minmax_reduction.ll 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885
  1. ; RUN: opt -S -loop-vectorize -dce -instcombine -force-vector-width=2 -force-vector-interleave=1 < %s | FileCheck %s
  2. target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
  3. @A = common global [1024 x i32] zeroinitializer, align 16
  4. @fA = common global [1024 x float] zeroinitializer, align 16
  5. @dA = common global [1024 x double] zeroinitializer, align 16
  6. ; Signed tests.
  7. ; Turn this into a max reduction. Make sure we use a splat to initialize the
  8. ; vector for the reduction.
  9. ; CHECK-LABEL: @max_red(
  10. ; CHECK: %[[VAR:.*]] = insertelement <2 x i32> undef, i32 %max, i32 0
  11. ; CHECK: {{.*}} = shufflevector <2 x i32> %[[VAR]], <2 x i32> undef, <2 x i32> zeroinitializer
  12. ; CHECK: icmp sgt <2 x i32>
  13. ; CHECK: select <2 x i1>
  14. ; CHECK: middle.block
  15. ; CHECK: icmp sgt <2 x i32>
  16. ; CHECK: select i1
  17. define i32 @max_red(i32 %max) {
  18. entry:
  19. br label %for.body
  20. for.body:
  21. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  22. %max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
  23. %arrayidx = getelementptr inbounds [1024 x i32], [1024 x i32]* @A, i64 0, i64 %indvars.iv
  24. %0 = load i32, i32* %arrayidx, align 4
  25. %cmp3 = icmp sgt i32 %0, %max.red.08
  26. %max.red.0 = select i1 %cmp3, i32 %0, i32 %max.red.08
  27. %indvars.iv.next = add i64 %indvars.iv, 1
  28. %lftr.wideiv = trunc i64 %indvars.iv.next to i32
  29. %exitcond = icmp eq i32 %lftr.wideiv, 1024
  30. br i1 %exitcond, label %for.end, label %for.body
  31. for.end:
  32. ret i32 %max.red.0
  33. }
  34. ; Turn this into a max reduction. The select has its inputs reversed therefore
  35. ; this is a max reduction.
  36. ; CHECK-LABEL: @max_red_inverse_select(
  37. ; CHECK: icmp slt <2 x i32>
  38. ; CHECK: select <2 x i1>
  39. ; CHECK: middle.block
  40. ; CHECK: icmp sgt <2 x i32>
  41. ; CHECK: select i1
  42. define i32 @max_red_inverse_select(i32 %max) {
  43. entry:
  44. br label %for.body
  45. for.body:
  46. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  47. %max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
  48. %arrayidx = getelementptr inbounds [1024 x i32], [1024 x i32]* @A, i64 0, i64 %indvars.iv
  49. %0 = load i32, i32* %arrayidx, align 4
  50. %cmp3 = icmp slt i32 %max.red.08, %0
  51. %max.red.0 = select i1 %cmp3, i32 %0, i32 %max.red.08
  52. %indvars.iv.next = add i64 %indvars.iv, 1
  53. %lftr.wideiv = trunc i64 %indvars.iv.next to i32
  54. %exitcond = icmp eq i32 %lftr.wideiv, 1024
  55. br i1 %exitcond, label %for.end, label %for.body
  56. for.end:
  57. ret i32 %max.red.0
  58. }
  59. ; Turn this into a min reduction.
  60. ; CHECK-LABEL: @min_red(
  61. ; CHECK: icmp slt <2 x i32>
  62. ; CHECK: select <2 x i1>
  63. ; CHECK: middle.block
  64. ; CHECK: icmp slt <2 x i32>
  65. ; CHECK: select i1
  66. define i32 @min_red(i32 %max) {
  67. entry:
  68. br label %for.body
  69. for.body:
  70. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  71. %max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
  72. %arrayidx = getelementptr inbounds [1024 x i32], [1024 x i32]* @A, i64 0, i64 %indvars.iv
  73. %0 = load i32, i32* %arrayidx, align 4
  74. %cmp3 = icmp slt i32 %0, %max.red.08
  75. %max.red.0 = select i1 %cmp3, i32 %0, i32 %max.red.08
  76. %indvars.iv.next = add i64 %indvars.iv, 1
  77. %lftr.wideiv = trunc i64 %indvars.iv.next to i32
  78. %exitcond = icmp eq i32 %lftr.wideiv, 1024
  79. br i1 %exitcond, label %for.end, label %for.body
  80. for.end:
  81. ret i32 %max.red.0
  82. }
  83. ; Turn this into a min reduction. The select has its inputs reversed therefore
  84. ; this is a min reduction.
  85. ; CHECK-LABEL: @min_red_inverse_select(
  86. ; CHECK: icmp sgt <2 x i32>
  87. ; CHECK: select <2 x i1>
  88. ; CHECK: middle.block
  89. ; CHECK: icmp slt <2 x i32>
  90. ; CHECK: select i1
  91. define i32 @min_red_inverse_select(i32 %max) {
  92. entry:
  93. br label %for.body
  94. for.body:
  95. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  96. %max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
  97. %arrayidx = getelementptr inbounds [1024 x i32], [1024 x i32]* @A, i64 0, i64 %indvars.iv
  98. %0 = load i32, i32* %arrayidx, align 4
  99. %cmp3 = icmp sgt i32 %max.red.08, %0
  100. %max.red.0 = select i1 %cmp3, i32 %0, i32 %max.red.08
  101. %indvars.iv.next = add i64 %indvars.iv, 1
  102. %lftr.wideiv = trunc i64 %indvars.iv.next to i32
  103. %exitcond = icmp eq i32 %lftr.wideiv, 1024
  104. br i1 %exitcond, label %for.end, label %for.body
  105. for.end:
  106. ret i32 %max.red.0
  107. }
  108. ; Unsigned tests.
  109. ; Turn this into a max reduction.
  110. ; CHECK-LABEL: @umax_red(
  111. ; CHECK: icmp ugt <2 x i32>
  112. ; CHECK: select <2 x i1>
  113. ; CHECK: middle.block
  114. ; CHECK: icmp ugt <2 x i32>
  115. ; CHECK: select i1
  116. define i32 @umax_red(i32 %max) {
  117. entry:
  118. br label %for.body
  119. for.body:
  120. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  121. %max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
  122. %arrayidx = getelementptr inbounds [1024 x i32], [1024 x i32]* @A, i64 0, i64 %indvars.iv
  123. %0 = load i32, i32* %arrayidx, align 4
  124. %cmp3 = icmp ugt i32 %0, %max.red.08
  125. %max.red.0 = select i1 %cmp3, i32 %0, i32 %max.red.08
  126. %indvars.iv.next = add i64 %indvars.iv, 1
  127. %lftr.wideiv = trunc i64 %indvars.iv.next to i32
  128. %exitcond = icmp eq i32 %lftr.wideiv, 1024
  129. br i1 %exitcond, label %for.end, label %for.body
  130. for.end:
  131. ret i32 %max.red.0
  132. }
  133. ; Turn this into a max reduction. The select has its inputs reversed therefore
  134. ; this is a max reduction.
  135. ; CHECK-LABEL: @umax_red_inverse_select(
  136. ; CHECK: icmp ult <2 x i32>
  137. ; CHECK: select <2 x i1>
  138. ; CHECK: middle.block
  139. ; CHECK: icmp ugt <2 x i32>
  140. ; CHECK: select i1
  141. define i32 @umax_red_inverse_select(i32 %max) {
  142. entry:
  143. br label %for.body
  144. for.body:
  145. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  146. %max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
  147. %arrayidx = getelementptr inbounds [1024 x i32], [1024 x i32]* @A, i64 0, i64 %indvars.iv
  148. %0 = load i32, i32* %arrayidx, align 4
  149. %cmp3 = icmp ult i32 %max.red.08, %0
  150. %max.red.0 = select i1 %cmp3, i32 %0, i32 %max.red.08
  151. %indvars.iv.next = add i64 %indvars.iv, 1
  152. %lftr.wideiv = trunc i64 %indvars.iv.next to i32
  153. %exitcond = icmp eq i32 %lftr.wideiv, 1024
  154. br i1 %exitcond, label %for.end, label %for.body
  155. for.end:
  156. ret i32 %max.red.0
  157. }
  158. ; Turn this into a min reduction.
  159. ; CHECK-LABEL: @umin_red(
  160. ; CHECK: icmp ult <2 x i32>
  161. ; CHECK: select <2 x i1>
  162. ; CHECK: middle.block
  163. ; CHECK: icmp ult <2 x i32>
  164. ; CHECK: select i1
  165. define i32 @umin_red(i32 %max) {
  166. entry:
  167. br label %for.body
  168. for.body:
  169. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  170. %max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
  171. %arrayidx = getelementptr inbounds [1024 x i32], [1024 x i32]* @A, i64 0, i64 %indvars.iv
  172. %0 = load i32, i32* %arrayidx, align 4
  173. %cmp3 = icmp ult i32 %0, %max.red.08
  174. %max.red.0 = select i1 %cmp3, i32 %0, i32 %max.red.08
  175. %indvars.iv.next = add i64 %indvars.iv, 1
  176. %lftr.wideiv = trunc i64 %indvars.iv.next to i32
  177. %exitcond = icmp eq i32 %lftr.wideiv, 1024
  178. br i1 %exitcond, label %for.end, label %for.body
  179. for.end:
  180. ret i32 %max.red.0
  181. }
  182. ; Turn this into a min reduction. The select has its inputs reversed therefore
  183. ; this is a min reduction.
  184. ; CHECK-LABEL: @umin_red_inverse_select(
  185. ; CHECK: icmp ugt <2 x i32>
  186. ; CHECK: select <2 x i1>
  187. ; CHECK: middle.block
  188. ; CHECK: icmp ult <2 x i32>
  189. ; CHECK: select i1
  190. define i32 @umin_red_inverse_select(i32 %max) {
  191. entry:
  192. br label %for.body
  193. for.body:
  194. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  195. %max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
  196. %arrayidx = getelementptr inbounds [1024 x i32], [1024 x i32]* @A, i64 0, i64 %indvars.iv
  197. %0 = load i32, i32* %arrayidx, align 4
  198. %cmp3 = icmp ugt i32 %max.red.08, %0
  199. %max.red.0 = select i1 %cmp3, i32 %0, i32 %max.red.08
  200. %indvars.iv.next = add i64 %indvars.iv, 1
  201. %lftr.wideiv = trunc i64 %indvars.iv.next to i32
  202. %exitcond = icmp eq i32 %lftr.wideiv, 1024
  203. br i1 %exitcond, label %for.end, label %for.body
  204. for.end:
  205. ret i32 %max.red.0
  206. }
  207. ; SGE -> SLT
  208. ; Turn this into a min reduction (select inputs are reversed).
  209. ; CHECK-LABEL: @sge_min_red(
  210. ; CHECK: icmp sge <2 x i32>
  211. ; CHECK: select <2 x i1>
  212. ; CHECK: middle.block
  213. ; CHECK: icmp slt <2 x i32>
  214. ; CHECK: select i1
  215. define i32 @sge_min_red(i32 %max) {
  216. entry:
  217. br label %for.body
  218. for.body:
  219. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  220. %max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
  221. %arrayidx = getelementptr inbounds [1024 x i32], [1024 x i32]* @A, i64 0, i64 %indvars.iv
  222. %0 = load i32, i32* %arrayidx, align 4
  223. %cmp3 = icmp sge i32 %0, %max.red.08
  224. %max.red.0 = select i1 %cmp3, i32 %max.red.08, i32 %0
  225. %indvars.iv.next = add i64 %indvars.iv, 1
  226. %lftr.wideiv = trunc i64 %indvars.iv.next to i32
  227. %exitcond = icmp eq i32 %lftr.wideiv, 1024
  228. br i1 %exitcond, label %for.end, label %for.body
  229. for.end:
  230. ret i32 %max.red.0
  231. }
  232. ; SLE -> SGT
  233. ; Turn this into a max reduction (select inputs are reversed).
  234. ; CHECK-LABEL: @sle_min_red(
  235. ; CHECK: icmp sle <2 x i32>
  236. ; CHECK: select <2 x i1>
  237. ; CHECK: middle.block
  238. ; CHECK: icmp sgt <2 x i32>
  239. ; CHECK: select i1
  240. define i32 @sle_min_red(i32 %max) {
  241. entry:
  242. br label %for.body
  243. for.body:
  244. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  245. %max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
  246. %arrayidx = getelementptr inbounds [1024 x i32], [1024 x i32]* @A, i64 0, i64 %indvars.iv
  247. %0 = load i32, i32* %arrayidx, align 4
  248. %cmp3 = icmp sle i32 %0, %max.red.08
  249. %max.red.0 = select i1 %cmp3, i32 %max.red.08, i32 %0
  250. %indvars.iv.next = add i64 %indvars.iv, 1
  251. %lftr.wideiv = trunc i64 %indvars.iv.next to i32
  252. %exitcond = icmp eq i32 %lftr.wideiv, 1024
  253. br i1 %exitcond, label %for.end, label %for.body
  254. for.end:
  255. ret i32 %max.red.0
  256. }
  257. ; UGE -> ULT
  258. ; Turn this into a min reduction (select inputs are reversed).
  259. ; CHECK-LABEL: @uge_min_red(
  260. ; CHECK: icmp uge <2 x i32>
  261. ; CHECK: select <2 x i1>
  262. ; CHECK: middle.block
  263. ; CHECK: icmp ult <2 x i32>
  264. ; CHECK: select i1
  265. define i32 @uge_min_red(i32 %max) {
  266. entry:
  267. br label %for.body
  268. for.body:
  269. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  270. %max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
  271. %arrayidx = getelementptr inbounds [1024 x i32], [1024 x i32]* @A, i64 0, i64 %indvars.iv
  272. %0 = load i32, i32* %arrayidx, align 4
  273. %cmp3 = icmp uge i32 %0, %max.red.08
  274. %max.red.0 = select i1 %cmp3, i32 %max.red.08, i32 %0
  275. %indvars.iv.next = add i64 %indvars.iv, 1
  276. %lftr.wideiv = trunc i64 %indvars.iv.next to i32
  277. %exitcond = icmp eq i32 %lftr.wideiv, 1024
  278. br i1 %exitcond, label %for.end, label %for.body
  279. for.end:
  280. ret i32 %max.red.0
  281. }
  282. ; ULE -> UGT
  283. ; Turn this into a max reduction (select inputs are reversed).
  284. ; CHECK-LABEL: @ule_min_red(
  285. ; CHECK: icmp ule <2 x i32>
  286. ; CHECK: select <2 x i1>
  287. ; CHECK: middle.block
  288. ; CHECK: icmp ugt <2 x i32>
  289. ; CHECK: select i1
  290. define i32 @ule_min_red(i32 %max) {
  291. entry:
  292. br label %for.body
  293. for.body:
  294. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  295. %max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
  296. %arrayidx = getelementptr inbounds [1024 x i32], [1024 x i32]* @A, i64 0, i64 %indvars.iv
  297. %0 = load i32, i32* %arrayidx, align 4
  298. %cmp3 = icmp ule i32 %0, %max.red.08
  299. %max.red.0 = select i1 %cmp3, i32 %max.red.08, i32 %0
  300. %indvars.iv.next = add i64 %indvars.iv, 1
  301. %lftr.wideiv = trunc i64 %indvars.iv.next to i32
  302. %exitcond = icmp eq i32 %lftr.wideiv, 1024
  303. br i1 %exitcond, label %for.end, label %for.body
  304. for.end:
  305. ret i32 %max.red.0
  306. }
  307. ; No reduction.
  308. ; CHECK-LABEL: @no_red_1(
  309. ; CHECK-NOT: icmp <2 x i32>
  310. define i32 @no_red_1(i32 %max) {
  311. entry:
  312. br label %for.body
  313. for.body:
  314. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  315. %max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
  316. %arrayidx = getelementptr inbounds [1024 x i32], [1024 x i32]* @A, i64 0, i64 %indvars.iv
  317. %arrayidx1 = getelementptr inbounds [1024 x i32], [1024 x i32]* @A, i64 1, i64 %indvars.iv
  318. %0 = load i32, i32* %arrayidx, align 4
  319. %1 = load i32, i32* %arrayidx1, align 4
  320. %cmp3 = icmp sgt i32 %0, %1
  321. %max.red.0 = select i1 %cmp3, i32 %0, i32 %max.red.08
  322. %indvars.iv.next = add i64 %indvars.iv, 1
  323. %lftr.wideiv = trunc i64 %indvars.iv.next to i32
  324. %exitcond = icmp eq i32 %lftr.wideiv, 1024
  325. br i1 %exitcond, label %for.end, label %for.body
  326. for.end:
  327. ret i32 %max.red.0
  328. }
  329. ; CHECK-LABEL: @no_red_2(
  330. ; CHECK-NOT: icmp <2 x i32>
  331. define i32 @no_red_2(i32 %max) {
  332. entry:
  333. br label %for.body
  334. for.body:
  335. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  336. %max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
  337. %arrayidx = getelementptr inbounds [1024 x i32], [1024 x i32]* @A, i64 0, i64 %indvars.iv
  338. %arrayidx1 = getelementptr inbounds [1024 x i32], [1024 x i32]* @A, i64 1, i64 %indvars.iv
  339. %0 = load i32, i32* %arrayidx, align 4
  340. %1 = load i32, i32* %arrayidx1, align 4
  341. %cmp3 = icmp sgt i32 %0, %max.red.08
  342. %max.red.0 = select i1 %cmp3, i32 %0, i32 %1
  343. %indvars.iv.next = add i64 %indvars.iv, 1
  344. %lftr.wideiv = trunc i64 %indvars.iv.next to i32
  345. %exitcond = icmp eq i32 %lftr.wideiv, 1024
  346. br i1 %exitcond, label %for.end, label %for.body
  347. for.end:
  348. ret i32 %max.red.0
  349. }
  350. ; Float tests.
  351. ; Maximum.
  352. ; Turn this into a max reduction in the presence of a no-nans-fp-math attribute.
  353. ; CHECK-LABEL: @max_red_float(
  354. ; CHECK: fcmp ogt <2 x float>
  355. ; CHECK: select <2 x i1>
  356. ; CHECK: middle.block
  357. ; CHECK: fcmp ogt <2 x float>
  358. ; CHECK: select i1
  359. define float @max_red_float(float %max) #0 {
  360. entry:
  361. br label %for.body
  362. for.body:
  363. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  364. %max.red.08 = phi float [ %max, %entry ], [ %max.red.0, %for.body ]
  365. %arrayidx = getelementptr inbounds [1024 x float], [1024 x float]* @fA, i64 0, i64 %indvars.iv
  366. %0 = load float, float* %arrayidx, align 4
  367. %cmp3 = fcmp ogt float %0, %max.red.08
  368. %max.red.0 = select i1 %cmp3, float %0, float %max.red.08
  369. %indvars.iv.next = add i64 %indvars.iv, 1
  370. %exitcond = icmp eq i64 %indvars.iv.next, 1024
  371. br i1 %exitcond, label %for.end, label %for.body
  372. for.end:
  373. ret float %max.red.0
  374. }
  375. ; CHECK-LABEL: @max_red_float_ge(
  376. ; CHECK: fcmp oge <2 x float>
  377. ; CHECK: select <2 x i1>
  378. ; CHECK: middle.block
  379. ; CHECK: fcmp ogt <2 x float>
  380. ; CHECK: select i1
  381. define float @max_red_float_ge(float %max) #0 {
  382. entry:
  383. br label %for.body
  384. for.body:
  385. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  386. %max.red.08 = phi float [ %max, %entry ], [ %max.red.0, %for.body ]
  387. %arrayidx = getelementptr inbounds [1024 x float], [1024 x float]* @fA, i64 0, i64 %indvars.iv
  388. %0 = load float, float* %arrayidx, align 4
  389. %cmp3 = fcmp oge float %0, %max.red.08
  390. %max.red.0 = select i1 %cmp3, float %0, float %max.red.08
  391. %indvars.iv.next = add i64 %indvars.iv, 1
  392. %exitcond = icmp eq i64 %indvars.iv.next, 1024
  393. br i1 %exitcond, label %for.end, label %for.body
  394. for.end:
  395. ret float %max.red.0
  396. }
  397. ; CHECK-LABEL: @inverted_max_red_float(
  398. ; CHECK: fcmp olt <2 x float>
  399. ; CHECK: select <2 x i1>
  400. ; CHECK: middle.block
  401. ; CHECK: fcmp ogt <2 x float>
  402. ; CHECK: select i1
  403. define float @inverted_max_red_float(float %max) #0 {
  404. entry:
  405. br label %for.body
  406. for.body:
  407. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  408. %max.red.08 = phi float [ %max, %entry ], [ %max.red.0, %for.body ]
  409. %arrayidx = getelementptr inbounds [1024 x float], [1024 x float]* @fA, i64 0, i64 %indvars.iv
  410. %0 = load float, float* %arrayidx, align 4
  411. %cmp3 = fcmp olt float %0, %max.red.08
  412. %max.red.0 = select i1 %cmp3, float %max.red.08, float %0
  413. %indvars.iv.next = add i64 %indvars.iv, 1
  414. %exitcond = icmp eq i64 %indvars.iv.next, 1024
  415. br i1 %exitcond, label %for.end, label %for.body
  416. for.end:
  417. ret float %max.red.0
  418. }
  419. ; CHECK-LABEL: @inverted_max_red_float_le(
  420. ; CHECK: fcmp ole <2 x float>
  421. ; CHECK: select <2 x i1>
  422. ; CHECK: middle.block
  423. ; CHECK: fcmp ogt <2 x float>
  424. ; CHECK: select i1
  425. define float @inverted_max_red_float_le(float %max) #0 {
  426. entry:
  427. br label %for.body
  428. for.body:
  429. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  430. %max.red.08 = phi float [ %max, %entry ], [ %max.red.0, %for.body ]
  431. %arrayidx = getelementptr inbounds [1024 x float], [1024 x float]* @fA, i64 0, i64 %indvars.iv
  432. %0 = load float, float* %arrayidx, align 4
  433. %cmp3 = fcmp ole float %0, %max.red.08
  434. %max.red.0 = select i1 %cmp3, float %max.red.08, float %0
  435. %indvars.iv.next = add i64 %indvars.iv, 1
  436. %exitcond = icmp eq i64 %indvars.iv.next, 1024
  437. br i1 %exitcond, label %for.end, label %for.body
  438. for.end:
  439. ret float %max.red.0
  440. }
  441. ; CHECK-LABEL: @unordered_max_red_float(
  442. ; CHECK: fcmp ole <2 x float>
  443. ; CHECK: select <2 x i1>
  444. ; CHECK: middle.block
  445. ; CHECK: fcmp ogt <2 x float>
  446. ; CHECK: select i1
  447. define float @unordered_max_red_float(float %max) #0 {
  448. entry:
  449. br label %for.body
  450. for.body:
  451. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  452. %max.red.08 = phi float [ %max, %entry ], [ %max.red.0, %for.body ]
  453. %arrayidx = getelementptr inbounds [1024 x float], [1024 x float]* @fA, i64 0, i64 %indvars.iv
  454. %0 = load float, float* %arrayidx, align 4
  455. %cmp3 = fcmp ugt float %0, %max.red.08
  456. %max.red.0 = select i1 %cmp3, float %0, float %max.red.08
  457. %indvars.iv.next = add i64 %indvars.iv, 1
  458. %exitcond = icmp eq i64 %indvars.iv.next, 1024
  459. br i1 %exitcond, label %for.end, label %for.body
  460. for.end:
  461. ret float %max.red.0
  462. }
  463. ; CHECK-LABEL: @unordered_max_red_float_ge(
  464. ; CHECK: fcmp olt <2 x float>
  465. ; CHECK: select <2 x i1>
  466. ; CHECK: middle.block
  467. ; CHECK: fcmp ogt <2 x float>
  468. ; CHECK: select i1
  469. define float @unordered_max_red_float_ge(float %max) #0 {
  470. entry:
  471. br label %for.body
  472. for.body:
  473. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  474. %max.red.08 = phi float [ %max, %entry ], [ %max.red.0, %for.body ]
  475. %arrayidx = getelementptr inbounds [1024 x float], [1024 x float]* @fA, i64 0, i64 %indvars.iv
  476. %0 = load float, float* %arrayidx, align 4
  477. %cmp3 = fcmp uge float %0, %max.red.08
  478. %max.red.0 = select i1 %cmp3, float %0, float %max.red.08
  479. %indvars.iv.next = add i64 %indvars.iv, 1
  480. %exitcond = icmp eq i64 %indvars.iv.next, 1024
  481. br i1 %exitcond, label %for.end, label %for.body
  482. for.end:
  483. ret float %max.red.0
  484. }
  485. ; CHECK-LABEL: @inverted_unordered_max_red_float(
  486. ; CHECK: fcmp oge <2 x float>
  487. ; CHECK: select <2 x i1>
  488. ; CHECK: middle.block
  489. ; CHECK: fcmp ogt <2 x float>
  490. ; CHECK: select i1
  491. define float @inverted_unordered_max_red_float(float %max) #0 {
  492. entry:
  493. br label %for.body
  494. for.body:
  495. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  496. %max.red.08 = phi float [ %max, %entry ], [ %max.red.0, %for.body ]
  497. %arrayidx = getelementptr inbounds [1024 x float], [1024 x float]* @fA, i64 0, i64 %indvars.iv
  498. %0 = load float, float* %arrayidx, align 4
  499. %cmp3 = fcmp ult float %0, %max.red.08
  500. %max.red.0 = select i1 %cmp3, float %max.red.08, float %0
  501. %indvars.iv.next = add i64 %indvars.iv, 1
  502. %exitcond = icmp eq i64 %indvars.iv.next, 1024
  503. br i1 %exitcond, label %for.end, label %for.body
  504. for.end:
  505. ret float %max.red.0
  506. }
  507. ; CHECK-LABEL: @inverted_unordered_max_red_float_le(
  508. ; CHECK: fcmp ogt <2 x float>
  509. ; CHECK: select <2 x i1>
  510. ; CHECK: middle.block
  511. ; CHECK: fcmp ogt <2 x float>
  512. ; CHECK: select i1
  513. define float @inverted_unordered_max_red_float_le(float %max) #0 {
  514. entry:
  515. br label %for.body
  516. for.body:
  517. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  518. %max.red.08 = phi float [ %max, %entry ], [ %max.red.0, %for.body ]
  519. %arrayidx = getelementptr inbounds [1024 x float], [1024 x float]* @fA, i64 0, i64 %indvars.iv
  520. %0 = load float, float* %arrayidx, align 4
  521. %cmp3 = fcmp ule float %0, %max.red.08
  522. %max.red.0 = select i1 %cmp3, float %max.red.08, float %0
  523. %indvars.iv.next = add i64 %indvars.iv, 1
  524. %exitcond = icmp eq i64 %indvars.iv.next, 1024
  525. br i1 %exitcond, label %for.end, label %for.body
  526. for.end:
  527. ret float %max.red.0
  528. }
  529. ; Minimum.
  530. ; Turn this into a min reduction in the presence of a no-nans-fp-math attribute.
  531. ; CHECK-LABEL: @min_red_float(
  532. ; CHECK: fcmp olt <2 x float>
  533. ; CHECK: select <2 x i1>
  534. ; CHECK: middle.block
  535. ; CHECK: fcmp olt <2 x float>
  536. ; CHECK: select i1
  537. define float @min_red_float(float %min) #0 {
  538. entry:
  539. br label %for.body
  540. for.body:
  541. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  542. %min.red.08 = phi float [ %min, %entry ], [ %min.red.0, %for.body ]
  543. %arrayidx = getelementptr inbounds [1024 x float], [1024 x float]* @fA, i64 0, i64 %indvars.iv
  544. %0 = load float, float* %arrayidx, align 4
  545. %cmp3 = fcmp olt float %0, %min.red.08
  546. %min.red.0 = select i1 %cmp3, float %0, float %min.red.08
  547. %indvars.iv.next = add i64 %indvars.iv, 1
  548. %exitcond = icmp eq i64 %indvars.iv.next, 1024
  549. br i1 %exitcond, label %for.end, label %for.body
  550. for.end:
  551. ret float %min.red.0
  552. }
  553. ; CHECK-LABEL: @min_red_float_le(
  554. ; CHECK: fcmp ole <2 x float>
  555. ; CHECK: select <2 x i1>
  556. ; CHECK: middle.block
  557. ; CHECK: fcmp olt <2 x float>
  558. ; CHECK: select i1
  559. define float @min_red_float_le(float %min) #0 {
  560. entry:
  561. br label %for.body
  562. for.body:
  563. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  564. %min.red.08 = phi float [ %min, %entry ], [ %min.red.0, %for.body ]
  565. %arrayidx = getelementptr inbounds [1024 x float], [1024 x float]* @fA, i64 0, i64 %indvars.iv
  566. %0 = load float, float* %arrayidx, align 4
  567. %cmp3 = fcmp ole float %0, %min.red.08
  568. %min.red.0 = select i1 %cmp3, float %0, float %min.red.08
  569. %indvars.iv.next = add i64 %indvars.iv, 1
  570. %exitcond = icmp eq i64 %indvars.iv.next, 1024
  571. br i1 %exitcond, label %for.end, label %for.body
  572. for.end:
  573. ret float %min.red.0
  574. }
  575. ; CHECK-LABEL: @inverted_min_red_float(
  576. ; CHECK: fcmp ogt <2 x float>
  577. ; CHECK: select <2 x i1>
  578. ; CHECK: middle.block
  579. ; CHECK: fcmp olt <2 x float>
  580. ; CHECK: select i1
  581. define float @inverted_min_red_float(float %min) #0 {
  582. entry:
  583. br label %for.body
  584. for.body:
  585. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  586. %min.red.08 = phi float [ %min, %entry ], [ %min.red.0, %for.body ]
  587. %arrayidx = getelementptr inbounds [1024 x float], [1024 x float]* @fA, i64 0, i64 %indvars.iv
  588. %0 = load float, float* %arrayidx, align 4
  589. %cmp3 = fcmp ogt float %0, %min.red.08
  590. %min.red.0 = select i1 %cmp3, float %min.red.08, float %0
  591. %indvars.iv.next = add i64 %indvars.iv, 1
  592. %exitcond = icmp eq i64 %indvars.iv.next, 1024
  593. br i1 %exitcond, label %for.end, label %for.body
  594. for.end:
  595. ret float %min.red.0
  596. }
  597. ; CHECK-LABEL: @inverted_min_red_float_ge(
  598. ; CHECK: fcmp oge <2 x float>
  599. ; CHECK: select <2 x i1>
  600. ; CHECK: middle.block
  601. ; CHECK: fcmp olt <2 x float>
  602. ; CHECK: select i1
  603. define float @inverted_min_red_float_ge(float %min) #0 {
  604. entry:
  605. br label %for.body
  606. for.body:
  607. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  608. %min.red.08 = phi float [ %min, %entry ], [ %min.red.0, %for.body ]
  609. %arrayidx = getelementptr inbounds [1024 x float], [1024 x float]* @fA, i64 0, i64 %indvars.iv
  610. %0 = load float, float* %arrayidx, align 4
  611. %cmp3 = fcmp oge float %0, %min.red.08
  612. %min.red.0 = select i1 %cmp3, float %min.red.08, float %0
  613. %indvars.iv.next = add i64 %indvars.iv, 1
  614. %exitcond = icmp eq i64 %indvars.iv.next, 1024
  615. br i1 %exitcond, label %for.end, label %for.body
  616. for.end:
  617. ret float %min.red.0
  618. }
  619. ; CHECK-LABEL: @unordered_min_red_float(
  620. ; CHECK: fcmp oge <2 x float>
  621. ; CHECK: select <2 x i1>
  622. ; CHECK: middle.block
  623. ; CHECK: fcmp olt <2 x float>
  624. ; CHECK: select i1
  625. define float @unordered_min_red_float(float %min) #0 {
  626. entry:
  627. br label %for.body
  628. for.body:
  629. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  630. %min.red.08 = phi float [ %min, %entry ], [ %min.red.0, %for.body ]
  631. %arrayidx = getelementptr inbounds [1024 x float], [1024 x float]* @fA, i64 0, i64 %indvars.iv
  632. %0 = load float, float* %arrayidx, align 4
  633. %cmp3 = fcmp ult float %0, %min.red.08
  634. %min.red.0 = select i1 %cmp3, float %0, float %min.red.08
  635. %indvars.iv.next = add i64 %indvars.iv, 1
  636. %exitcond = icmp eq i64 %indvars.iv.next, 1024
  637. br i1 %exitcond, label %for.end, label %for.body
  638. for.end:
  639. ret float %min.red.0
  640. }
  641. ; CHECK-LABEL: @unordered_min_red_float_le(
  642. ; CHECK: fcmp ogt <2 x float>
  643. ; CHECK: select <2 x i1>
  644. ; CHECK: middle.block
  645. ; CHECK: fcmp olt <2 x float>
  646. ; CHECK: select i1
  647. define float @unordered_min_red_float_le(float %min) #0 {
  648. entry:
  649. br label %for.body
  650. for.body:
  651. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  652. %min.red.08 = phi float [ %min, %entry ], [ %min.red.0, %for.body ]
  653. %arrayidx = getelementptr inbounds [1024 x float], [1024 x float]* @fA, i64 0, i64 %indvars.iv
  654. %0 = load float, float* %arrayidx, align 4
  655. %cmp3 = fcmp ule float %0, %min.red.08
  656. %min.red.0 = select i1 %cmp3, float %0, float %min.red.08
  657. %indvars.iv.next = add i64 %indvars.iv, 1
  658. %exitcond = icmp eq i64 %indvars.iv.next, 1024
  659. br i1 %exitcond, label %for.end, label %for.body
  660. for.end:
  661. ret float %min.red.0
  662. }
  663. ; CHECK-LABEL: @inverted_unordered_min_red_float(
  664. ; CHECK: fcmp ole <2 x float>
  665. ; CHECK: select <2 x i1>
  666. ; CHECK: middle.block
  667. ; CHECK: fcmp olt <2 x float>
  668. ; CHECK: select i1
  669. define float @inverted_unordered_min_red_float(float %min) #0 {
  670. entry:
  671. br label %for.body
  672. for.body:
  673. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  674. %min.red.08 = phi float [ %min, %entry ], [ %min.red.0, %for.body ]
  675. %arrayidx = getelementptr inbounds [1024 x float], [1024 x float]* @fA, i64 0, i64 %indvars.iv
  676. %0 = load float, float* %arrayidx, align 4
  677. %cmp3 = fcmp ugt float %0, %min.red.08
  678. %min.red.0 = select i1 %cmp3, float %min.red.08, float %0
  679. %indvars.iv.next = add i64 %indvars.iv, 1
  680. %exitcond = icmp eq i64 %indvars.iv.next, 1024
  681. br i1 %exitcond, label %for.end, label %for.body
  682. for.end:
  683. ret float %min.red.0
  684. }
  685. ; CHECK-LABEL: @inverted_unordered_min_red_float_ge(
  686. ; CHECK: fcmp olt <2 x float>
  687. ; CHECK: select <2 x i1>
  688. ; CHECK: middle.block
  689. ; CHECK: fcmp olt <2 x float>
  690. ; CHECK: select i1
  691. define float @inverted_unordered_min_red_float_ge(float %min) #0 {
  692. entry:
  693. br label %for.body
  694. for.body:
  695. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  696. %min.red.08 = phi float [ %min, %entry ], [ %min.red.0, %for.body ]
  697. %arrayidx = getelementptr inbounds [1024 x float], [1024 x float]* @fA, i64 0, i64 %indvars.iv
  698. %0 = load float, float* %arrayidx, align 4
  699. %cmp3 = fcmp uge float %0, %min.red.08
  700. %min.red.0 = select i1 %cmp3, float %min.red.08, float %0
  701. %indvars.iv.next = add i64 %indvars.iv, 1
  702. %exitcond = icmp eq i64 %indvars.iv.next, 1024
  703. br i1 %exitcond, label %for.end, label %for.body
  704. for.end:
  705. ret float %min.red.0
  706. }
  707. ; Make sure we handle doubles, too.
  708. ; CHECK-LABEL: @min_red_double(
  709. ; CHECK: fcmp olt <2 x double>
  710. ; CHECK: select <2 x i1>
  711. ; CHECK: middle.block
  712. ; CHECK: fcmp olt <2 x double>
  713. ; CHECK: select i1
  714. define double @min_red_double(double %min) #0 {
  715. entry:
  716. br label %for.body
  717. for.body:
  718. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  719. %min.red.08 = phi double [ %min, %entry ], [ %min.red.0, %for.body ]
  720. %arrayidx = getelementptr inbounds [1024 x double], [1024 x double]* @dA, i64 0, i64 %indvars.iv
  721. %0 = load double, double* %arrayidx, align 4
  722. %cmp3 = fcmp olt double %0, %min.red.08
  723. %min.red.0 = select i1 %cmp3, double %0, double %min.red.08
  724. %indvars.iv.next = add i64 %indvars.iv, 1
  725. %exitcond = icmp eq i64 %indvars.iv.next, 1024
  726. br i1 %exitcond, label %for.end, label %for.body
  727. for.end:
  728. ret double %min.red.0
  729. }
  730. ; Don't this into a max reduction. The no-nans-fp-math attribute is missing
  731. ; CHECK-LABEL: @max_red_float_nans(
  732. ; CHECK-NOT: <2 x float>
  733. define float @max_red_float_nans(float %max) {
  734. entry:
  735. br label %for.body
  736. for.body:
  737. %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
  738. %max.red.08 = phi float [ %max, %entry ], [ %max.red.0, %for.body ]
  739. %arrayidx = getelementptr inbounds [1024 x float], [1024 x float]* @fA, i64 0, i64 %indvars.iv
  740. %0 = load float, float* %arrayidx, align 4
  741. %cmp3 = fcmp ogt float %0, %max.red.08
  742. %max.red.0 = select i1 %cmp3, float %0, float %max.red.08
  743. %indvars.iv.next = add i64 %indvars.iv, 1
  744. %exitcond = icmp eq i64 %indvars.iv.next, 1024
  745. br i1 %exitcond, label %for.end, label %for.body
  746. for.end:
  747. ret float %max.red.0
  748. }
  749. attributes #0 = { "no-nans-fp-math"="true" }