123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053 |
- //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
- // stores that can be put together into vector-stores. Next, it attempts to
- // construct vectorizable tree using the use-def chains. If a profitable tree
- // was found, the SLP vectorizer performs vectorization on the tree.
- //
- // The pass is inspired by the work described in the paper:
- // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Vectorize.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CodeMetrics.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/NoFolder.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/Verifier.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include <algorithm>
- #include <map>
- #include <memory>
- // //
- ///////////////////////////////////////////////////////////////////////////////
- using namespace llvm;
- #define SV_NAME "slp-vectorizer"
- #define DEBUG_TYPE "SLP"
- STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
- static cl::opt<int>
- SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
- cl::desc("Only vectorize if you gain more than this "
- "number "));
- static cl::opt<bool>
- ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
- cl::desc("Attempt to vectorize horizontal reductions"));
- static cl::opt<bool> ShouldStartVectorizeHorAtStore(
- "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
- cl::desc(
- "Attempt to vectorize horizontal reductions feeding into a store"));
- static cl::opt<int>
- MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
- cl::desc("Attempt to vectorize for this register size in bits"));
- namespace {
- // FIXME: Set this via cl::opt to allow overriding.
- static const unsigned MinVecRegSize = 128;
- static const unsigned RecursionMaxDepth = 12;
- // Limit the number of alias checks. The limit is chosen so that
- // it has no negative effect on the llvm benchmarks.
- static const unsigned AliasedCheckLimit = 10;
- // Another limit for the alias checks: The maximum distance between load/store
- // instructions where alias checks are done.
- // This limit is useful for very large basic blocks.
- static const unsigned MaxMemDepDistance = 160;
- /// \brief Predicate for the element types that the SLP vectorizer supports.
- ///
- /// The most important thing to filter here are types which are invalid in LLVM
- /// vectors. We also filter target specific types which have absolutely no
- /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
- /// avoids spending time checking the cost model and realizing that they will
- /// be inevitably scalarized.
- static bool isValidElementType(Type *Ty) {
- return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
- !Ty->isPPC_FP128Ty();
- }
- /// \returns the parent basic block if all of the instructions in \p VL
- /// are in the same block or null otherwise.
- static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
- Instruction *I0 = dyn_cast<Instruction>(VL[0]);
- if (!I0)
- return nullptr;
- BasicBlock *BB = I0->getParent();
- for (int i = 1, e = VL.size(); i < e; i++) {
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- if (!I)
- return nullptr;
- if (BB != I->getParent())
- return nullptr;
- }
- return BB;
- }
- /// \returns True if all of the values in \p VL are constants.
- static bool allConstant(ArrayRef<Value *> VL) {
- for (unsigned i = 0, e = VL.size(); i < e; ++i)
- if (!isa<Constant>(VL[i]))
- return false;
- return true;
- }
- /// \returns True if all of the values in \p VL are identical.
- static bool isSplat(ArrayRef<Value *> VL) {
- for (unsigned i = 1, e = VL.size(); i < e; ++i)
- if (VL[i] != VL[0])
- return false;
- return true;
- }
- ///\returns Opcode that can be clubbed with \p Op to create an alternate
- /// sequence which can later be merged as a ShuffleVector instruction.
- static unsigned getAltOpcode(unsigned Op) {
- switch (Op) {
- case Instruction::FAdd:
- return Instruction::FSub;
- case Instruction::FSub:
- return Instruction::FAdd;
- case Instruction::Add:
- return Instruction::Sub;
- case Instruction::Sub:
- return Instruction::Add;
- default:
- return 0;
- }
- }
- ///\returns bool representing if Opcode \p Op can be part
- /// of an alternate sequence which can later be merged as
- /// a ShuffleVector instruction.
- static bool canCombineAsAltInst(unsigned Op) {
- if (Op == Instruction::FAdd || Op == Instruction::FSub ||
- Op == Instruction::Sub || Op == Instruction::Add)
- return true;
- return false;
- }
- /// \returns ShuffleVector instruction if intructions in \p VL have
- /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
- /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
- static unsigned isAltInst(ArrayRef<Value *> VL) {
- Instruction *I0 = dyn_cast<Instruction>(VL[0]);
- unsigned Opcode = I0->getOpcode();
- unsigned AltOpcode = getAltOpcode(Opcode);
- for (int i = 1, e = VL.size(); i < e; i++) {
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode))
- return 0;
- }
- return Instruction::ShuffleVector;
- }
- /// \returns The opcode if all of the Instructions in \p VL have the same
- /// opcode, or zero.
- static unsigned getSameOpcode(ArrayRef<Value *> VL) {
- Instruction *I0 = dyn_cast<Instruction>(VL[0]);
- if (!I0)
- return 0;
- unsigned Opcode = I0->getOpcode();
- for (int i = 1, e = VL.size(); i < e; i++) {
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- if (!I || Opcode != I->getOpcode()) {
- if (canCombineAsAltInst(Opcode) && i == 1)
- return isAltInst(VL);
- return 0;
- }
- }
- return Opcode;
- }
- /// Get the intersection (logical and) of all of the potential IR flags
- /// of each scalar operation (VL) that will be converted into a vector (I).
- /// Flag set: NSW, NUW, exact, and all of fast-math.
- static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
- if (auto *VecOp = dyn_cast<BinaryOperator>(I)) {
- if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) {
- // Intersection is initialized to the 0th scalar,
- // so start counting from index '1'.
- for (int i = 1, e = VL.size(); i < e; ++i) {
- if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i]))
- Intersection->andIRFlags(Scalar);
- }
- VecOp->copyIRFlags(Intersection);
- }
- }
- }
-
- /// \returns \p I after propagating metadata from \p VL.
- static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
- Instruction *I0 = cast<Instruction>(VL[0]);
- SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
- I0->getAllMetadataOtherThanDebugLoc(Metadata);
- for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
- unsigned Kind = Metadata[i].first;
- MDNode *MD = Metadata[i].second;
- for (int i = 1, e = VL.size(); MD && i != e; i++) {
- Instruction *I = cast<Instruction>(VL[i]);
- MDNode *IMD = I->getMetadata(Kind);
- switch (Kind) {
- default:
- MD = nullptr; // Remove unknown metadata
- break;
- case LLVMContext::MD_tbaa:
- MD = MDNode::getMostGenericTBAA(MD, IMD);
- break;
- case LLVMContext::MD_alias_scope:
- MD = MDNode::getMostGenericAliasScope(MD, IMD);
- break;
- case LLVMContext::MD_noalias:
- MD = MDNode::intersect(MD, IMD);
- break;
- case LLVMContext::MD_fpmath:
- MD = MDNode::getMostGenericFPMath(MD, IMD);
- break;
- }
- }
- I->setMetadata(Kind, MD);
- }
- return I;
- }
- /// \returns The type that all of the values in \p VL have or null if there
- /// are different types.
- static Type* getSameType(ArrayRef<Value *> VL) {
- Type *Ty = VL[0]->getType();
- for (int i = 1, e = VL.size(); i < e; i++)
- if (VL[i]->getType() != Ty)
- return nullptr;
- return Ty;
- }
- /// \returns True if the ExtractElement instructions in VL can be vectorized
- /// to use the original vector.
- static bool CanReuseExtract(ArrayRef<Value *> VL) {
- assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
- // Check if all of the extracts come from the same vector and from the
- // correct offset.
- Value *VL0 = VL[0];
- ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
- Value *Vec = E0->getOperand(0);
- // We have to extract from the same vector type.
- unsigned NElts = Vec->getType()->getVectorNumElements();
- if (NElts != VL.size())
- return false;
- // Check that all of the indices extract from the correct offset.
- ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
- if (!CI || CI->getZExtValue())
- return false;
- for (unsigned i = 1, e = VL.size(); i < e; ++i) {
- ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
- ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
- if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
- return false;
- }
- return true;
- }
- /// \returns True if in-tree use also needs extract. This refers to
- /// possible scalar operand in vectorized instruction.
- static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
- TargetLibraryInfo *TLI) {
- unsigned Opcode = UserInst->getOpcode();
- switch (Opcode) {
- case Instruction::Load: {
- LoadInst *LI = cast<LoadInst>(UserInst);
- return (LI->getPointerOperand() == Scalar);
- }
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(UserInst);
- return (SI->getPointerOperand() == Scalar);
- }
- case Instruction::Call: {
- CallInst *CI = cast<CallInst>(UserInst);
- Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
- if (hasVectorInstrinsicScalarOpd(ID, 1)) {
- return (CI->getArgOperand(1) == Scalar);
- }
- }
- default:
- return false;
- }
- }
- /// \returns the AA location that is being access by the instruction.
- static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return MemoryLocation::get(SI);
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return MemoryLocation::get(LI);
- return MemoryLocation();
- }
- /// \returns True if the instruction is not a volatile or atomic load/store.
- static bool isSimple(Instruction *I) {
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return LI->isSimple();
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return SI->isSimple();
- if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
- return !MI->isVolatile();
- return true;
- }
- /// Bottom Up SLP Vectorizer.
- class BoUpSLP {
- public:
- typedef SmallVector<Value *, 8> ValueList;
- typedef SmallVector<Instruction *, 16> InstrList;
- typedef SmallPtrSet<Value *, 16> ValueSet;
- typedef SmallVector<StoreInst *, 8> StoreList;
- BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
- TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
- DominatorTree *Dt, AssumptionCache *AC)
- : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func),
- SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt),
- Builder(Se->getContext()) {
- CodeMetrics::collectEphemeralValues(F, AC, EphValues);
- }
- /// \brief Vectorize the tree that starts with the elements in \p VL.
- /// Returns the vectorized root.
- Value *vectorizeTree();
- /// \returns the cost incurred by unwanted spills and fills, caused by
- /// holding live values over call sites.
- int getSpillCost();
- /// \returns the vectorization cost of the subtree that starts at \p VL.
- /// A negative number means that this is profitable.
- int getTreeCost();
- /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
- /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
- void buildTree(ArrayRef<Value *> Roots,
- ArrayRef<Value *> UserIgnoreLst = None);
- /// Clear the internal data structures that are created by 'buildTree'.
- void deleteTree() {
- VectorizableTree.clear();
- ScalarToTreeEntry.clear();
- MustGather.clear();
- ExternalUses.clear();
- NumLoadsWantToKeepOrder = 0;
- NumLoadsWantToChangeOrder = 0;
- for (auto &Iter : BlocksSchedules) {
- BlockScheduling *BS = Iter.second.get();
- BS->clear();
- }
- }
- /// \returns true if the memory operations A and B are consecutive.
- bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL);
- /// \brief Perform LICM and CSE on the newly generated gather sequences.
- void optimizeGatherSequence();
- /// \returns true if it is benefitial to reverse the vector order.
- bool shouldReorder() const {
- return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
- }
- private:
- struct TreeEntry;
- /// \returns the cost of the vectorizable entry.
- int getEntryCost(TreeEntry *E);
- /// This is the recursive part of buildTree.
- void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
- /// Vectorize a single entry in the tree.
- Value *vectorizeTree(TreeEntry *E);
- /// Vectorize a single entry in the tree, starting in \p VL.
- Value *vectorizeTree(ArrayRef<Value *> VL);
- /// \returns the pointer to the vectorized value if \p VL is already
- /// vectorized, or NULL. They may happen in cycles.
- Value *alreadyVectorized(ArrayRef<Value *> VL) const;
- /// \brief Take the pointer operand from the Load/Store instruction.
- /// \returns NULL if this is not a valid Load/Store instruction.
- static Value *getPointerOperand(Value *I);
- /// \brief Take the address space operand from the Load/Store instruction.
- /// \returns -1 if this is not a valid Load/Store instruction.
- static unsigned getAddressSpaceOperand(Value *I);
- /// \returns the scalarization cost for this type. Scalarization in this
- /// context means the creation of vectors from a group of scalars.
- int getGatherCost(Type *Ty);
- /// \returns the scalarization cost for this list of values. Assuming that
- /// this subtree gets vectorized, we may need to extract the values from the
- /// roots. This method calculates the cost of extracting the values.
- int getGatherCost(ArrayRef<Value *> VL);
- /// \brief Set the Builder insert point to one after the last instruction in
- /// the bundle
- void setInsertPointAfterBundle(ArrayRef<Value *> VL);
- /// \returns a vector from a collection of scalars in \p VL.
- Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
- /// \returns whether the VectorizableTree is fully vectoriable and will
- /// be beneficial even the tree height is tiny.
- bool isFullyVectorizableTinyTree();
- /// \reorder commutative operands in alt shuffle if they result in
- /// vectorized code.
- void reorderAltShuffleOperands(ArrayRef<Value *> VL,
- SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right);
- /// \reorder commutative operands to get better probability of
- /// generating vectorized code.
- void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
- SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right);
- struct TreeEntry {
- TreeEntry() : Scalars(), VectorizedValue(nullptr),
- NeedToGather(0) {}
- /// \returns true if the scalars in VL are equal to this entry.
- bool isSame(ArrayRef<Value *> VL) const {
- assert(VL.size() == Scalars.size() && "Invalid size");
- return std::equal(VL.begin(), VL.end(), Scalars.begin());
- }
- /// A vector of scalars.
- ValueList Scalars;
- /// The Scalars are vectorized into this value. It is initialized to Null.
- Value *VectorizedValue;
- /// Do we need to gather this sequence ?
- bool NeedToGather;
- };
- /// Create a new VectorizableTree entry.
- TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
- VectorizableTree.emplace_back();
- int idx = VectorizableTree.size() - 1;
- TreeEntry *Last = &VectorizableTree[idx];
- Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
- Last->NeedToGather = !Vectorized;
- if (Vectorized) {
- for (int i = 0, e = VL.size(); i != e; ++i) {
- assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
- ScalarToTreeEntry[VL[i]] = idx;
- }
- } else {
- MustGather.insert(VL.begin(), VL.end());
- }
- return Last;
- }
-
- /// -- Vectorization State --
- /// Holds all of the tree entries.
- std::vector<TreeEntry> VectorizableTree;
- /// Maps a specific scalar to its tree entry.
- SmallDenseMap<Value*, int> ScalarToTreeEntry;
- /// A list of scalars that we found that we need to keep as scalars.
- ValueSet MustGather;
- /// This POD struct describes one external user in the vectorized tree.
- struct ExternalUser {
- ExternalUser (Value *S, llvm::User *U, int L) :
- Scalar(S), User(U), Lane(L){};
- // Which scalar in our function.
- Value *Scalar;
- // Which user that uses the scalar.
- llvm::User *User;
- // Which lane does the scalar belong to.
- int Lane;
- };
- typedef SmallVector<ExternalUser, 16> UserList;
- /// Checks if two instructions may access the same memory.
- ///
- /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
- /// is invariant in the calling loop.
- bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
- Instruction *Inst2) {
- // First check if the result is already in the cache.
- AliasCacheKey key = std::make_pair(Inst1, Inst2);
- Optional<bool> &result = AliasCache[key];
- if (result.hasValue()) {
- return result.getValue();
- }
- MemoryLocation Loc2 = getLocation(Inst2, AA);
- bool aliased = true;
- if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
- // Do the alias check.
- aliased = AA->alias(Loc1, Loc2);
- }
- // Store the result in the cache.
- result = aliased;
- return aliased;
- }
- typedef std::pair<Instruction *, Instruction *> AliasCacheKey;
- /// Cache for alias results.
- /// TODO: consider moving this to the AliasAnalysis itself.
- DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
- /// Removes an instruction from its block and eventually deletes it.
- /// It's like Instruction::eraseFromParent() except that the actual deletion
- /// is delayed until BoUpSLP is destructed.
- /// This is required to ensure that there are no incorrect collisions in the
- /// AliasCache, which can happen if a new instruction is allocated at the
- /// same address as a previously deleted instruction.
- void eraseInstruction(Instruction *I) {
- I->removeFromParent();
- I->dropAllReferences();
- DeletedInstructions.push_back(std::unique_ptr<Instruction>(I));
- }
- /// Temporary store for deleted instructions. Instructions will be deleted
- /// eventually when the BoUpSLP is destructed.
- SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions;
- /// A list of values that need to extracted out of the tree.
- /// This list holds pairs of (Internal Scalar : External User).
- UserList ExternalUses;
- /// Values used only by @llvm.assume calls.
- SmallPtrSet<const Value *, 32> EphValues;
- /// Holds all of the instructions that we gathered.
- SetVector<Instruction *> GatherSeq;
- /// A list of blocks that we are going to CSE.
- SetVector<BasicBlock *> CSEBlocks;
- /// Contains all scheduling relevant data for an instruction.
- /// A ScheduleData either represents a single instruction or a member of an
- /// instruction bundle (= a group of instructions which is combined into a
- /// vector instruction).
- struct ScheduleData {
- // The initial value for the dependency counters. It means that the
- // dependencies are not calculated yet.
- enum { InvalidDeps = -1 };
- ScheduleData()
- : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
- NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
- Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
- UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {}
- void init(int BlockSchedulingRegionID) {
- FirstInBundle = this;
- NextInBundle = nullptr;
- NextLoadStore = nullptr;
- IsScheduled = false;
- SchedulingRegionID = BlockSchedulingRegionID;
- UnscheduledDepsInBundle = UnscheduledDeps;
- clearDependencies();
- }
- /// Returns true if the dependency information has been calculated.
- bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
- /// Returns true for single instructions and for bundle representatives
- /// (= the head of a bundle).
- bool isSchedulingEntity() const { return FirstInBundle == this; }
- /// Returns true if it represents an instruction bundle and not only a
- /// single instruction.
- bool isPartOfBundle() const {
- return NextInBundle != nullptr || FirstInBundle != this;
- }
- /// Returns true if it is ready for scheduling, i.e. it has no more
- /// unscheduled depending instructions/bundles.
- bool isReady() const {
- assert(isSchedulingEntity() &&
- "can't consider non-scheduling entity for ready list");
- return UnscheduledDepsInBundle == 0 && !IsScheduled;
- }
- /// Modifies the number of unscheduled dependencies, also updating it for
- /// the whole bundle.
- int incrementUnscheduledDeps(int Incr) {
- UnscheduledDeps += Incr;
- return FirstInBundle->UnscheduledDepsInBundle += Incr;
- }
- /// Sets the number of unscheduled dependencies to the number of
- /// dependencies.
- void resetUnscheduledDeps() {
- incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
- }
- /// Clears all dependency information.
- void clearDependencies() {
- Dependencies = InvalidDeps;
- resetUnscheduledDeps();
- MemoryDependencies.clear();
- }
- void dump(raw_ostream &os) const {
- if (!isSchedulingEntity()) {
- os << "/ " << *Inst;
- } else if (NextInBundle) {
- os << '[' << *Inst;
- ScheduleData *SD = NextInBundle;
- while (SD) {
- os << ';' << *SD->Inst;
- SD = SD->NextInBundle;
- }
- os << ']';
- } else {
- os << *Inst;
- }
- }
- Instruction *Inst;
- /// Points to the head in an instruction bundle (and always to this for
- /// single instructions).
- ScheduleData *FirstInBundle;
- /// Single linked list of all instructions in a bundle. Null if it is a
- /// single instruction.
- ScheduleData *NextInBundle;
- /// Single linked list of all memory instructions (e.g. load, store, call)
- /// in the block - until the end of the scheduling region.
- ScheduleData *NextLoadStore;
- /// The dependent memory instructions.
- /// This list is derived on demand in calculateDependencies().
- SmallVector<ScheduleData *, 4> MemoryDependencies;
- /// This ScheduleData is in the current scheduling region if this matches
- /// the current SchedulingRegionID of BlockScheduling.
- int SchedulingRegionID;
- /// Used for getting a "good" final ordering of instructions.
- int SchedulingPriority;
- /// The number of dependencies. Constitutes of the number of users of the
- /// instruction plus the number of dependent memory instructions (if any).
- /// This value is calculated on demand.
- /// If InvalidDeps, the number of dependencies is not calculated yet.
- ///
- int Dependencies;
- /// The number of dependencies minus the number of dependencies of scheduled
- /// instructions. As soon as this is zero, the instruction/bundle gets ready
- /// for scheduling.
- /// Note that this is negative as long as Dependencies is not calculated.
- int UnscheduledDeps;
- /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
- /// single instructions.
- int UnscheduledDepsInBundle;
- /// True if this instruction is scheduled (or considered as scheduled in the
- /// dry-run).
- bool IsScheduled;
- };
- #ifndef NDEBUG
- friend raw_ostream &operator<<(raw_ostream &os,
- const BoUpSLP::ScheduleData &SD);
- #endif
- /// Contains all scheduling data for a basic block.
- ///
- struct BlockScheduling {
- BlockScheduling(BasicBlock *BB)
- : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
- ScheduleStart(nullptr), ScheduleEnd(nullptr),
- FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
- // Make sure that the initial SchedulingRegionID is greater than the
- // initial SchedulingRegionID in ScheduleData (which is 0).
- SchedulingRegionID(1) {}
- void clear() {
- ReadyInsts.clear();
- ScheduleStart = nullptr;
- ScheduleEnd = nullptr;
- FirstLoadStoreInRegion = nullptr;
- LastLoadStoreInRegion = nullptr;
- // Make a new scheduling region, i.e. all existing ScheduleData is not
- // in the new region yet.
- ++SchedulingRegionID;
- }
- ScheduleData *getScheduleData(Value *V) {
- ScheduleData *SD = ScheduleDataMap[V];
- if (SD && SD->SchedulingRegionID == SchedulingRegionID)
- return SD;
- return nullptr;
- }
- bool isInSchedulingRegion(ScheduleData *SD) {
- return SD->SchedulingRegionID == SchedulingRegionID;
- }
- /// Marks an instruction as scheduled and puts all dependent ready
- /// instructions into the ready-list.
- template <typename ReadyListType>
- void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
- SD->IsScheduled = true;
- DEBUG(dbgs() << "SLP: schedule " << *SD << "\n");
- ScheduleData *BundleMember = SD;
- while (BundleMember) {
- // Handle the def-use chain dependencies.
- for (Use &U : BundleMember->Inst->operands()) {
- ScheduleData *OpDef = getScheduleData(U.get());
- if (OpDef && OpDef->hasValidDependencies() &&
- OpDef->incrementUnscheduledDeps(-1) == 0) {
- // There are no more unscheduled dependencies after decrementing,
- // so we can put the dependent instruction into the ready list.
- ScheduleData *DepBundle = OpDef->FirstInBundle;
- assert(!DepBundle->IsScheduled &&
- "already scheduled bundle gets ready");
- ReadyList.insert(DepBundle);
- DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n");
- }
- }
- // Handle the memory dependencies.
- for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
- if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
- // There are no more unscheduled dependencies after decrementing,
- // so we can put the dependent instruction into the ready list.
- ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
- assert(!DepBundle->IsScheduled &&
- "already scheduled bundle gets ready");
- ReadyList.insert(DepBundle);
- DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n");
- }
- }
- BundleMember = BundleMember->NextInBundle;
- }
- }
- /// Put all instructions into the ReadyList which are ready for scheduling.
- template <typename ReadyListType>
- void initialFillReadyList(ReadyListType &ReadyList) {
- for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
- ScheduleData *SD = getScheduleData(I);
- if (SD->isSchedulingEntity() && SD->isReady()) {
- ReadyList.insert(SD);
- DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n");
- }
- }
- }
- /// Checks if a bundle of instructions can be scheduled, i.e. has no
- /// cyclic dependencies. This is only a dry-run, no instructions are
- /// actually moved at this stage.
- bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP);
- /// Un-bundles a group of instructions.
- void cancelScheduling(ArrayRef<Value *> VL);
- /// Extends the scheduling region so that V is inside the region.
- void extendSchedulingRegion(Value *V);
- /// Initialize the ScheduleData structures for new instructions in the
- /// scheduling region.
- void initScheduleData(Instruction *FromI, Instruction *ToI,
- ScheduleData *PrevLoadStore,
- ScheduleData *NextLoadStore);
- /// Updates the dependency information of a bundle and of all instructions/
- /// bundles which depend on the original bundle.
- void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
- BoUpSLP *SLP);
- /// Sets all instruction in the scheduling region to un-scheduled.
- void resetSchedule();
- BasicBlock *BB;
- /// Simple memory allocation for ScheduleData.
- std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
- /// The size of a ScheduleData array in ScheduleDataChunks.
- int ChunkSize;
- /// The allocator position in the current chunk, which is the last entry
- /// of ScheduleDataChunks.
- int ChunkPos;
- /// Attaches ScheduleData to Instruction.
- /// Note that the mapping survives during all vectorization iterations, i.e.
- /// ScheduleData structures are recycled.
- DenseMap<Value *, ScheduleData *> ScheduleDataMap;
- struct ReadyList : SmallVector<ScheduleData *, 8> {
- void insert(ScheduleData *SD) { push_back(SD); }
- };
- /// The ready-list for scheduling (only used for the dry-run).
- ReadyList ReadyInsts;
- /// The first instruction of the scheduling region.
- Instruction *ScheduleStart;
- /// The first instruction _after_ the scheduling region.
- Instruction *ScheduleEnd;
- /// The first memory accessing instruction in the scheduling region
- /// (can be null).
- ScheduleData *FirstLoadStoreInRegion;
- /// The last memory accessing instruction in the scheduling region
- /// (can be null).
- ScheduleData *LastLoadStoreInRegion;
- /// The ID of the scheduling region. For a new vectorization iteration this
- /// is incremented which "removes" all ScheduleData from the region.
- int SchedulingRegionID;
- };
- /// Attaches the BlockScheduling structures to basic blocks.
- MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
- /// Performs the "real" scheduling. Done before vectorization is actually
- /// performed in a basic block.
- void scheduleBlock(BlockScheduling *BS);
- /// List of users to ignore during scheduling and that don't need extracting.
- ArrayRef<Value *> UserIgnoreList;
- // Number of load-bundles, which contain consecutive loads.
- int NumLoadsWantToKeepOrder;
- // Number of load-bundles of size 2, which are consecutive loads if reversed.
- int NumLoadsWantToChangeOrder;
- // Analysis and block reference.
- Function *F;
- ScalarEvolution *SE;
- TargetTransformInfo *TTI;
- TargetLibraryInfo *TLI;
- AliasAnalysis *AA;
- LoopInfo *LI;
- DominatorTree *DT;
- /// Instruction builder to construct the vectorized tree.
- IRBuilder<> Builder;
- };
- #ifndef NDEBUG
- raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) {
- SD.dump(os);
- return os;
- }
- #endif
- void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
- ArrayRef<Value *> UserIgnoreLst) {
- deleteTree();
- UserIgnoreList = UserIgnoreLst;
- if (!getSameType(Roots))
- return;
- buildTree_rec(Roots, 0);
- // Collect the values that we need to extract from the tree.
- for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
- TreeEntry *Entry = &VectorizableTree[EIdx];
- // For each lane:
- for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
- Value *Scalar = Entry->Scalars[Lane];
- // No need to handle users of gathered values.
- if (Entry->NeedToGather)
- continue;
- for (User *U : Scalar->users()) {
- DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
- Instruction *UserInst = dyn_cast<Instruction>(U);
- if (!UserInst)
- continue;
- // Skip in-tree scalars that become vectors
- if (ScalarToTreeEntry.count(U)) {
- int Idx = ScalarToTreeEntry[U];
- TreeEntry *UseEntry = &VectorizableTree[Idx];
- Value *UseScalar = UseEntry->Scalars[0];
- // Some in-tree scalars will remain as scalar in vectorized
- // instructions. If that is the case, the one in Lane 0 will
- // be used.
- if (UseScalar != U ||
- !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
- DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
- << ".\n");
- assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
- continue;
- }
- }
- // Ignore users in the user ignore list.
- if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
- UserIgnoreList.end())
- continue;
- DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
- Lane << " from " << *Scalar << ".\n");
- ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
- }
- }
- }
- }
- void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
- bool SameTy = getSameType(VL); (void)SameTy;
- bool isAltShuffle = false;
- assert(SameTy && "Invalid types!");
- if (Depth == RecursionMaxDepth) {
- DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
- newTreeEntry(VL, false);
- return;
- }
- // Don't handle vectors.
- if (VL[0]->getType()->isVectorTy()) {
- DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
- newTreeEntry(VL, false);
- return;
- }
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- if (SI->getValueOperand()->getType()->isVectorTy()) {
- DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
- newTreeEntry(VL, false);
- return;
- }
- unsigned Opcode = getSameOpcode(VL);
- // Check that this shuffle vector refers to the alternate
- // sequence of opcodes.
- if (Opcode == Instruction::ShuffleVector) {
- Instruction *I0 = dyn_cast<Instruction>(VL[0]);
- unsigned Op = I0->getOpcode();
- if (Op != Instruction::ShuffleVector)
- isAltShuffle = true;
- }
- // If all of the operands are identical or constant we have a simple solution.
- if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) {
- DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
- newTreeEntry(VL, false);
- return;
- }
- // We now know that this is a vector of instructions of the same type from
- // the same block.
- // Don't vectorize ephemeral values.
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- if (EphValues.count(VL[i])) {
- DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
- ") is ephemeral.\n");
- newTreeEntry(VL, false);
- return;
- }
- }
- // Check if this is a duplicate of another entry.
- if (ScalarToTreeEntry.count(VL[0])) {
- int Idx = ScalarToTreeEntry[VL[0]];
- TreeEntry *E = &VectorizableTree[Idx];
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
- if (E->Scalars[i] != VL[i]) {
- DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
- newTreeEntry(VL, false);
- return;
- }
- }
- DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
- return;
- }
- // Check that none of the instructions in the bundle are already in the tree.
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- if (ScalarToTreeEntry.count(VL[i])) {
- DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
- ") is already in tree.\n");
- newTreeEntry(VL, false);
- return;
- }
- }
- // If any of the scalars is marked as a value that needs to stay scalar then
- // we need to gather the scalars.
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- if (MustGather.count(VL[i])) {
- DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
- newTreeEntry(VL, false);
- return;
- }
- }
- // Check that all of the users of the scalars that we want to vectorize are
- // schedulable.
- Instruction *VL0 = cast<Instruction>(VL[0]);
- BasicBlock *BB = cast<Instruction>(VL0)->getParent();
- if (!DT->isReachableFromEntry(BB)) {
- // Don't go into unreachable blocks. They may contain instructions with
- // dependency cycles which confuse the final scheduling.
- DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
- newTreeEntry(VL, false);
- return;
- }
-
- // Check that every instructions appears once in this bundle.
- for (unsigned i = 0, e = VL.size(); i < e; ++i)
- for (unsigned j = i+1; j < e; ++j)
- if (VL[i] == VL[j]) {
- DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
- newTreeEntry(VL, false);
- return;
- }
- auto &BSRef = BlocksSchedules[BB];
- if (!BSRef) {
- BSRef = llvm::make_unique<BlockScheduling>(BB);
- }
- BlockScheduling &BS = *BSRef.get();
- if (!BS.tryScheduleBundle(VL, this)) {
- DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
- BS.cancelScheduling(VL);
- newTreeEntry(VL, false);
- return;
- }
- DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
- switch (Opcode) {
- case Instruction::PHI: {
- PHINode *PH = dyn_cast<PHINode>(VL0);
- // Check for terminator values (e.g. invoke).
- for (unsigned j = 0; j < VL.size(); ++j)
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- TerminatorInst *Term = dyn_cast<TerminatorInst>(
- cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
- if (Term) {
- DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
- BS.cancelScheduling(VL);
- newTreeEntry(VL, false);
- return;
- }
- }
- newTreeEntry(VL, true);
- DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock(
- PH->getIncomingBlock(i)));
- buildTree_rec(Operands, Depth + 1);
- }
- return;
- }
- case Instruction::ExtractElement: {
- bool Reuse = CanReuseExtract(VL);
- if (Reuse) {
- DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
- } else {
- BS.cancelScheduling(VL);
- }
- newTreeEntry(VL, Reuse);
- return;
- }
- case Instruction::Load: {
- // Check if the loads are consecutive or of we need to swizzle them.
- for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
- LoadInst *L = cast<LoadInst>(VL[i]);
- if (!L->isSimple()) {
- BS.cancelScheduling(VL);
- newTreeEntry(VL, false);
- DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
- return;
- }
- const DataLayout &DL = F->getParent()->getDataLayout();
- if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
- if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], DL)) {
- ++NumLoadsWantToChangeOrder;
- }
- BS.cancelScheduling(VL);
- newTreeEntry(VL, false);
- DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
- return;
- }
- }
- ++NumLoadsWantToKeepOrder;
- newTreeEntry(VL, true);
- DEBUG(dbgs() << "SLP: added a vector of loads.\n");
- return;
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- Type *SrcTy = VL0->getOperand(0)->getType();
- for (unsigned i = 0; i < VL.size(); ++i) {
- Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
- if (Ty != SrcTy || !isValidElementType(Ty)) {
- BS.cancelScheduling(VL);
- newTreeEntry(VL, false);
- DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
- return;
- }
- }
- newTreeEntry(VL, true);
- DEBUG(dbgs() << "SLP: added a vector of casts.\n");
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
- buildTree_rec(Operands, Depth+1);
- }
- return;
- }
- case Instruction::ICmp:
- case Instruction::FCmp: {
- // Check that all of the compares have the same predicate.
- CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
- Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
- for (unsigned i = 1, e = VL.size(); i < e; ++i) {
- CmpInst *Cmp = cast<CmpInst>(VL[i]);
- if (Cmp->getPredicate() != P0 ||
- Cmp->getOperand(0)->getType() != ComparedTy) {
- BS.cancelScheduling(VL);
- newTreeEntry(VL, false);
- DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
- return;
- }
- }
- newTreeEntry(VL, true);
- DEBUG(dbgs() << "SLP: added a vector of compares.\n");
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
- buildTree_rec(Operands, Depth+1);
- }
- return;
- }
- case Instruction::Select:
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- newTreeEntry(VL, true);
- DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
- // Sort operands of the instructions so that each side is more likely to
- // have the same opcode.
- if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
- ValueList Left, Right;
- reorderInputsAccordingToOpcode(VL, Left, Right);
- buildTree_rec(Left, Depth + 1);
- buildTree_rec(Right, Depth + 1);
- return;
- }
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
- buildTree_rec(Operands, Depth+1);
- }
- return;
- }
- case Instruction::GetElementPtr: {
- // We don't combine GEPs with complicated (nested) indexing.
- for (unsigned j = 0; j < VL.size(); ++j) {
- if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
- DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
- BS.cancelScheduling(VL);
- newTreeEntry(VL, false);
- return;
- }
- }
- // We can't combine several GEPs into one vector if they operate on
- // different types.
- Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType();
- for (unsigned j = 0; j < VL.size(); ++j) {
- Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
- if (Ty0 != CurTy) {
- DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
- BS.cancelScheduling(VL);
- newTreeEntry(VL, false);
- return;
- }
- }
- // We don't combine GEPs with non-constant indexes.
- for (unsigned j = 0; j < VL.size(); ++j) {
- auto Op = cast<Instruction>(VL[j])->getOperand(1);
- if (!isa<ConstantInt>(Op)) {
- DEBUG(
- dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
- BS.cancelScheduling(VL);
- newTreeEntry(VL, false);
- return;
- }
- }
- newTreeEntry(VL, true);
- DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
- for (unsigned i = 0, e = 2; i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
- buildTree_rec(Operands, Depth + 1);
- }
- return;
- }
- case Instruction::Store: {
- const DataLayout &DL = F->getParent()->getDataLayout();
- // Check if the stores are consecutive or of we need to swizzle them.
- for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
- if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
- BS.cancelScheduling(VL);
- newTreeEntry(VL, false);
- DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
- return;
- }
- newTreeEntry(VL, true);
- DEBUG(dbgs() << "SLP: added a vector of stores.\n");
- ValueList Operands;
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
- buildTree_rec(Operands, Depth + 1);
- return;
- }
- case Instruction::Call: {
- // Check if the calls are all to the same vectorizable intrinsic.
- CallInst *CI = cast<CallInst>(VL[0]);
- // Check if this is an Intrinsic call or something that can be
- // represented by an intrinsic call
- Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
- if (!isTriviallyVectorizable(ID)) {
- BS.cancelScheduling(VL);
- newTreeEntry(VL, false);
- DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
- return;
- }
- Function *Int = CI->getCalledFunction();
- Value *A1I = nullptr;
- if (hasVectorInstrinsicScalarOpd(ID, 1))
- A1I = CI->getArgOperand(1);
- for (unsigned i = 1, e = VL.size(); i != e; ++i) {
- CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
- if (!CI2 || CI2->getCalledFunction() != Int ||
- getIntrinsicIDForCall(CI2, TLI) != ID) {
- BS.cancelScheduling(VL);
- newTreeEntry(VL, false);
- DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
- << "\n");
- return;
- }
- // ctlz,cttz and powi are special intrinsics whose second argument
- // should be same in order for them to be vectorized.
- if (hasVectorInstrinsicScalarOpd(ID, 1)) {
- Value *A1J = CI2->getArgOperand(1);
- if (A1I != A1J) {
- BS.cancelScheduling(VL);
- newTreeEntry(VL, false);
- DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
- << " argument "<< A1I<<"!=" << A1J
- << "\n");
- return;
- }
- }
- }
- newTreeEntry(VL, true);
- for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j) {
- CallInst *CI2 = dyn_cast<CallInst>(VL[j]);
- Operands.push_back(CI2->getArgOperand(i));
- }
- buildTree_rec(Operands, Depth + 1);
- }
- return;
- }
- case Instruction::ShuffleVector: {
- // If this is not an alternate sequence of opcode like add-sub
- // then do not vectorize this instruction.
- if (!isAltShuffle) {
- BS.cancelScheduling(VL);
- newTreeEntry(VL, false);
- DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
- return;
- }
- newTreeEntry(VL, true);
- DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
- // Reorder operands if reordering would enable vectorization.
- if (isa<BinaryOperator>(VL0)) {
- ValueList Left, Right;
- reorderAltShuffleOperands(VL, Left, Right);
- buildTree_rec(Left, Depth + 1);
- buildTree_rec(Right, Depth + 1);
- return;
- }
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
- buildTree_rec(Operands, Depth + 1);
- }
- return;
- }
- default:
- BS.cancelScheduling(VL);
- newTreeEntry(VL, false);
- DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
- return;
- }
- }
- int BoUpSLP::getEntryCost(TreeEntry *E) {
- ArrayRef<Value*> VL = E->Scalars;
- Type *ScalarTy = VL[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- if (E->NeedToGather) {
- if (allConstant(VL))
- return 0;
- if (isSplat(VL)) {
- return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
- }
- return getGatherCost(E->Scalars);
- }
- unsigned Opcode = getSameOpcode(VL);
- assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL");
- Instruction *VL0 = cast<Instruction>(VL[0]);
- switch (Opcode) {
- case Instruction::PHI: {
- return 0;
- }
- case Instruction::ExtractElement: {
- if (CanReuseExtract(VL)) {
- int DeadCost = 0;
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
- if (E->hasOneUse())
- // Take credit for instruction that will become dead.
- DeadCost +=
- TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
- }
- return -DeadCost;
- }
- return getGatherCost(VecTy);
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- Type *SrcTy = VL0->getOperand(0)->getType();
- // Calculate the cost of this instruction.
- int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
- VL0->getType(), SrcTy);
- VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
- int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
- return VecCost - ScalarCost;
- }
- case Instruction::FCmp:
- case Instruction::ICmp:
- case Instruction::Select:
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // Calculate the cost of this instruction.
- int ScalarCost = 0;
- int VecCost = 0;
- if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
- Opcode == Instruction::Select) {
- VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
- ScalarCost = VecTy->getNumElements() *
- TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
- VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
- } else {
- // Certain instructions can be cheaper to vectorize if they have a
- // constant second vector operand.
- TargetTransformInfo::OperandValueKind Op1VK =
- TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueKind Op2VK =
- TargetTransformInfo::OK_UniformConstantValue;
- TargetTransformInfo::OperandValueProperties Op1VP =
- TargetTransformInfo::OP_None;
- TargetTransformInfo::OperandValueProperties Op2VP =
- TargetTransformInfo::OP_None;
- // If all operands are exactly the same ConstantInt then set the
- // operand kind to OK_UniformConstantValue.
- // If instead not all operands are constants, then set the operand kind
- // to OK_AnyValue. If all operands are constants but not the same,
- // then set the operand kind to OK_NonUniformConstantValue.
- ConstantInt *CInt = nullptr;
- for (unsigned i = 0; i < VL.size(); ++i) {
- const Instruction *I = cast<Instruction>(VL[i]);
- if (!isa<ConstantInt>(I->getOperand(1))) {
- Op2VK = TargetTransformInfo::OK_AnyValue;
- break;
- }
- if (i == 0) {
- CInt = cast<ConstantInt>(I->getOperand(1));
- continue;
- }
- if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
- CInt != cast<ConstantInt>(I->getOperand(1)))
- Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
- }
- // FIXME: Currently cost of model modification for division by
- // power of 2 is handled only for X86. Add support for other targets.
- if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
- CInt->getValue().isPowerOf2())
- Op2VP = TargetTransformInfo::OP_PowerOf2;
- ScalarCost = VecTy->getNumElements() *
- TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK,
- Op1VP, Op2VP);
- VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK,
- Op1VP, Op2VP);
- }
- return VecCost - ScalarCost;
- }
- case Instruction::GetElementPtr: {
- TargetTransformInfo::OperandValueKind Op1VK =
- TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueKind Op2VK =
- TargetTransformInfo::OK_UniformConstantValue;
- int ScalarCost =
- VecTy->getNumElements() *
- TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
- int VecCost =
- TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
- return VecCost - ScalarCost;
- }
- case Instruction::Load: {
- // Cost of wide load - cost of scalar loads.
- int ScalarLdCost = VecTy->getNumElements() *
- TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
- int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
- return VecLdCost - ScalarLdCost;
- }
- case Instruction::Store: {
- // We know that we can merge the stores. Calculate the cost.
- int ScalarStCost = VecTy->getNumElements() *
- TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
- int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
- return VecStCost - ScalarStCost;
- }
- case Instruction::Call: {
- CallInst *CI = cast<CallInst>(VL0);
- Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
- // Calculate the cost of the scalar and vector calls.
- SmallVector<Type*, 4> ScalarTys, VecTys;
- for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) {
- ScalarTys.push_back(CI->getArgOperand(op)->getType());
- VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
- VecTy->getNumElements()));
- }
- int ScalarCallCost = VecTy->getNumElements() *
- TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys);
- int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys);
- DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
- << " (" << VecCallCost << "-" << ScalarCallCost << ")"
- << " for " << *CI << "\n");
- return VecCallCost - ScalarCallCost;
- }
- case Instruction::ShuffleVector: {
- TargetTransformInfo::OperandValueKind Op1VK =
- TargetTransformInfo::OK_AnyValue;
- TargetTransformInfo::OperandValueKind Op2VK =
- TargetTransformInfo::OK_AnyValue;
- int ScalarCost = 0;
- int VecCost = 0;
- for (unsigned i = 0; i < VL.size(); ++i) {
- Instruction *I = cast<Instruction>(VL[i]);
- if (!I)
- break;
- ScalarCost +=
- TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
- }
- // VecCost is equal to sum of the cost of creating 2 vectors
- // and the cost of creating shuffle.
- Instruction *I0 = cast<Instruction>(VL[0]);
- VecCost =
- TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
- Instruction *I1 = cast<Instruction>(VL[1]);
- VecCost +=
- TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
- VecCost +=
- TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
- return VecCost - ScalarCost;
- }
- default:
- llvm_unreachable("Unknown instruction");
- }
- }
- bool BoUpSLP::isFullyVectorizableTinyTree() {
- DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
- VectorizableTree.size() << " is fully vectorizable .\n");
- // We only handle trees of height 2.
- if (VectorizableTree.size() != 2)
- return false;
- // Handle splat and all-constants stores.
- if (!VectorizableTree[0].NeedToGather &&
- (allConstant(VectorizableTree[1].Scalars) ||
- isSplat(VectorizableTree[1].Scalars)))
- return true;
- // Gathering cost would be too much for tiny trees.
- if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
- return false;
- return true;
- }
- int BoUpSLP::getSpillCost() {
- // Walk from the bottom of the tree to the top, tracking which values are
- // live. When we see a call instruction that is not part of our tree,
- // query TTI to see if there is a cost to keeping values live over it
- // (for example, if spills and fills are required).
- unsigned BundleWidth = VectorizableTree.front().Scalars.size();
- int Cost = 0;
- SmallPtrSet<Instruction*, 4> LiveValues;
- Instruction *PrevInst = nullptr;
- for (unsigned N = 0; N < VectorizableTree.size(); ++N) {
- Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]);
- if (!Inst)
- continue;
- if (!PrevInst) {
- PrevInst = Inst;
- continue;
- }
- DEBUG(
- dbgs() << "SLP: #LV: " << LiveValues.size();
- for (auto *X : LiveValues)
- dbgs() << " " << X->getName();
- dbgs() << ", Looking at ";
- Inst->dump();
- );
- // Update LiveValues.
- LiveValues.erase(PrevInst);
- for (auto &J : PrevInst->operands()) {
- if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J))
- LiveValues.insert(cast<Instruction>(&*J));
- }
- // Now find the sequence of instructions between PrevInst and Inst.
- BasicBlock::reverse_iterator InstIt(Inst), PrevInstIt(PrevInst);
- --PrevInstIt;
- while (InstIt != PrevInstIt) {
- if (PrevInstIt == PrevInst->getParent()->rend()) {
- PrevInstIt = Inst->getParent()->rbegin();
- continue;
- }
- if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
- SmallVector<Type*, 4> V;
- for (auto *II : LiveValues)
- V.push_back(VectorType::get(II->getType(), BundleWidth));
- Cost += TTI->getCostOfKeepingLiveOverCall(V);
- }
- ++PrevInstIt;
- }
- PrevInst = Inst;
- }
- DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n");
- return Cost;
- }
- int BoUpSLP::getTreeCost() {
- int Cost = 0;
- DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
- VectorizableTree.size() << ".\n");
- // We only vectorize tiny trees if it is fully vectorizable.
- if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
- if (VectorizableTree.empty()) {
- assert(!ExternalUses.size() && "We should not have any external users");
- }
- return INT_MAX;
- }
- unsigned BundleWidth = VectorizableTree[0].Scalars.size();
- for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
- int C = getEntryCost(&VectorizableTree[i]);
- DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
- << *VectorizableTree[i].Scalars[0] << " .\n");
- Cost += C;
- }
- SmallSet<Value *, 16> ExtractCostCalculated;
- int ExtractCost = 0;
- for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
- I != E; ++I) {
- // We only add extract cost once for the same scalar.
- if (!ExtractCostCalculated.insert(I->Scalar).second)
- continue;
- // Uses by ephemeral values are free (because the ephemeral value will be
- // removed prior to code generation, and so the extraction will be
- // removed as well).
- if (EphValues.count(I->User))
- continue;
- VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
- ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
- I->Lane);
- }
- Cost += getSpillCost();
- DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
- return Cost + ExtractCost;
- }
- int BoUpSLP::getGatherCost(Type *Ty) {
- int Cost = 0;
- for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
- Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
- return Cost;
- }
- int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
- // Find the type of the operands in VL.
- Type *ScalarTy = VL[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- // Find the cost of inserting/extracting values from the vector.
- return getGatherCost(VecTy);
- }
- Value *BoUpSLP::getPointerOperand(Value *I) {
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return LI->getPointerOperand();
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return SI->getPointerOperand();
- return nullptr;
- }
- unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
- if (LoadInst *L = dyn_cast<LoadInst>(I))
- return L->getPointerAddressSpace();
- if (StoreInst *S = dyn_cast<StoreInst>(I))
- return S->getPointerAddressSpace();
- return -1;
- }
- bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL) {
- Value *PtrA = getPointerOperand(A);
- Value *PtrB = getPointerOperand(B);
- unsigned ASA = getAddressSpaceOperand(A);
- unsigned ASB = getAddressSpaceOperand(B);
- // Check that the address spaces match and that the pointers are valid.
- if (!PtrA || !PtrB || (ASA != ASB))
- return false;
- // Make sure that A and B are different pointers of the same type.
- if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
- return false;
- unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
- Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
- APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
- APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
- PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
- PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
- APInt OffsetDelta = OffsetB - OffsetA;
- // Check if they are based on the same pointer. That makes the offsets
- // sufficient.
- if (PtrA == PtrB)
- return OffsetDelta == Size;
- // Compute the necessary base pointer delta to have the necessary final delta
- // equal to the size.
- APInt BaseDelta = Size - OffsetDelta;
- // Otherwise compute the distance with SCEV between the base pointers.
- const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
- const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
- const SCEV *C = SE->getConstant(BaseDelta);
- const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
- return X == PtrSCEVB;
- }
- // Reorder commutative operations in alternate shuffle if the resulting vectors
- // are consecutive loads. This would allow us to vectorize the tree.
- // If we have something like-
- // load a[0] - load b[0]
- // load b[1] + load a[1]
- // load a[2] - load b[2]
- // load a[3] + load b[3]
- // Reordering the second load b[1] load a[1] would allow us to vectorize this
- // code.
- void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
- SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right) {
- const DataLayout &DL = F->getParent()->getDataLayout();
- // Push left and right operands of binary operation into Left and Right
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- Left.push_back(cast<Instruction>(VL[i])->getOperand(0));
- Right.push_back(cast<Instruction>(VL[i])->getOperand(1));
- }
- // Reorder if we have a commutative operation and consecutive access
- // are on either side of the alternate instructions.
- for (unsigned j = 0; j < VL.size() - 1; ++j) {
- if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
- if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
- Instruction *VL1 = cast<Instruction>(VL[j]);
- Instruction *VL2 = cast<Instruction>(VL[j + 1]);
- if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
- std::swap(Left[j], Right[j]);
- continue;
- } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
- std::swap(Left[j + 1], Right[j + 1]);
- continue;
- }
- // else unchanged
- }
- }
- if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
- if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
- Instruction *VL1 = cast<Instruction>(VL[j]);
- Instruction *VL2 = cast<Instruction>(VL[j + 1]);
- if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
- std::swap(Left[j], Right[j]);
- continue;
- } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
- std::swap(Left[j + 1], Right[j + 1]);
- continue;
- }
- // else unchanged
- }
- }
- }
- }
- void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
- SmallVectorImpl<Value *> &Left,
- SmallVectorImpl<Value *> &Right) {
- SmallVector<Value *, 16> OrigLeft, OrigRight;
- bool AllSameOpcodeLeft = true;
- bool AllSameOpcodeRight = true;
- for (unsigned i = 0, e = VL.size(); i != e; ++i) {
- Instruction *I = cast<Instruction>(VL[i]);
- Value *VLeft = I->getOperand(0);
- Value *VRight = I->getOperand(1);
- OrigLeft.push_back(VLeft);
- OrigRight.push_back(VRight);
- Instruction *ILeft = dyn_cast<Instruction>(VLeft);
- Instruction *IRight = dyn_cast<Instruction>(VRight);
- // Check whether all operands on one side have the same opcode. In this case
- // we want to preserve the original order and not make things worse by
- // reordering.
- if (i && AllSameOpcodeLeft && ILeft) {
- if (Instruction *PLeft = dyn_cast<Instruction>(OrigLeft[i - 1])) {
- if (PLeft->getOpcode() != ILeft->getOpcode())
- AllSameOpcodeLeft = false;
- } else
- AllSameOpcodeLeft = false;
- }
- if (i && AllSameOpcodeRight && IRight) {
- if (Instruction *PRight = dyn_cast<Instruction>(OrigRight[i - 1])) {
- if (PRight->getOpcode() != IRight->getOpcode())
- AllSameOpcodeRight = false;
- } else
- AllSameOpcodeRight = false;
- }
- // Sort two opcodes. In the code below we try to preserve the ability to use
- // broadcast of values instead of individual inserts.
- // vl1 = load
- // vl2 = phi
- // vr1 = load
- // vr2 = vr2
- // = vl1 x vr1
- // = vl2 x vr2
- // If we just sorted according to opcode we would leave the first line in
- // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
- // = vl1 x vr1
- // = vr2 x vl2
- // Because vr2 and vr1 are from the same load we loose the opportunity of a
- // broadcast for the packed right side in the backend: we have [vr1, vl2]
- // instead of [vr1, vr2=vr1].
- if (ILeft && IRight) {
- if (!i && ILeft->getOpcode() > IRight->getOpcode()) {
- Left.push_back(IRight);
- Right.push_back(ILeft);
- } else if (i && ILeft->getOpcode() > IRight->getOpcode() &&
- Right[i - 1] != IRight) {
- // Try not to destroy a broad cast for no apparent benefit.
- Left.push_back(IRight);
- Right.push_back(ILeft);
- } else if (i && ILeft->getOpcode() == IRight->getOpcode() &&
- Right[i - 1] == ILeft) {
- // Try preserve broadcasts.
- Left.push_back(IRight);
- Right.push_back(ILeft);
- } else if (i && ILeft->getOpcode() == IRight->getOpcode() &&
- Left[i - 1] == IRight) {
- // Try preserve broadcasts.
- Left.push_back(IRight);
- Right.push_back(ILeft);
- } else {
- Left.push_back(ILeft);
- Right.push_back(IRight);
- }
- continue;
- }
- // One opcode, put the instruction on the right.
- if (ILeft) {
- Left.push_back(VRight);
- Right.push_back(ILeft);
- continue;
- }
- Left.push_back(VLeft);
- Right.push_back(VRight);
- }
- bool LeftBroadcast = isSplat(Left);
- bool RightBroadcast = isSplat(Right);
- // If operands end up being broadcast return this operand order.
- if (LeftBroadcast || RightBroadcast)
- return;
- // Don't reorder if the operands where good to begin.
- if (AllSameOpcodeRight || AllSameOpcodeLeft) {
- Left = OrigLeft;
- Right = OrigRight;
- }
- const DataLayout &DL = F->getParent()->getDataLayout();
- // Finally check if we can get longer vectorizable chain by reordering
- // without breaking the good operand order detected above.
- // E.g. If we have something like-
- // load a[0] load b[0]
- // load b[1] load a[1]
- // load a[2] load b[2]
- // load a[3] load b[3]
- // Reordering the second load b[1] load a[1] would allow us to vectorize
- // this code and we still retain AllSameOpcode property.
- // FIXME: This load reordering might break AllSameOpcode in some rare cases
- // such as-
- // add a[0],c[0] load b[0]
- // add a[1],c[2] load b[1]
- // b[2] load b[2]
- // add a[3],c[3] load b[3]
- for (unsigned j = 0; j < VL.size() - 1; ++j) {
- if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
- if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
- if (isConsecutiveAccess(L, L1, DL)) {
- std::swap(Left[j + 1], Right[j + 1]);
- continue;
- }
- }
- }
- if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
- if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
- if (isConsecutiveAccess(L, L1, DL)) {
- std::swap(Left[j + 1], Right[j + 1]);
- continue;
- }
- }
- }
- // else unchanged
- }
- }
- void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
- Instruction *VL0 = cast<Instruction>(VL[0]);
- BasicBlock::iterator NextInst = VL0;
- ++NextInst;
- Builder.SetInsertPoint(VL0->getParent(), NextInst);
- Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
- }
- Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
- Value *Vec = UndefValue::get(Ty);
- // Generate the 'InsertElement' instruction.
- for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
- Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
- if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
- GatherSeq.insert(Insrt);
- CSEBlocks.insert(Insrt->getParent());
- // Add to our 'need-to-extract' list.
- if (ScalarToTreeEntry.count(VL[i])) {
- int Idx = ScalarToTreeEntry[VL[i]];
- TreeEntry *E = &VectorizableTree[Idx];
- // Find which lane we need to extract.
- int FoundLane = -1;
- for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
- // Is this the lane of the scalar that we are looking for ?
- if (E->Scalars[Lane] == VL[i]) {
- FoundLane = Lane;
- break;
- }
- }
- assert(FoundLane >= 0 && "Could not find the correct lane");
- ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
- }
- }
- }
- return Vec;
- }
- Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
- SmallDenseMap<Value*, int>::const_iterator Entry
- = ScalarToTreeEntry.find(VL[0]);
- if (Entry != ScalarToTreeEntry.end()) {
- int Idx = Entry->second;
- const TreeEntry *En = &VectorizableTree[Idx];
- if (En->isSame(VL) && En->VectorizedValue)
- return En->VectorizedValue;
- }
- return nullptr;
- }
- Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
- if (ScalarToTreeEntry.count(VL[0])) {
- int Idx = ScalarToTreeEntry[VL[0]];
- TreeEntry *E = &VectorizableTree[Idx];
- if (E->isSame(VL))
- return vectorizeTree(E);
- }
- Type *ScalarTy = VL[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- return Gather(VL, VecTy);
- }
- Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
- IRBuilder<>::InsertPointGuard Guard(Builder);
- if (E->VectorizedValue) {
- DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
- return E->VectorizedValue;
- }
- Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
- Type *ScalarTy = VL0->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
- if (E->NeedToGather) {
- setInsertPointAfterBundle(E->Scalars);
- return Gather(E->Scalars, VecTy);
- }
- const DataLayout &DL = F->getParent()->getDataLayout();
- unsigned Opcode = getSameOpcode(E->Scalars);
- switch (Opcode) {
- case Instruction::PHI: {
- PHINode *PH = dyn_cast<PHINode>(VL0);
- Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
- Builder.SetCurrentDebugLocation(PH->getDebugLoc());
- PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
- E->VectorizedValue = NewPhi;
- // PHINodes may have multiple entries from the same block. We want to
- // visit every block once.
- SmallSet<BasicBlock*, 4> VisitedBBs;
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- ValueList Operands;
- BasicBlock *IBB = PH->getIncomingBlock(i);
- if (!VisitedBBs.insert(IBB).second) {
- NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
- continue;
- }
- // Prepare the operand vector.
- for (Value *V : E->Scalars)
- Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
- Builder.SetInsertPoint(IBB->getTerminator());
- Builder.SetCurrentDebugLocation(PH->getDebugLoc());
- Value *Vec = vectorizeTree(Operands);
- NewPhi->addIncoming(Vec, IBB);
- }
- assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
- "Invalid number of incoming values");
- return NewPhi;
- }
- case Instruction::ExtractElement: {
- if (CanReuseExtract(E->Scalars)) {
- Value *V = VL0->getOperand(0);
- E->VectorizedValue = V;
- return V;
- }
- return Gather(E->Scalars, VecTy);
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- ValueList INVL;
- for (Value *V : E->Scalars)
- INVL.push_back(cast<Instruction>(V)->getOperand(0));
- setInsertPointAfterBundle(E->Scalars);
- Value *InVec = vectorizeTree(INVL);
- if (Value *V = alreadyVectorized(E->Scalars))
- return V;
- CastInst *CI = dyn_cast<CastInst>(VL0);
- Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::FCmp:
- case Instruction::ICmp: {
- ValueList LHSV, RHSV;
- for (Value *V : E->Scalars) {
- LHSV.push_back(cast<Instruction>(V)->getOperand(0));
- RHSV.push_back(cast<Instruction>(V)->getOperand(1));
- }
- setInsertPointAfterBundle(E->Scalars);
- Value *L = vectorizeTree(LHSV);
- Value *R = vectorizeTree(RHSV);
- if (Value *V = alreadyVectorized(E->Scalars))
- return V;
- CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
- Value *V;
- if (Opcode == Instruction::FCmp)
- V = Builder.CreateFCmp(P0, L, R);
- else
- V = Builder.CreateICmp(P0, L, R);
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::Select: {
- ValueList TrueVec, FalseVec, CondVec;
- for (Value *V : E->Scalars) {
- CondVec.push_back(cast<Instruction>(V)->getOperand(0));
- TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
- FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
- }
- setInsertPointAfterBundle(E->Scalars);
- Value *Cond = vectorizeTree(CondVec);
- Value *True = vectorizeTree(TrueVec);
- Value *False = vectorizeTree(FalseVec);
- if (Value *V = alreadyVectorized(E->Scalars))
- return V;
- Value *V = Builder.CreateSelect(Cond, True, False);
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- ValueList LHSVL, RHSVL;
- if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
- reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
- else
- for (Value *V : E->Scalars) {
- LHSVL.push_back(cast<Instruction>(V)->getOperand(0));
- RHSVL.push_back(cast<Instruction>(V)->getOperand(1));
- }
- setInsertPointAfterBundle(E->Scalars);
- Value *LHS = vectorizeTree(LHSVL);
- Value *RHS = vectorizeTree(RHSVL);
- if (LHS == RHS && isa<Instruction>(LHS)) {
- assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
- }
- if (Value *V = alreadyVectorized(E->Scalars))
- return V;
- BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
- Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
- E->VectorizedValue = V;
- propagateIRFlags(E->VectorizedValue, E->Scalars);
- ++NumVectorInstructions;
- if (Instruction *I = dyn_cast<Instruction>(V))
- return propagateMetadata(I, E->Scalars);
- return V;
- }
- case Instruction::Load: {
- // Loads are inserted at the head of the tree because we don't want to
- // sink them all the way down past store instructions.
- setInsertPointAfterBundle(E->Scalars);
- LoadInst *LI = cast<LoadInst>(VL0);
- Type *ScalarLoadTy = LI->getType();
- unsigned AS = LI->getPointerAddressSpace();
- Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
- VecTy->getPointerTo(AS));
- // The pointer operand uses an in-tree scalar so we add the new BitCast to
- // ExternalUses list to make sure that an extract will be generated in the
- // future.
- if (ScalarToTreeEntry.count(LI->getPointerOperand()))
- ExternalUses.push_back(
- ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0));
- unsigned Alignment = LI->getAlignment();
- LI = Builder.CreateLoad(VecPtr);
- if (!Alignment) {
- Alignment = DL.getABITypeAlignment(ScalarLoadTy);
- }
- LI->setAlignment(Alignment);
- E->VectorizedValue = LI;
- ++NumVectorInstructions;
- return propagateMetadata(LI, E->Scalars);
- }
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(VL0);
- unsigned Alignment = SI->getAlignment();
- unsigned AS = SI->getPointerAddressSpace();
- ValueList ValueOp;
- for (Value *V : E->Scalars)
- ValueOp.push_back(cast<StoreInst>(V)->getValueOperand());
- setInsertPointAfterBundle(E->Scalars);
- Value *VecValue = vectorizeTree(ValueOp);
- Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
- VecTy->getPointerTo(AS));
- StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
- // The pointer operand uses an in-tree scalar so we add the new BitCast to
- // ExternalUses list to make sure that an extract will be generated in the
- // future.
- if (ScalarToTreeEntry.count(SI->getPointerOperand()))
- ExternalUses.push_back(
- ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0));
- if (!Alignment) {
- Alignment = DL.getABITypeAlignment(SI->getValueOperand()->getType());
- }
- S->setAlignment(Alignment);
- E->VectorizedValue = S;
- ++NumVectorInstructions;
- return propagateMetadata(S, E->Scalars);
- }
- case Instruction::GetElementPtr: {
- setInsertPointAfterBundle(E->Scalars);
- ValueList Op0VL;
- for (Value *V : E->Scalars)
- Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
- Value *Op0 = vectorizeTree(Op0VL);
- std::vector<Value *> OpVecs;
- for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
- ++j) {
- ValueList OpVL;
- for (Value *V : E->Scalars)
- OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
- Value *OpVec = vectorizeTree(OpVL);
- OpVecs.push_back(OpVec);
- }
- Value *V = Builder.CreateGEP(
- cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- if (Instruction *I = dyn_cast<Instruction>(V))
- return propagateMetadata(I, E->Scalars);
- return V;
- }
- case Instruction::Call: {
- CallInst *CI = cast<CallInst>(VL0);
- setInsertPointAfterBundle(E->Scalars);
- Function *FI;
- Intrinsic::ID IID = Intrinsic::not_intrinsic;
- Value *ScalarArg = nullptr;
- if (CI && (FI = CI->getCalledFunction())) {
- IID = FI->getIntrinsicID();
- }
- std::vector<Value *> OpVecs;
- for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
- ValueList OpVL;
- // ctlz,cttz and powi are special intrinsics whose second argument is
- // a scalar. This argument should not be vectorized.
- if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
- CallInst *CEI = cast<CallInst>(E->Scalars[0]);
- ScalarArg = CEI->getArgOperand(j);
- OpVecs.push_back(CEI->getArgOperand(j));
- continue;
- }
- for (Value *V : E->Scalars) {
- CallInst *CEI = cast<CallInst>(V);
- OpVL.push_back(CEI->getArgOperand(j));
- }
- Value *OpVec = vectorizeTree(OpVL);
- DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
- OpVecs.push_back(OpVec);
- }
- Module *M = F->getParent();
- Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
- Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
- Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
- Value *V = Builder.CreateCall(CF, OpVecs);
- // The scalar argument uses an in-tree scalar so we add the new vectorized
- // call to ExternalUses list to make sure that an extract will be
- // generated in the future.
- if (ScalarArg && ScalarToTreeEntry.count(ScalarArg))
- ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- return V;
- }
- case Instruction::ShuffleVector: {
- ValueList LHSVL, RHSVL;
- assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand");
- reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL);
- setInsertPointAfterBundle(E->Scalars);
- Value *LHS = vectorizeTree(LHSVL);
- Value *RHS = vectorizeTree(RHSVL);
- if (Value *V = alreadyVectorized(E->Scalars))
- return V;
- // Create a vector of LHS op1 RHS
- BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
- Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
- // Create a vector of LHS op2 RHS
- Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
- BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
- Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
- // Create shuffle to take alternate operations from the vector.
- // Also, gather up odd and even scalar ops to propagate IR flags to
- // each vector operation.
- ValueList OddScalars, EvenScalars;
- unsigned e = E->Scalars.size();
- SmallVector<Constant *, 8> Mask(e);
- for (unsigned i = 0; i < e; ++i) {
- if (i & 1) {
- Mask[i] = Builder.getInt32(e + i);
- OddScalars.push_back(E->Scalars[i]);
- } else {
- Mask[i] = Builder.getInt32(i);
- EvenScalars.push_back(E->Scalars[i]);
- }
- }
- Value *ShuffleMask = ConstantVector::get(Mask);
- propagateIRFlags(V0, EvenScalars);
- propagateIRFlags(V1, OddScalars);
- Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
- E->VectorizedValue = V;
- ++NumVectorInstructions;
- if (Instruction *I = dyn_cast<Instruction>(V))
- return propagateMetadata(I, E->Scalars);
- return V;
- }
- default:
- llvm_unreachable("unknown inst");
- }
- return nullptr;
- }
- Value *BoUpSLP::vectorizeTree() {
-
- // All blocks must be scheduled before any instructions are inserted.
- for (auto &BSIter : BlocksSchedules) {
- scheduleBlock(BSIter.second.get());
- }
- Builder.SetInsertPoint(F->getEntryBlock().begin());
- vectorizeTree(&VectorizableTree[0]);
- DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
- // Extract all of the elements with the external uses.
- for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
- it != e; ++it) {
- Value *Scalar = it->Scalar;
- llvm::User *User = it->User;
- // Skip users that we already RAUW. This happens when one instruction
- // has multiple uses of the same value.
- if (std::find(Scalar->user_begin(), Scalar->user_end(), User) ==
- Scalar->user_end())
- continue;
- assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
- int Idx = ScalarToTreeEntry[Scalar];
- TreeEntry *E = &VectorizableTree[Idx];
- assert(!E->NeedToGather && "Extracting from a gather list");
- Value *Vec = E->VectorizedValue;
- assert(Vec && "Can't find vectorizable value");
- Value *Lane = Builder.getInt32(it->Lane);
- // Generate extracts for out-of-tree users.
- // Find the insertion point for the extractelement lane.
- if (isa<Instruction>(Vec)){
- if (PHINode *PH = dyn_cast<PHINode>(User)) {
- for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
- if (PH->getIncomingValue(i) == Scalar) {
- Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- CSEBlocks.insert(PH->getIncomingBlock(i));
- PH->setOperand(i, Ex);
- }
- }
- } else {
- Builder.SetInsertPoint(cast<Instruction>(User));
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- CSEBlocks.insert(cast<Instruction>(User)->getParent());
- User->replaceUsesOfWith(Scalar, Ex);
- }
- } else {
- Builder.SetInsertPoint(F->getEntryBlock().begin());
- Value *Ex = Builder.CreateExtractElement(Vec, Lane);
- CSEBlocks.insert(&F->getEntryBlock());
- User->replaceUsesOfWith(Scalar, Ex);
- }
- DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
- }
- // For each vectorized value:
- for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
- TreeEntry *Entry = &VectorizableTree[EIdx];
- // For each lane:
- for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
- Value *Scalar = Entry->Scalars[Lane];
- // No need to handle users of gathered values.
- if (Entry->NeedToGather)
- continue;
- assert(Entry->VectorizedValue && "Can't find vectorizable value");
- Type *Ty = Scalar->getType();
- if (!Ty->isVoidTy()) {
- #ifndef NDEBUG
- for (User *U : Scalar->users()) {
- DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
- assert((ScalarToTreeEntry.count(U) ||
- // It is legal to replace users in the ignorelist by undef.
- (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) !=
- UserIgnoreList.end())) &&
- "Replacing out-of-tree value with undef");
- }
- #endif
- Value *Undef = UndefValue::get(Ty);
- Scalar->replaceAllUsesWith(Undef);
- }
- DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
- eraseInstruction(cast<Instruction>(Scalar));
- }
- }
- Builder.ClearInsertionPoint();
- return VectorizableTree[0].VectorizedValue;
- }
- void BoUpSLP::optimizeGatherSequence() {
- DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
- << " gather sequences instructions.\n");
- // LICM InsertElementInst sequences.
- for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
- e = GatherSeq.end(); it != e; ++it) {
- InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
- if (!Insert)
- continue;
- // Check if this block is inside a loop.
- Loop *L = LI->getLoopFor(Insert->getParent());
- if (!L)
- continue;
- // Check if it has a preheader.
- BasicBlock *PreHeader = L->getLoopPreheader();
- if (!PreHeader)
- continue;
- // If the vector or the element that we insert into it are
- // instructions that are defined in this basic block then we can't
- // hoist this instruction.
- Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
- Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
- if (CurrVec && L->contains(CurrVec))
- continue;
- if (NewElem && L->contains(NewElem))
- continue;
- // We can hoist this instruction. Move it to the pre-header.
- Insert->moveBefore(PreHeader->getTerminator());
- }
- // Make a list of all reachable blocks in our CSE queue.
- SmallVector<const DomTreeNode *, 8> CSEWorkList;
- CSEWorkList.reserve(CSEBlocks.size());
- for (BasicBlock *BB : CSEBlocks)
- if (DomTreeNode *N = DT->getNode(BB)) {
- assert(DT->isReachableFromEntry(N));
- CSEWorkList.push_back(N);
- }
- // Sort blocks by domination. This ensures we visit a block after all blocks
- // dominating it are visited.
- std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
- [this](const DomTreeNode *A, const DomTreeNode *B) {
- return DT->properlyDominates(A, B);
- });
- // Perform O(N^2) search over the gather sequences and merge identical
- // instructions. TODO: We can further optimize this scan if we split the
- // instructions into different buckets based on the insert lane.
- SmallVector<Instruction *, 16> Visited;
- for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
- assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
- "Worklist not sorted properly!");
- BasicBlock *BB = (*I)->getBlock();
- // For all instructions in blocks containing gather sequences:
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
- Instruction *In = it++;
- if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
- continue;
- // Check if we can replace this instruction with any of the
- // visited instructions.
- for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
- ve = Visited.end();
- v != ve; ++v) {
- if (In->isIdenticalTo(*v) &&
- DT->dominates((*v)->getParent(), In->getParent())) {
- In->replaceAllUsesWith(*v);
- eraseInstruction(In);
- In = nullptr;
- break;
- }
- }
- if (In) {
- assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
- Visited.push_back(In);
- }
- }
- }
- CSEBlocks.clear();
- GatherSeq.clear();
- }
- // Groups the instructions to a bundle (which is then a single scheduling entity)
- // and schedules instructions until the bundle gets ready.
- bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
- BoUpSLP *SLP) {
- if (isa<PHINode>(VL[0]))
- return true;
- // Initialize the instruction bundle.
- Instruction *OldScheduleEnd = ScheduleEnd;
- ScheduleData *PrevInBundle = nullptr;
- ScheduleData *Bundle = nullptr;
- bool ReSchedule = false;
- DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n");
- for (Value *V : VL) {
- extendSchedulingRegion(V);
- ScheduleData *BundleMember = getScheduleData(V);
- assert(BundleMember &&
- "no ScheduleData for bundle member (maybe not in same basic block)");
- if (BundleMember->IsScheduled) {
- // A bundle member was scheduled as single instruction before and now
- // needs to be scheduled as part of the bundle. We just get rid of the
- // existing schedule.
- DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
- << " was already scheduled\n");
- ReSchedule = true;
- }
- assert(BundleMember->isSchedulingEntity() &&
- "bundle member already part of other bundle");
- if (PrevInBundle) {
- PrevInBundle->NextInBundle = BundleMember;
- } else {
- Bundle = BundleMember;
- }
- BundleMember->UnscheduledDepsInBundle = 0;
- Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
- // Group the instructions to a bundle.
- BundleMember->FirstInBundle = Bundle;
- PrevInBundle = BundleMember;
- }
- if (ScheduleEnd != OldScheduleEnd) {
- // The scheduling region got new instructions at the lower end (or it is a
- // new region for the first bundle). This makes it necessary to
- // recalculate all dependencies.
- // It is seldom that this needs to be done a second time after adding the
- // initial bundle to the region.
- for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
- ScheduleData *SD = getScheduleData(I);
- SD->clearDependencies();
- }
- ReSchedule = true;
- }
- if (ReSchedule) {
- resetSchedule();
- initialFillReadyList(ReadyInsts);
- }
- DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
- << BB->getName() << "\n");
- calculateDependencies(Bundle, true, SLP);
- // Now try to schedule the new bundle. As soon as the bundle is "ready" it
- // means that there are no cyclic dependencies and we can schedule it.
- // Note that's important that we don't "schedule" the bundle yet (see
- // cancelScheduling).
- while (!Bundle->isReady() && !ReadyInsts.empty()) {
- ScheduleData *pickedSD = ReadyInsts.back();
- ReadyInsts.pop_back();
- if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
- schedule(pickedSD, ReadyInsts);
- }
- }
- return Bundle->isReady();
- }
- void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) {
- if (isa<PHINode>(VL[0]))
- return;
- ScheduleData *Bundle = getScheduleData(VL[0]);
- DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n");
- assert(!Bundle->IsScheduled &&
- "Can't cancel bundle which is already scheduled");
- assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
- "tried to unbundle something which is not a bundle");
- // Un-bundle: make single instructions out of the bundle.
- ScheduleData *BundleMember = Bundle;
- while (BundleMember) {
- assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
- BundleMember->FirstInBundle = BundleMember;
- ScheduleData *Next = BundleMember->NextInBundle;
- BundleMember->NextInBundle = nullptr;
- BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
- if (BundleMember->UnscheduledDepsInBundle == 0) {
- ReadyInsts.insert(BundleMember);
- }
- BundleMember = Next;
- }
- }
- void BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) {
- if (getScheduleData(V))
- return;
- Instruction *I = dyn_cast<Instruction>(V);
- assert(I && "bundle member must be an instruction");
- assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
- if (!ScheduleStart) {
- // It's the first instruction in the new region.
- initScheduleData(I, I->getNextNode(), nullptr, nullptr);
- ScheduleStart = I;
- ScheduleEnd = I->getNextNode();
- assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
- DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n");
- return;
- }
- // Search up and down at the same time, because we don't know if the new
- // instruction is above or below the existing scheduling region.
- BasicBlock::reverse_iterator UpIter(ScheduleStart);
- BasicBlock::reverse_iterator UpperEnd = BB->rend();
- BasicBlock::iterator DownIter(ScheduleEnd);
- BasicBlock::iterator LowerEnd = BB->end();
- for (;;) {
- if (UpIter != UpperEnd) {
- if (&*UpIter == I) {
- initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
- ScheduleStart = I;
- DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n");
- return;
- }
- UpIter++;
- }
- if (DownIter != LowerEnd) {
- if (&*DownIter == I) {
- initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
- nullptr);
- ScheduleEnd = I->getNextNode();
- assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
- DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n");
- return;
- }
- DownIter++;
- }
- assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
- "instruction not found in block");
- }
- }
- void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
- Instruction *ToI,
- ScheduleData *PrevLoadStore,
- ScheduleData *NextLoadStore) {
- ScheduleData *CurrentLoadStore = PrevLoadStore;
- for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
- ScheduleData *SD = ScheduleDataMap[I];
- if (!SD) {
- // Allocate a new ScheduleData for the instruction.
- if (ChunkPos >= ChunkSize) {
- ScheduleDataChunks.push_back(
- llvm::make_unique<ScheduleData[]>(ChunkSize));
- ChunkPos = 0;
- }
- SD = &(ScheduleDataChunks.back()[ChunkPos++]);
- ScheduleDataMap[I] = SD;
- SD->Inst = I;
- }
- assert(!isInSchedulingRegion(SD) &&
- "new ScheduleData already in scheduling region");
- SD->init(SchedulingRegionID);
- if (I->mayReadOrWriteMemory()) {
- // Update the linked list of memory accessing instructions.
- if (CurrentLoadStore) {
- CurrentLoadStore->NextLoadStore = SD;
- } else {
- FirstLoadStoreInRegion = SD;
- }
- CurrentLoadStore = SD;
- }
- }
- if (NextLoadStore) {
- if (CurrentLoadStore)
- CurrentLoadStore->NextLoadStore = NextLoadStore;
- } else {
- LastLoadStoreInRegion = CurrentLoadStore;
- }
- }
- void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
- bool InsertInReadyList,
- BoUpSLP *SLP) {
- assert(SD->isSchedulingEntity());
- SmallVector<ScheduleData *, 10> WorkList;
- WorkList.push_back(SD);
- while (!WorkList.empty()) {
- ScheduleData *SD = WorkList.back();
- WorkList.pop_back();
- ScheduleData *BundleMember = SD;
- while (BundleMember) {
- assert(isInSchedulingRegion(BundleMember));
- if (!BundleMember->hasValidDependencies()) {
- DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n");
- BundleMember->Dependencies = 0;
- BundleMember->resetUnscheduledDeps();
- // Handle def-use chain dependencies.
- for (User *U : BundleMember->Inst->users()) {
- if (isa<Instruction>(U)) {
- ScheduleData *UseSD = getScheduleData(U);
- if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
- BundleMember->Dependencies++;
- ScheduleData *DestBundle = UseSD->FirstInBundle;
- if (!DestBundle->IsScheduled) {
- BundleMember->incrementUnscheduledDeps(1);
- }
- if (!DestBundle->hasValidDependencies()) {
- WorkList.push_back(DestBundle);
- }
- }
- } else {
- // I'm not sure if this can ever happen. But we need to be safe.
- // This lets the instruction/bundle never be scheduled and eventally
- // disable vectorization.
- BundleMember->Dependencies++;
- BundleMember->incrementUnscheduledDeps(1);
- }
- }
- // Handle the memory dependencies.
- ScheduleData *DepDest = BundleMember->NextLoadStore;
- if (DepDest) {
- Instruction *SrcInst = BundleMember->Inst;
- MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
- bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
- unsigned numAliased = 0;
- unsigned DistToSrc = 1;
- while (DepDest) {
- assert(isInSchedulingRegion(DepDest));
- // We have two limits to reduce the complexity:
- // 1) AliasedCheckLimit: It's a small limit to reduce calls to
- // SLP->isAliased (which is the expensive part in this loop).
- // 2) MaxMemDepDistance: It's for very large blocks and it aborts
- // the whole loop (even if the loop is fast, it's quadratic).
- // It's important for the loop break condition (see below) to
- // check this limit even between two read-only instructions.
- if (DistToSrc >= MaxMemDepDistance ||
- ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
- (numAliased >= AliasedCheckLimit ||
- SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
- // We increment the counter only if the locations are aliased
- // (instead of counting all alias checks). This gives a better
- // balance between reduced runtime and accurate dependencies.
- numAliased++;
- DepDest->MemoryDependencies.push_back(BundleMember);
- BundleMember->Dependencies++;
- ScheduleData *DestBundle = DepDest->FirstInBundle;
- if (!DestBundle->IsScheduled) {
- BundleMember->incrementUnscheduledDeps(1);
- }
- if (!DestBundle->hasValidDependencies()) {
- WorkList.push_back(DestBundle);
- }
- }
- DepDest = DepDest->NextLoadStore;
- // Example, explaining the loop break condition: Let's assume our
- // starting instruction is i0 and MaxMemDepDistance = 3.
- //
- // +--------v--v--v
- // i0,i1,i2,i3,i4,i5,i6,i7,i8
- // +--------^--^--^
- //
- // MaxMemDepDistance let us stop alias-checking at i3 and we add
- // dependencies from i0 to i3,i4,.. (even if they are not aliased).
- // Previously we already added dependencies from i3 to i6,i7,i8
- // (because of MaxMemDepDistance). As we added a dependency from
- // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
- // and we can abort this loop at i6.
- if (DistToSrc >= 2 * MaxMemDepDistance)
- break;
- DistToSrc++;
- }
- }
- }
- BundleMember = BundleMember->NextInBundle;
- }
- if (InsertInReadyList && SD->isReady()) {
- ReadyInsts.push_back(SD);
- DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n");
- }
- }
- }
- void BoUpSLP::BlockScheduling::resetSchedule() {
- assert(ScheduleStart &&
- "tried to reset schedule on block which has not been scheduled");
- for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
- ScheduleData *SD = getScheduleData(I);
- assert(isInSchedulingRegion(SD));
- SD->IsScheduled = false;
- SD->resetUnscheduledDeps();
- }
- ReadyInsts.clear();
- }
- void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
-
- if (!BS->ScheduleStart)
- return;
-
- DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
- BS->resetSchedule();
- // For the real scheduling we use a more sophisticated ready-list: it is
- // sorted by the original instruction location. This lets the final schedule
- // be as close as possible to the original instruction order.
- struct ScheduleDataCompare {
- bool operator()(ScheduleData *SD1, ScheduleData *SD2) {
- return SD2->SchedulingPriority < SD1->SchedulingPriority;
- }
- };
- std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
- // Ensure that all depencency data is updated and fill the ready-list with
- // initial instructions.
- int Idx = 0;
- int NumToSchedule = 0;
- for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
- I = I->getNextNode()) {
- ScheduleData *SD = BS->getScheduleData(I);
- assert(
- SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) &&
- "scheduler and vectorizer have different opinion on what is a bundle");
- SD->FirstInBundle->SchedulingPriority = Idx++;
- if (SD->isSchedulingEntity()) {
- BS->calculateDependencies(SD, false, this);
- NumToSchedule++;
- }
- }
- BS->initialFillReadyList(ReadyInsts);
- Instruction *LastScheduledInst = BS->ScheduleEnd;
- // Do the "real" scheduling.
- while (!ReadyInsts.empty()) {
- ScheduleData *picked = *ReadyInsts.begin();
- ReadyInsts.erase(ReadyInsts.begin());
- // Move the scheduled instruction(s) to their dedicated places, if not
- // there yet.
- ScheduleData *BundleMember = picked;
- while (BundleMember) {
- Instruction *pickedInst = BundleMember->Inst;
- if (LastScheduledInst->getNextNode() != pickedInst) {
- BS->BB->getInstList().remove(pickedInst);
- BS->BB->getInstList().insert(LastScheduledInst, pickedInst);
- }
- LastScheduledInst = pickedInst;
- BundleMember = BundleMember->NextInBundle;
- }
- BS->schedule(picked, ReadyInsts);
- NumToSchedule--;
- }
- assert(NumToSchedule == 0 && "could not schedule all instructions");
- // Avoid duplicate scheduling of the block.
- BS->ScheduleStart = nullptr;
- }
- /// The SLPVectorizer Pass.
- struct SLPVectorizer : public FunctionPass {
- typedef SmallVector<StoreInst *, 8> StoreList;
- typedef MapVector<Value *, StoreList> StoreListMap;
- /// Pass identification, replacement for typeid
- static char ID;
- explicit SLPVectorizer() : FunctionPass(ID) {
- initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
- }
- ScalarEvolution *SE;
- TargetTransformInfo *TTI;
- TargetLibraryInfo *TLI;
- AliasAnalysis *AA;
- LoopInfo *LI;
- DominatorTree *DT;
- AssumptionCache *AC;
- bool runOnFunction(Function &F) override {
- if (skipOptnoneFunction(F))
- return false;
- SE = &getAnalysis<ScalarEvolution>();
- TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
- TLI = TLIP ? &TLIP->getTLI() : nullptr;
- AA = &getAnalysis<AliasAnalysis>();
- LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- StoreRefs.clear();
- bool Changed = false;
- // If the target claims to have no vector registers don't attempt
- // vectorization.
- if (!TTI->getNumberOfRegisters(true))
- return false;
- // Use the vector register size specified by the target unless overridden
- // by a command-line option.
- // TODO: It would be better to limit the vectorization factor based on
- // data type rather than just register size. For example, x86 AVX has
- // 256-bit registers, but it does not support integer operations
- // at that width (that requires AVX2).
- if (MaxVectorRegSizeOption.getNumOccurrences())
- MaxVecRegSize = MaxVectorRegSizeOption;
- else
- MaxVecRegSize = TTI->getRegisterBitWidth(true);
- // Don't vectorize when the attribute NoImplicitFloat is used.
- if (F.hasFnAttribute(Attribute::NoImplicitFloat))
- return false;
- DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
- // Use the bottom up slp vectorizer to construct chains that start with
- // store instructions.
- BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC);
- // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
- // delete instructions.
- // Scan the blocks in the function in post order.
- for (auto BB : post_order(&F.getEntryBlock())) {
- // Vectorize trees that end at stores.
- if (unsigned count = collectStores(BB, R)) {
- (void)count;
- DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
- Changed |= vectorizeStoreChains(R);
- }
- // Vectorize trees that end at reductions.
- Changed |= vectorizeChainsInBlock(BB, R);
- }
- if (Changed) {
- R.optimizeGatherSequence();
- DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
- DEBUG(verifyFunction(F));
- }
- return Changed;
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- FunctionPass::getAnalysisUsage(AU);
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<ScalarEvolution>();
- AU.addRequired<AliasAnalysis>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.setPreservesCFG();
- }
- private:
- /// \brief Collect memory references and sort them according to their base
- /// object. We sort the stores to their base objects to reduce the cost of the
- /// quadratic search on the stores. TODO: We can further reduce this cost
- /// if we flush the chain creation every time we run into a memory barrier.
- unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
- /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
- bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
- /// \brief Try to vectorize a list of operands.
- /// \@param BuildVector A list of users to ignore for the purpose of
- /// scheduling and that don't need extracting.
- /// \returns true if a value was vectorized.
- bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
- ArrayRef<Value *> BuildVector = None,
- bool allowReorder = false);
- /// \brief Try to vectorize a chain that may start at the operands of \V;
- bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
- /// \brief Vectorize the stores that were collected in StoreRefs.
- bool vectorizeStoreChains(BoUpSLP &R);
- /// \brief Scan the basic block and look for patterns that are likely to start
- /// a vectorization chain.
- bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
- bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
- BoUpSLP &R, unsigned VecRegSize);
- bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
- BoUpSLP &R);
- private:
- StoreListMap StoreRefs;
- unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
- };
- /// \brief Check that the Values in the slice in VL array are still existent in
- /// the WeakVH array.
- /// Vectorization of part of the VL array may cause later values in the VL array
- /// to become invalid. We track when this has happened in the WeakVH array.
- static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH,
- unsigned SliceBegin, unsigned SliceSize) {
- VL = VL.slice(SliceBegin, SliceSize);
- VH = VH.slice(SliceBegin, SliceSize);
- return !std::equal(VL.begin(), VL.end(), VH.begin());
- }
- bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
- int CostThreshold, BoUpSLP &R,
- unsigned VecRegSize) {
- unsigned ChainLen = Chain.size();
- DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
- << "\n");
- Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
- auto &DL = cast<StoreInst>(Chain[0])->getModule()->getDataLayout();
- unsigned Sz = DL.getTypeSizeInBits(StoreTy);
- unsigned VF = VecRegSize / Sz;
- if (!isPowerOf2_32(Sz) || VF < 2)
- return false;
- // Keep track of values that were deleted by vectorizing in the loop below.
- SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
- bool Changed = false;
- // Look for profitable vectorizable trees at all offsets, starting at zero.
- for (unsigned i = 0, e = ChainLen; i < e; ++i) {
- if (i + VF > e)
- break;
- // Check that a previous iteration of this loop did not delete the Value.
- if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
- continue;
- DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
- << "\n");
- ArrayRef<Value *> Operands = Chain.slice(i, VF);
- R.buildTree(Operands);
- int Cost = R.getTreeCost();
- DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
- if (Cost < CostThreshold) {
- DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
- R.vectorizeTree();
- // Move to the next bundle.
- i += VF - 1;
- Changed = true;
- }
- }
- return Changed;
- }
- bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
- int costThreshold, BoUpSLP &R) {
- SetVector<StoreInst *> Heads, Tails;
- SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
- // We may run into multiple chains that merge into a single chain. We mark the
- // stores that we vectorized so that we don't visit the same store twice.
- BoUpSLP::ValueSet VectorizedStores;
- bool Changed = false;
- // Do a quadratic search on all of the given stores and find
- // all of the pairs of stores that follow each other.
- for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
- for (unsigned j = 0; j < e; ++j) {
- if (i == j)
- continue;
- const DataLayout &DL = Stores[i]->getModule()->getDataLayout();
- if (R.isConsecutiveAccess(Stores[i], Stores[j], DL)) {
- Tails.insert(Stores[j]);
- Heads.insert(Stores[i]);
- ConsecutiveChain[Stores[i]] = Stores[j];
- }
- }
- }
- // For stores that start but don't end a link in the chain:
- for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
- it != e; ++it) {
- if (Tails.count(*it))
- continue;
- // We found a store instr that starts a chain. Now follow the chain and try
- // to vectorize it.
- BoUpSLP::ValueList Operands;
- StoreInst *I = *it;
- // Collect the chain into a list.
- while (Tails.count(I) || Heads.count(I)) {
- if (VectorizedStores.count(I))
- break;
- Operands.push_back(I);
- // Move to the next value in the chain.
- I = ConsecutiveChain[I];
- }
- // FIXME: Is division-by-2 the correct step? Should we assert that the
- // register size is a power-of-2?
- for (unsigned Size = MaxVecRegSize; Size >= MinVecRegSize; Size /= 2) {
- if (vectorizeStoreChain(Operands, costThreshold, R, Size)) {
- // Mark the vectorized stores so that we don't vectorize them again.
- VectorizedStores.insert(Operands.begin(), Operands.end());
- Changed = true;
- break;
- }
- }
- }
- return Changed;
- }
- unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
- unsigned count = 0;
- StoreRefs.clear();
- const DataLayout &DL = BB->getModule()->getDataLayout();
- for (Instruction &I : *BB) {
- StoreInst *SI = dyn_cast<StoreInst>(&I);
- if (!SI)
- continue;
- // Don't touch volatile stores.
- if (!SI->isSimple())
- continue;
- // Check that the pointer points to scalars.
- Type *Ty = SI->getValueOperand()->getType();
- if (!isValidElementType(Ty))
- continue;
- // Find the base pointer.
- Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
- // Save the store locations.
- StoreRefs[Ptr].push_back(SI);
- count++;
- }
- return count;
- }
- bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
- if (!A || !B)
- return false;
- Value *VL[] = { A, B };
- return tryToVectorizeList(VL, R, None, true);
- }
- bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
- ArrayRef<Value *> BuildVector,
- bool allowReorder) {
- if (VL.size() < 2)
- return false;
- DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
- // Check that all of the parts are scalar instructions of the same type.
- Instruction *I0 = dyn_cast<Instruction>(VL[0]);
- if (!I0)
- return false;
- unsigned Opcode0 = I0->getOpcode();
- const DataLayout &DL = I0->getModule()->getDataLayout();
- Type *Ty0 = I0->getType();
- unsigned Sz = DL.getTypeSizeInBits(Ty0);
- // FIXME: Register size should be a parameter to this function, so we can
- // try different vectorization factors.
- unsigned VF = MinVecRegSize / Sz;
- for (Value *V : VL) {
- Type *Ty = V->getType();
- if (!isValidElementType(Ty))
- return false;
- Instruction *Inst = dyn_cast<Instruction>(V);
- if (!Inst || Inst->getOpcode() != Opcode0)
- return false;
- }
- bool Changed = false;
- // Keep track of values that were deleted by vectorizing in the loop below.
- SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- unsigned OpsWidth = 0;
- if (i + VF > e)
- OpsWidth = e - i;
- else
- OpsWidth = VF;
- if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
- break;
- // Check that a previous iteration of this loop did not delete the Value.
- if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
- continue;
- DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
- << "\n");
- ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
- ArrayRef<Value *> BuildVectorSlice;
- if (!BuildVector.empty())
- BuildVectorSlice = BuildVector.slice(i, OpsWidth);
- R.buildTree(Ops, BuildVectorSlice);
- // TODO: check if we can allow reordering also for other cases than
- // tryToVectorizePair()
- if (allowReorder && R.shouldReorder()) {
- assert(Ops.size() == 2);
- assert(BuildVectorSlice.empty());
- Value *ReorderedOps[] = { Ops[1], Ops[0] };
- R.buildTree(ReorderedOps, None);
- }
- int Cost = R.getTreeCost();
- if (Cost < -SLPCostThreshold) {
- DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
- Value *VectorizedRoot = R.vectorizeTree();
- // Reconstruct the build vector by extracting the vectorized root. This
- // way we handle the case where some elements of the vector are undefined.
- // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
- if (!BuildVectorSlice.empty()) {
- // The insert point is the last build vector instruction. The vectorized
- // root will precede it. This guarantees that we get an instruction. The
- // vectorized tree could have been constant folded.
- Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
- unsigned VecIdx = 0;
- for (auto &V : BuildVectorSlice) {
- IRBuilder<true, NoFolder> Builder(
- ++BasicBlock::iterator(InsertAfter));
- InsertElementInst *IE = cast<InsertElementInst>(V);
- Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
- VectorizedRoot, Builder.getInt32(VecIdx++)));
- IE->setOperand(1, Extract);
- IE->removeFromParent();
- IE->insertAfter(Extract);
- InsertAfter = IE;
- }
- }
- // Move to the next bundle.
- i += VF - 1;
- Changed = true;
- }
- }
- return Changed;
- }
- bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
- if (!V)
- return false;
- // Try to vectorize V.
- if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
- return true;
- BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
- BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
- // Try to skip B.
- if (B && B->hasOneUse()) {
- BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
- BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
- if (tryToVectorizePair(A, B0, R)) {
- return true;
- }
- if (tryToVectorizePair(A, B1, R)) {
- return true;
- }
- }
- // Try to skip A.
- if (A && A->hasOneUse()) {
- BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
- BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
- if (tryToVectorizePair(A0, B, R)) {
- return true;
- }
- if (tryToVectorizePair(A1, B, R)) {
- return true;
- }
- }
- return 0;
- }
- /// \brief Generate a shuffle mask to be used in a reduction tree.
- ///
- /// \param VecLen The length of the vector to be reduced.
- /// \param NumEltsToRdx The number of elements that should be reduced in the
- /// vector.
- /// \param IsPairwise Whether the reduction is a pairwise or splitting
- /// reduction. A pairwise reduction will generate a mask of
- /// <0,2,...> or <1,3,..> while a splitting reduction will generate
- /// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
- /// \param IsLeft True will generate a mask of even elements, odd otherwise.
- static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
- bool IsPairwise, bool IsLeft,
- IRBuilder<> &Builder) {
- assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
- SmallVector<Constant *, 32> ShuffleMask(
- VecLen, UndefValue::get(Builder.getInt32Ty()));
- if (IsPairwise)
- // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
- for (unsigned i = 0; i != NumEltsToRdx; ++i)
- ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
- else
- // Move the upper half of the vector to the lower half.
- for (unsigned i = 0; i != NumEltsToRdx; ++i)
- ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
- return ConstantVector::get(ShuffleMask);
- }
- /// Model horizontal reductions.
- ///
- /// A horizontal reduction is a tree of reduction operations (currently add and
- /// fadd) that has operations that can be put into a vector as its leaf.
- /// For example, this tree:
- ///
- /// mul mul mul mul
- /// \ / \ /
- /// + +
- /// \ /
- /// +
- /// This tree has "mul" as its reduced values and "+" as its reduction
- /// operations. A reduction might be feeding into a store or a binary operation
- /// feeding a phi.
- /// ...
- /// \ /
- /// +
- /// |
- /// phi +=
- ///
- /// Or:
- /// ...
- /// \ /
- /// +
- /// |
- /// *p =
- ///
- class HorizontalReduction {
- SmallVector<Value *, 16> ReductionOps;
- SmallVector<Value *, 32> ReducedVals;
- BinaryOperator *ReductionRoot;
- PHINode *ReductionPHI;
- /// The opcode of the reduction.
- unsigned ReductionOpcode;
- /// The opcode of the values we perform a reduction on.
- unsigned ReducedValueOpcode;
- /// The width of one full horizontal reduction operation.
- unsigned ReduxWidth;
- /// Should we model this reduction as a pairwise reduction tree or a tree that
- /// splits the vector in halves and adds those halves.
- bool IsPairwiseReduction;
- public:
- HorizontalReduction()
- : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0),
- ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
- /// \brief Try to find a reduction tree.
- bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) {
- assert((!Phi ||
- std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
- "Thi phi needs to use the binary operator");
- // We could have a initial reductions that is not an add.
- // r *= v1 + v2 + v3 + v4
- // In such a case start looking for a tree rooted in the first '+'.
- if (Phi) {
- if (B->getOperand(0) == Phi) {
- Phi = nullptr;
- B = dyn_cast<BinaryOperator>(B->getOperand(1));
- } else if (B->getOperand(1) == Phi) {
- Phi = nullptr;
- B = dyn_cast<BinaryOperator>(B->getOperand(0));
- }
- }
- if (!B)
- return false;
- Type *Ty = B->getType();
- if (!isValidElementType(Ty))
- return false;
- const DataLayout &DL = B->getModule()->getDataLayout();
- ReductionOpcode = B->getOpcode();
- ReducedValueOpcode = 0;
- // FIXME: Register size should be a parameter to this function, so we can
- // try different vectorization factors.
- ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty);
- ReductionRoot = B;
- ReductionPHI = Phi;
- if (ReduxWidth < 4)
- return false;
- // We currently only support adds.
- if (ReductionOpcode != Instruction::Add &&
- ReductionOpcode != Instruction::FAdd)
- return false;
- // Post order traverse the reduction tree starting at B. We only handle true
- // trees containing only binary operators.
- SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
- Stack.push_back(std::make_pair(B, 0));
- while (!Stack.empty()) {
- BinaryOperator *TreeN = Stack.back().first;
- unsigned EdgeToVist = Stack.back().second++;
- bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
- // Only handle trees in the current basic block.
- if (TreeN->getParent() != B->getParent())
- return false;
- // Each tree node needs to have one user except for the ultimate
- // reduction.
- if (!TreeN->hasOneUse() && TreeN != B)
- return false;
- // Postorder vist.
- if (EdgeToVist == 2 || IsReducedValue) {
- if (IsReducedValue) {
- // Make sure that the opcodes of the operations that we are going to
- // reduce match.
- if (!ReducedValueOpcode)
- ReducedValueOpcode = TreeN->getOpcode();
- else if (ReducedValueOpcode != TreeN->getOpcode())
- return false;
- ReducedVals.push_back(TreeN);
- } else {
- // We need to be able to reassociate the adds.
- if (!TreeN->isAssociative())
- return false;
- ReductionOps.push_back(TreeN);
- }
- // Retract.
- Stack.pop_back();
- continue;
- }
- // Visit left or right.
- Value *NextV = TreeN->getOperand(EdgeToVist);
- BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
- if (Next)
- Stack.push_back(std::make_pair(Next, 0));
- else if (NextV != Phi)
- return false;
- }
- return true;
- }
- /// \brief Attempt to vectorize the tree found by
- /// matchAssociativeReduction.
- bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
- if (ReducedVals.empty())
- return false;
- unsigned NumReducedVals = ReducedVals.size();
- if (NumReducedVals < ReduxWidth)
- return false;
- Value *VectorizedTree = nullptr;
- IRBuilder<> Builder(ReductionRoot);
- FastMathFlags Unsafe;
- Unsafe.setUnsafeAlgebra();
- Builder.SetFastMathFlags(Unsafe);
- unsigned i = 0;
- for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
- V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps);
- // Estimate cost.
- int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
- if (Cost >= -SLPCostThreshold)
- break;
- DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
- << ". (HorRdx)\n");
- // Vectorize a tree.
- DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
- Value *VectorizedRoot = V.vectorizeTree();
- // Emit a reduction.
- Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
- if (VectorizedTree) {
- Builder.SetCurrentDebugLocation(Loc);
- VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
- ReducedSubTree, "bin.rdx");
- } else
- VectorizedTree = ReducedSubTree;
- }
- if (VectorizedTree) {
- // Finish the reduction.
- for (; i < NumReducedVals; ++i) {
- Builder.SetCurrentDebugLocation(
- cast<Instruction>(ReducedVals[i])->getDebugLoc());
- VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
- ReducedVals[i]);
- }
- // Update users.
- if (ReductionPHI) {
- assert(ReductionRoot && "Need a reduction operation");
- ReductionRoot->setOperand(0, VectorizedTree);
- ReductionRoot->setOperand(1, ReductionPHI);
- } else
- ReductionRoot->replaceAllUsesWith(VectorizedTree);
- }
- return VectorizedTree != nullptr;
- }
- private:
- /// \brief Calcuate the cost of a reduction.
- int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
- Type *ScalarTy = FirstReducedVal->getType();
- Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
- int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
- int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
- IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
- int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
- int ScalarReduxCost =
- ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
- DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
- << " for reduction that starts with " << *FirstReducedVal
- << " (It is a "
- << (IsPairwiseReduction ? "pairwise" : "splitting")
- << " reduction)\n");
- return VecReduxCost - ScalarReduxCost;
- }
- static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
- Value *R, const Twine &Name = "") {
- if (Opcode == Instruction::FAdd)
- return Builder.CreateFAdd(L, R, Name);
- return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
- }
- /// \brief Emit a horizontal reduction of the vectorized value.
- Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
- assert(VectorizedValue && "Need to have a vectorized tree node");
- assert(isPowerOf2_32(ReduxWidth) &&
- "We only handle power-of-two reductions for now");
- Value *TmpVec = VectorizedValue;
- for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
- if (IsPairwiseReduction) {
- Value *LeftMask =
- createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
- Value *RightMask =
- createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
- Value *LeftShuf = Builder.CreateShuffleVector(
- TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
- Value *RightShuf = Builder.CreateShuffleVector(
- TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
- "rdx.shuf.r");
- TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
- "bin.rdx");
- } else {
- Value *UpperHalf =
- createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
- Value *Shuf = Builder.CreateShuffleVector(
- TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
- TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
- }
- }
- // The result is in the first element of the vector.
- return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
- }
- };
- /// \brief Recognize construction of vectors like
- /// %ra = insertelement <4 x float> undef, float %s0, i32 0
- /// %rb = insertelement <4 x float> %ra, float %s1, i32 1
- /// %rc = insertelement <4 x float> %rb, float %s2, i32 2
- /// %rd = insertelement <4 x float> %rc, float %s3, i32 3
- ///
- /// Returns true if it matches
- ///
- static bool findBuildVector(InsertElementInst *FirstInsertElem,
- SmallVectorImpl<Value *> &BuildVector,
- SmallVectorImpl<Value *> &BuildVectorOpds) {
- if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
- return false;
- InsertElementInst *IE = FirstInsertElem;
- while (true) {
- BuildVector.push_back(IE);
- BuildVectorOpds.push_back(IE->getOperand(1));
- if (IE->use_empty())
- return false;
- InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
- if (!NextUse)
- return true;
- // If this isn't the final use, make sure the next insertelement is the only
- // use. It's OK if the final constructed vector is used multiple times
- if (!IE->hasOneUse())
- return false;
- IE = NextUse;
- }
- return false;
- }
- static bool PhiTypeSorterFunc(Value *V, Value *V2) {
- return V->getType() < V2->getType();
- }
- bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
- bool Changed = false;
- SmallVector<Value *, 4> Incoming;
- SmallSet<Value *, 16> VisitedInstrs;
- bool HaveVectorizedPhiNodes = true;
- while (HaveVectorizedPhiNodes) {
- HaveVectorizedPhiNodes = false;
- // Collect the incoming values from the PHIs.
- Incoming.clear();
- for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
- ++instr) {
- PHINode *P = dyn_cast<PHINode>(instr);
- if (!P)
- break;
- if (!VisitedInstrs.count(P))
- Incoming.push_back(P);
- }
- // Sort by type.
- std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
- // Try to vectorize elements base on their type.
- for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
- E = Incoming.end();
- IncIt != E;) {
- // Look for the next elements with the same type.
- SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
- while (SameTypeIt != E &&
- (*SameTypeIt)->getType() == (*IncIt)->getType()) {
- VisitedInstrs.insert(*SameTypeIt);
- ++SameTypeIt;
- }
- // Try to vectorize them.
- unsigned NumElts = (SameTypeIt - IncIt);
- DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
- if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) {
- // Success start over because instructions might have been changed.
- HaveVectorizedPhiNodes = true;
- Changed = true;
- break;
- }
- // Start over at the next instruction of a different type (or the end).
- IncIt = SameTypeIt;
- }
- }
- VisitedInstrs.clear();
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
- // We may go through BB multiple times so skip the one we have checked.
- if (!VisitedInstrs.insert(it).second)
- continue;
- if (isa<DbgInfoIntrinsic>(it))
- continue;
- // Try to vectorize reductions that use PHINodes.
- if (PHINode *P = dyn_cast<PHINode>(it)) {
- // Check that the PHI is a reduction PHI.
- if (P->getNumIncomingValues() != 2)
- return Changed;
- Value *Rdx =
- (P->getIncomingBlock(0) == BB
- ? (P->getIncomingValue(0))
- : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1)
- : nullptr));
- // Check if this is a Binary Operator.
- BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
- if (!BI)
- continue;
- // Try to match and vectorize a horizontal reduction.
- HorizontalReduction HorRdx;
- if (ShouldVectorizeHor && HorRdx.matchAssociativeReduction(P, BI) &&
- HorRdx.tryToReduce(R, TTI)) {
- Changed = true;
- it = BB->begin();
- e = BB->end();
- continue;
- }
- Value *Inst = BI->getOperand(0);
- if (Inst == P)
- Inst = BI->getOperand(1);
- if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
- // We would like to start over since some instructions are deleted
- // and the iterator may become invalid value.
- Changed = true;
- it = BB->begin();
- e = BB->end();
- continue;
- }
- continue;
- }
- // Try to vectorize horizontal reductions feeding into a store.
- if (ShouldStartVectorizeHorAtStore)
- if (StoreInst *SI = dyn_cast<StoreInst>(it))
- if (BinaryOperator *BinOp =
- dyn_cast<BinaryOperator>(SI->getValueOperand())) {
- HorizontalReduction HorRdx;
- if (((HorRdx.matchAssociativeReduction(nullptr, BinOp) &&
- HorRdx.tryToReduce(R, TTI)) ||
- tryToVectorize(BinOp, R))) {
- Changed = true;
- it = BB->begin();
- e = BB->end();
- continue;
- }
- }
- // Try to vectorize horizontal reductions feeding into a return.
- if (ReturnInst *RI = dyn_cast<ReturnInst>(it))
- if (RI->getNumOperands() != 0)
- if (BinaryOperator *BinOp =
- dyn_cast<BinaryOperator>(RI->getOperand(0))) {
- DEBUG(dbgs() << "SLP: Found a return to vectorize.\n");
- if (tryToVectorizePair(BinOp->getOperand(0),
- BinOp->getOperand(1), R)) {
- Changed = true;
- it = BB->begin();
- e = BB->end();
- continue;
- }
- }
- // Try to vectorize trees that start at compare instructions.
- if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
- if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
- Changed = true;
- // We would like to start over since some instructions are deleted
- // and the iterator may become invalid value.
- it = BB->begin();
- e = BB->end();
- continue;
- }
- for (int i = 0; i < 2; ++i) {
- if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
- if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
- Changed = true;
- // We would like to start over since some instructions are deleted
- // and the iterator may become invalid value.
- it = BB->begin();
- e = BB->end();
- break;
- }
- }
- }
- continue;
- }
- // Try to vectorize trees that start at insertelement instructions.
- if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
- SmallVector<Value *, 16> BuildVector;
- SmallVector<Value *, 16> BuildVectorOpds;
- if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
- continue;
- // Vectorize starting with the build vector operands ignoring the
- // BuildVector instructions for the purpose of scheduling and user
- // extraction.
- if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
- Changed = true;
- it = BB->begin();
- e = BB->end();
- }
- continue;
- }
- }
- return Changed;
- }
- bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
- bool Changed = false;
- // Attempt to sort and vectorize each of the store-groups.
- for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
- it != e; ++it) {
- if (it->second.size() < 2)
- continue;
- DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
- << it->second.size() << ".\n");
- // Process the stores in chunks of 16.
- // TODO: The limit of 16 inhibits greater vectorization factors.
- // For example, AVX2 supports v32i8. Increasing this limit, however,
- // may cause a significant compile-time increase.
- for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
- unsigned Len = std::min<unsigned>(CE - CI, 16);
- Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len),
- -SLPCostThreshold, R);
- }
- }
- return Changed;
- }
- } // end anonymous namespace
- char SLPVectorizer::ID = 0;
- static const char lv_name[] = "SLP Vectorizer";
- INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
- INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
- INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
- INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
- namespace llvm {
- Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
- }
|