DxilContainerAssembler.cpp 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513
  1. ///////////////////////////////////////////////////////////////////////////////
  2. // //
  3. // DxilContainerAssembler.cpp //
  4. // Copyright (C) Microsoft Corporation. All rights reserved. //
  5. // This file is distributed under the University of Illinois Open Source //
  6. // License. See LICENSE.TXT for details. //
  7. // //
  8. // Provides support for serializing a module into DXIL container structures. //
  9. // //
  10. ///////////////////////////////////////////////////////////////////////////////
  11. #include "llvm/ADT/MapVector.h"
  12. #include "llvm/ADT/SetVector.h"
  13. #include "llvm/IR/Module.h"
  14. #include "llvm/IR/DebugInfo.h"
  15. #include "llvm/Bitcode/ReaderWriter.h"
  16. #include "llvm/Support/MD5.h"
  17. #include "dxc/HLSL/DxilContainer.h"
  18. #include "dxc/HLSL/DxilModule.h"
  19. #include "dxc/HLSL/DxilShaderModel.h"
  20. #include "dxc/HLSL/DxilRootSignature.h"
  21. #include "dxc/HLSL/DxilUtil.h"
  22. #include "dxc/HLSL/DxilFunctionProps.h"
  23. #include "dxc/HLSL/DxilOperations.h"
  24. #include "dxc/Support/Global.h"
  25. #include "dxc/Support/Unicode.h"
  26. #include "dxc/Support/WinIncludes.h"
  27. #include "dxc/Support/FileIOHelper.h"
  28. #include "dxc/Support/dxcapi.impl.h"
  29. #include "dxc/HLSL/DxilPipelineStateValidation.h"
  30. #include "dxc/HLSL/DxilRuntimeReflection.h"
  31. #include <algorithm>
  32. #include <functional>
  33. using namespace llvm;
  34. using namespace hlsl;
  35. using namespace hlsl::RDAT;
  36. static DxilProgramSigSemantic KindToSystemValue(Semantic::Kind kind, DXIL::TessellatorDomain domain) {
  37. switch (kind) {
  38. case Semantic::Kind::Arbitrary: return DxilProgramSigSemantic::Undefined;
  39. case Semantic::Kind::VertexID: return DxilProgramSigSemantic::VertexID;
  40. case Semantic::Kind::InstanceID: return DxilProgramSigSemantic::InstanceID;
  41. case Semantic::Kind::Position: return DxilProgramSigSemantic::Position;
  42. case Semantic::Kind::Coverage: return DxilProgramSigSemantic::Coverage;
  43. case Semantic::Kind::InnerCoverage: return DxilProgramSigSemantic::InnerCoverage;
  44. case Semantic::Kind::PrimitiveID: return DxilProgramSigSemantic::PrimitiveID;
  45. case Semantic::Kind::SampleIndex: return DxilProgramSigSemantic::SampleIndex;
  46. case Semantic::Kind::IsFrontFace: return DxilProgramSigSemantic::IsFrontFace;
  47. case Semantic::Kind::RenderTargetArrayIndex: return DxilProgramSigSemantic::RenderTargetArrayIndex;
  48. case Semantic::Kind::ViewPortArrayIndex: return DxilProgramSigSemantic::ViewPortArrayIndex;
  49. case Semantic::Kind::ClipDistance: return DxilProgramSigSemantic::ClipDistance;
  50. case Semantic::Kind::CullDistance: return DxilProgramSigSemantic::CullDistance;
  51. case Semantic::Kind::Barycentrics: return DxilProgramSigSemantic::Barycentrics;
  52. case Semantic::Kind::TessFactor: {
  53. switch (domain) {
  54. case DXIL::TessellatorDomain::IsoLine:
  55. // Will bu updated to DetailTessFactor in next row.
  56. return DxilProgramSigSemantic::FinalLineDensityTessfactor;
  57. case DXIL::TessellatorDomain::Tri:
  58. return DxilProgramSigSemantic::FinalTriEdgeTessfactor;
  59. case DXIL::TessellatorDomain::Quad:
  60. return DxilProgramSigSemantic::FinalQuadEdgeTessfactor;
  61. default:
  62. // No other valid TesselatorDomain options.
  63. return DxilProgramSigSemantic::Undefined;
  64. }
  65. }
  66. case Semantic::Kind::InsideTessFactor: {
  67. switch (domain) {
  68. case DXIL::TessellatorDomain::IsoLine:
  69. DXASSERT(0, "invalid semantic");
  70. return DxilProgramSigSemantic::Undefined;
  71. case DXIL::TessellatorDomain::Tri:
  72. return DxilProgramSigSemantic::FinalTriInsideTessfactor;
  73. case DXIL::TessellatorDomain::Quad:
  74. return DxilProgramSigSemantic::FinalQuadInsideTessfactor;
  75. default:
  76. // No other valid DxilProgramSigSemantic options.
  77. return DxilProgramSigSemantic::Undefined;
  78. }
  79. }
  80. case Semantic::Kind::Invalid:
  81. return DxilProgramSigSemantic::Undefined;
  82. case Semantic::Kind::Target: return DxilProgramSigSemantic::Target;
  83. case Semantic::Kind::Depth: return DxilProgramSigSemantic::Depth;
  84. case Semantic::Kind::DepthLessEqual: return DxilProgramSigSemantic::DepthLE;
  85. case Semantic::Kind::DepthGreaterEqual: return DxilProgramSigSemantic::DepthGE;
  86. case Semantic::Kind::StencilRef:
  87. __fallthrough;
  88. default:
  89. DXASSERT(kind == Semantic::Kind::StencilRef, "else Invalid or switch is missing a case");
  90. return DxilProgramSigSemantic::StencilRef;
  91. }
  92. // TODO: Final_* values need mappings
  93. }
  94. static DxilProgramSigCompType CompTypeToSigCompType(hlsl::CompType value) {
  95. switch (value.GetKind()) {
  96. case CompType::Kind::I32: return DxilProgramSigCompType::SInt32;
  97. case CompType::Kind::U32: return DxilProgramSigCompType::UInt32;
  98. case CompType::Kind::F32: return DxilProgramSigCompType::Float32;
  99. case CompType::Kind::I16: return DxilProgramSigCompType::SInt16;
  100. case CompType::Kind::I64: return DxilProgramSigCompType::SInt64;
  101. case CompType::Kind::U16: return DxilProgramSigCompType::UInt16;
  102. case CompType::Kind::U64: return DxilProgramSigCompType::UInt64;
  103. case CompType::Kind::F16: return DxilProgramSigCompType::Float16;
  104. case CompType::Kind::F64: return DxilProgramSigCompType::Float64;
  105. case CompType::Kind::Invalid: __fallthrough;
  106. case CompType::Kind::I1: __fallthrough;
  107. default:
  108. return DxilProgramSigCompType::Unknown;
  109. }
  110. }
  111. static DxilProgramSigMinPrecision CompTypeToSigMinPrecision(hlsl::CompType value) {
  112. switch (value.GetKind()) {
  113. case CompType::Kind::I32: return DxilProgramSigMinPrecision::Default;
  114. case CompType::Kind::U32: return DxilProgramSigMinPrecision::Default;
  115. case CompType::Kind::F32: return DxilProgramSigMinPrecision::Default;
  116. case CompType::Kind::I1: return DxilProgramSigMinPrecision::Default;
  117. case CompType::Kind::U64: __fallthrough;
  118. case CompType::Kind::I64: __fallthrough;
  119. case CompType::Kind::F64: return DxilProgramSigMinPrecision::Default;
  120. case CompType::Kind::I16: return DxilProgramSigMinPrecision::SInt16;
  121. case CompType::Kind::U16: return DxilProgramSigMinPrecision::UInt16;
  122. case CompType::Kind::F16: return DxilProgramSigMinPrecision::Float16; // Float2_8 is not supported in DXIL.
  123. case CompType::Kind::Invalid: __fallthrough;
  124. default:
  125. return DxilProgramSigMinPrecision::Default;
  126. }
  127. }
  128. template <typename T>
  129. struct sort_second {
  130. bool operator()(const T &a, const T &b) {
  131. return std::less<decltype(a.second)>()(a.second, b.second);
  132. }
  133. };
  134. struct sort_sig {
  135. bool operator()(const DxilProgramSignatureElement &a,
  136. const DxilProgramSignatureElement &b) {
  137. return (a.Stream < b.Stream) |
  138. ((a.Stream == b.Stream) & (a.Register < b.Register));
  139. }
  140. };
  141. class DxilProgramSignatureWriter : public DxilPartWriter {
  142. private:
  143. const DxilSignature &m_signature;
  144. DXIL::TessellatorDomain m_domain;
  145. bool m_isInput;
  146. bool m_useMinPrecision;
  147. size_t m_fixedSize;
  148. typedef std::pair<const char *, uint32_t> NameOffsetPair;
  149. typedef llvm::SmallMapVector<const char *, uint32_t, 8> NameOffsetMap;
  150. uint32_t m_lastOffset;
  151. NameOffsetMap m_semanticNameOffsets;
  152. unsigned m_paramCount;
  153. const char *GetSemanticName(const hlsl::DxilSignatureElement *pElement) {
  154. DXASSERT_NOMSG(pElement != nullptr);
  155. DXASSERT(pElement->GetName() != nullptr, "else sig is malformed");
  156. return pElement->GetName();
  157. }
  158. uint32_t GetSemanticOffset(const hlsl::DxilSignatureElement *pElement) {
  159. const char *pName = GetSemanticName(pElement);
  160. NameOffsetMap::iterator nameOffset = m_semanticNameOffsets.find(pName);
  161. uint32_t result;
  162. if (nameOffset == m_semanticNameOffsets.end()) {
  163. result = m_lastOffset;
  164. m_semanticNameOffsets.insert(NameOffsetPair(pName, result));
  165. m_lastOffset += strlen(pName) + 1;
  166. }
  167. else {
  168. result = nameOffset->second;
  169. }
  170. return result;
  171. }
  172. void write(std::vector<DxilProgramSignatureElement> &orderedSig,
  173. const hlsl::DxilSignatureElement *pElement) {
  174. const std::vector<unsigned> &indexVec = pElement->GetSemanticIndexVec();
  175. unsigned eltCount = pElement->GetSemanticIndexVec().size();
  176. unsigned eltRows = 1;
  177. if (eltCount)
  178. eltRows = pElement->GetRows() / eltCount;
  179. DXASSERT_NOMSG(eltRows == 1);
  180. DxilProgramSignatureElement sig;
  181. memset(&sig, 0, sizeof(DxilProgramSignatureElement));
  182. sig.Stream = pElement->GetOutputStream();
  183. sig.SemanticName = GetSemanticOffset(pElement);
  184. sig.SystemValue = KindToSystemValue(pElement->GetKind(), m_domain);
  185. sig.CompType = CompTypeToSigCompType(pElement->GetCompType());
  186. sig.Register = pElement->GetStartRow();
  187. sig.Mask = pElement->GetColsAsMask();
  188. // Only mark exist channel write for output.
  189. // All channel not used for input.
  190. if (!m_isInput)
  191. sig.NeverWrites_Mask = ~(sig.Mask);
  192. else
  193. sig.AlwaysReads_Mask = 0;
  194. sig.MinPrecision = m_useMinPrecision
  195. ? CompTypeToSigMinPrecision(pElement->GetCompType())
  196. : DxilProgramSigMinPrecision::Default;
  197. for (unsigned i = 0; i < eltCount; ++i) {
  198. sig.SemanticIndex = indexVec[i];
  199. orderedSig.emplace_back(sig);
  200. if (pElement->IsAllocated())
  201. sig.Register += eltRows;
  202. if (sig.SystemValue == DxilProgramSigSemantic::FinalLineDensityTessfactor)
  203. sig.SystemValue = DxilProgramSigSemantic::FinalLineDetailTessfactor;
  204. }
  205. }
  206. void calcSizes() {
  207. // Calculate size for signature elements.
  208. const std::vector<std::unique_ptr<hlsl::DxilSignatureElement>> &elements = m_signature.GetElements();
  209. uint32_t result = sizeof(DxilProgramSignature);
  210. m_paramCount = 0;
  211. for (size_t i = 0; i < elements.size(); ++i) {
  212. DXIL::SemanticInterpretationKind I = elements[i]->GetInterpretation();
  213. if (I == DXIL::SemanticInterpretationKind::NA || I == DXIL::SemanticInterpretationKind::NotInSig)
  214. continue;
  215. unsigned semanticCount = elements[i]->GetSemanticIndexVec().size();
  216. result += semanticCount * sizeof(DxilProgramSignatureElement);
  217. m_paramCount += semanticCount;
  218. }
  219. m_fixedSize = result;
  220. m_lastOffset = m_fixedSize;
  221. // Calculate size for semantic strings.
  222. for (size_t i = 0; i < elements.size(); ++i) {
  223. GetSemanticOffset(elements[i].get());
  224. }
  225. }
  226. public:
  227. DxilProgramSignatureWriter(const DxilSignature &signature,
  228. DXIL::TessellatorDomain domain, bool isInput, bool UseMinPrecision)
  229. : m_signature(signature), m_domain(domain), m_isInput(isInput), m_useMinPrecision(UseMinPrecision) {
  230. calcSizes();
  231. }
  232. uint32_t size() const override {
  233. return m_lastOffset;
  234. }
  235. void write(AbstractMemoryStream *pStream) override {
  236. UINT64 startPos = pStream->GetPosition();
  237. const std::vector<std::unique_ptr<hlsl::DxilSignatureElement>> &elements = m_signature.GetElements();
  238. DxilProgramSignature programSig;
  239. programSig.ParamCount = m_paramCount;
  240. programSig.ParamOffset = sizeof(DxilProgramSignature);
  241. IFT(WriteStreamValue(pStream, programSig));
  242. // Write structures in register order.
  243. std::vector<DxilProgramSignatureElement> orderedSig;
  244. for (size_t i = 0; i < elements.size(); ++i) {
  245. DXIL::SemanticInterpretationKind I = elements[i]->GetInterpretation();
  246. if (I == DXIL::SemanticInterpretationKind::NA || I == DXIL::SemanticInterpretationKind::NotInSig)
  247. continue;
  248. write(orderedSig, elements[i].get());
  249. }
  250. std::sort(orderedSig.begin(), orderedSig.end(), sort_sig());
  251. for (size_t i = 0; i < orderedSig.size(); ++i) {
  252. DxilProgramSignatureElement &sigElt = orderedSig[i];
  253. IFT(WriteStreamValue(pStream, sigElt));
  254. }
  255. // Write strings in the offset order.
  256. std::vector<NameOffsetPair> ordered;
  257. ordered.assign(m_semanticNameOffsets.begin(), m_semanticNameOffsets.end());
  258. std::sort(ordered.begin(), ordered.end(), sort_second<NameOffsetPair>());
  259. for (size_t i = 0; i < ordered.size(); ++i) {
  260. const char *pName = ordered[i].first;
  261. ULONG cbWritten;
  262. UINT64 offsetPos = pStream->GetPosition();
  263. DXASSERT_LOCALVAR(offsetPos, offsetPos - startPos == ordered[i].second, "else str offset is incorrect");
  264. IFT(pStream->Write(pName, strlen(pName) + 1, &cbWritten));
  265. }
  266. // Verify we wrote the bytes we though we would.
  267. UINT64 endPos = pStream->GetPosition();
  268. DXASSERT_LOCALVAR(endPos - startPos, endPos - startPos == size(), "else size is incorrect");
  269. }
  270. };
  271. DxilPartWriter *hlsl::NewProgramSignatureWriter(const DxilModule &M, DXIL::SignatureKind Kind) {
  272. DXIL::TessellatorDomain domain = DXIL::TessellatorDomain::Undefined;
  273. if (M.GetShaderModel()->IsHS() || M.GetShaderModel()->IsDS())
  274. domain = M.GetTessellatorDomain();
  275. switch (Kind) {
  276. case DXIL::SignatureKind::Input:
  277. return new DxilProgramSignatureWriter(
  278. M.GetInputSignature(), domain, true,
  279. M.GetUseMinPrecision());
  280. case DXIL::SignatureKind::Output:
  281. return new DxilProgramSignatureWriter(
  282. M.GetOutputSignature(), domain, false,
  283. M.GetUseMinPrecision());
  284. case DXIL::SignatureKind::PatchConstant:
  285. return new DxilProgramSignatureWriter(
  286. M.GetPatchConstantSignature(), domain,
  287. /*IsInput*/ M.GetShaderModel()->IsDS(),
  288. /*UseMinPrecision*/M.GetUseMinPrecision());
  289. case DXIL::SignatureKind::Invalid:
  290. return nullptr;
  291. }
  292. return nullptr;
  293. }
  294. class DxilProgramRootSignatureWriter : public DxilPartWriter {
  295. private:
  296. const RootSignatureHandle &m_Sig;
  297. public:
  298. DxilProgramRootSignatureWriter(const RootSignatureHandle &S) : m_Sig(S) {}
  299. uint32_t size() const {
  300. return m_Sig.GetSerializedSize();
  301. }
  302. void write(AbstractMemoryStream *pStream) {
  303. ULONG cbWritten;
  304. IFT(pStream->Write(m_Sig.GetSerializedBytes(), size(), &cbWritten));
  305. }
  306. };
  307. DxilPartWriter *hlsl::NewRootSignatureWriter(const RootSignatureHandle &S) {
  308. return new DxilProgramRootSignatureWriter(S);
  309. }
  310. class DxilFeatureInfoWriter : public DxilPartWriter {
  311. private:
  312. // Only save the shader properties after create class for it.
  313. DxilShaderFeatureInfo featureInfo;
  314. public:
  315. DxilFeatureInfoWriter(const DxilModule &M) {
  316. featureInfo.FeatureFlags = M.m_ShaderFlags.GetFeatureInfo();
  317. }
  318. uint32_t size() const override {
  319. return sizeof(DxilShaderFeatureInfo);
  320. }
  321. void write(AbstractMemoryStream *pStream) override {
  322. IFT(WriteStreamValue(pStream, featureInfo.FeatureFlags));
  323. }
  324. };
  325. DxilPartWriter *hlsl::NewFeatureInfoWriter(const DxilModule &M) {
  326. return new DxilFeatureInfoWriter(M);
  327. }
  328. class DxilPSVWriter : public DxilPartWriter {
  329. private:
  330. const DxilModule &m_Module;
  331. PSVInitInfo m_PSVInitInfo;
  332. DxilPipelineStateValidation m_PSV;
  333. uint32_t m_PSVBufferSize;
  334. SmallVector<char, 512> m_PSVBuffer;
  335. SmallVector<char, 256> m_StringBuffer;
  336. SmallVector<uint32_t, 8> m_SemanticIndexBuffer;
  337. std::vector<PSVSignatureElement0> m_SigInputElements;
  338. std::vector<PSVSignatureElement0> m_SigOutputElements;
  339. std::vector<PSVSignatureElement0> m_SigPatchConstantElements;
  340. void SetPSVSigElement(PSVSignatureElement0 &E, const DxilSignatureElement &SE) {
  341. memset(&E, 0, sizeof(PSVSignatureElement0));
  342. if (SE.GetKind() == DXIL::SemanticKind::Arbitrary && strlen(SE.GetName()) > 0) {
  343. E.SemanticName = (uint32_t)m_StringBuffer.size();
  344. StringRef Name(SE.GetName());
  345. m_StringBuffer.append(Name.size()+1, '\0');
  346. memcpy(m_StringBuffer.data() + E.SemanticName, Name.data(), Name.size());
  347. } else {
  348. // m_StringBuffer always starts with '\0' so offset 0 is empty string:
  349. E.SemanticName = 0;
  350. }
  351. // Search index buffer for matching semantic index sequence
  352. DXASSERT_NOMSG(SE.GetRows() == SE.GetSemanticIndexVec().size());
  353. auto &SemIdx = SE.GetSemanticIndexVec();
  354. bool match = false;
  355. for (uint32_t offset = 0; offset + SE.GetRows() - 1 < m_SemanticIndexBuffer.size(); offset++) {
  356. match = true;
  357. for (uint32_t row = 0; row < SE.GetRows(); row++) {
  358. if ((uint32_t)SemIdx[row] != m_SemanticIndexBuffer[offset + row]) {
  359. match = false;
  360. break;
  361. }
  362. }
  363. if (match) {
  364. E.SemanticIndexes = offset;
  365. break;
  366. }
  367. }
  368. if (!match) {
  369. E.SemanticIndexes = m_SemanticIndexBuffer.size();
  370. for (uint32_t row = 0; row < SemIdx.size(); row++) {
  371. m_SemanticIndexBuffer.push_back((uint32_t)SemIdx[row]);
  372. }
  373. }
  374. DXASSERT_NOMSG(SE.GetRows() <= 32);
  375. E.Rows = (uint8_t)SE.GetRows();
  376. DXASSERT_NOMSG(SE.GetCols() <= 4);
  377. E.ColsAndStart = (uint8_t)SE.GetCols() & 0xF;
  378. if (SE.IsAllocated()) {
  379. DXASSERT_NOMSG(SE.GetStartCol() < 4);
  380. DXASSERT_NOMSG(SE.GetStartRow() < 32);
  381. E.ColsAndStart |= 0x40 | (SE.GetStartCol() << 4);
  382. E.StartRow = (uint8_t)SE.GetStartRow();
  383. }
  384. E.SemanticKind = (uint8_t)SE.GetKind();
  385. E.ComponentType = (uint8_t)CompTypeToSigCompType(SE.GetCompType());
  386. E.InterpolationMode = (uint8_t)SE.GetInterpolationMode()->GetKind();
  387. DXASSERT_NOMSG(SE.GetOutputStream() < 4);
  388. E.DynamicMaskAndStream = (uint8_t)((SE.GetOutputStream() & 0x3) << 4);
  389. E.DynamicMaskAndStream |= (SE.GetDynIdxCompMask()) & 0xF;
  390. }
  391. const uint32_t *CopyViewIDState(const uint32_t *pSrc, uint32_t InputScalars, uint32_t OutputScalars, PSVComponentMask ViewIDMask, PSVDependencyTable IOTable) {
  392. unsigned MaskDwords = PSVComputeMaskDwordsFromVectors(PSVALIGN4(OutputScalars) / 4);
  393. if (ViewIDMask.IsValid()) {
  394. DXASSERT_NOMSG(!IOTable.Table || ViewIDMask.NumVectors == IOTable.OutputVectors);
  395. memcpy(ViewIDMask.Mask, pSrc, 4 * MaskDwords);
  396. pSrc += MaskDwords;
  397. }
  398. if (IOTable.IsValid() && IOTable.InputVectors && IOTable.OutputVectors) {
  399. DXASSERT_NOMSG((InputScalars <= IOTable.InputVectors * 4) && (IOTable.InputVectors * 4 - InputScalars < 4));
  400. DXASSERT_NOMSG((OutputScalars <= IOTable.OutputVectors * 4) && (IOTable.OutputVectors * 4 - OutputScalars < 4));
  401. memcpy(IOTable.Table, pSrc, 4 * MaskDwords * InputScalars);
  402. pSrc += MaskDwords * InputScalars;
  403. }
  404. return pSrc;
  405. }
  406. public:
  407. DxilPSVWriter(const DxilModule &module, uint32_t PSVVersion = 0)
  408. : m_Module(module),
  409. m_PSVInitInfo(PSVVersion)
  410. {
  411. unsigned ValMajor, ValMinor;
  412. m_Module.GetValidatorVersion(ValMajor, ValMinor);
  413. // Allow PSVVersion to be upgraded
  414. if (m_PSVInitInfo.PSVVersion < 1 && (ValMajor > 1 || (ValMajor == 1 && ValMinor >= 1)))
  415. m_PSVInitInfo.PSVVersion = 1;
  416. const ShaderModel *SM = m_Module.GetShaderModel();
  417. UINT uCBuffers = m_Module.GetCBuffers().size();
  418. UINT uSamplers = m_Module.GetSamplers().size();
  419. UINT uSRVs = m_Module.GetSRVs().size();
  420. UINT uUAVs = m_Module.GetUAVs().size();
  421. m_PSVInitInfo.ResourceCount = uCBuffers + uSamplers + uSRVs + uUAVs;
  422. // TODO: for >= 6.2 version, create more efficient structure
  423. if (m_PSVInitInfo.PSVVersion > 0) {
  424. m_PSVInitInfo.ShaderStage = (PSVShaderKind)SM->GetKind();
  425. // Copy Dxil Signatures
  426. m_StringBuffer.push_back('\0'); // For empty semantic name (system value)
  427. m_PSVInitInfo.SigInputElements = m_Module.GetInputSignature().GetElements().size();
  428. m_SigInputElements.resize(m_PSVInitInfo.SigInputElements);
  429. m_PSVInitInfo.SigOutputElements = m_Module.GetOutputSignature().GetElements().size();
  430. m_SigOutputElements.resize(m_PSVInitInfo.SigOutputElements);
  431. m_PSVInitInfo.SigPatchConstantElements = m_Module.GetPatchConstantSignature().GetElements().size();
  432. m_SigPatchConstantElements.resize(m_PSVInitInfo.SigPatchConstantElements);
  433. uint32_t i = 0;
  434. for (auto &SE : m_Module.GetInputSignature().GetElements()) {
  435. SetPSVSigElement(m_SigInputElements[i++], *(SE.get()));
  436. }
  437. i = 0;
  438. for (auto &SE : m_Module.GetOutputSignature().GetElements()) {
  439. SetPSVSigElement(m_SigOutputElements[i++], *(SE.get()));
  440. }
  441. i = 0;
  442. for (auto &SE : m_Module.GetPatchConstantSignature().GetElements()) {
  443. SetPSVSigElement(m_SigPatchConstantElements[i++], *(SE.get()));
  444. }
  445. // Set String and SemanticInput Tables
  446. m_PSVInitInfo.StringTable.Table = m_StringBuffer.data();
  447. m_PSVInitInfo.StringTable.Size = m_StringBuffer.size();
  448. m_PSVInitInfo.SemanticIndexTable.Table = m_SemanticIndexBuffer.data();
  449. m_PSVInitInfo.SemanticIndexTable.Entries = m_SemanticIndexBuffer.size();
  450. // Set up ViewID and signature dependency info
  451. m_PSVInitInfo.UsesViewID = m_Module.m_ShaderFlags.GetViewID() ? true : false;
  452. m_PSVInitInfo.SigInputVectors = m_Module.GetInputSignature().NumVectorsUsed(0);
  453. for (unsigned streamIndex = 0; streamIndex < 4; streamIndex++) {
  454. m_PSVInitInfo.SigOutputVectors[streamIndex] = m_Module.GetOutputSignature().NumVectorsUsed(streamIndex);
  455. }
  456. m_PSVInitInfo.SigPatchConstantVectors = 0;
  457. if (SM->IsHS()) {
  458. m_PSVInitInfo.SigPatchConstantVectors = m_Module.GetPatchConstantSignature().NumVectorsUsed(0);
  459. }
  460. if (SM->IsDS()) {
  461. m_PSVInitInfo.SigPatchConstantVectors = m_Module.GetPatchConstantSignature().NumVectorsUsed(0);
  462. }
  463. }
  464. if (!m_PSV.InitNew(m_PSVInitInfo, nullptr, &m_PSVBufferSize)) {
  465. DXASSERT(false, "PSV InitNew failed computing size!");
  466. }
  467. }
  468. uint32_t size() const override {
  469. return m_PSVBufferSize;
  470. }
  471. void write(AbstractMemoryStream *pStream) override {
  472. m_PSVBuffer.resize(m_PSVBufferSize);
  473. if (!m_PSV.InitNew(m_PSVInitInfo, m_PSVBuffer.data(), &m_PSVBufferSize)) {
  474. DXASSERT(false, "PSV InitNew failed!");
  475. }
  476. DXASSERT_NOMSG(m_PSVBuffer.size() == m_PSVBufferSize);
  477. // Set DxilRuntimInfo
  478. PSVRuntimeInfo0* pInfo = m_PSV.GetPSVRuntimeInfo0();
  479. PSVRuntimeInfo1* pInfo1 = m_PSV.GetPSVRuntimeInfo1();
  480. const ShaderModel* SM = m_Module.GetShaderModel();
  481. pInfo->MinimumExpectedWaveLaneCount = 0;
  482. pInfo->MaximumExpectedWaveLaneCount = (UINT)-1;
  483. switch (SM->GetKind()) {
  484. case ShaderModel::Kind::Vertex: {
  485. pInfo->VS.OutputPositionPresent = 0;
  486. const DxilSignature &S = m_Module.GetOutputSignature();
  487. for (auto &&E : S.GetElements()) {
  488. if (E->GetKind() == Semantic::Kind::Position) {
  489. // Ideally, we might check never writes mask here,
  490. // but this is not yet part of the signature element in Dxil
  491. pInfo->VS.OutputPositionPresent = 1;
  492. break;
  493. }
  494. }
  495. break;
  496. }
  497. case ShaderModel::Kind::Hull: {
  498. pInfo->HS.InputControlPointCount = (UINT)m_Module.GetInputControlPointCount();
  499. pInfo->HS.OutputControlPointCount = (UINT)m_Module.GetOutputControlPointCount();
  500. pInfo->HS.TessellatorDomain = (UINT)m_Module.GetTessellatorDomain();
  501. pInfo->HS.TessellatorOutputPrimitive = (UINT)m_Module.GetTessellatorOutputPrimitive();
  502. break;
  503. }
  504. case ShaderModel::Kind::Domain: {
  505. pInfo->DS.InputControlPointCount = (UINT)m_Module.GetInputControlPointCount();
  506. pInfo->DS.OutputPositionPresent = 0;
  507. const DxilSignature &S = m_Module.GetOutputSignature();
  508. for (auto &&E : S.GetElements()) {
  509. if (E->GetKind() == Semantic::Kind::Position) {
  510. // Ideally, we might check never writes mask here,
  511. // but this is not yet part of the signature element in Dxil
  512. pInfo->DS.OutputPositionPresent = 1;
  513. break;
  514. }
  515. }
  516. pInfo->DS.TessellatorDomain = (UINT)m_Module.GetTessellatorDomain();
  517. break;
  518. }
  519. case ShaderModel::Kind::Geometry: {
  520. pInfo->GS.InputPrimitive = (UINT)m_Module.GetInputPrimitive();
  521. // NOTE: For OutputTopology, pick one from a used stream, or if none
  522. // are used, use stream 0, and set OutputStreamMask to 1.
  523. pInfo->GS.OutputTopology = (UINT)m_Module.GetStreamPrimitiveTopology();
  524. pInfo->GS.OutputStreamMask = m_Module.GetActiveStreamMask();
  525. if (pInfo->GS.OutputStreamMask == 0) {
  526. pInfo->GS.OutputStreamMask = 1; // This is what runtime expects.
  527. }
  528. pInfo->GS.OutputPositionPresent = 0;
  529. const DxilSignature &S = m_Module.GetOutputSignature();
  530. for (auto &&E : S.GetElements()) {
  531. if (E->GetKind() == Semantic::Kind::Position) {
  532. // Ideally, we might check never writes mask here,
  533. // but this is not yet part of the signature element in Dxil
  534. pInfo->GS.OutputPositionPresent = 1;
  535. break;
  536. }
  537. }
  538. break;
  539. }
  540. case ShaderModel::Kind::Pixel: {
  541. pInfo->PS.DepthOutput = 0;
  542. pInfo->PS.SampleFrequency = 0;
  543. {
  544. const DxilSignature &S = m_Module.GetInputSignature();
  545. for (auto &&E : S.GetElements()) {
  546. if (E->GetInterpolationMode()->IsAnySample() ||
  547. E->GetKind() == Semantic::Kind::SampleIndex) {
  548. pInfo->PS.SampleFrequency = 1;
  549. }
  550. }
  551. }
  552. {
  553. const DxilSignature &S = m_Module.GetOutputSignature();
  554. for (auto &&E : S.GetElements()) {
  555. if (E->IsAnyDepth()) {
  556. pInfo->PS.DepthOutput = 1;
  557. break;
  558. }
  559. }
  560. }
  561. break;
  562. }
  563. case ShaderModel::Kind::Compute:
  564. case ShaderModel::Kind::Library:
  565. case ShaderModel::Kind::Invalid:
  566. // Compute, Library, and Invalide not relevant to PSVRuntimeInfo0
  567. break;
  568. }
  569. // Set resource binding information
  570. UINT uResIndex = 0;
  571. for (auto &&R : m_Module.GetCBuffers()) {
  572. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  573. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  574. DXASSERT_NOMSG(pBindInfo);
  575. pBindInfo->ResType = (UINT)PSVResourceType::CBV;
  576. pBindInfo->Space = R->GetSpaceID();
  577. pBindInfo->LowerBound = R->GetLowerBound();
  578. pBindInfo->UpperBound = R->GetUpperBound();
  579. uResIndex++;
  580. }
  581. for (auto &&R : m_Module.GetSamplers()) {
  582. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  583. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  584. DXASSERT_NOMSG(pBindInfo);
  585. pBindInfo->ResType = (UINT)PSVResourceType::Sampler;
  586. pBindInfo->Space = R->GetSpaceID();
  587. pBindInfo->LowerBound = R->GetLowerBound();
  588. pBindInfo->UpperBound = R->GetUpperBound();
  589. uResIndex++;
  590. }
  591. for (auto &&R : m_Module.GetSRVs()) {
  592. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  593. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  594. DXASSERT_NOMSG(pBindInfo);
  595. if (R->IsStructuredBuffer()) {
  596. pBindInfo->ResType = (UINT)PSVResourceType::SRVStructured;
  597. } else if (R->IsRawBuffer()) {
  598. pBindInfo->ResType = (UINT)PSVResourceType::SRVRaw;
  599. } else {
  600. pBindInfo->ResType = (UINT)PSVResourceType::SRVTyped;
  601. }
  602. pBindInfo->Space = R->GetSpaceID();
  603. pBindInfo->LowerBound = R->GetLowerBound();
  604. pBindInfo->UpperBound = R->GetUpperBound();
  605. uResIndex++;
  606. }
  607. for (auto &&R : m_Module.GetUAVs()) {
  608. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  609. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  610. DXASSERT_NOMSG(pBindInfo);
  611. if (R->IsStructuredBuffer()) {
  612. if (R->HasCounter())
  613. pBindInfo->ResType = (UINT)PSVResourceType::UAVStructuredWithCounter;
  614. else
  615. pBindInfo->ResType = (UINT)PSVResourceType::UAVStructured;
  616. } else if (R->IsRawBuffer()) {
  617. pBindInfo->ResType = (UINT)PSVResourceType::UAVRaw;
  618. } else {
  619. pBindInfo->ResType = (UINT)PSVResourceType::UAVTyped;
  620. }
  621. pBindInfo->Space = R->GetSpaceID();
  622. pBindInfo->LowerBound = R->GetLowerBound();
  623. pBindInfo->UpperBound = R->GetUpperBound();
  624. uResIndex++;
  625. }
  626. DXASSERT_NOMSG(uResIndex == m_PSVInitInfo.ResourceCount);
  627. if (m_PSVInitInfo.PSVVersion > 0) {
  628. DXASSERT_NOMSG(pInfo1);
  629. // Write MaxVertexCount
  630. if (SM->IsGS()) {
  631. DXASSERT_NOMSG(m_Module.GetMaxVertexCount() <= 1024);
  632. pInfo1->MaxVertexCount = (uint16_t)m_Module.GetMaxVertexCount();
  633. }
  634. // Write Dxil Signature Elements
  635. for (unsigned i = 0; i < m_PSV.GetSigInputElements(); i++) {
  636. PSVSignatureElement0 *pInputElement = m_PSV.GetInputElement0(i);
  637. DXASSERT_NOMSG(pInputElement);
  638. memcpy(pInputElement, &m_SigInputElements[i], sizeof(PSVSignatureElement0));
  639. }
  640. for (unsigned i = 0; i < m_PSV.GetSigOutputElements(); i++) {
  641. PSVSignatureElement0 *pOutputElement = m_PSV.GetOutputElement0(i);
  642. DXASSERT_NOMSG(pOutputElement);
  643. memcpy(pOutputElement, &m_SigOutputElements[i], sizeof(PSVSignatureElement0));
  644. }
  645. for (unsigned i = 0; i < m_PSV.GetSigPatchConstantElements(); i++) {
  646. PSVSignatureElement0 *pPatchConstantElement = m_PSV.GetPatchConstantElement0(i);
  647. DXASSERT_NOMSG(pPatchConstantElement);
  648. memcpy(pPatchConstantElement, &m_SigPatchConstantElements[i], sizeof(PSVSignatureElement0));
  649. }
  650. // Gather ViewID dependency information
  651. auto &viewState = m_Module.GetViewIdState().GetSerialized();
  652. if (!viewState.empty()) {
  653. const uint32_t *pSrc = viewState.data();
  654. const uint32_t InputScalars = *(pSrc++);
  655. uint32_t OutputScalars[4];
  656. for (unsigned streamIndex = 0; streamIndex < 4; streamIndex++) {
  657. OutputScalars[streamIndex] = *(pSrc++);
  658. pSrc = CopyViewIDState(pSrc, InputScalars, OutputScalars[streamIndex], m_PSV.GetViewIDOutputMask(streamIndex), m_PSV.GetInputToOutputTable(streamIndex));
  659. if (!SM->IsGS())
  660. break;
  661. }
  662. if (SM->IsHS()) {
  663. const uint32_t PCScalars = *(pSrc++);
  664. pSrc = CopyViewIDState(pSrc, InputScalars, PCScalars, m_PSV.GetViewIDPCOutputMask(), m_PSV.GetInputToPCOutputTable());
  665. } else if (SM->IsDS()) {
  666. const uint32_t PCScalars = *(pSrc++);
  667. pSrc = CopyViewIDState(pSrc, PCScalars, OutputScalars[0], PSVComponentMask(), m_PSV.GetPCInputToOutputTable());
  668. }
  669. DXASSERT_NOMSG(viewState.data() + viewState.size() == pSrc);
  670. }
  671. }
  672. ULONG cbWritten;
  673. IFT(pStream->Write(m_PSVBuffer.data(), m_PSVBufferSize, &cbWritten));
  674. DXASSERT_NOMSG(cbWritten == m_PSVBufferSize);
  675. }
  676. };
  677. // Size-checked writer
  678. // on overrun: throw buffer_overrun{};
  679. // on overlap: throw buffer_overlap{};
  680. class CheckedWriter {
  681. char *Ptr;
  682. size_t Size;
  683. size_t Offset;
  684. public:
  685. class exception : public std::exception {};
  686. class buffer_overrun : public exception {
  687. public:
  688. buffer_overrun() noexcept {}
  689. virtual const char * what() const noexcept override {
  690. return ("buffer_overrun");
  691. }
  692. };
  693. class buffer_overlap : public exception {
  694. public:
  695. buffer_overlap() noexcept {}
  696. virtual const char * what() const noexcept override {
  697. return ("buffer_overlap");
  698. }
  699. };
  700. CheckedWriter(void *ptr, size_t size) :
  701. Ptr(reinterpret_cast<char*>(ptr)), Size(size), Offset(0) {}
  702. size_t GetOffset() const { return Offset; }
  703. void Reset(size_t offset = 0) {
  704. if (offset >= Size) throw buffer_overrun{};
  705. Offset = offset;
  706. }
  707. // offset is absolute, ensure offset is >= current offset
  708. void Advance(size_t offset = 0) {
  709. if (offset < Offset) throw buffer_overlap{};
  710. if (offset >= Size) throw buffer_overrun{};
  711. Offset = offset;
  712. }
  713. void CheckBounds(size_t size) const {
  714. assert(Offset <= Size && "otherwise, offset larger than size");
  715. if (size > Size - Offset)
  716. throw buffer_overrun{};
  717. }
  718. template <typename T>
  719. T *Cast(size_t size = 0) {
  720. if (0 == size) size = sizeof(T);
  721. CheckBounds(size);
  722. return reinterpret_cast<T*>(Ptr + Offset);
  723. }
  724. // Map and Write advance Offset:
  725. template <typename T>
  726. T &Map() {
  727. const size_t size = sizeof(T);
  728. T * p = Cast<T>(size);
  729. Offset += size;
  730. return *p;
  731. }
  732. template <typename T>
  733. T *MapArray(size_t count = 1) {
  734. const size_t size = sizeof(T) * count;
  735. T *p = Cast<T>(size);
  736. Offset += size;
  737. return p;
  738. }
  739. template <typename T>
  740. void Write(const T &obj) {
  741. const size_t size = sizeof(T);
  742. *Cast<T>(size) = obj;
  743. Offset += size;
  744. }
  745. template <typename T>
  746. void WriteArray(const T *pArray, size_t count = 1) {
  747. const size_t size = sizeof(T) * count;
  748. memcpy(Cast<T>(size), pArray, size);
  749. Offset += size;
  750. }
  751. };
  752. // Like DXIL container, RDAT itself is a mini container that contains multiple RDAT parts
  753. class RDATPart {
  754. public:
  755. virtual uint32_t GetPartSize() const { return 0; }
  756. virtual void Write(void *ptr) {}
  757. virtual RuntimeDataPartType GetType() const { return RuntimeDataPartType::Invalid; }
  758. virtual ~RDATPart() {}
  759. };
  760. // Most RDAT parts are tables each containing a list of structures of same type.
  761. // Exceptions are string table and index table because each string or list of
  762. // indicies can be of different sizes.
  763. template <class T>
  764. class RDATTable : public RDATPart {
  765. protected:
  766. std::vector<T> m_rows;
  767. public:
  768. virtual void Insert(T *data) {}
  769. virtual ~RDATTable() {}
  770. void Insert(const T &data) {
  771. m_rows.push_back(data);
  772. }
  773. void Write(void *ptr) {
  774. char *pCur = (char*)ptr;
  775. RuntimeDataTableHeader &header = *reinterpret_cast<RuntimeDataTableHeader*>(pCur);
  776. header.RecordCount = m_rows.size();
  777. header.RecordStride = sizeof(T);
  778. pCur += sizeof(RuntimeDataTableHeader);
  779. memcpy(pCur, m_rows.data(), header.RecordCount * header.RecordStride);
  780. };
  781. uint32_t GetPartSize() const {
  782. if (m_rows.empty())
  783. return 0;
  784. return sizeof(RuntimeDataTableHeader) + m_rows.size() * sizeof(T);
  785. }
  786. };
  787. // Resource table will contain a list of RuntimeDataResourceInfo in order of
  788. // CBuffer, Sampler, SRV, and UAV resource classes.
  789. class ResourceTable : public RDATTable<RuntimeDataResourceInfo> {
  790. public:
  791. RuntimeDataPartType GetType() const { return RuntimeDataPartType::ResourceTable; }
  792. };
  793. class FunctionTable : public RDATTable<RuntimeDataFunctionInfo> {
  794. public:
  795. RuntimeDataPartType GetType() const { return RuntimeDataPartType::FunctionTable; }
  796. };
  797. class StringBufferPart : public RDATPart {
  798. private:
  799. StringMap<uint32_t> m_StringMap;
  800. SmallVector<char, 256> m_StringBuffer;
  801. uint32_t curIndex;
  802. public:
  803. StringBufferPart() : m_StringMap(), m_StringBuffer(), curIndex(0) {
  804. // Always start string table with null so empty/null strings have offset of zero
  805. m_StringBuffer.push_back('\0');
  806. }
  807. // returns the offset of the name inserted
  808. uint32_t Insert(StringRef name) {
  809. if (name.empty())
  810. return 0;
  811. // Don't add duplicate strings
  812. auto found = m_StringMap.find(name);
  813. if (found != m_StringMap.end())
  814. return found->second;
  815. uint32_t prevIndex = (uint32_t)m_StringBuffer.size();
  816. m_StringMap[name] = prevIndex;
  817. m_StringBuffer.reserve(m_StringBuffer.size() + name.size() + 1);
  818. m_StringBuffer.append(name.begin(), name.end());
  819. m_StringBuffer.push_back('\0');
  820. return prevIndex;
  821. }
  822. RuntimeDataPartType GetType() const { return RuntimeDataPartType::StringBuffer; }
  823. uint32_t GetPartSize() const { return m_StringBuffer.size(); }
  824. void Write(void *ptr) { memcpy(ptr, m_StringBuffer.data(), m_StringBuffer.size()); }
  825. };
  826. struct IndexArraysPart : public RDATPart {
  827. private:
  828. std::vector<uint32_t> m_IndexBuffer;
  829. // Use m_IndexSet with CmpIndices to avoid duplicate index arrays
  830. struct CmpIndices {
  831. const IndexArraysPart &Table;
  832. CmpIndices(const IndexArraysPart &table) : Table(table) {}
  833. bool operator()(uint32_t left, uint32_t right) const {
  834. const uint32_t *pLeft = Table.m_IndexBuffer.data() + left;
  835. const uint32_t *pRight = Table.m_IndexBuffer.data() + right;
  836. if (*pLeft != *pRight)
  837. return (*pLeft < *pRight);
  838. uint32_t count = *pLeft;
  839. for (unsigned i = 0; i < count; i++) {
  840. ++pLeft; ++pRight;
  841. if (*pLeft != *pRight)
  842. return (*pLeft < *pRight);
  843. }
  844. return false;
  845. }
  846. };
  847. std::set<uint32_t, CmpIndices> m_IndexSet;
  848. public:
  849. IndexArraysPart() : m_IndexBuffer(), m_IndexSet(*this) {}
  850. template <class iterator>
  851. uint32_t AddIndex(iterator begin, iterator end) {
  852. uint32_t newOffset = m_IndexBuffer.size();
  853. m_IndexBuffer.push_back(0); // Size: update after insertion
  854. m_IndexBuffer.insert(m_IndexBuffer.end(), begin, end);
  855. m_IndexBuffer[newOffset] = (m_IndexBuffer.size() - newOffset) - 1;
  856. // Check for duplicate, return new offset if not duplicate
  857. auto insertResult = m_IndexSet.insert(newOffset);
  858. if (insertResult.second)
  859. return newOffset;
  860. // Otherwise it was a duplicate, so chop off the size and return the original
  861. m_IndexBuffer.resize(newOffset);
  862. return *insertResult.first;
  863. }
  864. RuntimeDataPartType GetType() const { return RuntimeDataPartType::IndexArrays; }
  865. uint32_t GetPartSize() const {
  866. return sizeof(uint32_t) * m_IndexBuffer.size();
  867. }
  868. void Write(void *ptr) {
  869. memcpy(ptr, m_IndexBuffer.data(), m_IndexBuffer.size() * sizeof(uint32_t));
  870. }
  871. };
  872. using namespace DXIL;
  873. class DxilRDATWriter : public DxilPartWriter {
  874. private:
  875. const DxilModule &m_Module;
  876. SmallVector<char, 1024> m_RDATBuffer;
  877. std::vector<std::unique_ptr<RDATPart>> m_Parts;
  878. typedef llvm::SmallSetVector<uint32_t, 8> Indices;
  879. typedef std::unordered_map<const llvm::Function *, Indices> FunctionIndexMap;
  880. FunctionIndexMap m_FuncToResNameOffset; // list of resources used
  881. FunctionIndexMap m_FuncToDependencies; // list of unresolved functions used
  882. struct ShaderCompatInfo {
  883. ShaderCompatInfo()
  884. : minMajor(6), minMinor(0),
  885. mask(((unsigned)1 << (unsigned)DXIL::ShaderKind::Invalid) - 1)
  886. {}
  887. unsigned minMajor, minMinor, mask;
  888. };
  889. typedef std::unordered_map<const llvm::Function*, ShaderCompatInfo> FunctionShaderCompatMap;
  890. FunctionShaderCompatMap m_FuncToShaderCompat;
  891. void UpdateFunctionToShaderCompat(const llvm::Function* dxilFunc) {
  892. for (const auto &user : dxilFunc->users()) {
  893. if (const llvm::Instruction *I = dyn_cast<const llvm::Instruction>(user)) {
  894. // Find calling function
  895. const llvm::Function *F = cast<const llvm::Function>(I->getParent()->getParent());
  896. // Insert or lookup info
  897. ShaderCompatInfo &info = m_FuncToShaderCompat[F];
  898. OpCode opcode = OP::GetDxilOpFuncCallInst(I);
  899. unsigned major, minor, mask;
  900. // bWithTranslation = true for library modules
  901. OP::GetMinShaderModelAndMask(opcode, /*bWithTranslation*/true, major, minor, mask);
  902. if (major > info.minMajor) {
  903. info.minMajor = major;
  904. info.minMinor = minor;
  905. } else if (minor > info.minMinor) {
  906. info.minMinor = minor;
  907. }
  908. info.mask &= mask;
  909. }
  910. }
  911. }
  912. const llvm::Function *FindUsingFunction(const llvm::Value *User) {
  913. if (const llvm::Instruction *I = dyn_cast<const llvm::Instruction>(User)) {
  914. // Instruction should be inside a basic block, which is in a function
  915. return cast<const llvm::Function>(I->getParent()->getParent());
  916. }
  917. // User can be either instruction, constant, or operator. But User is an
  918. // operator only if constant is a scalar value, not resource pointer.
  919. const llvm::Constant *CU = cast<const llvm::Constant>(User);
  920. if (!CU->user_empty())
  921. return FindUsingFunction(*CU->user_begin());
  922. else
  923. return nullptr;
  924. }
  925. void UpdateFunctionToResourceInfo(const DxilResourceBase *resource,
  926. uint32_t offset) {
  927. Constant *var = resource->GetGlobalSymbol();
  928. if (var) {
  929. for (auto user : var->users()) {
  930. // Find the function.
  931. const llvm::Function *F = FindUsingFunction(user);
  932. if (!F)
  933. continue;
  934. if (m_FuncToResNameOffset.find(F) == m_FuncToResNameOffset.end()) {
  935. m_FuncToResNameOffset[F] = Indices();
  936. }
  937. m_FuncToResNameOffset[F].insert(offset);
  938. }
  939. }
  940. }
  941. void InsertToResourceTable(DxilResourceBase &resource,
  942. ResourceClass resourceClass,
  943. ResourceTable &resourceTable,
  944. StringBufferPart &stringBufferPart,
  945. uint32_t &resourceIndex) {
  946. uint32_t stringIndex = stringBufferPart.Insert(resource.GetGlobalName());
  947. UpdateFunctionToResourceInfo(&resource, resourceIndex++);
  948. RuntimeDataResourceInfo info = {};
  949. info.ID = resource.GetID();
  950. info.Class = static_cast<uint32_t>(resourceClass);
  951. info.Kind = static_cast<uint32_t>(resource.GetKind());
  952. info.Space = resource.GetSpaceID();
  953. info.LowerBound = resource.GetLowerBound();
  954. info.UpperBound = resource.GetUpperBound();
  955. info.Name = stringIndex;
  956. info.Flags = 0;
  957. if (ResourceClass::UAV == resourceClass) {
  958. DxilResource *pRes = static_cast<DxilResource*>(&resource);
  959. if (pRes->HasCounter())
  960. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVCounter);
  961. if (pRes->IsGloballyCoherent())
  962. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVGloballyCoherent);
  963. if (pRes->IsROV())
  964. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVRasterizerOrderedView);
  965. // TODO: add dynamic index flag
  966. }
  967. resourceTable.Insert(info);
  968. }
  969. void UpdateResourceInfo(StringBufferPart &stringBufferPart) {
  970. // Try to allocate string table for resources. String table is a sequence
  971. // of strings delimited by \0
  972. m_Parts.emplace_back(std::make_unique<ResourceTable>());
  973. ResourceTable &resourceTable = *reinterpret_cast<ResourceTable*>(m_Parts.back().get());
  974. uint32_t resourceIndex = 0;
  975. for (auto &resource : m_Module.GetCBuffers()) {
  976. InsertToResourceTable(*resource.get(), ResourceClass::CBuffer, resourceTable, stringBufferPart,
  977. resourceIndex);
  978. }
  979. for (auto &resource : m_Module.GetSamplers()) {
  980. InsertToResourceTable(*resource.get(), ResourceClass::Sampler, resourceTable, stringBufferPart,
  981. resourceIndex);
  982. }
  983. for (auto &resource : m_Module.GetSRVs()) {
  984. InsertToResourceTable(*resource.get(), ResourceClass::SRV, resourceTable, stringBufferPart,
  985. resourceIndex);
  986. }
  987. for (auto &resource : m_Module.GetUAVs()) {
  988. InsertToResourceTable(*resource.get(), ResourceClass::UAV, resourceTable, stringBufferPart,
  989. resourceIndex);
  990. }
  991. }
  992. void UpdateFunctionDependency(llvm::Function *F, StringBufferPart &stringBufferPart) {
  993. for (const auto &user : F->users()) {
  994. const llvm::Function *userFunction = FindUsingFunction(user);
  995. uint32_t index = stringBufferPart.Insert(F->getName());
  996. if (m_FuncToDependencies.find(userFunction) ==
  997. m_FuncToDependencies.end()) {
  998. m_FuncToDependencies[userFunction] =
  999. Indices();
  1000. }
  1001. m_FuncToDependencies[userFunction].insert(index);
  1002. }
  1003. }
  1004. void UpdateFunctionInfo(StringBufferPart &stringBufferPart) {
  1005. m_Parts.emplace_back(std::make_unique<FunctionTable>());
  1006. FunctionTable &functionTable = *reinterpret_cast<FunctionTable*>(m_Parts.back().get());
  1007. m_Parts.emplace_back(std::make_unique<IndexArraysPart>());
  1008. IndexArraysPart &indexArraysPart = *reinterpret_cast<IndexArraysPart*>(m_Parts.back().get());
  1009. for (auto &function : m_Module.GetModule()->getFunctionList()) {
  1010. if (function.isDeclaration() && !function.isIntrinsic()) {
  1011. if (OP::IsDxilOpFunc(&function)) {
  1012. // update min shader model and shader stage mask per function
  1013. UpdateFunctionToShaderCompat(&function);
  1014. } else {
  1015. // collect unresolved dependencies per function
  1016. UpdateFunctionDependency(&function, stringBufferPart);
  1017. }
  1018. }
  1019. }
  1020. for (auto &function : m_Module.GetModule()->getFunctionList()) {
  1021. if (!function.isDeclaration()) {
  1022. StringRef mangled = function.getName();
  1023. StringRef unmangled = hlsl::dxilutil::DemangleFunctionName(function.getName());
  1024. uint32_t mangledIndex = stringBufferPart.Insert(mangled);
  1025. uint32_t unmangledIndex = stringBufferPart.Insert(unmangled);
  1026. // Update resource Index
  1027. uint32_t resourceIndex = UINT_MAX;
  1028. uint32_t functionDependencies = UINT_MAX;
  1029. uint32_t payloadSizeInBytes = 0;
  1030. uint32_t attrSizeInBytes = 0;
  1031. uint32_t shaderKind = static_cast<uint32_t>(DXIL::ShaderKind::Library);
  1032. if (m_FuncToResNameOffset.find(&function) != m_FuncToResNameOffset.end())
  1033. resourceIndex =
  1034. indexArraysPart.AddIndex(m_FuncToResNameOffset[&function].begin(),
  1035. m_FuncToResNameOffset[&function].end());
  1036. if (m_FuncToDependencies.find(&function) != m_FuncToDependencies.end())
  1037. functionDependencies =
  1038. indexArraysPart.AddIndex(m_FuncToDependencies[&function].begin(),
  1039. m_FuncToDependencies[&function].end());
  1040. if (m_Module.HasDxilFunctionProps(&function)) {
  1041. auto props = m_Module.GetDxilFunctionProps(&function);
  1042. if (props.IsClosestHit() || props.IsAnyHit()) {
  1043. payloadSizeInBytes = props.ShaderProps.Ray.payloadSizeInBytes;
  1044. attrSizeInBytes = props.ShaderProps.Ray.attributeSizeInBytes;
  1045. }
  1046. else if (props.IsMiss()) {
  1047. payloadSizeInBytes = props.ShaderProps.Ray.payloadSizeInBytes;
  1048. }
  1049. else if (props.IsCallable()) {
  1050. payloadSizeInBytes = props.ShaderProps.Ray.paramSizeInBytes;
  1051. }
  1052. shaderKind = (uint32_t)props.shaderKind;
  1053. }
  1054. ShaderFlags flags = ShaderFlags::CollectShaderFlags(&function, &m_Module);
  1055. RuntimeDataFunctionInfo info = {};
  1056. info.Name = mangledIndex;
  1057. info.UnmangledName = unmangledIndex;
  1058. info.ShaderKind = shaderKind;
  1059. info.Resources = resourceIndex;
  1060. info.FunctionDependencies = functionDependencies;
  1061. info.PayloadSizeInBytes = payloadSizeInBytes;
  1062. info.AttributeSizeInBytes = attrSizeInBytes;
  1063. uint64_t featureFlags = flags.GetFeatureInfo();
  1064. info.FeatureInfo1 = featureFlags & 0xffffffff;
  1065. info.FeatureInfo2 = (featureFlags >> 32) & 0xffffffff;
  1066. // Init min target 6.0
  1067. unsigned minMajor = 6, minMinor = 0;
  1068. // Increase min target based on feature flags:
  1069. if (flags.GetUseNativeLowPrecision() && flags.GetLowPrecisionPresent()) {
  1070. minMinor = 2;
  1071. } else if (flags.GetBarycentrics() || flags.GetViewID()) {
  1072. minMinor = 1;
  1073. }
  1074. if ((DXIL::ShaderKind)shaderKind == DXIL::ShaderKind::Library) {
  1075. // Init mask to all kinds for library functions
  1076. info.ShaderStageFlag = ((unsigned)1 << (unsigned)DXIL::ShaderKind::Invalid) - 1;
  1077. } else {
  1078. // Init mask to current kind for shader functions
  1079. info.ShaderStageFlag = (unsigned)1 << shaderKind;
  1080. }
  1081. auto it = m_FuncToShaderCompat.find(&function);
  1082. if (it != m_FuncToShaderCompat.end()) {
  1083. auto &compatInfo = it->second;
  1084. if (compatInfo.minMajor > minMajor) {
  1085. minMajor = compatInfo.minMajor;
  1086. minMinor = compatInfo.minMinor;
  1087. } else if (compatInfo.minMinor > minMinor) {
  1088. minMinor = compatInfo.minMinor;
  1089. }
  1090. info.ShaderStageFlag &= compatInfo.mask;
  1091. }
  1092. info.MinShaderTarget = EncodeVersion((DXIL::ShaderKind)shaderKind, minMajor, minMinor);
  1093. functionTable.Insert(info);
  1094. }
  1095. }
  1096. }
  1097. public:
  1098. DxilRDATWriter(const DxilModule &module, uint32_t InfoVersion = 0)
  1099. : m_Module(module), m_RDATBuffer(), m_Parts(), m_FuncToResNameOffset() {
  1100. // It's important to keep the order of this update
  1101. m_Parts.emplace_back(std::make_unique<StringBufferPart>());
  1102. StringBufferPart &stringBufferPart = *reinterpret_cast<StringBufferPart*>(m_Parts.back().get());
  1103. UpdateResourceInfo(stringBufferPart);
  1104. UpdateFunctionInfo(stringBufferPart);
  1105. // Delete any empty parts:
  1106. std::vector<std::unique_ptr<RDATPart>>::iterator it = m_Parts.begin();
  1107. while (it != m_Parts.end()) {
  1108. if (it->get()->GetPartSize() == 0) {
  1109. it = m_Parts.erase(it);
  1110. }
  1111. else
  1112. it++;
  1113. }
  1114. }
  1115. __override uint32_t size() const {
  1116. // header + offset array
  1117. uint32_t total = sizeof(RuntimeDataHeader) + m_Parts.size() * sizeof(uint32_t);
  1118. // For each part: part header + part size
  1119. for (auto &part : m_Parts)
  1120. total += sizeof(RuntimeDataPartHeader) + PSVALIGN4(part->GetPartSize());
  1121. return total;
  1122. }
  1123. __override void write(AbstractMemoryStream *pStream) {
  1124. try {
  1125. m_RDATBuffer.resize(size(), 0);
  1126. CheckedWriter W(m_RDATBuffer.data(), m_RDATBuffer.size());
  1127. // write RDAT header
  1128. RuntimeDataHeader &header = W.Map<RuntimeDataHeader>();
  1129. header.Version = RDAT_Version_0;
  1130. header.PartCount = m_Parts.size();
  1131. // map offsets
  1132. uint32_t *offsets = W.MapArray<uint32_t>(header.PartCount);
  1133. // write parts
  1134. unsigned i = 0;
  1135. for (auto &part : m_Parts) {
  1136. offsets[i++] = W.GetOffset();
  1137. RuntimeDataPartHeader &partHeader = W.Map<RuntimeDataPartHeader>();
  1138. partHeader.Type = part->GetType();
  1139. partHeader.Size = PSVALIGN4(part->GetPartSize());
  1140. DXASSERT(partHeader.Size, "otherwise, failed to remove empty part");
  1141. char *bytes = W.MapArray<char>(partHeader.Size);
  1142. part->Write(bytes);
  1143. }
  1144. }
  1145. catch (CheckedWriter::exception e) {
  1146. throw hlsl::Exception(DXC_E_GENERAL_INTERNAL_ERROR, e.what());
  1147. }
  1148. ULONG cbWritten;
  1149. IFT(pStream->Write(m_RDATBuffer.data(), m_RDATBuffer.size(), &cbWritten));
  1150. DXASSERT_NOMSG(cbWritten == m_RDATBuffer.size());
  1151. }
  1152. };
  1153. DxilPartWriter *hlsl::NewPSVWriter(const DxilModule &M, uint32_t PSVVersion) {
  1154. return new DxilPSVWriter(M, PSVVersion);
  1155. }
  1156. DxilPartWriter *hlsl::NewRDATWriter(const DxilModule &M, uint32_t InfoVersion) {
  1157. return new DxilRDATWriter(M, InfoVersion);
  1158. }
  1159. class DxilContainerWriter_impl : public DxilContainerWriter {
  1160. private:
  1161. class DxilPart {
  1162. public:
  1163. DxilPartHeader Header;
  1164. WriteFn Write;
  1165. DxilPart(uint32_t fourCC, uint32_t size, WriteFn write) : Write(write) {
  1166. Header.PartFourCC = fourCC;
  1167. Header.PartSize = size;
  1168. }
  1169. };
  1170. llvm::SmallVector<DxilPart, 8> m_Parts;
  1171. public:
  1172. void AddPart(uint32_t FourCC, uint32_t Size, WriteFn Write) override {
  1173. m_Parts.emplace_back(FourCC, Size, Write);
  1174. }
  1175. uint32_t size() const override {
  1176. uint32_t partSize = 0;
  1177. for (auto &part : m_Parts) {
  1178. partSize += part.Header.PartSize;
  1179. }
  1180. return (uint32_t)GetDxilContainerSizeFromParts((uint32_t)m_Parts.size(), partSize);
  1181. }
  1182. void write(AbstractMemoryStream *pStream) override {
  1183. DxilContainerHeader header;
  1184. const uint32_t PartCount = (uint32_t)m_Parts.size();
  1185. uint32_t containerSizeInBytes = size();
  1186. InitDxilContainer(&header, PartCount, containerSizeInBytes);
  1187. IFT(pStream->Reserve(header.ContainerSizeInBytes));
  1188. IFT(WriteStreamValue(pStream, header));
  1189. uint32_t offset = sizeof(header) + (uint32_t)GetOffsetTableSize(PartCount);
  1190. for (auto &&part : m_Parts) {
  1191. IFT(WriteStreamValue(pStream, offset));
  1192. offset += sizeof(DxilPartHeader) + part.Header.PartSize;
  1193. }
  1194. for (auto &&part : m_Parts) {
  1195. IFT(WriteStreamValue(pStream, part.Header));
  1196. size_t start = pStream->GetPosition();
  1197. part.Write(pStream);
  1198. DXASSERT_LOCALVAR(start, pStream->GetPosition() - start == (size_t)part.Header.PartSize, "out of bound");
  1199. }
  1200. DXASSERT(containerSizeInBytes == (uint32_t)pStream->GetPosition(), "else stream size is incorrect");
  1201. }
  1202. };
  1203. DxilContainerWriter *hlsl::NewDxilContainerWriter() {
  1204. return new DxilContainerWriter_impl();
  1205. }
  1206. static bool HasDebugInfo(const Module &M) {
  1207. for (Module::const_named_metadata_iterator NMI = M.named_metadata_begin(),
  1208. NME = M.named_metadata_end();
  1209. NMI != NME; ++NMI) {
  1210. if (NMI->getName().startswith("llvm.dbg.")) {
  1211. return true;
  1212. }
  1213. }
  1214. return false;
  1215. }
  1216. static void GetPaddedProgramPartSize(AbstractMemoryStream *pStream,
  1217. uint32_t &bitcodeInUInt32,
  1218. uint32_t &bitcodePaddingBytes) {
  1219. bitcodeInUInt32 = pStream->GetPtrSize();
  1220. bitcodePaddingBytes = (bitcodeInUInt32 % 4);
  1221. bitcodeInUInt32 = (bitcodeInUInt32 / 4) + (bitcodePaddingBytes ? 1 : 0);
  1222. }
  1223. static void WriteProgramPart(const ShaderModel *pModel,
  1224. AbstractMemoryStream *pModuleBitcode,
  1225. AbstractMemoryStream *pStream) {
  1226. DXASSERT(pModel != nullptr, "else generation should have failed");
  1227. DxilProgramHeader programHeader;
  1228. uint32_t shaderVersion =
  1229. EncodeVersion(pModel->GetKind(), pModel->GetMajor(), pModel->GetMinor());
  1230. unsigned dxilMajor, dxilMinor;
  1231. pModel->GetDxilVersion(dxilMajor, dxilMinor);
  1232. uint32_t dxilVersion = DXIL::MakeDxilVersion(dxilMajor, dxilMinor);
  1233. InitProgramHeader(programHeader, shaderVersion, dxilVersion, pModuleBitcode->GetPtrSize());
  1234. uint32_t programInUInt32, programPaddingBytes;
  1235. GetPaddedProgramPartSize(pModuleBitcode, programInUInt32,
  1236. programPaddingBytes);
  1237. ULONG cbWritten;
  1238. IFT(WriteStreamValue(pStream, programHeader));
  1239. IFT(pStream->Write(pModuleBitcode->GetPtr(), pModuleBitcode->GetPtrSize(),
  1240. &cbWritten));
  1241. if (programPaddingBytes) {
  1242. uint32_t paddingValue = 0;
  1243. IFT(pStream->Write(&paddingValue, programPaddingBytes, &cbWritten));
  1244. }
  1245. }
  1246. void hlsl::SerializeDxilContainerForModule(DxilModule *pModule,
  1247. AbstractMemoryStream *pModuleBitcode,
  1248. AbstractMemoryStream *pFinalStream,
  1249. SerializeDxilFlags Flags) {
  1250. // TODO: add a flag to update the module and remove information that is not part
  1251. // of DXIL proper and is used only to assemble the container.
  1252. DXASSERT_NOMSG(pModule != nullptr);
  1253. DXASSERT_NOMSG(pModuleBitcode != nullptr);
  1254. DXASSERT_NOMSG(pFinalStream != nullptr);
  1255. unsigned ValMajor, ValMinor;
  1256. pModule->GetValidatorVersion(ValMajor, ValMinor);
  1257. if (ValMajor == 1 && ValMinor == 0)
  1258. Flags &= ~SerializeDxilFlags::IncludeDebugNamePart;
  1259. DxilContainerWriter_impl writer;
  1260. // Write the feature part.
  1261. DxilFeatureInfoWriter featureInfoWriter(*pModule);
  1262. writer.AddPart(DFCC_FeatureInfo, featureInfoWriter.size(), [&](AbstractMemoryStream *pStream) {
  1263. featureInfoWriter.write(pStream);
  1264. });
  1265. std::unique_ptr<DxilProgramSignatureWriter> pInputSigWriter = nullptr;
  1266. std::unique_ptr<DxilProgramSignatureWriter> pOutputSigWriter = nullptr;
  1267. std::unique_ptr<DxilProgramSignatureWriter> pPatchConstantSigWriter = nullptr;
  1268. if (!pModule->GetShaderModel()->IsLib()) {
  1269. DXIL::TessellatorDomain domain = DXIL::TessellatorDomain::Undefined;
  1270. if (pModule->GetShaderModel()->IsHS() || pModule->GetShaderModel()->IsDS())
  1271. domain = pModule->GetTessellatorDomain();
  1272. pInputSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
  1273. pModule->GetInputSignature(), domain,
  1274. /*IsInput*/ true,
  1275. /*UseMinPrecision*/ pModule->GetUseMinPrecision());
  1276. pOutputSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
  1277. pModule->GetOutputSignature(), domain,
  1278. /*IsInput*/ false,
  1279. /*UseMinPrecision*/ pModule->GetUseMinPrecision());
  1280. // Write the input and output signature parts.
  1281. writer.AddPart(DFCC_InputSignature, pInputSigWriter->size(),
  1282. [&](AbstractMemoryStream *pStream) {
  1283. pInputSigWriter->write(pStream);
  1284. });
  1285. writer.AddPart(DFCC_OutputSignature, pOutputSigWriter->size(),
  1286. [&](AbstractMemoryStream *pStream) {
  1287. pOutputSigWriter->write(pStream);
  1288. });
  1289. pPatchConstantSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
  1290. pModule->GetPatchConstantSignature(), domain,
  1291. /*IsInput*/ pModule->GetShaderModel()->IsDS(),
  1292. /*UseMinPrecision*/ pModule->GetUseMinPrecision());
  1293. if (pModule->GetPatchConstantSignature().GetElements().size()) {
  1294. writer.AddPart(DFCC_PatchConstantSignature,
  1295. pPatchConstantSigWriter->size(),
  1296. [&](AbstractMemoryStream *pStream) {
  1297. pPatchConstantSigWriter->write(pStream);
  1298. });
  1299. }
  1300. }
  1301. // Write the DxilPipelineStateValidation (PSV0) part.
  1302. std::unique_ptr<DxilRDATWriter> pRDATWriter = nullptr;
  1303. std::unique_ptr<DxilPSVWriter> pPSVWriter = nullptr;
  1304. unsigned int major, minor;
  1305. pModule->GetDxilVersion(major, minor);
  1306. if (pModule->GetShaderModel()->IsLib()) {
  1307. pRDATWriter = llvm::make_unique<DxilRDATWriter>(*pModule);
  1308. writer.AddPart(
  1309. DFCC_RuntimeData, pRDATWriter->size(),
  1310. [&](AbstractMemoryStream *pStream) { pRDATWriter->write(pStream); });
  1311. } else if (!pModule->GetShaderModel()->IsLib()) {
  1312. pPSVWriter = llvm::make_unique<DxilPSVWriter>(*pModule);
  1313. writer.AddPart(
  1314. DFCC_PipelineStateValidation, pPSVWriter->size(),
  1315. [&](AbstractMemoryStream *pStream) { pPSVWriter->write(pStream); });
  1316. }
  1317. // Write the root signature (RTS0) part.
  1318. DxilProgramRootSignatureWriter rootSigWriter(pModule->GetRootSignature());
  1319. CComPtr<AbstractMemoryStream> pInputProgramStream = pModuleBitcode;
  1320. if (!pModule->GetRootSignature().IsEmpty()) {
  1321. writer.AddPart(
  1322. DFCC_RootSignature, rootSigWriter.size(),
  1323. [&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
  1324. pModule->StripRootSignatureFromMetadata();
  1325. pInputProgramStream.Release();
  1326. IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pInputProgramStream));
  1327. raw_stream_ostream outStream(pInputProgramStream.p);
  1328. WriteBitcodeToFile(pModule->GetModule(), outStream, true);
  1329. }
  1330. // If we have debug information present, serialize it to a debug part, then use the stripped version as the canonical program version.
  1331. CComPtr<AbstractMemoryStream> pProgramStream = pInputProgramStream;
  1332. const uint32_t DebugInfoNameHashLen = 32; // 32 chars of MD5
  1333. const uint32_t DebugInfoNameSuffix = 4; // '.lld'
  1334. const uint32_t DebugInfoNameNullAndPad = 4; // '\0\0\0\0'
  1335. CComPtr<AbstractMemoryStream> pHashStream;
  1336. if (HasDebugInfo(*pModule->GetModule())) {
  1337. uint32_t debugInUInt32, debugPaddingBytes;
  1338. GetPaddedProgramPartSize(pInputProgramStream, debugInUInt32, debugPaddingBytes);
  1339. if (Flags & SerializeDxilFlags::IncludeDebugInfoPart) {
  1340. writer.AddPart(DFCC_ShaderDebugInfoDXIL, debugInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader), [&](AbstractMemoryStream *pStream) {
  1341. WriteProgramPart(pModule->GetShaderModel(), pInputProgramStream, pStream);
  1342. });
  1343. }
  1344. pProgramStream.Release();
  1345. llvm::StripDebugInfo(*pModule->GetModule());
  1346. pModule->StripDebugRelatedCode();
  1347. IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pProgramStream));
  1348. raw_stream_ostream outStream(pProgramStream.p);
  1349. WriteBitcodeToFile(pModule->GetModule(), outStream, true);
  1350. if (Flags & SerializeDxilFlags::IncludeDebugNamePart) {
  1351. // If the debug name should be specific to the sources, base the name on the debug
  1352. // bitcode, which will include the source references, line numbers, etc. Otherwise,
  1353. // do it exclusively on the target shader bitcode.
  1354. pHashStream = (int)(Flags & SerializeDxilFlags::DebugNameDependOnSource)
  1355. ? CComPtr<AbstractMemoryStream>(pModuleBitcode)
  1356. : CComPtr<AbstractMemoryStream>(pProgramStream);
  1357. const uint32_t DebugInfoContentLen =
  1358. sizeof(DxilShaderDebugName) + DebugInfoNameHashLen +
  1359. DebugInfoNameSuffix + DebugInfoNameNullAndPad;
  1360. writer.AddPart(DFCC_ShaderDebugName, DebugInfoContentLen, [&](AbstractMemoryStream *pStream) {
  1361. DxilShaderDebugName NameContent;
  1362. NameContent.Flags = 0;
  1363. NameContent.NameLength = DebugInfoNameHashLen + DebugInfoNameSuffix;
  1364. IFT(WriteStreamValue(pStream, NameContent));
  1365. ArrayRef<uint8_t> Data((uint8_t *)pHashStream->GetPtr(), pHashStream->GetPtrSize());
  1366. llvm::MD5 md5;
  1367. llvm::MD5::MD5Result md5Result;
  1368. SmallString<32> Hash;
  1369. md5.update(Data);
  1370. md5.final(md5Result);
  1371. md5.stringifyResult(md5Result, Hash);
  1372. ULONG cbWritten;
  1373. IFT(pStream->Write(Hash.data(), Hash.size(), &cbWritten));
  1374. const char SuffixAndPad[] = ".lld\0\0\0";
  1375. IFT(pStream->Write(SuffixAndPad, _countof(SuffixAndPad), &cbWritten));
  1376. });
  1377. }
  1378. }
  1379. // Compute padded bitcode size.
  1380. uint32_t programInUInt32, programPaddingBytes;
  1381. GetPaddedProgramPartSize(pProgramStream, programInUInt32, programPaddingBytes);
  1382. // Write the program part.
  1383. writer.AddPart(DFCC_DXIL, programInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader), [&](AbstractMemoryStream *pStream) {
  1384. WriteProgramPart(pModule->GetShaderModel(), pProgramStream, pStream);
  1385. });
  1386. writer.write(pFinalStream);
  1387. }
  1388. void hlsl::SerializeDxilContainerForRootSignature(hlsl::RootSignatureHandle *pRootSigHandle,
  1389. AbstractMemoryStream *pFinalStream) {
  1390. DXASSERT_NOMSG(pRootSigHandle != nullptr);
  1391. DXASSERT_NOMSG(pFinalStream != nullptr);
  1392. DxilContainerWriter_impl writer;
  1393. // Write the root signature (RTS0) part.
  1394. DxilProgramRootSignatureWriter rootSigWriter(*pRootSigHandle);
  1395. if (!pRootSigHandle->IsEmpty()) {
  1396. writer.AddPart(
  1397. DFCC_RootSignature, rootSigWriter.size(),
  1398. [&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
  1399. }
  1400. writer.write(pFinalStream);
  1401. }