compare.ll 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166
  1. ; RUN: opt < %s -instsimplify -S | FileCheck %s
  2. target datalayout = "p:32:32"
  3. define i1 @ptrtoint() {
  4. ; CHECK-LABEL: @ptrtoint(
  5. %a = alloca i8
  6. %tmp = ptrtoint i8* %a to i32
  7. %r = icmp eq i32 %tmp, 0
  8. ret i1 %r
  9. ; CHECK: ret i1 false
  10. }
  11. define i1 @bitcast() {
  12. ; CHECK-LABEL: @bitcast(
  13. %a = alloca i32
  14. %b = alloca i64
  15. %x = bitcast i32* %a to i8*
  16. %y = bitcast i64* %b to i8*
  17. %cmp = icmp eq i8* %x, %y
  18. ret i1 %cmp
  19. ; CHECK-NEXT: ret i1 false
  20. }
  21. define i1 @gep() {
  22. ; CHECK-LABEL: @gep(
  23. %a = alloca [3 x i8], align 8
  24. %x = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0
  25. %cmp = icmp eq i8* %x, null
  26. ret i1 %cmp
  27. ; CHECK-NEXT: ret i1 false
  28. }
  29. define i1 @gep2() {
  30. ; CHECK-LABEL: @gep2(
  31. %a = alloca [3 x i8], align 8
  32. %x = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0
  33. %y = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0
  34. %cmp = icmp eq i8* %x, %y
  35. ret i1 %cmp
  36. ; CHECK-NEXT: ret i1 true
  37. }
  38. ; PR11238
  39. %gept = type { i32, i32 }
  40. @gepy = global %gept zeroinitializer, align 8
  41. @gepz = extern_weak global %gept
  42. define i1 @gep3() {
  43. ; CHECK-LABEL: @gep3(
  44. %x = alloca %gept, align 8
  45. %a = getelementptr %gept, %gept* %x, i64 0, i32 0
  46. %b = getelementptr %gept, %gept* %x, i64 0, i32 1
  47. %equal = icmp eq i32* %a, %b
  48. ret i1 %equal
  49. ; CHECK-NEXT: ret i1 false
  50. }
  51. define i1 @gep4() {
  52. ; CHECK-LABEL: @gep4(
  53. %x = alloca %gept, align 8
  54. %a = getelementptr %gept, %gept* @gepy, i64 0, i32 0
  55. %b = getelementptr %gept, %gept* @gepy, i64 0, i32 1
  56. %equal = icmp eq i32* %a, %b
  57. ret i1 %equal
  58. ; CHECK-NEXT: ret i1 false
  59. }
  60. define i1 @gep5() {
  61. ; CHECK-LABEL: @gep5(
  62. %x = alloca %gept, align 8
  63. %a = getelementptr inbounds %gept, %gept* %x, i64 0, i32 1
  64. %b = getelementptr %gept, %gept* @gepy, i64 0, i32 0
  65. %equal = icmp eq i32* %a, %b
  66. ret i1 %equal
  67. ; CHECK-NEXT: ret i1 false
  68. }
  69. define i1 @gep6(%gept* %x) {
  70. ; Same as @gep3 but potentially null.
  71. ; CHECK-LABEL: @gep6(
  72. %a = getelementptr %gept, %gept* %x, i64 0, i32 0
  73. %b = getelementptr %gept, %gept* %x, i64 0, i32 1
  74. %equal = icmp eq i32* %a, %b
  75. ret i1 %equal
  76. ; CHECK-NEXT: ret i1 false
  77. }
  78. define i1 @gep7(%gept* %x) {
  79. ; CHECK-LABEL: @gep7(
  80. %a = getelementptr %gept, %gept* %x, i64 0, i32 0
  81. %b = getelementptr %gept, %gept* @gepz, i64 0, i32 0
  82. %equal = icmp eq i32* %a, %b
  83. ret i1 %equal
  84. ; CHECK: ret i1 %equal
  85. }
  86. define i1 @gep8(%gept* %x) {
  87. ; CHECK-LABEL: @gep8(
  88. %a = getelementptr %gept, %gept* %x, i32 1
  89. %b = getelementptr %gept, %gept* %x, i32 -1
  90. %equal = icmp ugt %gept* %a, %b
  91. ret i1 %equal
  92. ; CHECK: ret i1 %equal
  93. }
  94. define i1 @gep9(i8* %ptr) {
  95. ; CHECK-LABEL: @gep9(
  96. ; CHECK-NOT: ret
  97. ; CHECK: ret i1 true
  98. entry:
  99. %first1 = getelementptr inbounds i8, i8* %ptr, i32 0
  100. %first2 = getelementptr inbounds i8, i8* %first1, i32 1
  101. %first3 = getelementptr inbounds i8, i8* %first2, i32 2
  102. %first4 = getelementptr inbounds i8, i8* %first3, i32 4
  103. %last1 = getelementptr inbounds i8, i8* %first2, i32 48
  104. %last2 = getelementptr inbounds i8, i8* %last1, i32 8
  105. %last3 = getelementptr inbounds i8, i8* %last2, i32 -4
  106. %last4 = getelementptr inbounds i8, i8* %last3, i32 -4
  107. %first.int = ptrtoint i8* %first4 to i32
  108. %last.int = ptrtoint i8* %last4 to i32
  109. %cmp = icmp ne i32 %last.int, %first.int
  110. ret i1 %cmp
  111. }
  112. define i1 @gep10(i8* %ptr) {
  113. ; CHECK-LABEL: @gep10(
  114. ; CHECK-NOT: ret
  115. ; CHECK: ret i1 true
  116. entry:
  117. %first1 = getelementptr inbounds i8, i8* %ptr, i32 -2
  118. %first2 = getelementptr inbounds i8, i8* %first1, i32 44
  119. %last1 = getelementptr inbounds i8, i8* %ptr, i32 48
  120. %last2 = getelementptr inbounds i8, i8* %last1, i32 -6
  121. %first.int = ptrtoint i8* %first2 to i32
  122. %last.int = ptrtoint i8* %last2 to i32
  123. %cmp = icmp eq i32 %last.int, %first.int
  124. ret i1 %cmp
  125. }
  126. define i1 @gep11(i8* %ptr) {
  127. ; CHECK-LABEL: @gep11(
  128. ; CHECK-NOT: ret
  129. ; CHECK: ret i1 true
  130. entry:
  131. %first1 = getelementptr inbounds i8, i8* %ptr, i32 -2
  132. %last1 = getelementptr inbounds i8, i8* %ptr, i32 48
  133. %last2 = getelementptr inbounds i8, i8* %last1, i32 -6
  134. %cmp = icmp ult i8* %first1, %last2
  135. ret i1 %cmp
  136. }
  137. define i1 @gep12(i8* %ptr) {
  138. ; CHECK-LABEL: @gep12(
  139. ; CHECK-NOT: ret
  140. ; CHECK: ret i1 %cmp
  141. entry:
  142. %first1 = getelementptr inbounds i8, i8* %ptr, i32 -2
  143. %last1 = getelementptr inbounds i8, i8* %ptr, i32 48
  144. %last2 = getelementptr inbounds i8, i8* %last1, i32 -6
  145. %cmp = icmp slt i8* %first1, %last2
  146. ret i1 %cmp
  147. }
  148. define i1 @gep13(i8* %ptr) {
  149. ; CHECK-LABEL: @gep13(
  150. ; We can prove this GEP is non-null because it is inbounds.
  151. %x = getelementptr inbounds i8, i8* %ptr, i32 1
  152. %cmp = icmp eq i8* %x, null
  153. ret i1 %cmp
  154. ; CHECK-NEXT: ret i1 false
  155. }
  156. define i1 @gep14({ {}, i8 }* %ptr) {
  157. ; CHECK-LABEL: @gep14(
  158. ; We can't simplify this because the offset of one in the GEP actually doesn't
  159. ; move the pointer.
  160. %x = getelementptr inbounds { {}, i8 }, { {}, i8 }* %ptr, i32 0, i32 1
  161. %cmp = icmp eq i8* %x, null
  162. ret i1 %cmp
  163. ; CHECK-NOT: ret i1 false
  164. }
  165. define i1 @gep15({ {}, [4 x {i8, i8}]}* %ptr, i32 %y) {
  166. ; CHECK-LABEL: @gep15(
  167. ; We can prove this GEP is non-null even though there is a user value, as we
  168. ; would necessarily violate inbounds on one side or the other.
  169. %x = getelementptr inbounds { {}, [4 x {i8, i8}]}, { {}, [4 x {i8, i8}]}* %ptr, i32 0, i32 1, i32 %y, i32 1
  170. %cmp = icmp eq i8* %x, null
  171. ret i1 %cmp
  172. ; CHECK-NEXT: ret i1 false
  173. }
  174. define i1 @gep16(i8* %ptr, i32 %a) {
  175. ; CHECK-LABEL: @gep16(
  176. ; We can prove this GEP is non-null because it is inbounds and because we know
  177. ; %b is non-zero even though we don't know its value.
  178. %b = or i32 %a, 1
  179. %x = getelementptr inbounds i8, i8* %ptr, i32 %b
  180. %cmp = icmp eq i8* %x, null
  181. ret i1 %cmp
  182. ; CHECK-NEXT: ret i1 false
  183. }
  184. define i1 @zext(i32 %x) {
  185. ; CHECK-LABEL: @zext(
  186. %e1 = zext i32 %x to i64
  187. %e2 = zext i32 %x to i64
  188. %r = icmp eq i64 %e1, %e2
  189. ret i1 %r
  190. ; CHECK: ret i1 true
  191. }
  192. define i1 @zext2(i1 %x) {
  193. ; CHECK-LABEL: @zext2(
  194. %e = zext i1 %x to i32
  195. %c = icmp ne i32 %e, 0
  196. ret i1 %c
  197. ; CHECK: ret i1 %x
  198. }
  199. define i1 @zext3() {
  200. ; CHECK-LABEL: @zext3(
  201. %e = zext i1 1 to i32
  202. %c = icmp ne i32 %e, 0
  203. ret i1 %c
  204. ; CHECK: ret i1 true
  205. }
  206. define i1 @sext(i32 %x) {
  207. ; CHECK-LABEL: @sext(
  208. %e1 = sext i32 %x to i64
  209. %e2 = sext i32 %x to i64
  210. %r = icmp eq i64 %e1, %e2
  211. ret i1 %r
  212. ; CHECK: ret i1 true
  213. }
  214. define i1 @sext2(i1 %x) {
  215. ; CHECK-LABEL: @sext2(
  216. %e = sext i1 %x to i32
  217. %c = icmp ne i32 %e, 0
  218. ret i1 %c
  219. ; CHECK: ret i1 %x
  220. }
  221. define i1 @sext3() {
  222. ; CHECK-LABEL: @sext3(
  223. %e = sext i1 1 to i32
  224. %c = icmp ne i32 %e, 0
  225. ret i1 %c
  226. ; CHECK: ret i1 true
  227. }
  228. define i1 @add(i32 %x, i32 %y) {
  229. ; CHECK-LABEL: @add(
  230. %l = lshr i32 %x, 1
  231. %q = lshr i32 %y, 1
  232. %r = or i32 %q, 1
  233. %s = add i32 %l, %r
  234. %c = icmp eq i32 %s, 0
  235. ret i1 %c
  236. ; CHECK: ret i1 false
  237. }
  238. define i1 @add2(i8 %x, i8 %y) {
  239. ; CHECK-LABEL: @add2(
  240. %l = or i8 %x, 128
  241. %r = or i8 %y, 129
  242. %s = add i8 %l, %r
  243. %c = icmp eq i8 %s, 0
  244. ret i1 %c
  245. ; CHECK: ret i1 false
  246. }
  247. define i1 @add3(i8 %x, i8 %y) {
  248. ; CHECK-LABEL: @add3(
  249. %l = zext i8 %x to i32
  250. %r = zext i8 %y to i32
  251. %s = add i32 %l, %r
  252. %c = icmp eq i32 %s, 0
  253. ret i1 %c
  254. ; CHECK: ret i1 %c
  255. }
  256. define i1 @add4(i32 %x, i32 %y) {
  257. ; CHECK-LABEL: @add4(
  258. %z = add nsw i32 %y, 1
  259. %s1 = add nsw i32 %x, %y
  260. %s2 = add nsw i32 %x, %z
  261. %c = icmp slt i32 %s1, %s2
  262. ret i1 %c
  263. ; CHECK: ret i1 true
  264. }
  265. define i1 @add5(i32 %x, i32 %y) {
  266. ; CHECK-LABEL: @add5(
  267. %z = add nuw i32 %y, 1
  268. %s1 = add nuw i32 %x, %z
  269. %s2 = add nuw i32 %x, %y
  270. %c = icmp ugt i32 %s1, %s2
  271. ret i1 %c
  272. ; CHECK: ret i1 true
  273. }
  274. define i1 @add6(i64 %A, i64 %B) {
  275. ; CHECK-LABEL: @add6(
  276. %s1 = add i64 %A, %B
  277. %s2 = add i64 %B, %A
  278. %cmp = icmp eq i64 %s1, %s2
  279. ret i1 %cmp
  280. ; CHECK: ret i1 true
  281. }
  282. define i1 @addpowtwo(i32 %x, i32 %y) {
  283. ; CHECK-LABEL: @addpowtwo(
  284. %l = lshr i32 %x, 1
  285. %r = shl i32 1, %y
  286. %s = add i32 %l, %r
  287. %c = icmp eq i32 %s, 0
  288. ret i1 %c
  289. ; CHECK: ret i1 false
  290. }
  291. define i1 @or(i32 %x) {
  292. ; CHECK-LABEL: @or(
  293. %o = or i32 %x, 1
  294. %c = icmp eq i32 %o, 0
  295. ret i1 %c
  296. ; CHECK: ret i1 false
  297. }
  298. define i1 @shl1(i32 %x) {
  299. ; CHECK-LABEL: @shl1(
  300. %s = shl i32 1, %x
  301. %c = icmp eq i32 %s, 0
  302. ret i1 %c
  303. ; CHECK: ret i1 false
  304. }
  305. define i1 @shl2(i32 %X) {
  306. ; CHECK: @shl2
  307. %sub = shl nsw i32 -1, %X
  308. %cmp = icmp eq i32 %sub, 31
  309. ret i1 %cmp
  310. ; CHECK-NEXT: ret i1 false
  311. }
  312. define i1 @shl3(i32 %X) {
  313. ; CHECK: @shl3
  314. %sub = shl nuw i32 4, %X
  315. %cmp = icmp eq i32 %sub, 31
  316. ret i1 %cmp
  317. ; CHECK-NEXT: ret i1 false
  318. }
  319. define i1 @shl4(i32 %X) {
  320. ; CHECK: @shl4
  321. %sub = shl nsw i32 -1, %X
  322. %cmp = icmp sle i32 %sub, -1
  323. ret i1 %cmp
  324. ; CHECK-NEXT: ret i1 true
  325. }
  326. define i1 @shl5(i32 %X) {
  327. ; CHECK: @shl5
  328. %sub = shl nuw i32 4, %X
  329. %cmp = icmp ugt i32 %sub, 3
  330. ret i1 %cmp
  331. ; CHECK-NEXT: ret i1 true
  332. }
  333. define i1 @lshr1(i32 %x) {
  334. ; CHECK-LABEL: @lshr1(
  335. %s = lshr i32 -1, %x
  336. %c = icmp eq i32 %s, 0
  337. ret i1 %c
  338. ; CHECK: ret i1 false
  339. }
  340. define i1 @lshr2(i32 %x) {
  341. ; CHECK-LABEL: @lshr2(
  342. %s = lshr i32 %x, 30
  343. %c = icmp ugt i32 %s, 8
  344. ret i1 %c
  345. ; CHECK: ret i1 false
  346. }
  347. define i1 @lshr3(i32 %x) {
  348. ; CHECK-LABEL: @lshr3(
  349. %s = lshr i32 %x, %x
  350. %c = icmp eq i32 %s, 0
  351. ret i1 %c
  352. ; CHECK: ret i1 true
  353. }
  354. define i1 @ashr1(i32 %x) {
  355. ; CHECK-LABEL: @ashr1(
  356. %s = ashr i32 -1, %x
  357. %c = icmp eq i32 %s, 0
  358. ret i1 %c
  359. ; CHECK: ret i1 false
  360. }
  361. define i1 @ashr2(i32 %x) {
  362. ; CHECK-LABEL: @ashr2(
  363. %s = ashr i32 %x, 30
  364. %c = icmp slt i32 %s, -5
  365. ret i1 %c
  366. ; CHECK: ret i1 false
  367. }
  368. define i1 @ashr3(i32 %x) {
  369. ; CHECK-LABEL: @ashr3(
  370. %s = ashr i32 %x, %x
  371. %c = icmp eq i32 %s, 0
  372. ret i1 %c
  373. ; CHECK: ret i1 true
  374. }
  375. define i1 @select1(i1 %cond) {
  376. ; CHECK-LABEL: @select1(
  377. %s = select i1 %cond, i32 1, i32 0
  378. %c = icmp eq i32 %s, 1
  379. ret i1 %c
  380. ; CHECK: ret i1 %cond
  381. }
  382. define i1 @select2(i1 %cond) {
  383. ; CHECK-LABEL: @select2(
  384. %x = zext i1 %cond to i32
  385. %s = select i1 %cond, i32 %x, i32 0
  386. %c = icmp ne i32 %s, 0
  387. ret i1 %c
  388. ; CHECK: ret i1 %cond
  389. }
  390. define i1 @select3(i1 %cond) {
  391. ; CHECK-LABEL: @select3(
  392. %x = zext i1 %cond to i32
  393. %s = select i1 %cond, i32 1, i32 %x
  394. %c = icmp ne i32 %s, 0
  395. ret i1 %c
  396. ; CHECK: ret i1 %cond
  397. }
  398. define i1 @select4(i1 %cond) {
  399. ; CHECK-LABEL: @select4(
  400. %invert = xor i1 %cond, 1
  401. %s = select i1 %invert, i32 0, i32 1
  402. %c = icmp ne i32 %s, 0
  403. ret i1 %c
  404. ; CHECK: ret i1 %cond
  405. }
  406. define i1 @select5(i32 %x) {
  407. ; CHECK-LABEL: @select5(
  408. %c = icmp eq i32 %x, 0
  409. %s = select i1 %c, i32 1, i32 %x
  410. %c2 = icmp eq i32 %s, 0
  411. ret i1 %c2
  412. ; CHECK: ret i1 false
  413. }
  414. define i1 @select6(i32 %x) {
  415. ; CHECK-LABEL: @select6(
  416. %c = icmp sgt i32 %x, 0
  417. %s = select i1 %c, i32 %x, i32 4
  418. %c2 = icmp eq i32 %s, 0
  419. ret i1 %c2
  420. ; CHECK: ret i1 %c2
  421. }
  422. define i1 @urem1(i32 %X, i32 %Y) {
  423. ; CHECK-LABEL: @urem1(
  424. %A = urem i32 %X, %Y
  425. %B = icmp ult i32 %A, %Y
  426. ret i1 %B
  427. ; CHECK: ret i1 true
  428. }
  429. define i1 @urem2(i32 %X, i32 %Y) {
  430. ; CHECK-LABEL: @urem2(
  431. %A = urem i32 %X, %Y
  432. %B = icmp eq i32 %A, %Y
  433. ret i1 %B
  434. ; CHECK: ret i1 false
  435. }
  436. define i1 @urem3(i32 %X) {
  437. ; CHECK-LABEL: @urem3(
  438. %A = urem i32 %X, 10
  439. %B = icmp ult i32 %A, 15
  440. ret i1 %B
  441. ; CHECK: ret i1 true
  442. }
  443. define i1 @urem4(i32 %X) {
  444. ; CHECK-LABEL: @urem4(
  445. %A = urem i32 %X, 15
  446. %B = icmp ult i32 %A, 10
  447. ret i1 %B
  448. ; CHECK: ret i1 %B
  449. }
  450. define i1 @urem5(i16 %X, i32 %Y) {
  451. ; CHECK-LABEL: @urem5(
  452. %A = zext i16 %X to i32
  453. %B = urem i32 %A, %Y
  454. %C = icmp slt i32 %B, %Y
  455. ret i1 %C
  456. ; CHECK-NOT: ret i1 true
  457. }
  458. define i1 @urem6(i32 %X, i32 %Y) {
  459. ; CHECK-LABEL: @urem6(
  460. %A = urem i32 %X, %Y
  461. %B = icmp ugt i32 %Y, %A
  462. ret i1 %B
  463. ; CHECK: ret i1 true
  464. }
  465. define i1 @urem7(i32 %X) {
  466. ; CHECK-LABEL: @urem7(
  467. %A = urem i32 1, %X
  468. %B = icmp sgt i32 %A, %X
  469. ret i1 %B
  470. ; CHECK-NOT: ret i1 false
  471. }
  472. define i1 @srem1(i32 %X) {
  473. ; CHECK-LABEL: @srem1(
  474. %A = srem i32 %X, -5
  475. %B = icmp sgt i32 %A, 5
  476. ret i1 %B
  477. ; CHECK: ret i1 false
  478. }
  479. ; PR9343 #15
  480. ; CHECK-LABEL: @srem2(
  481. ; CHECK: ret i1 false
  482. define i1 @srem2(i16 %X, i32 %Y) {
  483. %A = zext i16 %X to i32
  484. %B = add nsw i32 %A, 1
  485. %C = srem i32 %B, %Y
  486. %D = icmp slt i32 %C, 0
  487. ret i1 %D
  488. }
  489. ; CHECK-LABEL: @srem3(
  490. ; CHECK-NEXT: ret i1 false
  491. define i1 @srem3(i16 %X, i32 %Y) {
  492. %A = zext i16 %X to i32
  493. %B = or i32 2147483648, %A
  494. %C = sub nsw i32 1, %B
  495. %D = srem i32 %C, %Y
  496. %E = icmp slt i32 %D, 0
  497. ret i1 %E
  498. }
  499. define i1 @udiv1(i32 %X) {
  500. ; CHECK-LABEL: @udiv1(
  501. %A = udiv i32 %X, 1000000
  502. %B = icmp ult i32 %A, 5000
  503. ret i1 %B
  504. ; CHECK: ret i1 true
  505. }
  506. define i1 @udiv2(i32 %X, i32 %Y, i32 %Z) {
  507. ; CHECK-LABEL: @udiv2(
  508. %A = udiv exact i32 10, %Z
  509. %B = udiv exact i32 20, %Z
  510. %C = icmp ult i32 %A, %B
  511. ret i1 %C
  512. ; CHECK: ret i1 true
  513. }
  514. define i1 @udiv3(i32 %X, i32 %Y) {
  515. ; CHECK-LABEL: @udiv3(
  516. %A = udiv i32 %X, %Y
  517. %C = icmp ugt i32 %A, %X
  518. ret i1 %C
  519. ; CHECK: ret i1 false
  520. }
  521. define i1 @udiv4(i32 %X, i32 %Y) {
  522. ; CHECK-LABEL: @udiv4(
  523. %A = udiv i32 %X, %Y
  524. %C = icmp ule i32 %A, %X
  525. ret i1 %C
  526. ; CHECK: ret i1 true
  527. }
  528. define i1 @udiv5(i32 %X) {
  529. ; CHECK-LABEL: @udiv5(
  530. %A = udiv i32 123, %X
  531. %C = icmp ugt i32 %A, 124
  532. ret i1 %C
  533. ; CHECK: ret i1 false
  534. }
  535. ; PR11340
  536. define i1 @udiv6(i32 %X) nounwind {
  537. ; CHECK-LABEL: @udiv6(
  538. %A = udiv i32 1, %X
  539. %C = icmp eq i32 %A, 0
  540. ret i1 %C
  541. ; CHECK: ret i1 %C
  542. }
  543. define i1 @sdiv1(i32 %X) {
  544. ; CHECK-LABEL: @sdiv1(
  545. %A = sdiv i32 %X, 1000000
  546. %B = icmp slt i32 %A, 3000
  547. ret i1 %B
  548. ; CHECK: ret i1 true
  549. }
  550. define i1 @or1(i32 %X) {
  551. ; CHECK-LABEL: @or1(
  552. %A = or i32 %X, 62
  553. %B = icmp ult i32 %A, 50
  554. ret i1 %B
  555. ; CHECK: ret i1 false
  556. }
  557. define i1 @and1(i32 %X) {
  558. ; CHECK-LABEL: @and1(
  559. %A = and i32 %X, 62
  560. %B = icmp ugt i32 %A, 70
  561. ret i1 %B
  562. ; CHECK: ret i1 false
  563. }
  564. define i1 @mul1(i32 %X) {
  565. ; CHECK-LABEL: @mul1(
  566. ; Square of a non-zero number is non-zero if there is no overflow.
  567. %Y = or i32 %X, 1
  568. %M = mul nuw i32 %Y, %Y
  569. %C = icmp eq i32 %M, 0
  570. ret i1 %C
  571. ; CHECK: ret i1 false
  572. }
  573. define i1 @mul2(i32 %X) {
  574. ; CHECK-LABEL: @mul2(
  575. ; Square of a non-zero number is positive if there is no signed overflow.
  576. %Y = or i32 %X, 1
  577. %M = mul nsw i32 %Y, %Y
  578. %C = icmp sgt i32 %M, 0
  579. ret i1 %C
  580. ; CHECK: ret i1 true
  581. }
  582. define i1 @mul3(i32 %X, i32 %Y) {
  583. ; CHECK-LABEL: @mul3(
  584. ; Product of non-negative numbers is non-negative if there is no signed overflow.
  585. %XX = mul nsw i32 %X, %X
  586. %YY = mul nsw i32 %Y, %Y
  587. %M = mul nsw i32 %XX, %YY
  588. %C = icmp sge i32 %M, 0
  589. ret i1 %C
  590. ; CHECK: ret i1 true
  591. }
  592. define <2 x i1> @vectorselect1(<2 x i1> %cond) {
  593. ; CHECK-LABEL: @vectorselect1(
  594. %invert = xor <2 x i1> %cond, <i1 1, i1 1>
  595. %s = select <2 x i1> %invert, <2 x i32> <i32 0, i32 0>, <2 x i32> <i32 1, i32 1>
  596. %c = icmp ne <2 x i32> %s, <i32 0, i32 0>
  597. ret <2 x i1> %c
  598. ; CHECK: ret <2 x i1> %cond
  599. }
  600. ; PR11948
  601. define <2 x i1> @vectorselectcrash(i32 %arg1) {
  602. %tobool40 = icmp ne i32 %arg1, 0
  603. %cond43 = select i1 %tobool40, <2 x i16> <i16 -5, i16 66>, <2 x i16> <i16 46, i16 1>
  604. %cmp45 = icmp ugt <2 x i16> %cond43, <i16 73, i16 21>
  605. ret <2 x i1> %cmp45
  606. }
  607. ; PR12013
  608. define i1 @alloca_compare(i64 %idx) {
  609. %sv = alloca { i32, i32, [124 x i32] }
  610. %1 = getelementptr inbounds { i32, i32, [124 x i32] }, { i32, i32, [124 x i32] }* %sv, i32 0, i32 2, i64 %idx
  611. %2 = icmp eq i32* %1, null
  612. ret i1 %2
  613. ; CHECK: alloca_compare
  614. ; CHECK: ret i1 false
  615. }
  616. ; PR12075
  617. define i1 @infinite_gep() {
  618. ret i1 1
  619. unreachableblock:
  620. %X = getelementptr i32, i32 *%X, i32 1
  621. %Y = icmp eq i32* %X, null
  622. ret i1 %Y
  623. }
  624. ; It's not valid to fold a comparison of an argument with an alloca, even though
  625. ; that's tempting. An argument can't *alias* an alloca, however the aliasing rule
  626. ; relies on restrictions against guessing an object's address and dereferencing.
  627. ; There are no restrictions against guessing an object's address and comparing.
  628. define i1 @alloca_argument_compare(i64* %arg) {
  629. %alloc = alloca i64
  630. %cmp = icmp eq i64* %arg, %alloc
  631. ret i1 %cmp
  632. ; CHECK: alloca_argument_compare
  633. ; CHECK: ret i1 %cmp
  634. }
  635. ; As above, but with the operands reversed.
  636. define i1 @alloca_argument_compare_swapped(i64* %arg) {
  637. %alloc = alloca i64
  638. %cmp = icmp eq i64* %alloc, %arg
  639. ret i1 %cmp
  640. ; CHECK: alloca_argument_compare_swapped
  641. ; CHECK: ret i1 %cmp
  642. }
  643. ; Don't assume that a noalias argument isn't equal to a global variable's
  644. ; address. This is an example where AliasAnalysis' NoAlias concept is
  645. ; different from actual pointer inequality.
  646. @y = external global i32
  647. define zeroext i1 @external_compare(i32* noalias %x) {
  648. %cmp = icmp eq i32* %x, @y
  649. ret i1 %cmp
  650. ; CHECK: external_compare
  651. ; CHECK: ret i1 %cmp
  652. }
  653. define i1 @alloca_gep(i64 %a, i64 %b) {
  654. ; CHECK-LABEL: @alloca_gep(
  655. ; We can prove this GEP is non-null because it is inbounds and the pointer
  656. ; is non-null.
  657. %strs = alloca [1000 x [1001 x i8]], align 16
  658. %x = getelementptr inbounds [1000 x [1001 x i8]], [1000 x [1001 x i8]]* %strs, i64 0, i64 %a, i64 %b
  659. %cmp = icmp eq i8* %x, null
  660. ret i1 %cmp
  661. ; CHECK-NEXT: ret i1 false
  662. }
  663. define i1 @non_inbounds_gep_compare(i64* %a) {
  664. ; CHECK-LABEL: @non_inbounds_gep_compare(
  665. ; Equality compares with non-inbounds GEPs can be folded.
  666. %x = getelementptr i64, i64* %a, i64 42
  667. %y = getelementptr inbounds i64, i64* %x, i64 -42
  668. %z = getelementptr i64, i64* %a, i64 -42
  669. %w = getelementptr inbounds i64, i64* %z, i64 42
  670. %cmp = icmp eq i64* %y, %w
  671. ret i1 %cmp
  672. ; CHECK-NEXT: ret i1 true
  673. }
  674. define i1 @non_inbounds_gep_compare2(i64* %a) {
  675. ; CHECK-LABEL: @non_inbounds_gep_compare2(
  676. ; Equality compares with non-inbounds GEPs can be folded.
  677. %x = getelementptr i64, i64* %a, i64 4294967297
  678. %y = getelementptr i64, i64* %a, i64 1
  679. %cmp = icmp eq i64* %y, %y
  680. ret i1 %cmp
  681. ; CHECK-NEXT: ret i1 true
  682. }
  683. define <4 x i8> @vectorselectfold(<4 x i8> %a, <4 x i8> %b) {
  684. %false = icmp ne <4 x i8> zeroinitializer, zeroinitializer
  685. %sel = select <4 x i1> %false, <4 x i8> %a, <4 x i8> %b
  686. ret <4 x i8> %sel
  687. ; CHECK-LABEL: @vectorselectfold
  688. ; CHECK-NEXT: ret <4 x i8> %b
  689. }
  690. define <4 x i8> @vectorselectfold2(<4 x i8> %a, <4 x i8> %b) {
  691. %true = icmp eq <4 x i8> zeroinitializer, zeroinitializer
  692. %sel = select <4 x i1> %true, <4 x i8> %a, <4 x i8> %b
  693. ret <4 x i8> %sel
  694. ; CHECK-LABEL: @vectorselectfold
  695. ; CHECK-NEXT: ret <4 x i8> %a
  696. }
  697. define i1 @compare_always_true_slt(i16 %a) {
  698. %1 = zext i16 %a to i32
  699. %2 = sub nsw i32 0, %1
  700. %3 = icmp slt i32 %2, 1
  701. ret i1 %3
  702. ; CHECK-LABEL: @compare_always_true_slt
  703. ; CHECK-NEXT: ret i1 true
  704. }
  705. define i1 @compare_always_true_sle(i16 %a) {
  706. %1 = zext i16 %a to i32
  707. %2 = sub nsw i32 0, %1
  708. %3 = icmp sle i32 %2, 0
  709. ret i1 %3
  710. ; CHECK-LABEL: @compare_always_true_sle
  711. ; CHECK-NEXT: ret i1 true
  712. }
  713. define i1 @compare_always_false_sgt(i16 %a) {
  714. %1 = zext i16 %a to i32
  715. %2 = sub nsw i32 0, %1
  716. %3 = icmp sgt i32 %2, 0
  717. ret i1 %3
  718. ; CHECK-LABEL: @compare_always_false_sgt
  719. ; CHECK-NEXT: ret i1 false
  720. }
  721. define i1 @compare_always_false_sge(i16 %a) {
  722. %1 = zext i16 %a to i32
  723. %2 = sub nsw i32 0, %1
  724. %3 = icmp sge i32 %2, 1
  725. ret i1 %3
  726. ; CHECK-LABEL: @compare_always_false_sge
  727. ; CHECK-NEXT: ret i1 false
  728. }
  729. define i1 @compare_always_false_eq(i16 %a) {
  730. %1 = zext i16 %a to i32
  731. %2 = sub nsw i32 0, %1
  732. %3 = icmp eq i32 %2, 1
  733. ret i1 %3
  734. ; CHECK-LABEL: @compare_always_false_eq
  735. ; CHECK-NEXT: ret i1 false
  736. }
  737. define i1 @compare_always_false_ne(i16 %a) {
  738. %1 = zext i16 %a to i32
  739. %2 = sub nsw i32 0, %1
  740. %3 = icmp ne i32 %2, 1
  741. ret i1 %3
  742. ; CHECK-LABEL: @compare_always_false_ne
  743. ; CHECK-NEXT: ret i1 true
  744. }
  745. define i1 @compare_dividend(i32 %a) {
  746. %div = sdiv i32 2, %a
  747. %cmp = icmp eq i32 %div, 3
  748. ret i1 %cmp
  749. ; CHECK-LABEL: @compare_dividend
  750. ; CHECK-NEXT: ret i1 false
  751. }
  752. define i1 @lshr_ugt_false(i32 %a) {
  753. %shr = lshr i32 1, %a
  754. %cmp = icmp ugt i32 %shr, 1
  755. ret i1 %cmp
  756. ; CHECK-LABEL: @lshr_ugt_false
  757. ; CHECK-NEXT: ret i1 false
  758. }
  759. define i1 @exact_lshr_ugt_false(i32 %a) {
  760. %shr = lshr exact i32 30, %a
  761. %cmp = icmp ult i32 %shr, 15
  762. ret i1 %cmp
  763. ; CHECK-LABEL: @exact_lshr_ugt_false
  764. ; CHECK-NEXT: ret i1 false
  765. }
  766. define i1 @lshr_sgt_false(i32 %a) {
  767. %shr = lshr i32 1, %a
  768. %cmp = icmp sgt i32 %shr, 1
  769. ret i1 %cmp
  770. ; CHECK-LABEL: @lshr_sgt_false
  771. ; CHECK-NEXT: ret i1 false
  772. }
  773. define i1 @ashr_sgt_false(i32 %a) {
  774. %shr = ashr i32 -30, %a
  775. %cmp = icmp sgt i32 %shr, -1
  776. ret i1 %cmp
  777. ; CHECK-LABEL: @ashr_sgt_false
  778. ; CHECK-NEXT: ret i1 false
  779. }
  780. define i1 @exact_ashr_sgt_false(i32 %a) {
  781. %shr = ashr exact i32 -30, %a
  782. %cmp = icmp sgt i32 %shr, -15
  783. ret i1 %cmp
  784. ; CHECK-LABEL: @exact_ashr_sgt_false
  785. ; CHECK-NEXT: ret i1 false
  786. }
  787. define i1 @nonnull_arg(i32* nonnull %i) {
  788. %cmp = icmp eq i32* %i, null
  789. ret i1 %cmp
  790. ; CHECK-LABEL: @nonnull_arg
  791. ; CHECK: ret i1 false
  792. }
  793. define i1 @nonnull_deref_arg(i32* dereferenceable(4) %i) {
  794. %cmp = icmp eq i32* %i, null
  795. ret i1 %cmp
  796. ; CHECK-LABEL: @nonnull_deref_arg
  797. ; CHECK: ret i1 false
  798. }
  799. define i1 @nonnull_deref_as_arg(i32 addrspace(1)* dereferenceable(4) %i) {
  800. %cmp = icmp eq i32 addrspace(1)* %i, null
  801. ret i1 %cmp
  802. ; CHECK-LABEL: @nonnull_deref_as_arg
  803. ; CHECK: icmp
  804. ; CHECK: ret
  805. }
  806. declare nonnull i32* @returns_nonnull_helper()
  807. define i1 @returns_nonnull() {
  808. %call = call nonnull i32* @returns_nonnull_helper()
  809. %cmp = icmp eq i32* %call, null
  810. ret i1 %cmp
  811. ; CHECK-LABEL: @returns_nonnull
  812. ; CHECK: ret i1 false
  813. }
  814. declare dereferenceable(4) i32* @returns_nonnull_deref_helper()
  815. define i1 @returns_nonnull_deref() {
  816. %call = call dereferenceable(4) i32* @returns_nonnull_deref_helper()
  817. %cmp = icmp eq i32* %call, null
  818. ret i1 %cmp
  819. ; CHECK-LABEL: @returns_nonnull_deref
  820. ; CHECK: ret i1 false
  821. }
  822. declare dereferenceable(4) i32 addrspace(1)* @returns_nonnull_deref_as_helper()
  823. define i1 @returns_nonnull_as_deref() {
  824. %call = call dereferenceable(4) i32 addrspace(1)* @returns_nonnull_deref_as_helper()
  825. %cmp = icmp eq i32 addrspace(1)* %call, null
  826. ret i1 %cmp
  827. ; CHECK-LABEL: @returns_nonnull_as_deref
  828. ; CHECK: icmp
  829. ; CHECK: ret
  830. }
  831. define i1 @nonnull_load(i32** %addr) {
  832. %ptr = load i32*, i32** %addr, !nonnull !{}
  833. %cmp = icmp eq i32* %ptr, null
  834. ret i1 %cmp
  835. ; CHECK-LABEL: @nonnull_load
  836. ; CHECK: ret i1 false
  837. }
  838. define i1 @nonnull_load_as_outer(i32* addrspace(1)* %addr) {
  839. %ptr = load i32*, i32* addrspace(1)* %addr, !nonnull !{}
  840. %cmp = icmp eq i32* %ptr, null
  841. ret i1 %cmp
  842. ; CHECK-LABEL: @nonnull_load_as_outer
  843. ; CHECK: ret i1 false
  844. }
  845. define i1 @nonnull_load_as_inner(i32 addrspace(1)** %addr) {
  846. %ptr = load i32 addrspace(1)*, i32 addrspace(1)** %addr, !nonnull !{}
  847. %cmp = icmp eq i32 addrspace(1)* %ptr, null
  848. ret i1 %cmp
  849. ; CHECK-LABEL: @nonnull_load_as_inner
  850. ; CHECK: ret i1 false
  851. }
  852. ; If a bit is known to be zero for A and known to be one for B,
  853. ; then A and B cannot be equal.
  854. define i1 @icmp_eq_const(i32 %a) nounwind {
  855. %b = mul nsw i32 %a, -2
  856. %c = icmp eq i32 %b, 1
  857. ret i1 %c
  858. ; CHECK-LABEL: @icmp_eq_const
  859. ; CHECK-NEXT: ret i1 false
  860. }
  861. define i1 @icmp_ne_const(i32 %a) nounwind {
  862. %b = mul nsw i32 %a, -2
  863. %c = icmp ne i32 %b, 1
  864. ret i1 %c
  865. ; CHECK-LABEL: @icmp_ne_const
  866. ; CHECK-NEXT: ret i1 true
  867. }
  868. define i1 @icmp_sdiv_int_min(i32 %a) {
  869. %div = sdiv i32 -2147483648, %a
  870. %cmp = icmp ne i32 %div, -1073741824
  871. ret i1 %cmp
  872. ; CHECK-LABEL: @icmp_sdiv_int_min
  873. ; CHECK-NEXT: [[DIV:%.*]] = sdiv i32 -2147483648, %a
  874. ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[DIV]], -1073741824
  875. ; CHECK-NEXT: ret i1 [[CMP]]
  876. }
  877. define i1 @icmp_sdiv_pr20288(i64 %a) {
  878. %div = sdiv i64 %a, -8589934592
  879. %cmp = icmp ne i64 %div, 1073741824
  880. ret i1 %cmp
  881. ; CHECK-LABEL: @icmp_sdiv_pr20288
  882. ; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 %a, -8589934592
  883. ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i64 [[DIV]], 1073741824
  884. ; CHECK-NEXT: ret i1 [[CMP]]
  885. }
  886. define i1 @icmp_sdiv_neg1(i64 %a) {
  887. %div = sdiv i64 %a, -1
  888. %cmp = icmp ne i64 %div, 1073741824
  889. ret i1 %cmp
  890. ; CHECK-LABEL: @icmp_sdiv_neg1
  891. ; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 %a, -1
  892. ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i64 [[DIV]], 1073741824
  893. ; CHECK-NEXT: ret i1 [[CMP]]
  894. }
  895. define i1 @icmp_known_bits(i4 %x, i4 %y) {
  896. %and1 = and i4 %y, -7
  897. %and2 = and i4 %x, -7
  898. %or1 = or i4 %and1, 2
  899. %or2 = or i4 %and2, 2
  900. %add = add i4 %or1, %or2
  901. %cmp = icmp eq i4 %add, 0
  902. ret i1 %cmp
  903. ; CHECK-LABEL: @icmp_known_bits
  904. ; CHECK-NEXT: ret i1 false
  905. }
  906. define i1 @icmp_shl_nuw_1(i64 %a) {
  907. %shl = shl nuw i64 1, %a
  908. %cmp = icmp ne i64 %shl, 0
  909. ret i1 %cmp
  910. ; CHECK-LABEL: @icmp_shl_nuw_1
  911. ; CHECK-NEXT: ret i1 true
  912. }
  913. define i1 @icmp_shl_nsw_neg1(i64 %a) {
  914. %shl = shl nsw i64 -1, %a
  915. %cmp = icmp sge i64 %shl, 3
  916. ret i1 %cmp
  917. ; CHECK-LABEL: @icmp_shl_nsw_neg1
  918. ; CHECK-NEXT: ret i1 false
  919. }
  920. define i1 @icmp_shl_nsw_1(i64 %a) {
  921. %shl = shl nsw i64 1, %a
  922. %cmp = icmp sge i64 %shl, 0
  923. ret i1 %cmp
  924. ; CHECK-LABEL: @icmp_shl_nsw_1
  925. ; CHECK-NEXT: ret i1 true
  926. }
  927. define i1 @icmp_shl_1_V_ugt_2147483648(i32 %V) {
  928. %shl = shl i32 1, %V
  929. %cmp = icmp ugt i32 %shl, 2147483648
  930. ret i1 %cmp
  931. ; CHECK-LABEL: @icmp_shl_1_V_ugt_2147483648(
  932. ; CHECK-NEXT: ret i1 false
  933. }
  934. define i1 @icmp_shl_1_V_ule_2147483648(i32 %V) {
  935. %shl = shl i32 1, %V
  936. %cmp = icmp ule i32 %shl, 2147483648
  937. ret i1 %cmp
  938. ; CHECK-LABEL: @icmp_shl_1_V_ule_2147483648(
  939. ; CHECK-NEXT: ret i1 true
  940. }
  941. define i1 @icmp_shl_1_V_eq_31(i32 %V) {
  942. %shl = shl i32 1, %V
  943. %cmp = icmp eq i32 %shl, 31
  944. ret i1 %cmp
  945. ; CHECK-LABEL: @icmp_shl_1_V_eq_31(
  946. ; CHECK-NEXT: ret i1 false
  947. }
  948. define i1 @icmp_shl_1_V_ne_31(i32 %V) {
  949. %shl = shl i32 1, %V
  950. %cmp = icmp ne i32 %shl, 31
  951. ret i1 %cmp
  952. ; CHECK-LABEL: @icmp_shl_1_V_ne_31(
  953. ; CHECK-NEXT: ret i1 true
  954. }
  955. define i1 @tautological1(i32 %A, i32 %B) {
  956. %C = and i32 %A, %B
  957. %D = icmp ugt i32 %C, %A
  958. ret i1 %D
  959. ; CHECK-LABEL: @tautological1(
  960. ; CHECK: ret i1 false
  961. }
  962. define i1 @tautological2(i32 %A, i32 %B) {
  963. %C = and i32 %A, %B
  964. %D = icmp ule i32 %C, %A
  965. ret i1 %D
  966. ; CHECK-LABEL: @tautological2(
  967. ; CHECK: ret i1 true
  968. }
  969. define i1 @tautological3(i32 %A, i32 %B) {
  970. %C = or i32 %A, %B
  971. %D = icmp ule i32 %A, %C
  972. ret i1 %D
  973. ; CHECK-LABEL: @tautological3(
  974. ; CHECK: ret i1 true
  975. }
  976. define i1 @tautological4(i32 %A, i32 %B) {
  977. %C = or i32 %A, %B
  978. %D = icmp ugt i32 %A, %C
  979. ret i1 %D
  980. ; CHECK-LABEL: @tautological4(
  981. ; CHECK: ret i1 false
  982. }
  983. define i1 @tautological5(i32 %A, i32 %B) {
  984. %C = or i32 %A, %B
  985. %D = icmp ult i32 %C, %A
  986. ret i1 %D
  987. ; CHECK-LABEL: @tautological5(
  988. ; CHECK: ret i1 false
  989. }
  990. define i1 @tautological6(i32 %A, i32 %B) {
  991. %C = or i32 %A, %B
  992. %D = icmp uge i32 %C, %A
  993. ret i1 %D
  994. ; CHECK-LABEL: @tautological6(
  995. ; CHECK: ret i1 true
  996. }
  997. define i1 @tautological7(i32 %A, i32 %B) {
  998. %C = and i32 %A, %B
  999. %D = icmp uge i32 %A, %C
  1000. ret i1 %D
  1001. ; CHECK-LABEL: @tautological7(
  1002. ; CHECK: ret i1 true
  1003. }
  1004. define i1 @tautological8(i32 %A, i32 %B) {
  1005. %C = and i32 %A, %B
  1006. %D = icmp ult i32 %A, %C
  1007. ret i1 %D
  1008. ; CHECK-LABEL: @tautological8(
  1009. ; CHECK: ret i1 false
  1010. }