123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328 |
- //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass transforms loops by placing phi nodes at the end of the loops for
- // all values that are live across the loop boundary. For example, it turns
- // the left into the right code:
- //
- // for (...) for (...)
- // if (c) if (c)
- // X1 = ... X1 = ...
- // else else
- // X2 = ... X2 = ...
- // X3 = phi(X1, X2) X3 = phi(X1, X2)
- // ... = X3 + 4 X4 = phi(X3)
- // ... = X4 + 4
- //
- // This is still valid LLVM; the extra phi nodes are purely redundant, and will
- // be trivially eliminated by InstCombine. The major benefit of this
- // transformation is that it makes many other loop optimizations, such as
- // LoopUnswitching, simpler.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/PredIteratorCache.h"
- #include "llvm/Pass.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Utils/SSAUpdater.h"
- using namespace llvm;
- #define DEBUG_TYPE "lcssa"
- STATISTIC(NumLCSSA, "Number of live out of a loop variables");
- /// Return true if the specified block is in the list.
- static bool isExitBlock(BasicBlock *BB,
- const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
- for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
- if (ExitBlocks[i] == BB)
- return true;
- return false;
- }
- /// Given an instruction in the loop, check to see if it has any uses that are
- /// outside the current loop. If so, insert LCSSA PHI nodes and rewrite the
- /// uses.
- static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT,
- const SmallVectorImpl<BasicBlock *> &ExitBlocks,
- PredIteratorCache &PredCache, LoopInfo *LI) {
- SmallVector<Use *, 16> UsesToRewrite;
- BasicBlock *InstBB = Inst.getParent();
- for (Use &U : Inst.uses()) {
- Instruction *User = cast<Instruction>(U.getUser());
- BasicBlock *UserBB = User->getParent();
- if (PHINode *PN = dyn_cast<PHINode>(User))
- UserBB = PN->getIncomingBlock(U);
- if (InstBB != UserBB && !L.contains(UserBB))
- UsesToRewrite.push_back(&U);
- }
- // If there are no uses outside the loop, exit with no change.
- if (UsesToRewrite.empty())
- return false;
- ++NumLCSSA; // We are applying the transformation
- // Invoke instructions are special in that their result value is not available
- // along their unwind edge. The code below tests to see whether DomBB
- // dominates
- // the value, so adjust DomBB to the normal destination block, which is
- // effectively where the value is first usable.
- BasicBlock *DomBB = Inst.getParent();
- if (InvokeInst *Inv = dyn_cast<InvokeInst>(&Inst))
- DomBB = Inv->getNormalDest();
- DomTreeNode *DomNode = DT.getNode(DomBB);
- SmallVector<PHINode *, 16> AddedPHIs;
- SmallVector<PHINode *, 8> PostProcessPHIs;
- SSAUpdater SSAUpdate;
- SSAUpdate.Initialize(Inst.getType(), Inst.getName());
- // Insert the LCSSA phi's into all of the exit blocks dominated by the
- // value, and add them to the Phi's map.
- for (SmallVectorImpl<BasicBlock *>::const_iterator BBI = ExitBlocks.begin(),
- BBE = ExitBlocks.end();
- BBI != BBE; ++BBI) {
- BasicBlock *ExitBB = *BBI;
- if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
- continue;
- // If we already inserted something for this BB, don't reprocess it.
- if (SSAUpdate.HasValueForBlock(ExitBB))
- continue;
- PHINode *PN = PHINode::Create(Inst.getType(), PredCache.size(ExitBB),
- Inst.getName() + ".lcssa", ExitBB->begin());
- // Add inputs from inside the loop for this PHI.
- for (BasicBlock *Pred : PredCache.get(ExitBB)) {
- PN->addIncoming(&Inst, Pred);
- // If the exit block has a predecessor not within the loop, arrange for
- // the incoming value use corresponding to that predecessor to be
- // rewritten in terms of a different LCSSA PHI.
- if (!L.contains(Pred))
- UsesToRewrite.push_back(
- &PN->getOperandUse(PN->getOperandNumForIncomingValue(
- PN->getNumIncomingValues() - 1)));
- }
- AddedPHIs.push_back(PN);
- // Remember that this phi makes the value alive in this block.
- SSAUpdate.AddAvailableValue(ExitBB, PN);
- // LoopSimplify might fail to simplify some loops (e.g. when indirect
- // branches are involved). In such situations, it might happen that an exit
- // for Loop L1 is the header of a disjoint Loop L2. Thus, when we create
- // PHIs in such an exit block, we are also inserting PHIs into L2's header.
- // This could break LCSSA form for L2 because these inserted PHIs can also
- // have uses outside of L2. Remember all PHIs in such situation as to
- // revisit than later on. FIXME: Remove this if indirectbr support into
- // LoopSimplify gets improved.
- if (auto *OtherLoop = LI->getLoopFor(ExitBB))
- if (!L.contains(OtherLoop))
- PostProcessPHIs.push_back(PN);
- }
- // Rewrite all uses outside the loop in terms of the new PHIs we just
- // inserted.
- for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) {
- // If this use is in an exit block, rewrite to use the newly inserted PHI.
- // This is required for correctness because SSAUpdate doesn't handle uses in
- // the same block. It assumes the PHI we inserted is at the end of the
- // block.
- Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser());
- BasicBlock *UserBB = User->getParent();
- if (PHINode *PN = dyn_cast<PHINode>(User))
- UserBB = PN->getIncomingBlock(*UsesToRewrite[i]);
- if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
- // Tell the VHs that the uses changed. This updates SCEV's caches.
- if (UsesToRewrite[i]->get()->hasValueHandle())
- ValueHandleBase::ValueIsRAUWd(*UsesToRewrite[i], UserBB->begin());
- UsesToRewrite[i]->set(UserBB->begin());
- continue;
- }
- // Otherwise, do full PHI insertion.
- SSAUpdate.RewriteUse(*UsesToRewrite[i]);
- }
- // Post process PHI instructions that were inserted into another disjoint loop
- // and update their exits properly.
- for (auto *I : PostProcessPHIs) {
- if (I->use_empty())
- continue;
- BasicBlock *PHIBB = I->getParent();
- Loop *OtherLoop = LI->getLoopFor(PHIBB);
- SmallVector<BasicBlock *, 8> EBs;
- OtherLoop->getExitBlocks(EBs);
- if (EBs.empty())
- continue;
- // Recurse and re-process each PHI instruction. FIXME: we should really
- // convert this entire thing to a worklist approach where we process a
- // vector of instructions...
- processInstruction(*OtherLoop, *I, DT, EBs, PredCache, LI);
- }
- // Remove PHI nodes that did not have any uses rewritten.
- for (unsigned i = 0, e = AddedPHIs.size(); i != e; ++i) {
- if (AddedPHIs[i]->use_empty())
- AddedPHIs[i]->eraseFromParent();
- }
- return true;
- }
- /// Return true if the specified block dominates at least
- /// one of the blocks in the specified list.
- static bool
- blockDominatesAnExit(BasicBlock *BB,
- DominatorTree &DT,
- const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
- DomTreeNode *DomNode = DT.getNode(BB);
- for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
- if (DT.dominates(DomNode, DT.getNode(ExitBlocks[i])))
- return true;
- return false;
- }
- bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
- ScalarEvolution *SE) {
- bool Changed = false;
- // Get the set of exiting blocks.
- SmallVector<BasicBlock *, 8> ExitBlocks;
- L.getExitBlocks(ExitBlocks);
- if (ExitBlocks.empty())
- return false;
- PredIteratorCache PredCache;
- // Look at all the instructions in the loop, checking to see if they have uses
- // outside the loop. If so, rewrite those uses.
- for (Loop::block_iterator BBI = L.block_begin(), BBE = L.block_end();
- BBI != BBE; ++BBI) {
- BasicBlock *BB = *BBI;
- // For large loops, avoid use-scanning by using dominance information: In
- // particular, if a block does not dominate any of the loop exits, then none
- // of the values defined in the block could be used outside the loop.
- if (!blockDominatesAnExit(BB, DT, ExitBlocks))
- continue;
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
- // Reject two common cases fast: instructions with no uses (like stores)
- // and instructions with one use that is in the same block as this.
- if (I->use_empty() ||
- (I->hasOneUse() && I->user_back()->getParent() == BB &&
- !isa<PHINode>(I->user_back())))
- continue;
- Changed |= processInstruction(L, *I, DT, ExitBlocks, PredCache, LI);
- }
- }
- // If we modified the code, remove any caches about the loop from SCEV to
- // avoid dangling entries.
- // FIXME: This is a big hammer, can we clear the cache more selectively?
- if (SE && Changed)
- SE->forgetLoop(&L);
- assert(L.isLCSSAForm(DT));
- return Changed;
- }
- /// Process a loop nest depth first.
- bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
- ScalarEvolution *SE) {
- bool Changed = false;
- // Recurse depth-first through inner loops.
- for (Loop::iterator I = L.begin(), E = L.end(); I != E; ++I)
- Changed |= formLCSSARecursively(**I, DT, LI, SE);
- Changed |= formLCSSA(L, DT, LI, SE);
- return Changed;
- }
- namespace {
- struct LCSSA : public FunctionPass {
- static char ID; // Pass identification, replacement for typeid
- LCSSA() : FunctionPass(ID) {
- initializeLCSSAPass(*PassRegistry::getPassRegistry());
- }
- // Cached analysis information for the current function.
- DominatorTree *DT;
- LoopInfo *LI;
- ScalarEvolution *SE;
- bool runOnFunction(Function &F) override;
- /// This transformation requires natural loop information & requires that
- /// loop preheaders be inserted into the CFG. It maintains both of these,
- /// as well as the CFG. It also requires dominator information.
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addPreservedID(LoopSimplifyID);
- AU.addPreserved<AliasAnalysis>();
- AU.addPreserved<ScalarEvolution>();
- }
- };
- }
- char LCSSA::ID = 0;
- INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
- Pass *llvm::createLCSSAPass() { return new LCSSA(); }
- char &llvm::LCSSAID = LCSSA::ID;
- /// Process all loops in the function, inner-most out.
- bool LCSSA::runOnFunction(Function &F) {
- bool Changed = false;
- LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- SE = getAnalysisIfAvailable<ScalarEvolution>();
- // Simplify each loop nest in the function.
- for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
- Changed |= formLCSSARecursively(**I, *DT, LI, SE);
- return Changed;
- }
|