double_exit.ll 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165
  1. ; RUN: opt < %s -analyze -block-freq | FileCheck %s
  2. ; CHECK-LABEL: Printing analysis {{.*}} for function 'double_exit':
  3. ; CHECK-NEXT: block-frequency-info: double_exit
  4. define i32 @double_exit(i32 %N) {
  5. ; Mass = 1
  6. ; Frequency = 1
  7. ; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
  8. entry:
  9. br label %outer
  10. ; Mass = 1
  11. ; Backedge mass = 1/3, exit mass = 2/3
  12. ; Loop scale = 3/2
  13. ; Pseudo-edges = exit
  14. ; Pseudo-mass = 1
  15. ; Frequency = 1*3/2*1 = 3/2
  16. ; CHECK-NEXT: outer: float = 1.5,
  17. outer:
  18. %I.0 = phi i32 [ 0, %entry ], [ %inc6, %outer.inc ]
  19. %Return.0 = phi i32 [ 0, %entry ], [ %Return.1, %outer.inc ]
  20. %cmp = icmp slt i32 %I.0, %N
  21. br i1 %cmp, label %inner, label %exit, !prof !2 ; 2:1
  22. ; Mass = 1
  23. ; Backedge mass = 3/5, exit mass = 2/5
  24. ; Loop scale = 5/2
  25. ; Pseudo-edges = outer.inc @ 1/5, exit @ 1/5
  26. ; Pseudo-mass = 2/3
  27. ; Frequency = 3/2*1*5/2*2/3 = 5/2
  28. ; CHECK-NEXT: inner: float = 2.5,
  29. inner:
  30. %Return.1 = phi i32 [ %Return.0, %outer ], [ %call4, %inner.inc ]
  31. %J.0 = phi i32 [ %I.0, %outer ], [ %inc, %inner.inc ]
  32. %cmp2 = icmp slt i32 %J.0, %N
  33. br i1 %cmp2, label %inner.body, label %outer.inc, !prof !1 ; 4:1
  34. ; Mass = 4/5
  35. ; Frequency = 5/2*4/5 = 2
  36. ; CHECK-NEXT: inner.body: float = 2.0,
  37. inner.body:
  38. %call = call i32 @c2(i32 %I.0, i32 %J.0)
  39. %tobool = icmp ne i32 %call, 0
  40. br i1 %tobool, label %exit, label %inner.inc, !prof !0 ; 3:1
  41. ; Mass = 3/5
  42. ; Frequency = 5/2*3/5 = 3/2
  43. ; CHECK-NEXT: inner.inc: float = 1.5,
  44. inner.inc:
  45. %call4 = call i32 @logic2(i32 %Return.1, i32 %I.0, i32 %J.0)
  46. %inc = add nsw i32 %J.0, 1
  47. br label %inner
  48. ; Mass = 1/3
  49. ; Frequency = 3/2*1/3 = 1/2
  50. ; CHECK-NEXT: outer.inc: float = 0.5,
  51. outer.inc:
  52. %inc6 = add nsw i32 %I.0, 1
  53. br label %outer
  54. ; Mass = 1
  55. ; Frequency = 1
  56. ; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
  57. exit:
  58. %Return.2 = phi i32 [ %Return.1, %inner.body ], [ %Return.0, %outer ]
  59. ret i32 %Return.2
  60. }
  61. !0 = !{!"branch_weights", i32 1, i32 3}
  62. !1 = !{!"branch_weights", i32 4, i32 1}
  63. !2 = !{!"branch_weights", i32 2, i32 1}
  64. declare i32 @c2(i32, i32)
  65. declare i32 @logic2(i32, i32, i32)
  66. ; CHECK-LABEL: Printing analysis {{.*}} for function 'double_exit_in_loop':
  67. ; CHECK-NEXT: block-frequency-info: double_exit_in_loop
  68. define i32 @double_exit_in_loop(i32 %N) {
  69. ; Mass = 1
  70. ; Frequency = 1
  71. ; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
  72. entry:
  73. br label %outer
  74. ; Mass = 1
  75. ; Backedge mass = 1/2, exit mass = 1/2
  76. ; Loop scale = 2
  77. ; Pseudo-edges = exit
  78. ; Pseudo-mass = 1
  79. ; Frequency = 1*2*1 = 2
  80. ; CHECK-NEXT: outer: float = 2.0,
  81. outer:
  82. %I.0 = phi i32 [ 0, %entry ], [ %inc12, %outer.inc ]
  83. %Return.0 = phi i32 [ 0, %entry ], [ %Return.3, %outer.inc ]
  84. %cmp = icmp slt i32 %I.0, %N
  85. br i1 %cmp, label %middle, label %exit, !prof !3 ; 1:1
  86. ; Mass = 1
  87. ; Backedge mass = 1/3, exit mass = 2/3
  88. ; Loop scale = 3/2
  89. ; Pseudo-edges = outer.inc
  90. ; Pseudo-mass = 1/2
  91. ; Frequency = 2*1*3/2*1/2 = 3/2
  92. ; CHECK-NEXT: middle: float = 1.5,
  93. middle:
  94. %J.0 = phi i32 [ %I.0, %outer ], [ %inc9, %middle.inc ]
  95. %Return.1 = phi i32 [ %Return.0, %outer ], [ %Return.2, %middle.inc ]
  96. %cmp2 = icmp slt i32 %J.0, %N
  97. br i1 %cmp2, label %inner, label %outer.inc, !prof !2 ; 2:1
  98. ; Mass = 1
  99. ; Backedge mass = 3/5, exit mass = 2/5
  100. ; Loop scale = 5/2
  101. ; Pseudo-edges = middle.inc @ 1/5, outer.inc @ 1/5
  102. ; Pseudo-mass = 2/3
  103. ; Frequency = 3/2*1*5/2*2/3 = 5/2
  104. ; CHECK-NEXT: inner: float = 2.5,
  105. inner:
  106. %Return.2 = phi i32 [ %Return.1, %middle ], [ %call7, %inner.inc ]
  107. %K.0 = phi i32 [ %J.0, %middle ], [ %inc, %inner.inc ]
  108. %cmp5 = icmp slt i32 %K.0, %N
  109. br i1 %cmp5, label %inner.body, label %middle.inc, !prof !1 ; 4:1
  110. ; Mass = 4/5
  111. ; Frequency = 5/2*4/5 = 2
  112. ; CHECK-NEXT: inner.body: float = 2.0,
  113. inner.body:
  114. %call = call i32 @c3(i32 %I.0, i32 %J.0, i32 %K.0)
  115. %tobool = icmp ne i32 %call, 0
  116. br i1 %tobool, label %outer.inc, label %inner.inc, !prof !0 ; 3:1
  117. ; Mass = 3/5
  118. ; Frequency = 5/2*3/5 = 3/2
  119. ; CHECK-NEXT: inner.inc: float = 1.5,
  120. inner.inc:
  121. %call7 = call i32 @logic3(i32 %Return.2, i32 %I.0, i32 %J.0, i32 %K.0)
  122. %inc = add nsw i32 %K.0, 1
  123. br label %inner
  124. ; Mass = 1/3
  125. ; Frequency = 3/2*1/3 = 1/2
  126. ; CHECK-NEXT: middle.inc: float = 0.5,
  127. middle.inc:
  128. %inc9 = add nsw i32 %J.0, 1
  129. br label %middle
  130. ; Mass = 1/2
  131. ; Frequency = 2*1/2 = 1
  132. ; CHECK-NEXT: outer.inc: float = 1.0,
  133. outer.inc:
  134. %Return.3 = phi i32 [ %Return.2, %inner.body ], [ %Return.1, %middle ]
  135. %inc12 = add nsw i32 %I.0, 1
  136. br label %outer
  137. ; Mass = 1
  138. ; Frequency = 1
  139. ; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
  140. exit:
  141. ret i32 %Return.0
  142. }
  143. !3 = !{!"branch_weights", i32 1, i32 1}
  144. declare i32 @c3(i32, i32, i32)
  145. declare i32 @logic3(i32, i32, i32, i32)