123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334 |
- //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
- // inserting a dummy basic block. This pass may be "required" by passes that
- // cannot deal with critical edges. For this usage, the structure type is
- // forward declared. This pass obviously invalidates the CFG, but can update
- // dominator trees.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Type.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- using namespace llvm;
- #define DEBUG_TYPE "break-crit-edges"
- STATISTIC(NumBroken, "Number of blocks inserted");
- namespace {
- struct BreakCriticalEdges : public FunctionPass {
- static char ID; // Pass identification, replacement for typeid
- BreakCriticalEdges() : FunctionPass(ID) {
- initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override {
- auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
- auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
- auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
- auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
- unsigned N =
- SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
- NumBroken += N;
- return N > 0;
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- // No loop canonicalization guarantees are broken by this pass.
- AU.addPreservedID(LoopSimplifyID);
- }
- };
- }
- char BreakCriticalEdges::ID = 0;
- INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
- "Break critical edges in CFG", false, false)
- // Publicly exposed interface to pass...
- char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
- FunctionPass *llvm::createBreakCriticalEdgesPass() {
- return new BreakCriticalEdges();
- }
- //===----------------------------------------------------------------------===//
- // Implementation of the external critical edge manipulation functions
- //===----------------------------------------------------------------------===//
- /// createPHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
- /// may require new PHIs in the new exit block. This function inserts the
- /// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB
- /// is the new loop exit block, and DestBB is the old loop exit, now the
- /// successor of SplitBB.
- static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
- BasicBlock *SplitBB,
- BasicBlock *DestBB) {
- // SplitBB shouldn't have anything non-trivial in it yet.
- assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
- SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
- // For each PHI in the destination block.
- for (BasicBlock::iterator I = DestBB->begin();
- PHINode *PN = dyn_cast<PHINode>(I); ++I) {
- unsigned Idx = PN->getBasicBlockIndex(SplitBB);
- Value *V = PN->getIncomingValue(Idx);
- // If the input is a PHI which already satisfies LCSSA, don't create
- // a new one.
- if (const PHINode *VP = dyn_cast<PHINode>(V))
- if (VP->getParent() == SplitBB)
- continue;
- // Otherwise a new PHI is needed. Create one and populate it.
- PHINode *NewPN =
- PHINode::Create(PN->getType(), Preds.size(), "split",
- SplitBB->isLandingPad() ?
- SplitBB->begin() : SplitBB->getTerminator());
- for (unsigned i = 0, e = Preds.size(); i != e; ++i)
- NewPN->addIncoming(V, Preds[i]);
- // Update the original PHI.
- PN->setIncomingValue(Idx, NewPN);
- }
- }
- /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
- /// split the critical edge. This will update DominatorTree information if it
- /// is available, thus calling this pass will not invalidate either of them.
- /// This returns the new block if the edge was split, null otherwise.
- ///
- /// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
- /// specified successor will be merged into the same critical edge block.
- /// This is most commonly interesting with switch instructions, which may
- /// have many edges to any one destination. This ensures that all edges to that
- /// dest go to one block instead of each going to a different block, but isn't
- /// the standard definition of a "critical edge".
- ///
- /// It is invalid to call this function on a critical edge that starts at an
- /// IndirectBrInst. Splitting these edges will almost always create an invalid
- /// program because the address of the new block won't be the one that is jumped
- /// to.
- ///
- BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
- const CriticalEdgeSplittingOptions &Options) {
- if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
- return nullptr;
- assert(!isa<IndirectBrInst>(TI) &&
- "Cannot split critical edge from IndirectBrInst");
- BasicBlock *TIBB = TI->getParent();
- BasicBlock *DestBB = TI->getSuccessor(SuccNum);
- // Splitting the critical edge to a landing pad block is non-trivial. Don't do
- // it in this generic function.
- if (DestBB->isLandingPad()) return nullptr;
- // Create a new basic block, linking it into the CFG.
- BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
- TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
- // Create our unconditional branch.
- BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
- NewBI->setDebugLoc(TI->getDebugLoc());
- // Branch to the new block, breaking the edge.
- TI->setSuccessor(SuccNum, NewBB);
- // Insert the block into the function... right after the block TI lives in.
- Function &F = *TIBB->getParent();
- Function::iterator FBBI = TIBB;
- F.getBasicBlockList().insert(++FBBI, NewBB);
- // If there are any PHI nodes in DestBB, we need to update them so that they
- // merge incoming values from NewBB instead of from TIBB.
- {
- unsigned BBIdx = 0;
- for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
- // We no longer enter through TIBB, now we come in through NewBB.
- // Revector exactly one entry in the PHI node that used to come from
- // TIBB to come from NewBB.
- PHINode *PN = cast<PHINode>(I);
- // Reuse the previous value of BBIdx if it lines up. In cases where we
- // have multiple phi nodes with *lots* of predecessors, this is a speed
- // win because we don't have to scan the PHI looking for TIBB. This
- // happens because the BB list of PHI nodes are usually in the same
- // order.
- if (PN->getIncomingBlock(BBIdx) != TIBB)
- BBIdx = PN->getBasicBlockIndex(TIBB);
- PN->setIncomingBlock(BBIdx, NewBB);
- }
- }
- // If there are any other edges from TIBB to DestBB, update those to go
- // through the split block, making those edges non-critical as well (and
- // reducing the number of phi entries in the DestBB if relevant).
- if (Options.MergeIdenticalEdges) {
- for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
- if (TI->getSuccessor(i) != DestBB) continue;
- // Remove an entry for TIBB from DestBB phi nodes.
- DestBB->removePredecessor(TIBB, Options.DontDeleteUselessPHIs);
- // We found another edge to DestBB, go to NewBB instead.
- TI->setSuccessor(i, NewBB);
- }
- }
- // If we have nothing to update, just return.
- auto *AA = Options.AA;
- auto *DT = Options.DT;
- auto *LI = Options.LI;
- if (!DT && !LI)
- return NewBB;
- // Now update analysis information. Since the only predecessor of NewBB is
- // the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate
- // anything, as there are other successors of DestBB. However, if all other
- // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
- // loop header) then NewBB dominates DestBB.
- SmallVector<BasicBlock*, 8> OtherPreds;
- // If there is a PHI in the block, loop over predecessors with it, which is
- // faster than iterating pred_begin/end.
- if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (PN->getIncomingBlock(i) != NewBB)
- OtherPreds.push_back(PN->getIncomingBlock(i));
- } else {
- for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
- I != E; ++I) {
- BasicBlock *P = *I;
- if (P != NewBB)
- OtherPreds.push_back(P);
- }
- }
- bool NewBBDominatesDestBB = true;
- // Should we update DominatorTree information?
- if (DT) {
- DomTreeNode *TINode = DT->getNode(TIBB);
- // The new block is not the immediate dominator for any other nodes, but
- // TINode is the immediate dominator for the new node.
- //
- if (TINode) { // Don't break unreachable code!
- DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
- DomTreeNode *DestBBNode = nullptr;
- // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
- if (!OtherPreds.empty()) {
- DestBBNode = DT->getNode(DestBB);
- while (!OtherPreds.empty() && NewBBDominatesDestBB) {
- if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
- NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
- OtherPreds.pop_back();
- }
- OtherPreds.clear();
- }
- // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
- // doesn't dominate anything.
- if (NewBBDominatesDestBB) {
- if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
- DT->changeImmediateDominator(DestBBNode, NewBBNode);
- }
- }
- }
- // Update LoopInfo if it is around.
- if (LI) {
- if (Loop *TIL = LI->getLoopFor(TIBB)) {
- // If one or the other blocks were not in a loop, the new block is not
- // either, and thus LI doesn't need to be updated.
- if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
- if (TIL == DestLoop) {
- // Both in the same loop, the NewBB joins loop.
- DestLoop->addBasicBlockToLoop(NewBB, *LI);
- } else if (TIL->contains(DestLoop)) {
- // Edge from an outer loop to an inner loop. Add to the outer loop.
- TIL->addBasicBlockToLoop(NewBB, *LI);
- } else if (DestLoop->contains(TIL)) {
- // Edge from an inner loop to an outer loop. Add to the outer loop.
- DestLoop->addBasicBlockToLoop(NewBB, *LI);
- } else {
- // Edge from two loops with no containment relation. Because these
- // are natural loops, we know that the destination block must be the
- // header of its loop (adding a branch into a loop elsewhere would
- // create an irreducible loop).
- assert(DestLoop->getHeader() == DestBB &&
- "Should not create irreducible loops!");
- if (Loop *P = DestLoop->getParentLoop())
- P->addBasicBlockToLoop(NewBB, *LI);
- }
- }
- // If TIBB is in a loop and DestBB is outside of that loop, we may need
- // to update LoopSimplify form and LCSSA form.
- if (!TIL->contains(DestBB)) {
- assert(!TIL->contains(NewBB) &&
- "Split point for loop exit is contained in loop!");
- // Update LCSSA form in the newly created exit block.
- if (Options.PreserveLCSSA) {
- createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
- }
- // The only that we can break LoopSimplify form by splitting a critical
- // edge is if after the split there exists some edge from TIL to DestBB
- // *and* the only edge into DestBB from outside of TIL is that of
- // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
- // is the new exit block and it has no non-loop predecessors. If the
- // second isn't true, then DestBB was not in LoopSimplify form prior to
- // the split as it had a non-loop predecessor. In both of these cases,
- // the predecessor must be directly in TIL, not in a subloop, or again
- // LoopSimplify doesn't hold.
- SmallVector<BasicBlock *, 4> LoopPreds;
- for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
- ++I) {
- BasicBlock *P = *I;
- if (P == NewBB)
- continue; // The new block is known.
- if (LI->getLoopFor(P) != TIL) {
- // No need to re-simplify, it wasn't to start with.
- LoopPreds.clear();
- break;
- }
- LoopPreds.push_back(P);
- }
- if (!LoopPreds.empty()) {
- assert(!DestBB->isLandingPad() &&
- "We don't split edges to landing pads!");
- BasicBlock *NewExitBB = SplitBlockPredecessors(
- DestBB, LoopPreds, "split", AA, DT, LI, Options.PreserveLCSSA);
- if (Options.PreserveLCSSA)
- createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
- }
- }
- }
- }
- return NewBB;
- }
|