IRBuilderTest.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389
  1. //===- llvm/unittest/IR/IRBuilderTest.cpp - IRBuilder tests ---------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. #include "llvm/IR/IRBuilder.h"
  10. #include "llvm/IR/BasicBlock.h"
  11. #include "llvm/IR/DataLayout.h"
  12. #include "llvm/IR/DIBuilder.h"
  13. #include "llvm/IR/Function.h"
  14. #include "llvm/IR/IntrinsicInst.h"
  15. #include "llvm/IR/LLVMContext.h"
  16. #include "llvm/IR/MDBuilder.h"
  17. #include "llvm/IR/Module.h"
  18. #include "llvm/IR/NoFolder.h"
  19. #include "llvm/IR/Verifier.h"
  20. #include "gtest/gtest.h"
  21. using namespace llvm;
  22. namespace {
  23. class IRBuilderTest : public testing::Test {
  24. protected:
  25. void SetUp() override {
  26. M.reset(new Module("MyModule", Ctx));
  27. FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx),
  28. /*isVarArg=*/false);
  29. F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
  30. BB = BasicBlock::Create(Ctx, "", F);
  31. GV = new GlobalVariable(*M, Type::getFloatTy(Ctx), true,
  32. GlobalValue::ExternalLinkage, nullptr);
  33. }
  34. void TearDown() override {
  35. BB = nullptr;
  36. M.reset();
  37. }
  38. LLVMContext Ctx;
  39. std::unique_ptr<Module> M;
  40. Function *F;
  41. BasicBlock *BB;
  42. GlobalVariable *GV;
  43. };
  44. TEST_F(IRBuilderTest, Lifetime) {
  45. IRBuilder<> Builder(BB);
  46. AllocaInst *Var1 = Builder.CreateAlloca(Builder.getInt8Ty());
  47. AllocaInst *Var2 = Builder.CreateAlloca(Builder.getInt32Ty());
  48. AllocaInst *Var3 = Builder.CreateAlloca(Builder.getInt8Ty(),
  49. Builder.getInt32(123));
  50. CallInst *Start1 = Builder.CreateLifetimeStart(Var1);
  51. CallInst *Start2 = Builder.CreateLifetimeStart(Var2);
  52. CallInst *Start3 = Builder.CreateLifetimeStart(Var3, Builder.getInt64(100));
  53. EXPECT_EQ(Start1->getArgOperand(0), Builder.getInt64(-1));
  54. EXPECT_EQ(Start2->getArgOperand(0), Builder.getInt64(-1));
  55. EXPECT_EQ(Start3->getArgOperand(0), Builder.getInt64(100));
  56. EXPECT_EQ(Start1->getArgOperand(1), Var1);
  57. EXPECT_NE(Start2->getArgOperand(1), Var2);
  58. EXPECT_EQ(Start3->getArgOperand(1), Var3);
  59. Value *End1 = Builder.CreateLifetimeEnd(Var1);
  60. Builder.CreateLifetimeEnd(Var2);
  61. Builder.CreateLifetimeEnd(Var3);
  62. IntrinsicInst *II_Start1 = dyn_cast<IntrinsicInst>(Start1);
  63. IntrinsicInst *II_End1 = dyn_cast<IntrinsicInst>(End1);
  64. ASSERT_TRUE(II_Start1 != nullptr);
  65. EXPECT_EQ(II_Start1->getIntrinsicID(), Intrinsic::lifetime_start);
  66. ASSERT_TRUE(II_End1 != nullptr);
  67. EXPECT_EQ(II_End1->getIntrinsicID(), Intrinsic::lifetime_end);
  68. }
  69. TEST_F(IRBuilderTest, CreateCondBr) {
  70. IRBuilder<> Builder(BB);
  71. BasicBlock *TBB = BasicBlock::Create(Ctx, "", F);
  72. BasicBlock *FBB = BasicBlock::Create(Ctx, "", F);
  73. BranchInst *BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB);
  74. TerminatorInst *TI = BB->getTerminator();
  75. EXPECT_EQ(BI, TI);
  76. EXPECT_EQ(2u, TI->getNumSuccessors());
  77. EXPECT_EQ(TBB, TI->getSuccessor(0));
  78. EXPECT_EQ(FBB, TI->getSuccessor(1));
  79. BI->eraseFromParent();
  80. MDNode *Weights = MDBuilder(Ctx).createBranchWeights(42, 13);
  81. BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB, Weights);
  82. TI = BB->getTerminator();
  83. EXPECT_EQ(BI, TI);
  84. EXPECT_EQ(2u, TI->getNumSuccessors());
  85. EXPECT_EQ(TBB, TI->getSuccessor(0));
  86. EXPECT_EQ(FBB, TI->getSuccessor(1));
  87. EXPECT_EQ(Weights, TI->getMetadata(LLVMContext::MD_prof));
  88. }
  89. TEST_F(IRBuilderTest, LandingPadName) {
  90. IRBuilder<> Builder(BB);
  91. LandingPadInst *LP = Builder.CreateLandingPad(Builder.getInt32Ty(), 0, "LP");
  92. EXPECT_EQ(LP->getName(), "LP");
  93. }
  94. TEST_F(IRBuilderTest, DataLayout) {
  95. std::unique_ptr<Module> M(new Module("test", Ctx));
  96. M->setDataLayout("e-n32");
  97. EXPECT_TRUE(M->getDataLayout().isLegalInteger(32));
  98. M->setDataLayout("e");
  99. EXPECT_FALSE(M->getDataLayout().isLegalInteger(32));
  100. }
  101. TEST_F(IRBuilderTest, GetIntTy) {
  102. IRBuilder<> Builder(BB);
  103. IntegerType *Ty1 = Builder.getInt1Ty();
  104. EXPECT_EQ(Ty1, IntegerType::get(Ctx, 1));
  105. DataLayout* DL = new DataLayout(M.get());
  106. IntegerType *IntPtrTy = Builder.getIntPtrTy(*DL);
  107. unsigned IntPtrBitSize = DL->getPointerSizeInBits(0);
  108. EXPECT_EQ(IntPtrTy, IntegerType::get(Ctx, IntPtrBitSize));
  109. delete DL;
  110. }
  111. TEST_F(IRBuilderTest, FastMathFlags) {
  112. IRBuilder<> Builder(BB);
  113. Value *F, *FC;
  114. Instruction *FDiv, *FAdd, *FCmp;
  115. F = Builder.CreateLoad(GV);
  116. F = Builder.CreateFAdd(F, F);
  117. EXPECT_FALSE(Builder.getFastMathFlags().any());
  118. ASSERT_TRUE(isa<Instruction>(F));
  119. FAdd = cast<Instruction>(F);
  120. EXPECT_FALSE(FAdd->hasNoNaNs());
  121. FastMathFlags FMF;
  122. Builder.SetFastMathFlags(FMF);
  123. F = Builder.CreateFAdd(F, F);
  124. EXPECT_FALSE(Builder.getFastMathFlags().any());
  125. FMF.setUnsafeAlgebra();
  126. Builder.SetFastMathFlags(FMF);
  127. F = Builder.CreateFAdd(F, F);
  128. EXPECT_TRUE(Builder.getFastMathFlags().any());
  129. ASSERT_TRUE(isa<Instruction>(F));
  130. FAdd = cast<Instruction>(F);
  131. EXPECT_TRUE(FAdd->hasNoNaNs());
  132. // Now, try it with CreateBinOp
  133. F = Builder.CreateBinOp(Instruction::FAdd, F, F);
  134. EXPECT_TRUE(Builder.getFastMathFlags().any());
  135. ASSERT_TRUE(isa<Instruction>(F));
  136. FAdd = cast<Instruction>(F);
  137. EXPECT_TRUE(FAdd->hasNoNaNs());
  138. F = Builder.CreateFDiv(F, F);
  139. EXPECT_TRUE(Builder.getFastMathFlags().any());
  140. EXPECT_TRUE(Builder.getFastMathFlags().UnsafeAlgebra);
  141. ASSERT_TRUE(isa<Instruction>(F));
  142. FDiv = cast<Instruction>(F);
  143. EXPECT_TRUE(FDiv->hasAllowReciprocal());
  144. Builder.clearFastMathFlags();
  145. F = Builder.CreateFDiv(F, F);
  146. ASSERT_TRUE(isa<Instruction>(F));
  147. FDiv = cast<Instruction>(F);
  148. EXPECT_FALSE(FDiv->hasAllowReciprocal());
  149. FMF.clear();
  150. FMF.setAllowReciprocal();
  151. Builder.SetFastMathFlags(FMF);
  152. F = Builder.CreateFDiv(F, F);
  153. EXPECT_TRUE(Builder.getFastMathFlags().any());
  154. EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal);
  155. ASSERT_TRUE(isa<Instruction>(F));
  156. FDiv = cast<Instruction>(F);
  157. EXPECT_TRUE(FDiv->hasAllowReciprocal());
  158. Builder.clearFastMathFlags();
  159. FC = Builder.CreateFCmpOEQ(F, F);
  160. ASSERT_TRUE(isa<Instruction>(FC));
  161. FCmp = cast<Instruction>(FC);
  162. EXPECT_FALSE(FCmp->hasAllowReciprocal());
  163. FMF.clear();
  164. FMF.setAllowReciprocal();
  165. Builder.SetFastMathFlags(FMF);
  166. FC = Builder.CreateFCmpOEQ(F, F);
  167. EXPECT_TRUE(Builder.getFastMathFlags().any());
  168. EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal);
  169. ASSERT_TRUE(isa<Instruction>(FC));
  170. FCmp = cast<Instruction>(FC);
  171. EXPECT_TRUE(FCmp->hasAllowReciprocal());
  172. Builder.clearFastMathFlags();
  173. // To test a copy, make sure that a '0' and a '1' change state.
  174. F = Builder.CreateFDiv(F, F);
  175. ASSERT_TRUE(isa<Instruction>(F));
  176. FDiv = cast<Instruction>(F);
  177. EXPECT_FALSE(FDiv->getFastMathFlags().any());
  178. FDiv->setHasAllowReciprocal(true);
  179. FAdd->setHasAllowReciprocal(false);
  180. FDiv->copyFastMathFlags(FAdd);
  181. EXPECT_TRUE(FDiv->hasNoNaNs());
  182. EXPECT_FALSE(FDiv->hasAllowReciprocal());
  183. }
  184. TEST_F(IRBuilderTest, WrapFlags) {
  185. IRBuilder<true, NoFolder> Builder(BB);
  186. // Test instructions.
  187. GlobalVariable *G = new GlobalVariable(*M, Builder.getInt32Ty(), true,
  188. GlobalValue::ExternalLinkage, nullptr);
  189. Value *V = Builder.CreateLoad(G);
  190. EXPECT_TRUE(
  191. cast<BinaryOperator>(Builder.CreateNSWAdd(V, V))->hasNoSignedWrap());
  192. EXPECT_TRUE(
  193. cast<BinaryOperator>(Builder.CreateNSWMul(V, V))->hasNoSignedWrap());
  194. EXPECT_TRUE(
  195. cast<BinaryOperator>(Builder.CreateNSWSub(V, V))->hasNoSignedWrap());
  196. EXPECT_TRUE(cast<BinaryOperator>(
  197. Builder.CreateShl(V, V, "", /* NUW */ false, /* NSW */ true))
  198. ->hasNoSignedWrap());
  199. EXPECT_TRUE(
  200. cast<BinaryOperator>(Builder.CreateNUWAdd(V, V))->hasNoUnsignedWrap());
  201. EXPECT_TRUE(
  202. cast<BinaryOperator>(Builder.CreateNUWMul(V, V))->hasNoUnsignedWrap());
  203. EXPECT_TRUE(
  204. cast<BinaryOperator>(Builder.CreateNUWSub(V, V))->hasNoUnsignedWrap());
  205. EXPECT_TRUE(cast<BinaryOperator>(
  206. Builder.CreateShl(V, V, "", /* NUW */ true, /* NSW */ false))
  207. ->hasNoUnsignedWrap());
  208. // Test operators created with constants.
  209. Constant *C = Builder.getInt32(42);
  210. EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWAdd(C, C))
  211. ->hasNoSignedWrap());
  212. EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWSub(C, C))
  213. ->hasNoSignedWrap());
  214. EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWMul(C, C))
  215. ->hasNoSignedWrap());
  216. EXPECT_TRUE(cast<OverflowingBinaryOperator>(
  217. Builder.CreateShl(C, C, "", /* NUW */ false, /* NSW */ true))
  218. ->hasNoSignedWrap());
  219. EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWAdd(C, C))
  220. ->hasNoUnsignedWrap());
  221. EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWSub(C, C))
  222. ->hasNoUnsignedWrap());
  223. EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWMul(C, C))
  224. ->hasNoUnsignedWrap());
  225. EXPECT_TRUE(cast<OverflowingBinaryOperator>(
  226. Builder.CreateShl(C, C, "", /* NUW */ true, /* NSW */ false))
  227. ->hasNoUnsignedWrap());
  228. }
  229. TEST_F(IRBuilderTest, RAIIHelpersTest) {
  230. IRBuilder<> Builder(BB);
  231. EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal());
  232. MDBuilder MDB(M->getContext());
  233. MDNode *FPMathA = MDB.createFPMath(0.01f);
  234. MDNode *FPMathB = MDB.createFPMath(0.1f);
  235. Builder.SetDefaultFPMathTag(FPMathA);
  236. {
  237. IRBuilder<>::FastMathFlagGuard Guard(Builder);
  238. FastMathFlags FMF;
  239. FMF.setAllowReciprocal();
  240. Builder.SetFastMathFlags(FMF);
  241. Builder.SetDefaultFPMathTag(FPMathB);
  242. EXPECT_TRUE(Builder.getFastMathFlags().allowReciprocal());
  243. EXPECT_EQ(FPMathB, Builder.getDefaultFPMathTag());
  244. }
  245. EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal());
  246. EXPECT_EQ(FPMathA, Builder.getDefaultFPMathTag());
  247. Value *F = Builder.CreateLoad(GV);
  248. {
  249. IRBuilder<>::InsertPointGuard Guard(Builder);
  250. Builder.SetInsertPoint(cast<Instruction>(F));
  251. EXPECT_EQ(F, Builder.GetInsertPoint());
  252. }
  253. EXPECT_EQ(BB->end(), Builder.GetInsertPoint());
  254. EXPECT_EQ(BB, Builder.GetInsertBlock());
  255. }
  256. TEST_F(IRBuilderTest, DIBuilder) {
  257. IRBuilder<> Builder(BB);
  258. DIBuilder DIB(*M);
  259. auto File = DIB.createFile("F.CBL", "/");
  260. auto CU = DIB.createCompileUnit(dwarf::DW_LANG_Cobol74, "F.CBL", "/",
  261. "llvm-cobol74", true, "", 0);
  262. auto Type = DIB.createSubroutineType(File, DIB.getOrCreateTypeArray(None));
  263. DIB.createFunction(CU, "foo", "", File, 1, Type, false, true, 1, 0, true, F);
  264. AllocaInst *I = Builder.CreateAlloca(Builder.getInt8Ty());
  265. auto BarSP = DIB.createFunction(CU, "bar", "", File, 1, Type, false, true, 1,
  266. 0, true, nullptr);
  267. auto BadScope = DIB.createLexicalBlockFile(BarSP, File, 0);
  268. I->setDebugLoc(DebugLoc::get(2, 0, BadScope));
  269. DIB.finalize();
  270. EXPECT_TRUE(verifyModule(*M));
  271. }
  272. TEST_F(IRBuilderTest, InsertExtractElement) {
  273. IRBuilder<> Builder(BB);
  274. auto VecTy = VectorType::get(Builder.getInt64Ty(), 4);
  275. auto Elt1 = Builder.getInt64(-1);
  276. auto Elt2 = Builder.getInt64(-2);
  277. Value *Vec = UndefValue::get(VecTy);
  278. Vec = Builder.CreateInsertElement(Vec, Elt1, Builder.getInt8(1));
  279. Vec = Builder.CreateInsertElement(Vec, Elt2, 2);
  280. auto X1 = Builder.CreateExtractElement(Vec, 1);
  281. auto X2 = Builder.CreateExtractElement(Vec, Builder.getInt32(2));
  282. EXPECT_EQ(Elt1, X1);
  283. EXPECT_EQ(Elt2, X2);
  284. }
  285. TEST_F(IRBuilderTest, CreateGlobalStringPtr) {
  286. IRBuilder<> Builder(BB);
  287. auto String1a = Builder.CreateGlobalStringPtr("TestString", "String1a");
  288. auto String1b = Builder.CreateGlobalStringPtr("TestString", "String1b", 0);
  289. auto String2 = Builder.CreateGlobalStringPtr("TestString", "String2", 1);
  290. auto String3 = Builder.CreateGlobalString("TestString", "String3", 2);
  291. EXPECT_TRUE(String1a->getType()->getPointerAddressSpace() == 0);
  292. EXPECT_TRUE(String1b->getType()->getPointerAddressSpace() == 0);
  293. EXPECT_TRUE(String2->getType()->getPointerAddressSpace() == 1);
  294. EXPECT_TRUE(String3->getType()->getPointerAddressSpace() == 2);
  295. }
  296. TEST_F(IRBuilderTest, DebugLoc) {
  297. auto CalleeTy = FunctionType::get(Type::getVoidTy(Ctx),
  298. /*isVarArg=*/false);
  299. auto Callee =
  300. Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get());
  301. DIBuilder DIB(*M);
  302. auto File = DIB.createFile("tmp.cpp", "/");
  303. auto CU = DIB.createCompileUnit(dwarf::DW_LANG_C_plus_plus_11, "tmp.cpp", "/",
  304. "", true, "", 0);
  305. auto SPType = DIB.createSubroutineType(File, DIB.getOrCreateTypeArray(None));
  306. auto SP =
  307. DIB.createFunction(CU, "foo", "foo", File, 1, SPType, false, true, 1);
  308. DebugLoc DL1 = DILocation::get(Ctx, 2, 0, SP);
  309. DebugLoc DL2 = DILocation::get(Ctx, 3, 0, SP);
  310. auto BB2 = BasicBlock::Create(Ctx, "bb2", F);
  311. auto Br = BranchInst::Create(BB2, BB);
  312. Br->setDebugLoc(DL1);
  313. IRBuilder<> Builder(Ctx);
  314. Builder.SetInsertPoint(Br);
  315. EXPECT_EQ(DL1, Builder.getCurrentDebugLocation());
  316. auto Call1 = Builder.CreateCall(Callee, None);
  317. EXPECT_EQ(DL1, Call1->getDebugLoc());
  318. Call1->setDebugLoc(DL2);
  319. Builder.SetInsertPoint(Call1->getParent(), Call1);
  320. EXPECT_EQ(DL2, Builder.getCurrentDebugLocation());
  321. auto Call2 = Builder.CreateCall(Callee, None);
  322. EXPECT_EQ(DL2, Call2->getDebugLoc());
  323. DIB.finalize();
  324. }
  325. }