
- // shadow left by the required number of bits. Effectively, we transform
- // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
- // We use multiplication by 2**N instead of shift to cover the case of
- // multiplication by 0, which may occur in some elements of a vector operand.
- void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
- Value *OtherArg) {
- Constant *ShadowMul;
- Type *Ty = ConstArg->getType();
- if (Ty->isVectorTy()) {
- unsigned NumElements = Ty->getVectorNumElements();
- Type *EltTy = Ty->getSequentialElementType();
- SmallVector<Constant *, 16> Elements;
- for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
- ConstantInt *Elt =
- dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx));
- APInt V = Elt->getValue();
- APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
- Elements.push_back(ConstantInt::get(EltTy, V2));
- }
- ShadowMul = ConstantVector::get(Elements);
- } else {
- ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg);
- APInt V = Elt->getValue();
- APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
- ShadowMul = ConstantInt::get(Elt->getType(), V2);
- }
- IRBuilder<> IRB(&I);
- setShadow(&I,
- IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
- setOrigin(&I, getOrigin(OtherArg));
- }
- void visitMul(BinaryOperator &I) {
- Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
- Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
- if (constOp0 && !constOp1)
- handleMulByConstant(I, constOp0, I.getOperand(1));
- else if (constOp1 && !constOp0)
- handleMulByConstant(I, constOp1, I.getOperand(0));
- else
- handleShadowOr(I);
- }
- void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
- void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
- void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
- void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
- void visitSub(BinaryOperator &I) { handleShadowOr(I); }
- void visitXor(BinaryOperator &I) { handleShadowOr(I); }
- void handleDiv(Instruction &I) {
- IRBuilder<> IRB(&I);
- // Strict on the second argument.
- insertShadowCheck(I.getOperand(1), &I);
- setShadow(&I, getShadow(&I, 0));
- setOrigin(&I, getOrigin(&I, 0));
- }
- void visitUDiv(BinaryOperator &I) { handleDiv(I); }
- void visitSDiv(BinaryOperator &I) { handleDiv(I); }
- void visitFDiv(BinaryOperator &I) { handleDiv(I); }
- void visitURem(BinaryOperator &I) { handleDiv(I); }
- void visitSRem(BinaryOperator &I) { handleDiv(I); }
- void visitFRem(BinaryOperator &I) { handleDiv(I); }
- /// \brief Instrument == and != comparisons.
- ///
- /// Sometimes the comparison result is known even if some of the bits of the
- /// arguments are not.
- void handleEqualityComparison(ICmpInst &I) {
- IRBuilder<> IRB(&I);
- Value *A = I.getOperand(0);
- Value *B = I.getOperand(1);
- Value *Sa = getShadow(A);
- Value *Sb = getShadow(B);
- // Get rid of pointers and vectors of pointers.
- // For ints (and vectors of ints), types of A and Sa match,
- // and this is a no-op.
- A = IRB.CreatePointerCast(A, Sa->getType());
- B = IRB.CreatePointerCast(B, Sb->getType());
- // A == B <==> (C = A^B) == 0
- // A != B <==> (C = A^B) != 0
- // Sc = Sa | Sb
- Value *C = IRB.CreateXor(A, B);
- Value *Sc = IRB.CreateOr(Sa, Sb);
- // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
- // Result is defined if one of the following is true
- // * there is a defined 1 bit in C
- // * C is fully defined
- // Si = !(C & ~Sc) && Sc
- Value *Zero = Constant::getNullValue(Sc->getType());
- Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
- Value *Si =
- IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
- IRB.CreateICmpEQ(
- IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
- Si->setName("_msprop_icmp");
- setShadow(&I, Si);
- setOriginForNaryOp(I);
- }
- /// \brief Build the lowest possible value of V, taking into account V's
- /// uninitialized bits.
- Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
- bool isSigned) {
- if (isSigned) {
- // Split shadow into sign bit and other bits.
- Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
- Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
- // Maximise the undefined shadow bit, minimize other undefined bits.
- return
- IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
- } else {
- // Minimize undefined bits.
- return IRB.CreateAnd(A, IRB.CreateNot(Sa));
- }
- }
- /// \brief Build the highest possible value of V, taking into account V's
- /// uninitialized bits.
- Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
- bool isSigned) {
- if (isSigned) {
- // Split shadow into sign bit and other bits.
- Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
- Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
- // Minimise the undefined shadow bit, maximise other undefined bits.
- return
- IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
- } else {
- // Maximize undefined bits.
- return IRB.CreateOr(A, Sa);
- }
- }
- /// \brief Instrument relational comparisons.
- ///
- /// This function does exact shadow propagation for all relational
- /// comparisons of integers, pointers and vectors of those.
- /// FIXME: output seems suboptimal when one of the operands is a constant
- void handleRelationalComparisonExact(ICmpInst &I) {
- IRBuilder<> IRB(&I);
- Value *A = I.getOperand(0);
- Value *B = I.getOperand(1);
- Value *Sa = getShadow(A);
- Value *Sb = getShadow(B);
- // Get rid of pointers and vectors of pointers.
- // For ints (and vectors of ints), types of A and Sa match,
- // and this is a no-op.
- A = IRB.CreatePointerCast(A, Sa->getType());
- B = IRB.CreatePointerCast(B, Sb->getType());
- // Let [a0, a1] be the interval of possible values of A, taking into account
- // its undefined bits. Let [b0, b1] be the interval of possible values of B.
- // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
- bool IsSigned = I.isSigned();
- Value *S1 = IRB.CreateICmp(I.getPredicate(),
- getLowestPossibleValue(IRB, A, Sa, IsSigned),
- getHighestPossibleValue(IRB, B, Sb, IsSigned));
- Value *S2 = IRB.CreateICmp(I.getPredicate(),
- getHighestPossibleValue(IRB, A, Sa, IsSigned),
- getLowestPossibleValue(IRB, B, Sb, IsSigned));
- Value *Si = IRB.CreateXor(S1, S2);
- setShadow(&I, Si);
- setOriginForNaryOp(I);
- }
- /// \brief Instrument signed relational comparisons.
- ///
- /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
- /// propagating the highest bit of the shadow. Everything else is delegated
- /// to handleShadowOr().
- void handleSignedRelationalComparison(ICmpInst &I) {
- Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
- Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
- Value* op = nullptr;
- CmpInst::Predicate pre = I.getPredicate();
- if (constOp0 && constOp0->isNullValue() &&
- (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
- op = I.getOperand(1);
- } else if (constOp1 && constOp1->isNullValue() &&
- (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
- op = I.getOperand(0);
- }
- if (op) {
- IRBuilder<> IRB(&I);
- Value* Shadow =
- IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
- setShadow(&I, Shadow);
- setOrigin(&I, getOrigin(op));
- } else {
- handleShadowOr(I);
- }
- }
- void visitICmpInst(ICmpInst &I) {
- if (!ClHandleICmp) {
- handleShadowOr(I);
- return;
- }
- if (I.isEquality()) {
- handleEqualityComparison(I);
- return;
- }
- assert(I.isRelational());
- if (ClHandleICmpExact) {
- handleRelationalComparisonExact(I);
- return;
- }
- if (I.isSigned()) {
- handleSignedRelationalComparison(I);
- return;
- }
- assert(I.isUnsigned());
- if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
- handleRelationalComparisonExact(I);
- return;
- }
- handleShadowOr(I);
- }
- void visitFCmpInst(FCmpInst &I) {
- handleShadowOr(I);
- }
- void handleShift(BinaryOperator &I) {
- IRBuilder<> IRB(&I);
- // If any of the S2 bits are poisoned, the whole thing is poisoned.
- // Otherwise perform the same shift on S1.
- Value *S1 = getShadow(&I, 0);
- Value *S2 = getShadow(&I, 1);
- Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
- S2->getType());
- Value *V2 = I.getOperand(1);
- Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
- setShadow(&I, IRB.CreateOr(Shift, S2Conv));
- setOriginForNaryOp(I);
- }
- void visitShl(BinaryOperator &I) { handleShift(I); }
- void visitAShr(BinaryOperator &I) { handleShift(I); }
- void visitLShr(BinaryOperator &I) { handleShift(I); }
- /// \brief Instrument llvm.memmove
- ///
- /// At this point we don't know if llvm.memmove will be inlined or not.
- /// If we don't instrument it and it gets inlined,
- /// our interceptor will not kick in and we will lose the memmove.
- /// If we instrument the call here, but it does not get inlined,
- /// we will memove the shadow twice: which is bad in case
- /// of overlapping regions. So, we simply lower the intrinsic to a call.
- ///
- /// Similar situation exists for memcpy and memset.
- void visitMemMoveInst(MemMoveInst &I) {
- IRBuilder<> IRB(&I);
- IRB.CreateCall(
- MS.MemmoveFn,
- {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
- IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
- IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
- I.eraseFromParent();
- }
- // Similar to memmove: avoid copying shadow twice.
- // This is somewhat unfortunate as it may slowdown small constant memcpys.
- // FIXME: consider doing manual inline for small constant sizes and proper
- // alignment.
- void visitMemCpyInst(MemCpyInst &I) {
- IRBuilder<> IRB(&I);
- IRB.CreateCall(
- MS.MemcpyFn,
- {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
- IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
- IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
- I.eraseFromParent();
- }
- // Same as memcpy.
- void visitMemSetInst(MemSetInst &I) {
- IRBuilder<> IRB(&I);
- IRB.CreateCall(
- MS.MemsetFn,
- {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
- IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
- IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
- I.eraseFromParent();
- }
- void visitVAStartInst(VAStartInst &I) {
- VAHelper->visitVAStartInst(I);
- }
- void visitVACopyInst(VACopyInst &I) {
- VAHelper->visitVACopyInst(I);
- }
- enum IntrinsicKind {
- IK_DoesNotAccessMemory,
- IK_OnlyReadsMemory,
- IK_WritesMemory
- };
- static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
- const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
- const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
- const int OnlyReadsMemory = IK_OnlyReadsMemory;
- const int OnlyAccessesArgumentPointees = IK_WritesMemory;
- const int UnknownModRefBehavior = IK_WritesMemory;
- #define GET_INTRINSIC_MODREF_BEHAVIOR
- #define ModRefBehavior IntrinsicKind
- #include "llvm/IR/Intrinsics.gen"
- #undef ModRefBehavior
- #undef GET_INTRINSIC_MODREF_BEHAVIOR
- }
- /// \brief Handle vector store-like intrinsics.
- ///
- /// Instrument intrinsics that look like a simple SIMD store: writes memory,
- /// has 1 pointer argument and 1 vector argument, returns void.
- bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
- IRBuilder<> IRB(&I);
- Value* Addr = I.getArgOperand(0);
- Value *Shadow = getShadow(&I, 1);
- Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
- // We don't know the pointer alignment (could be unaligned SSE store!).
- // Have to assume to worst case.
- IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
- if (ClCheckAccessAddress)
- insertShadowCheck(Addr, &I);
- // FIXME: use ClStoreCleanOrigin
- // FIXME: factor out common code from materializeStores
- if (MS.TrackOrigins)
- IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1));
- return true;
- }
- /// \brief Handle vector load-like intrinsics.
- ///
- /// Instrument intrinsics that look like a simple SIMD load: reads memory,
- /// has 1 pointer argument, returns a vector.
- bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
- IRBuilder<> IRB(&I);
- Value *Addr = I.getArgOperand(0);
- Type *ShadowTy = getShadowTy(&I);
- if (PropagateShadow) {
- Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
- // We don't know the pointer alignment (could be unaligned SSE load!).
- // Have to assume to worst case.
- setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
- } else {
- setShadow(&I, getCleanShadow(&I));
- }
- if (ClCheckAccessAddress)
- insertShadowCheck(Addr, &I);
- if (MS.TrackOrigins) {
- if (PropagateShadow)
- setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1)));
- else
- setOrigin(&I, getCleanOrigin());
- }
- return true;
- }
- /// \brief Handle (SIMD arithmetic)-like intrinsics.
- ///
- /// Instrument intrinsics with any number of arguments of the same type,
- /// equal to the return type. The type should be simple (no aggregates or
- /// pointers; vectors are fine).
- /// Caller guarantees that this intrinsic does not access memory.
- bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
- Type *RetTy = I.getType();
- if (!(RetTy->isIntOrIntVectorTy() ||
- RetTy->isFPOrFPVectorTy() ||
- RetTy->isX86_MMXTy()))
- return false;
- unsigned NumArgOperands = I.getNumArgOperands();
- for (unsigned i = 0; i < NumArgOperands; ++i) {
- Type *Ty = I.getArgOperand(i)->getType();
- if (Ty != RetTy)
- return false;
- }
- IRBuilder<> IRB(&I);
- ShadowAndOriginCombiner SC(this, IRB);
- for (unsigned i = 0; i < NumArgOperands; ++i)
- SC.Add(I.getArgOperand(i));
- SC.Done(&I);
- return true;
- }
- /// \brief Heuristically instrument unknown intrinsics.
- ///
- /// The main purpose of this code is to do something reasonable with all
- /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
- /// We recognize several classes of intrinsics by their argument types and
- /// ModRefBehaviour and apply special intrumentation when we are reasonably
- /// sure that we know what the intrinsic does.
- ///
- /// We special-case intrinsics where this approach fails. See llvm.bswap
- /// handling as an example of that.
- bool handleUnknownIntrinsic(IntrinsicInst &I) {
- unsigned NumArgOperands = I.getNumArgOperands();
- if (NumArgOperands == 0)
- return false;
- Intrinsic::ID iid = I.getIntrinsicID();
- IntrinsicKind IK = getIntrinsicKind(iid);
- bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
- bool WritesMemory = IK == IK_WritesMemory;
- assert(!(OnlyReadsMemory && WritesMemory));
- if (NumArgOperands == 2 &&
- I.getArgOperand(0)->getType()->isPointerTy() &&
- I.getArgOperand(1)->getType()->isVectorTy() &&
- I.getType()->isVoidTy() &&
- WritesMemory) {
- // This looks like a vector store.
- return handleVectorStoreIntrinsic(I);
- }
- if (NumArgOperands == 1 &&
- I.getArgOperand(0)->getType()->isPointerTy() &&
- I.getType()->isVectorTy() &&
- OnlyReadsMemory) {
- // This looks like a vector load.
- return handleVectorLoadIntrinsic(I);
- }
- if (!OnlyReadsMemory && !WritesMemory)
- if (maybeHandleSimpleNomemIntrinsic(I))
- return true;
- // FIXME: detect and handle SSE maskstore/maskload
- return false;
- }
- void handleBswap(IntrinsicInst &I) {
- IRBuilder<> IRB(&I);
- Value *Op = I.getArgOperand(0);
- Type *OpType = Op->getType();
- Function *BswapFunc = Intrinsic::getDeclaration(
- F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
- setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
- setOrigin(&I, getOrigin(Op));
- }
- // \brief Instrument vector convert instrinsic.
- //
- // This function instruments intrinsics like cvtsi2ss:
- // %Out = int_xxx_cvtyyy(%ConvertOp)
- // or
- // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
- // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
- // number \p Out elements, and (if has 2 arguments) copies the rest of the
- // elements from \p CopyOp.
- // In most cases conversion involves floating-point value which may trigger a
- // hardware exception when not fully initialized. For this reason we require
- // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
- // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
- // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
- // return a fully initialized value.
- void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
- IRBuilder<> IRB(&I);
- Value *CopyOp, *ConvertOp;
- switch (I.getNumArgOperands()) {
- case 3:
- assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode");
- case 2:
- CopyOp = I.getArgOperand(0);
- ConvertOp = I.getArgOperand(1);
- break;
- case 1:
- ConvertOp = I.getArgOperand(0);
- CopyOp = nullptr;
- break;
- default:
- llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
- }
- // The first *NumUsedElements* elements of ConvertOp are converted to the
- // same number of output elements. The rest of the output is copied from
- // CopyOp, or (if not available) filled with zeroes.
- // Combine shadow for elements of ConvertOp that are used in this operation,
- // and insert a check.
- // FIXME: consider propagating shadow of ConvertOp, at least in the case of
- // int->any conversion.
- Value *ConvertShadow = getShadow(ConvertOp);
- Value *AggShadow = nullptr;
- if (ConvertOp->getType()->isVectorTy()) {
- AggShadow = IRB.CreateExtractElement(
- ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
- for (int i = 1; i < NumUsedElements; ++i) {
- Value *MoreShadow = IRB.CreateExtractElement(
- ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
- AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
- }
- } else {
- AggShadow = ConvertShadow;
- }
- assert(AggShadow->getType()->isIntegerTy());
- insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
- // Build result shadow by zero-filling parts of CopyOp shadow that come from
- // ConvertOp.
- if (CopyOp) {
- assert(CopyOp->getType() == I.getType());
- assert(CopyOp->getType()->isVectorTy());
- Value *ResultShadow = getShadow(CopyOp);
- Type *EltTy = ResultShadow->getType()->getVectorElementType();
- for (int i = 0; i < NumUsedElements; ++i) {
- ResultShadow = IRB.CreateInsertElement(
- ResultShadow, ConstantInt::getNullValue(EltTy),
- ConstantInt::get(IRB.getInt32Ty(), i));
- }
- setShadow(&I, ResultShadow);
- setOrigin(&I, getOrigin(CopyOp));
- } else {
- setShadow(&I, getCleanShadow(&I));
- setOrigin(&I, getCleanOrigin());
- }
- }
- // Given a scalar or vector, extract lower 64 bits (or less), and return all
- // zeroes if it is zero, and all ones otherwise.
- Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
- if (S->getType()->isVectorTy())
- S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
- assert(S->getType()->getPrimitiveSizeInBits() <= 64);
- Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
- return CreateShadowCast(IRB, S2, T, /* Signed */ true);
- }
- Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
- Type *T = S->getType();
- assert(T->isVectorTy());
- Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
- return IRB.CreateSExt(S2, T);
- }
- // \brief Instrument vector shift instrinsic.
- //
- // This function instruments intrinsics like int_x86_avx2_psll_w.
- // Intrinsic shifts %In by %ShiftSize bits.
- // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
- // size, and the rest is ignored. Behavior is defined even if shift size is
- // greater than register (or field) width.
- void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
- assert(I.getNumArgOperands() == 2);
- IRBuilder<> IRB(&I);
- // If any of the S2 bits are poisoned, the whole thing is poisoned.
- // Otherwise perform the same shift on S1.
- Value *S1 = getShadow(&I, 0);
- Value *S2 = getShadow(&I, 1);
- Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
- : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
- Value *V1 = I.getOperand(0);
- Value *V2 = I.getOperand(1);
- Value *Shift = IRB.CreateCall(I.getCalledValue(),
- {IRB.CreateBitCast(S1, V1->getType()), V2});
- Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
- setShadow(&I, IRB.CreateOr(Shift, S2Conv));
- setOriginForNaryOp(I);
- }
- // \brief Get an X86_MMX-sized vector type.
- Type *getMMXVectorTy(unsigned EltSizeInBits) {
- const unsigned X86_MMXSizeInBits = 64;
- return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
- X86_MMXSizeInBits / EltSizeInBits);
- }
- // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack
- // intrinsic.
- Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
- switch (id) {
- case llvm::Intrinsic::x86_sse2_packsswb_128:
- case llvm::Intrinsic::x86_sse2_packuswb_128:
- return llvm::Intrinsic::x86_sse2_packsswb_128;
- case llvm::Intrinsic::x86_sse2_packssdw_128:
- case llvm::Intrinsic::x86_sse41_packusdw:
- return llvm::Intrinsic::x86_sse2_packssdw_128;
- case llvm::Intrinsic::x86_avx2_packsswb:
- case llvm::Intrinsic::x86_avx2_packuswb:
- return llvm::Intrinsic::x86_avx2_packsswb;
- case llvm::Intrinsic::x86_avx2_packssdw:
- case llvm::Intrinsic::x86_avx2_packusdw:
- return llvm::Intrinsic::x86_avx2_packssdw;
- case llvm::Intrinsic::x86_mmx_packsswb:
- case llvm::Intrinsic::x86_mmx_packuswb:
- return llvm::Intrinsic::x86_mmx_packsswb;
- case llvm::Intrinsic::x86_mmx_packssdw:
- return llvm::Intrinsic::x86_mmx_packssdw;
- default:
- llvm_unreachable("unexpected intrinsic id");
- }
- }
- // \brief Instrument vector pack instrinsic.
- //
- // This function instruments intrinsics like x86_mmx_packsswb, that
- // packs elements of 2 input vectors into half as many bits with saturation.
- // Shadow is propagated with the signed variant of the same intrinsic applied
- // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
- // EltSizeInBits is used only for x86mmx arguments.
- void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
- assert(I.getNumArgOperands() == 2);
- bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
- IRBuilder<> IRB(&I);
- Value *S1 = getShadow(&I, 0);
- Value *S2 = getShadow(&I, 1);
- assert(isX86_MMX || S1->getType()->isVectorTy());
- // SExt and ICmpNE below must apply to individual elements of input vectors.
- // In case of x86mmx arguments, cast them to appropriate vector types and
- // back.
- Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
- if (isX86_MMX) {
- S1 = IRB.CreateBitCast(S1, T);
- S2 = IRB.CreateBitCast(S2, T);
- }
- Value *S1_ext = IRB.CreateSExt(
- IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T);
- Value *S2_ext = IRB.CreateSExt(
- IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T);
- if (isX86_MMX) {
- Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
- S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
- S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
- }
- Function *ShadowFn = Intrinsic::getDeclaration(
- F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
- Value *S =
- IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
- if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
- setShadow(&I, S);
- setOriginForNaryOp(I);
- }
- // \brief Instrument sum-of-absolute-differencies intrinsic.
- void handleVectorSadIntrinsic(IntrinsicInst &I) {
- const unsigned SignificantBitsPerResultElement = 16;
- bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
- Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
- unsigned ZeroBitsPerResultElement =
- ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
- IRBuilder<> IRB(&I);
- Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
- S = IRB.CreateBitCast(S, ResTy);
- S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
- ResTy);
- S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
- S = IRB.CreateBitCast(S, getShadowTy(&I));
- setShadow(&I, S);
- setOriginForNaryOp(I);
- }
- // \brief Instrument multiply-add intrinsic.
- void handleVectorPmaddIntrinsic(IntrinsicInst &I,
- unsigned EltSizeInBits = 0) {
- bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
- Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
- IRBuilder<> IRB(&I);
- Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
- S = IRB.CreateBitCast(S, ResTy);
- S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
- ResTy);
- S = IRB.CreateBitCast(S, getShadowTy(&I));
- setShadow(&I, S);
- setOriginForNaryOp(I);
- }
- void visitIntrinsicInst(IntrinsicInst &I) {
- switch (I.getIntrinsicID()) {
- case llvm::Intrinsic::bswap:
- handleBswap(I);
- break;
- case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
- case llvm::Intrinsic::x86_avx512_cvtsd2usi:
- case llvm::Intrinsic::x86_avx512_cvtss2usi64:
- case llvm::Intrinsic::x86_avx512_cvtss2usi:
- case llvm::Intrinsic::x86_avx512_cvttss2usi64:
- case llvm::Intrinsic::x86_avx512_cvttss2usi:
- case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
- case llvm::Intrinsic::x86_avx512_cvttsd2usi:
- case llvm::Intrinsic::x86_avx512_cvtusi2sd:
- case llvm::Intrinsic::x86_avx512_cvtusi2ss:
- case llvm::Intrinsic::x86_avx512_cvtusi642sd:
- case llvm::Intrinsic::x86_avx512_cvtusi642ss:
- case llvm::Intrinsic::x86_sse2_cvtsd2si64:
- case llvm::Intrinsic::x86_sse2_cvtsd2si:
- case llvm::Intrinsic::x86_sse2_cvtsd2ss:
- case llvm::Intrinsic::x86_sse2_cvtsi2sd:
- case llvm::Intrinsic::x86_sse2_cvtsi642sd:
- case llvm::Intrinsic::x86_sse2_cvtss2sd:
- case llvm::Intrinsic::x86_sse2_cvttsd2si64:
- case llvm::Intrinsic::x86_sse2_cvttsd2si:
- case llvm::Intrinsic::x86_sse_cvtsi2ss:
- case llvm::Intrinsic::x86_sse_cvtsi642ss:
- case llvm::Intrinsic::x86_sse_cvtss2si64:
- case llvm::Intrinsic::x86_sse_cvtss2si:
- case llvm::Intrinsic::x86_sse_cvttss2si64:
- case llvm::Intrinsic::x86_sse_cvttss2si:
- handleVectorConvertIntrinsic(I, 1);
- break;
- case llvm::Intrinsic::x86_sse2_cvtdq2pd:
- case llvm::Intrinsic::x86_sse2_cvtps2pd:
- case llvm::Intrinsic::x86_sse_cvtps2pi:
- case llvm::Intrinsic::x86_sse_cvttps2pi:
- handleVectorConvertIntrinsic(I, 2);
- break;
- case llvm::Intrinsic::x86_avx2_psll_w:
- case llvm::Intrinsic::x86_avx2_psll_d:
- case llvm::Intrinsic::x86_avx2_psll_q:
- case llvm::Intrinsic::x86_avx2_pslli_w:
- case llvm::Intrinsic::x86_avx2_pslli_d:
- case llvm::Intrinsic::x86_avx2_pslli_q:
- case llvm::Intrinsic::x86_avx2_psrl_w:
- case llvm::Intrinsic::x86_avx2_psrl_d:
- case llvm::Intrinsic::x86_avx2_psrl_q:
- case llvm::Intrinsic::x86_avx2_psra_w:
- case llvm::Intrinsic::x86_avx2_psra_d:
- case llvm::Intrinsic::x86_avx2_psrli_w:
- case llvm::Intrinsic::x86_avx2_psrli_d:
- case llvm::Intrinsic::x86_avx2_psrli_q:
- case llvm::Intrinsic::x86_avx2_psrai_w:
- case llvm::Intrinsic::x86_avx2_psrai_d:
- case llvm::Intrinsic::x86_sse2_psll_w:
- case llvm::Intrinsic::x86_sse2_psll_d:
- case llvm::Intrinsic::x86_sse2_psll_q:
- case llvm::Intrinsic::x86_sse2_pslli_w:
- case llvm::Intrinsic::x86_sse2_pslli_d:
- case llvm::Intrinsic::x86_sse2_pslli_q:
- case llvm::Intrinsic::x86_sse2_psrl_w:
- case llvm::Intrinsic::x86_sse2_psrl_d:
- case llvm::Intrinsic::x86_sse2_psrl_q:
- case llvm::Intrinsic::x86_sse2_psra_w:
- case llvm::Intrinsic::x86_sse2_psra_d:
- case llvm::Intrinsic::x86_sse2_psrli_w:
- case llvm::Intrinsic::x86_sse2_psrli_d:
- case llvm::Intrinsic::x86_sse2_psrli_q:
- case llvm::Intrinsic::x86_sse2_psrai_w:
- case llvm::Intrinsic::x86_sse2_psrai_d:
- case llvm::Intrinsic::x86_mmx_psll_w:
- case llvm::Intrinsic::x86_mmx_psll_d:
- case llvm::Intrinsic::x86_mmx_psll_q:
- case llvm::Intrinsic::x86_mmx_pslli_w:
- case llvm::Intrinsic::x86_mmx_pslli_d:
- case llvm::Intrinsic::x86_mmx_pslli_q:
- case llvm::Intrinsic::x86_mmx_psrl_w:
- case llvm::Intrinsic::x86_mmx_psrl_d:
- case llvm::Intrinsic::x86_mmx_psrl_q:
- case llvm::Intrinsic::x86_mmx_psra_w:
- case llvm::Intrinsic::x86_mmx_psra_d:
- case llvm::Intrinsic::x86_mmx_psrli_w:
- case llvm::Intrinsic::x86_mmx_psrli_d:
- case llvm::Intrinsic::x86_mmx_psrli_q:
- case llvm::Intrinsic::x86_mmx_psrai_w:
- case llvm::Intrinsic::x86_mmx_psrai_d:
- handleVectorShiftIntrinsic(I, /* Variable */ false);
- break;
- case llvm::Intrinsic::x86_avx2_psllv_d:
- case llvm::Intrinsic::x86_avx2_psllv_d_256:
- case llvm::Intrinsic::x86_avx2_psllv_q:
- case llvm::Intrinsic::x86_avx2_psllv_q_256:
- case llvm::Intrinsic::x86_avx2_psrlv_d:
- case llvm::Intrinsic::x86_avx2_psrlv_d_256:
- case llvm::Intrinsic::x86_avx2_psrlv_q:
- case llvm::Intrinsic::x86_avx2_psrlv_q_256:
- case llvm::Intrinsic::x86_avx2_psrav_d:
- case llvm::Intrinsic::x86_avx2_psrav_d_256:
- handleVectorShiftIntrinsic(I, /* Variable */ true);
- break;
- case llvm::Intrinsic::x86_sse2_packsswb_128:
- case llvm::Intrinsic::x86_sse2_packssdw_128:
- case llvm::Intrinsic::x86_sse2_packuswb_128:
- case llvm::Intrinsic::x86_sse41_packusdw:
- case llvm::Intrinsic::x86_avx2_packsswb:
- case llvm::Intrinsic::x86_avx2_packssdw:
- case llvm::Intrinsic::x86_avx2_packuswb:
- case llvm::Intrinsic::x86_avx2_packusdw:
- handleVectorPackIntrinsic(I);
- break;
- case llvm::Intrinsic::x86_mmx_packsswb:
- case llvm::Intrinsic::x86_mmx_packuswb:
- handleVectorPackIntrinsic(I, 16);
- break;
- case llvm::Intrinsic::x86_mmx_packssdw:
- handleVectorPackIntrinsic(I, 32);
- break;
- case llvm::Intrinsic::x86_mmx_psad_bw:
- case llvm::Intrinsic::x86_sse2_psad_bw:
- case llvm::Intrinsic::x86_avx2_psad_bw:
- handleVectorSadIntrinsic(I);
- break;
- case llvm::Intrinsic::x86_sse2_pmadd_wd:
- case llvm::Intrinsic::x86_avx2_pmadd_wd:
- case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128:
- case llvm::Intrinsic::x86_avx2_pmadd_ub_sw:
- handleVectorPmaddIntrinsic(I);
- break;
- case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw:
- handleVectorPmaddIntrinsic(I, 8);
- break;
- case llvm::Intrinsic::x86_mmx_pmadd_wd:
- handleVectorPmaddIntrinsic(I, 16);
- break;
- default:
- if (!handleUnknownIntrinsic(I))
- visitInstruction(I);
- break;
- }
- }
- void visitCallSite(CallSite CS) {
- Instruction &I = *CS.getInstruction();
- assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
- if (CS.isCall()) {
- CallInst *Call = cast<CallInst>(&I);
- // For inline asm, do the usual thing: check argument shadow and mark all
- // outputs as clean. Note that any side effects of the inline asm that are
- // not immediately visible in its constraints are not handled.
- if (Call->isInlineAsm()) {
- visitInstruction(I);
- return;
- }
- assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
- // We are going to insert code that relies on the fact that the callee
- // will become a non-readonly function after it is instrumented by us. To
- // prevent this code from being optimized out, mark that function
- // non-readonly in advance.
- if (Function *Func = Call->getCalledFunction()) {
- // Clear out readonly/readnone attributes.
- AttrBuilder B;
- B.addAttribute(Attribute::ReadOnly)
- .addAttribute(Attribute::ReadNone);
- Func->removeAttributes(AttributeSet::FunctionIndex,
- AttributeSet::get(Func->getContext(),
- AttributeSet::FunctionIndex,
- B));
- }
- }
- IRBuilder<> IRB(&I);
- unsigned ArgOffset = 0;
- DEBUG(dbgs() << " CallSite: " << I << "\n");
- for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
- ArgIt != End; ++ArgIt) {
- Value *A = *ArgIt;
- unsigned i = ArgIt - CS.arg_begin();
- if (!A->getType()->isSized()) {
- DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
- continue;
- }
- unsigned Size = 0;
- Value *Store = nullptr;
- // Compute the Shadow for arg even if it is ByVal, because
- // in that case getShadow() will copy the actual arg shadow to
- // __msan_param_tls.
- Value *ArgShadow = getShadow(A);
- Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
- DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
- " Shadow: " << *ArgShadow << "\n");
- bool ArgIsInitialized = false;
- const DataLayout &DL = F.getParent()->getDataLayout();
- if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
- assert(A->getType()->isPointerTy() &&
- "ByVal argument is not a pointer!");
- Size = DL.getTypeAllocSize(A->getType()->getPointerElementType());
- if (ArgOffset + Size > kParamTLSSize) break;
- unsigned ParamAlignment = CS.getParamAlignment(i + 1);
- unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
- Store = IRB.CreateMemCpy(ArgShadowBase,
- getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
- Size, Alignment);
- } else {
- Size = DL.getTypeAllocSize(A->getType());
- if (ArgOffset + Size > kParamTLSSize) break;
- Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
- kShadowTLSAlignment);
- Constant *Cst = dyn_cast<Constant>(ArgShadow);
- if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
- }
- if (MS.TrackOrigins && !ArgIsInitialized)
- IRB.CreateStore(getOrigin(A),
- getOriginPtrForArgument(A, IRB, ArgOffset));
- (void)Store;
- assert(Size != 0 && Store != nullptr);
- DEBUG(dbgs() << " Param:" << *Store << "\n");
- ArgOffset += RoundUpToAlignment(Size, 8);
- }
- DEBUG(dbgs() << " done with call args\n");
- FunctionType *FT =
- cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
- if (FT->isVarArg()) {
- VAHelper->visitCallSite(CS, IRB);
- }
- // Now, get the shadow for the RetVal.
- if (!I.getType()->isSized()) return;
- IRBuilder<> IRBBefore(&I);
- // Until we have full dynamic coverage, make sure the retval shadow is 0.
- Value *Base = getShadowPtrForRetval(&I, IRBBefore);
- IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
- Instruction *NextInsn = nullptr;
- if (CS.isCall()) {
- NextInsn = I.getNextNode();
- } else {
- BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
- if (!NormalDest->getSinglePredecessor()) {
- // FIXME: this case is tricky, so we are just conservative here.
- // Perhaps we need to split the edge between this BB and NormalDest,
- // but a naive attempt to use SplitEdge leads to a crash.
- setShadow(&I, getCleanShadow(&I));
- setOrigin(&I, getCleanOrigin());
- return;
- }
- NextInsn = NormalDest->getFirstInsertionPt();
- assert(NextInsn &&
- "Could not find insertion point for retval shadow load");
- }
- IRBuilder<> IRBAfter(NextInsn);
- Value *RetvalShadow =
- IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
- kShadowTLSAlignment, "_msret");
- setShadow(&I, RetvalShadow);
- if (MS.TrackOrigins)
- setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
- }
- void visitReturnInst(ReturnInst &I) {
- IRBuilder<> IRB(&I);
- Value *RetVal = I.getReturnValue();
- if (!RetVal) return;
- Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
- if (CheckReturnValue) {
- insertShadowCheck(RetVal, &I);
- Value *Shadow = getCleanShadow(RetVal);
- IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
- } else {
- Value *Shadow = getShadow(RetVal);
- IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
- // FIXME: make it conditional if ClStoreCleanOrigin==0
- if (MS.TrackOrigins)
- IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
- }
- }
- void visitPHINode(PHINode &I) {
- IRBuilder<> IRB(&I);
- if (!PropagateShadow) {
- setShadow(&I, getCleanShadow(&I));
- setOrigin(&I, getCleanOrigin());
- return;
- }
- ShadowPHINodes.push_back(&I);
- setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
- "_msphi_s"));
- if (MS.TrackOrigins)
- setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
- "_msphi_o"));
- }
- void visitAllocaInst(AllocaInst &I) {
- setShadow(&I, getCleanShadow(&I));
- setOrigin(&I, getCleanOrigin());
- IRBuilder<> IRB(I.getNextNode());
- const DataLayout &DL = F.getParent()->getDataLayout();
- uint64_t Size = DL.getTypeAllocSize(I.getAllocatedType());
- if (PoisonStack && ClPoisonStackWithCall) {
- IRB.CreateCall(MS.MsanPoisonStackFn,
- {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
- ConstantInt::get(MS.IntptrTy, Size)});
- } else {
- Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
- Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
- IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
- }
- if (PoisonStack && MS.TrackOrigins) {
- SmallString<2048> StackDescriptionStorage;
- raw_svector_ostream StackDescription(StackDescriptionStorage);
- // We create a string with a description of the stack allocation and
- // pass it into __msan_set_alloca_origin.
- // It will be printed by the run-time if stack-originated UMR is found.
- // The first 4 bytes of the string are set to '----' and will be replaced
- // by __msan_va_arg_overflow_size_tls at the first call.
- StackDescription << "----" << I.getName() << "@" << F.getName();
- Value *Descr =
- createPrivateNonConstGlobalForString(*F.getParent(),
- StackDescription.str());
- IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn,
- {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
- ConstantInt::get(MS.IntptrTy, Size),
- IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
- IRB.CreatePointerCast(&F, MS.IntptrTy)});
- }
- }
- void visitSelectInst(SelectInst& I) {
- IRBuilder<> IRB(&I);
- // a = select b, c, d
- Value *B = I.getCondition();
- Value *C = I.getTrueValue();
- Value *D = I.getFalseValue();
- Value *Sb = getShadow(B);
- Value *Sc = getShadow(C);
- Value *Sd = getShadow(D);
- // Result shadow if condition shadow is 0.
- Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
- Value *Sa1;
- if (I.getType()->isAggregateType()) {
- // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
- // an extra "select". This results in much more compact IR.
- // Sa = select Sb, poisoned, (select b, Sc, Sd)
- Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
- } else {
- // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
- // If Sb (condition is poisoned), look for bits in c and d that are equal
- // and both unpoisoned.
- // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
- // Cast arguments to shadow-compatible type.
- C = CreateAppToShadowCast(IRB, C);
- D = CreateAppToShadowCast(IRB, D);
- // Result shadow if condition shadow is 1.
- Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd));
- }
- Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
- setShadow(&I, Sa);
- if (MS.TrackOrigins) {
- // Origins are always i32, so any vector conditions must be flattened.
- // FIXME: consider tracking vector origins for app vectors?
- if (B->getType()->isVectorTy()) {
- Type *FlatTy = getShadowTyNoVec(B->getType());
- B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
- ConstantInt::getNullValue(FlatTy));
- Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
- ConstantInt::getNullValue(FlatTy));
- }
- // a = select b, c, d
- // Oa = Sb ? Ob : (b ? Oc : Od)
- setOrigin(
- &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
- IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
- getOrigin(I.getFalseValue()))));
- }
- }
- void visitLandingPadInst(LandingPadInst &I) {
- // Do nothing.
- // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
- setShadow(&I, getCleanShadow(&I));
- setOrigin(&I, getCleanOrigin());
- }
- void visitGetElementPtrInst(GetElementPtrInst &I) {
- handleShadowOr(I);
- }
- void visitExtractValueInst(ExtractValueInst &I) {
- IRBuilder<> IRB(&I);
- Value *Agg = I.getAggregateOperand();
- DEBUG(dbgs() << "ExtractValue: " << I << "\n");
- Value *AggShadow = getShadow(Agg);
- DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
- Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
- DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
- setShadow(&I, ResShadow);
- setOriginForNaryOp(I);
- }
- void visitInsertValueInst(InsertValueInst &I) {
- IRBuilder<> IRB(&I);
- DEBUG(dbgs() << "InsertValue: " << I << "\n");
- Value *AggShadow = getShadow(I.getAggregateOperand());
- Value *InsShadow = getShadow(I.getInsertedValueOperand());
- DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
- DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
- Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
- DEBUG(dbgs() << " Res: " << *Res << "\n");
- setShadow(&I, Res);
- setOriginForNaryOp(I);
- }
- void dumpInst(Instruction &I) {
- if (CallInst *CI = dyn_cast<CallInst>(&I)) {
- errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
- } else {
- errs() << "ZZZ " << I.getOpcodeName() << "\n";
- }
- errs() << "QQQ " << I << "\n";
- }
- void visitResumeInst(ResumeInst &I) {
- DEBUG(dbgs() << "Resume: " << I << "\n");
- // Nothing to do here.
- }
- void visitInstruction(Instruction &I) {
- // Everything else: stop propagating and check for poisoned shadow.
- if (ClDumpStrictInstructions)
- dumpInst(I);
- DEBUG(dbgs() << "DEFAULT: " << I << "\n");
- for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
- insertShadowCheck(I.getOperand(i), &I);
- setShadow(&I, getCleanShadow(&I));
- setOrigin(&I, getCleanOrigin());
- }
- };
- /// \brief AMD64-specific implementation of VarArgHelper.
- struct VarArgAMD64Helper : public VarArgHelper {
- // An unfortunate workaround for asymmetric lowering of va_arg stuff.
- // See a comment in visitCallSite for more details.
- static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
- static const unsigned AMD64FpEndOffset = 176;
- Function &F;
- MemorySanitizer &MS;
- MemorySanitizerVisitor &MSV;
- Value *VAArgTLSCopy;
- Value *VAArgOverflowSize;
- SmallVector<CallInst*, 16> VAStartInstrumentationList;
- VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
- MemorySanitizerVisitor &MSV)
- : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
- VAArgOverflowSize(nullptr) {}
- enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
- ArgKind classifyArgument(Value* arg) {
- // A very rough approximation of X86_64 argument classification rules.
- Type *T = arg->getType();
- if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
- return AK_FloatingPoint;
- if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
- return AK_GeneralPurpose;
- if (T->isPointerTy())
- return AK_GeneralPurpose;
- return AK_Memory;
- }
- // For VarArg functions, store the argument shadow in an ABI-specific format
- // that corresponds to va_list layout.
- // We do this because Clang lowers va_arg in the frontend, and this pass
- // only sees the low level code that deals with va_list internals.
- // A much easier alternative (provided that Clang emits va_arg instructions)
- // would have been to associate each live instance of va_list with a copy of
- // MSanParamTLS, and extract shadow on va_arg() call in the argument list
- // order.
- void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
- unsigned GpOffset = 0;
- unsigned FpOffset = AMD64GpEndOffset;
- unsigned OverflowOffset = AMD64FpEndOffset;
- const DataLayout &DL = F.getParent()->getDataLayout();
- for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
- ArgIt != End; ++ArgIt) {
- Value *A = *ArgIt;
- unsigned ArgNo = CS.getArgumentNo(ArgIt);
- bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
- if (IsByVal) {
- // ByVal arguments always go to the overflow area.
- assert(A->getType()->isPointerTy());
- Type *RealTy = A->getType()->getPointerElementType();
- uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
- Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
- OverflowOffset += RoundUpToAlignment(ArgSize, 8);
- IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
- ArgSize, kShadowTLSAlignment);
- } else {
- ArgKind AK = classifyArgument(A);
- if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
- AK = AK_Memory;
- if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
- AK = AK_Memory;
- Value *Base;
- switch (AK) {
- case AK_GeneralPurpose:
- Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
- GpOffset += 8;
- break;
- case AK_FloatingPoint:
- Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
- FpOffset += 16;
- break;
- default: assert(AK == AK_Memory); // HLSL Change - set as default case rather than case AK_Memory
- uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
- Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
- OverflowOffset += RoundUpToAlignment(ArgSize, 8);
- }
- IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
- }
- }
- Constant *OverflowSize =
- ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
- IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
- }
- /// \brief Compute the shadow address for a given va_arg.
- Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
- int ArgOffset) {
- Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
- Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
- return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
- "_msarg");
- }
- void visitVAStartInst(VAStartInst &I) override {
- IRBuilder<> IRB(&I);
- VAStartInstrumentationList.push_back(&I);
- Value *VAListTag = I.getArgOperand(0);
- Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
- // Unpoison the whole __va_list_tag.
- // FIXME: magic ABI constants.
- IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
- /* size */24, /* alignment */8, false);
- }
- void visitVACopyInst(VACopyInst &I) override {
- IRBuilder<> IRB(&I);
- Value *VAListTag = I.getArgOperand(0);
- Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
- // Unpoison the whole __va_list_tag.
- // FIXME: magic ABI constants.
- IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
- /* size */24, /* alignment */8, false);
- }
- void finalizeInstrumentation() override {
- assert(!VAArgOverflowSize && !VAArgTLSCopy &&
- "finalizeInstrumentation called twice");
- if (!VAStartInstrumentationList.empty()) {
- // If there is a va_start in this function, make a backup copy of
- // va_arg_tls somewhere in the function entry block.
- IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
- VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
- Value *CopySize =
- IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
- VAArgOverflowSize);
- VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
- IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
- }
- // Instrument va_start.
- // Copy va_list shadow from the backup copy of the TLS contents.
- for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
- CallInst *OrigInst = VAStartInstrumentationList[i];
- IRBuilder<> IRB(OrigInst->getNextNode());
- Value *VAListTag = OrigInst->getArgOperand(0);
- Value *RegSaveAreaPtrPtr =
- IRB.CreateIntToPtr(
- IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
- ConstantInt::get(MS.IntptrTy, 16)),
- Type::getInt64PtrTy(*MS.C));
- Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
- Value *RegSaveAreaShadowPtr =
- MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
- IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
- AMD64FpEndOffset, 16);
- Value *OverflowArgAreaPtrPtr =
- IRB.CreateIntToPtr(
- IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
- ConstantInt::get(MS.IntptrTy, 8)),
- Type::getInt64PtrTy(*MS.C));
- Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
- Value *OverflowArgAreaShadowPtr =
- MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
- Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
- AMD64FpEndOffset);
- IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
- }
- }
- };
- /// \brief MIPS64-specific implementation of VarArgHelper.
- struct VarArgMIPS64Helper : public VarArgHelper {
- Function &F;
- MemorySanitizer &MS;
- MemorySanitizerVisitor &MSV;
- Value *VAArgTLSCopy;
- Value *VAArgSize;
- SmallVector<CallInst*, 16> VAStartInstrumentationList;
- VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
- MemorySanitizerVisitor &MSV)
- : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
- VAArgSize(nullptr) {}
- void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
- unsigned VAArgOffset = 0;
- const DataLayout &DL = F.getParent()->getDataLayout();
- for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 1, End = CS.arg_end();
- ArgIt != End; ++ArgIt) {
- Value *A = *ArgIt;
- Value *Base;
- uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
- #if defined(__MIPSEB__) || defined(MIPSEB)
- // Adjusting the shadow for argument with size < 8 to match the placement
- // of bits in big endian system
- if (ArgSize < 8)
- VAArgOffset += (8 - ArgSize);
- #endif
- Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset);
- VAArgOffset += ArgSize;
- VAArgOffset = RoundUpToAlignment(VAArgOffset, 8);
- IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
- }
- Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
- // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
- // a new class member i.e. it is the total size of all VarArgs.
- IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
- }
- /// \brief Compute the shadow address for a given va_arg.
- Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
- int ArgOffset) {
- Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
- Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
- return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
- "_msarg");
- }
- void visitVAStartInst(VAStartInst &I) override {
- IRBuilder<> IRB(&I);
- VAStartInstrumentationList.push_back(&I);
- Value *VAListTag = I.getArgOperand(0);
- Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
- IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
- /* size */8, /* alignment */8, false);
- }
- void visitVACopyInst(VACopyInst &I) override {
- IRBuilder<> IRB(&I);
- Value *VAListTag = I.getArgOperand(0);
- Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
- // Unpoison the whole __va_list_tag.
- // FIXME: magic ABI constants.
- IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
- /* size */8, /* alignment */8, false);
- }
- void finalizeInstrumentation() override {
- assert(!VAArgSize && !VAArgTLSCopy &&
- "finalizeInstrumentation called twice");
- IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
- VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
- Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
- VAArgSize);
- if (!VAStartInstrumentationList.empty()) {
- // If there is a va_start in this function, make a backup copy of
- // va_arg_tls somewhere in the function entry block.
- VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
- IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
- }
- // Instrument va_start.
- // Copy va_list shadow from the backup copy of the TLS contents.
- for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
- CallInst *OrigInst = VAStartInstrumentationList[i];
- IRBuilder<> IRB(OrigInst->getNextNode());
- Value *VAListTag = OrigInst->getArgOperand(0);
- Value *RegSaveAreaPtrPtr =
- IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
- Type::getInt64PtrTy(*MS.C));
- Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
- Value *RegSaveAreaShadowPtr =
- MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
- IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8);
- }
- }
- };
- /// \brief A no-op implementation of VarArgHelper.
- struct VarArgNoOpHelper : public VarArgHelper {
- VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
- MemorySanitizerVisitor &MSV) {}
- void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
- void visitVAStartInst(VAStartInst &I) override {}
- void visitVACopyInst(VACopyInst &I) override {}
- void finalizeInstrumentation() override {}
- };
- VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
- MemorySanitizerVisitor &Visitor) {
- // VarArg handling is only implemented on AMD64. False positives are possible
- // on other platforms.
- llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
- if (TargetTriple.getArch() == llvm::Triple::x86_64)
- return new VarArgAMD64Helper(Func, Msan, Visitor);
- else if (TargetTriple.getArch() == llvm::Triple::mips64 ||
- TargetTriple.getArch() == llvm::Triple::mips64el)
- return new VarArgMIPS64Helper(Func, Msan, Visitor);
- else
- return new VarArgNoOpHelper(Func, Msan, Visitor);
- }
- } // namespace
- bool MemorySanitizer::runOnFunction(Function &F) {
- if (&F == MsanCtorFunction)
- return false;
- MemorySanitizerVisitor Visitor(F, *this);
- // Clear out readonly/readnone attributes.
- AttrBuilder B;
- B.addAttribute(Attribute::ReadOnly)
- .addAttribute(Attribute::ReadNone);
- F.removeAttributes(AttributeSet::FunctionIndex,
- AttributeSet::get(F.getContext(),
- AttributeSet::FunctionIndex, B));
- return Visitor.runOnFunction();
- }
|