123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255 |
- #!/usr/bin/env python
- """A shuffle vector fuzz tester.
- This is a python program to fuzz test the LLVM shufflevector instruction. It
- generates a function with a random sequnece of shufflevectors, maintaining the
- element mapping accumulated across the function. It then generates a main
- function which calls it with a different value in each element and checks that
- the result matches the expected mapping.
- Take the output IR printed to stdout, compile it to an executable using whatever
- set of transforms you want to test, and run the program. If it crashes, it found
- a bug.
- """
- import argparse
- import itertools
- import random
- import sys
- import uuid
- def main():
- element_types=['i8', 'i16', 'i32', 'i64', 'f32', 'f64']
- parser = argparse.ArgumentParser(description=__doc__)
- parser.add_argument('-v', '--verbose', action='store_true',
- help='Show verbose output')
- parser.add_argument('--seed', default=str(uuid.uuid4()),
- help='A string used to seed the RNG')
- parser.add_argument('--max-shuffle-height', type=int, default=16,
- help='Specify a fixed height of shuffle tree to test')
- parser.add_argument('--no-blends', dest='blends', action='store_false',
- help='Include blends of two input vectors')
- parser.add_argument('--fixed-bit-width', type=int, choices=[128, 256],
- help='Specify a fixed bit width of vector to test')
- parser.add_argument('--fixed-element-type', choices=element_types,
- help='Specify a fixed element type to test')
- parser.add_argument('--triple',
- help='Specify a triple string to include in the IR')
- args = parser.parse_args()
- random.seed(args.seed)
- if args.fixed_element_type is not None:
- element_types=[args.fixed_element_type]
- if args.fixed_bit_width is not None:
- if args.fixed_bit_width == 128:
- width_map={'i64': 2, 'i32': 4, 'i16': 8, 'i8': 16, 'f64': 2, 'f32': 4}
- (width, element_type) = random.choice(
- [(width_map[t], t) for t in element_types])
- elif args.fixed_bit_width == 256:
- width_map={'i64': 4, 'i32': 8, 'i16': 16, 'i8': 32, 'f64': 4, 'f32': 8}
- (width, element_type) = random.choice(
- [(width_map[t], t) for t in element_types])
- else:
- sys.exit(1) # Checked above by argument parsing.
- else:
- width = random.choice([2, 4, 8, 16, 32, 64])
- element_type = random.choice(element_types)
- element_modulus = {
- 'i8': 1 << 8, 'i16': 1 << 16, 'i32': 1 << 32, 'i64': 1 << 64,
- 'f32': 1 << 32, 'f64': 1 << 64}[element_type]
- shuffle_range = (2 * width) if args.blends else width
- # Because undef (-1) saturates and is indistinguishable when testing the
- # correctness of a shuffle, we want to bias our fuzz toward having a decent
- # mixture of non-undef lanes in the end. With a deep shuffle tree, the
- # probabilies aren't good so we need to bias things. The math here is that if
- # we uniformly select between -1 and the other inputs, each element of the
- # result will have the following probability of being undef:
- #
- # 1 - (shuffle_range/(shuffle_range+1))^max_shuffle_height
- #
- # More generally, for any probability P of selecting a defined element in
- # a single shuffle, the end result is:
- #
- # 1 - P^max_shuffle_height
- #
- # The power of the shuffle height is the real problem, as we want:
- #
- # 1 - shuffle_range/(shuffle_range+1)
- #
- # So we bias the selection of undef at any given node based on the tree
- # height. Below, let 'A' be 'len(shuffle_range)', 'C' be 'max_shuffle_height',
- # and 'B' be the bias we use to compensate for
- # C '((A+1)*A^(1/C))/(A*(A+1)^(1/C))':
- #
- # 1 - (B * A)/(A + 1)^C = 1 - A/(A + 1)
- #
- # So at each node we use:
- #
- # 1 - (B * A)/(A + 1)
- # = 1 - ((A + 1) * A * A^(1/C))/(A * (A + 1) * (A + 1)^(1/C))
- # = 1 - ((A + 1) * A^((C + 1)/C))/(A * (A + 1)^((C + 1)/C))
- #
- # This is the formula we use to select undef lanes in the shuffle.
- A = float(shuffle_range)
- C = float(args.max_shuffle_height)
- undef_prob = 1.0 - (((A + 1.0) * pow(A, (C + 1.0)/C)) /
- (A * pow(A + 1.0, (C + 1.0)/C)))
- shuffle_tree = [[[-1 if random.random() <= undef_prob
- else random.choice(range(shuffle_range))
- for _ in itertools.repeat(None, width)]
- for _ in itertools.repeat(None, args.max_shuffle_height - i)]
- for i in xrange(args.max_shuffle_height)]
- if args.verbose:
- # Print out the shuffle sequence in a compact form.
- print >>sys.stderr, ('Testing shuffle sequence "%s" (v%d%s):' %
- (args.seed, width, element_type))
- for i, shuffles in enumerate(shuffle_tree):
- print >>sys.stderr, ' tree level %d:' % (i,)
- for j, s in enumerate(shuffles):
- print >>sys.stderr, ' shuffle %d: %s' % (j, s)
- print >>sys.stderr, ''
- # Symbolically evaluate the shuffle tree.
- inputs = [[int(j % element_modulus)
- for j in xrange(i * width + 1, (i + 1) * width + 1)]
- for i in xrange(args.max_shuffle_height + 1)]
- results = inputs
- for shuffles in shuffle_tree:
- results = [[((results[i] if j < width else results[i + 1])[j % width]
- if j != -1 else -1)
- for j in s]
- for i, s in enumerate(shuffles)]
- if len(results) != 1:
- print >>sys.stderr, 'ERROR: Bad results: %s' % (results,)
- sys.exit(1)
- result = results[0]
- if args.verbose:
- print >>sys.stderr, 'Which transforms:'
- print >>sys.stderr, ' from: %s' % (inputs,)
- print >>sys.stderr, ' into: %s' % (result,)
- print >>sys.stderr, ''
- # The IR uses silly names for floating point types. We also need a same-size
- # integer type.
- integral_element_type = element_type
- if element_type == 'f32':
- integral_element_type = 'i32'
- element_type = 'float'
- elif element_type == 'f64':
- integral_element_type = 'i64'
- element_type = 'double'
- # Now we need to generate IR for the shuffle function.
- subst = {'N': width, 'T': element_type, 'IT': integral_element_type}
- print """
- define internal fastcc <%(N)d x %(T)s> @test(%(arguments)s) noinline nounwind {
- entry:""" % dict(subst,
- arguments=', '.join(
- ['<%(N)d x %(T)s> %%s.0.%(i)d' % dict(subst, i=i)
- for i in xrange(args.max_shuffle_height + 1)]))
- for i, shuffles in enumerate(shuffle_tree):
- for j, s in enumerate(shuffles):
- print """
- %%s.%(next_i)d.%(j)d = shufflevector <%(N)d x %(T)s> %%s.%(i)d.%(j)d, <%(N)d x %(T)s> %%s.%(i)d.%(next_j)d, <%(N)d x i32> <%(S)s>
- """.strip('\n') % dict(subst, i=i, next_i=i + 1, j=j, next_j=j + 1,
- S=', '.join(['i32 ' + (str(si) if si != -1 else 'undef')
- for si in s]))
- print """
- ret <%(N)d x %(T)s> %%s.%(i)d.0
- }
- """ % dict(subst, i=len(shuffle_tree))
- # Generate some string constants that we can use to report errors.
- for i, r in enumerate(result):
- if r != -1:
- s = ('FAIL(%(seed)s): lane %(lane)d, expected %(result)d, found %%d\n\\0A' %
- {'seed': args.seed, 'lane': i, 'result': r})
- s += ''.join(['\\00' for _ in itertools.repeat(None, 128 - len(s) + 2)])
- print """
- @error.%(i)d = private unnamed_addr global [128 x i8] c"%(s)s"
- """.strip() % {'i': i, 's': s}
- # Define a wrapper function which is marked 'optnone' to prevent
- # interprocedural optimizations from deleting the test.
- print """
- define internal fastcc <%(N)d x %(T)s> @test_wrapper(%(arguments)s) optnone noinline {
- %%result = call fastcc <%(N)d x %(T)s> @test(%(arguments)s)
- ret <%(N)d x %(T)s> %%result
- }
- """ % dict(subst,
- arguments=', '.join(['<%(N)d x %(T)s> %%s.%(i)d' % dict(subst, i=i)
- for i in xrange(args.max_shuffle_height + 1)]))
- # Finally, generate a main function which will trap if any lanes are mapped
- # incorrectly (in an observable way).
- print """
- define i32 @main() {
- entry:
- ; Create a scratch space to print error messages.
- %%str = alloca [128 x i8]
- %%str.ptr = getelementptr inbounds [128 x i8]* %%str, i32 0, i32 0
- ; Build the input vector and call the test function.
- %%v = call fastcc <%(N)d x %(T)s> @test_wrapper(%(inputs)s)
- ; We need to cast this back to an integer type vector to easily check the
- ; result.
- %%v.cast = bitcast <%(N)d x %(T)s> %%v to <%(N)d x %(IT)s>
- br label %%test.0
- """ % dict(subst,
- inputs=', '.join(
- [('<%(N)d x %(T)s> bitcast '
- '(<%(N)d x %(IT)s> <%(input)s> to <%(N)d x %(T)s>)' %
- dict(subst, input=', '.join(['%(IT)s %(i)d' % dict(subst, i=i)
- for i in input])))
- for input in inputs]))
- # Test that each non-undef result lane contains the expected value.
- for i, r in enumerate(result):
- if r == -1:
- print """
- test.%(i)d:
- ; Skip this lane, its value is undef.
- br label %%test.%(next_i)d
- """ % dict(subst, i=i, next_i=i + 1)
- else:
- print """
- test.%(i)d:
- %%v.%(i)d = extractelement <%(N)d x %(IT)s> %%v.cast, i32 %(i)d
- %%cmp.%(i)d = icmp ne %(IT)s %%v.%(i)d, %(r)d
- br i1 %%cmp.%(i)d, label %%die.%(i)d, label %%test.%(next_i)d
- die.%(i)d:
- ; Capture the actual value and print an error message.
- %%tmp.%(i)d = zext %(IT)s %%v.%(i)d to i2048
- %%bad.%(i)d = trunc i2048 %%tmp.%(i)d to i32
- call i32 (i8*, i8*, ...)* @sprintf(i8* %%str.ptr, i8* getelementptr inbounds ([128 x i8]* @error.%(i)d, i32 0, i32 0), i32 %%bad.%(i)d)
- %%length.%(i)d = call i32 @strlen(i8* %%str.ptr)
- call i32 @write(i32 2, i8* %%str.ptr, i32 %%length.%(i)d)
- call void @llvm.trap()
- unreachable
- """ % dict(subst, i=i, next_i=i + 1, r=r)
- print """
- test.%d:
- ret i32 0
- }
- declare i32 @strlen(i8*)
- declare i32 @write(i32, i8*, i32)
- declare i32 @sprintf(i8*, i8*, ...)
- declare void @llvm.trap() noreturn nounwind
- """ % (len(result),)
- if __name__ == '__main__':
- main()
|