Expr.cpp 154 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409
  1. //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // This file implements the Expr class and subclasses.
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "clang/AST/APValue.h"
  14. #include "clang/AST/ASTContext.h"
  15. #include "clang/AST/Attr.h"
  16. #include "clang/AST/DeclCXX.h"
  17. #include "clang/AST/DeclObjC.h"
  18. #include "clang/AST/DeclTemplate.h"
  19. #include "clang/AST/EvaluatedExprVisitor.h"
  20. #include "clang/AST/Expr.h"
  21. #include "clang/AST/ExprCXX.h"
  22. #include "clang/AST/Mangle.h"
  23. #include "clang/AST/RecordLayout.h"
  24. #include "clang/AST/StmtVisitor.h"
  25. #include "clang/Basic/Builtins.h"
  26. #include "clang/Basic/CharInfo.h"
  27. #include "clang/Basic/SourceManager.h"
  28. #include "clang/Basic/TargetInfo.h"
  29. #include "clang/Lex/Lexer.h"
  30. #include "clang/Lex/LiteralSupport.h"
  31. #include "clang/Sema/SemaDiagnostic.h"
  32. #include "llvm/Support/ErrorHandling.h"
  33. #include "llvm/Support/raw_ostream.h"
  34. #include <algorithm>
  35. #include <cstring>
  36. using namespace clang;
  37. const CXXRecordDecl *Expr::getBestDynamicClassType() const {
  38. const Expr *E = ignoreParenBaseCasts();
  39. QualType DerivedType = E->getType();
  40. if (const PointerType *PTy = DerivedType->getAs<PointerType>())
  41. DerivedType = PTy->getPointeeType();
  42. if (DerivedType->isDependentType())
  43. return nullptr;
  44. const RecordType *Ty = DerivedType->castAs<RecordType>();
  45. Decl *D = Ty->getDecl();
  46. return cast<CXXRecordDecl>(D);
  47. }
  48. const Expr *Expr::skipRValueSubobjectAdjustments(
  49. SmallVectorImpl<const Expr *> &CommaLHSs,
  50. SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
  51. const Expr *E = this;
  52. while (true) {
  53. E = E->IgnoreParens();
  54. if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
  55. if ((CE->getCastKind() == CK_DerivedToBase ||
  56. CE->getCastKind() == CK_UncheckedDerivedToBase) &&
  57. E->getType()->isRecordType()) {
  58. E = CE->getSubExpr();
  59. CXXRecordDecl *Derived
  60. = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
  61. Adjustments.push_back(SubobjectAdjustment(CE, Derived));
  62. continue;
  63. }
  64. if (CE->getCastKind() == CK_NoOp) {
  65. E = CE->getSubExpr();
  66. continue;
  67. }
  68. } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
  69. if (!ME->isArrow()) {
  70. assert(ME->getBase()->getType()->isRecordType());
  71. if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
  72. if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
  73. E = ME->getBase();
  74. Adjustments.push_back(SubobjectAdjustment(Field));
  75. continue;
  76. }
  77. }
  78. }
  79. } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
  80. if (BO->isPtrMemOp()) {
  81. assert(BO->getRHS()->isRValue());
  82. E = BO->getLHS();
  83. const MemberPointerType *MPT =
  84. BO->getRHS()->getType()->getAs<MemberPointerType>();
  85. Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
  86. continue;
  87. } else if (BO->getOpcode() == BO_Comma) {
  88. CommaLHSs.push_back(BO->getLHS());
  89. E = BO->getRHS();
  90. continue;
  91. }
  92. }
  93. // Nothing changed.
  94. break;
  95. }
  96. return E;
  97. }
  98. /// isKnownToHaveBooleanValue - Return true if this is an integer expression
  99. /// that is known to return 0 or 1. This happens for _Bool/bool expressions
  100. /// but also int expressions which are produced by things like comparisons in
  101. /// C.
  102. bool Expr::isKnownToHaveBooleanValue() const {
  103. const Expr *E = IgnoreParens();
  104. // If this value has _Bool type, it is obvious 0/1.
  105. if (E->getType()->isBooleanType()) return true;
  106. // If this is a non-scalar-integer type, we don't care enough to try.
  107. if (!E->getType()->isIntegralOrEnumerationType()) return false;
  108. if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
  109. switch (UO->getOpcode()) {
  110. case UO_Plus:
  111. return UO->getSubExpr()->isKnownToHaveBooleanValue();
  112. case UO_LNot:
  113. return true;
  114. default:
  115. return false;
  116. }
  117. }
  118. // Only look through implicit casts. If the user writes
  119. // '(int) (a && b)' treat it as an arbitrary int.
  120. if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
  121. return CE->getSubExpr()->isKnownToHaveBooleanValue();
  122. if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
  123. switch (BO->getOpcode()) {
  124. default: return false;
  125. case BO_LT: // Relational operators.
  126. case BO_GT:
  127. case BO_LE:
  128. case BO_GE:
  129. case BO_EQ: // Equality operators.
  130. case BO_NE:
  131. case BO_LAnd: // AND operator.
  132. case BO_LOr: // Logical OR operator.
  133. return true;
  134. case BO_And: // Bitwise AND operator.
  135. case BO_Xor: // Bitwise XOR operator.
  136. case BO_Or: // Bitwise OR operator.
  137. // Handle things like (x==2)|(y==12).
  138. return BO->getLHS()->isKnownToHaveBooleanValue() &&
  139. BO->getRHS()->isKnownToHaveBooleanValue();
  140. case BO_Comma:
  141. case BO_Assign:
  142. return BO->getRHS()->isKnownToHaveBooleanValue();
  143. }
  144. }
  145. if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
  146. return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
  147. CO->getFalseExpr()->isKnownToHaveBooleanValue();
  148. return false;
  149. }
  150. // Amusing macro metaprogramming hack: check whether a class provides
  151. // a more specific implementation of getExprLoc().
  152. //
  153. // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
  154. namespace {
  155. /// This implementation is used when a class provides a custom
  156. /// implementation of getExprLoc.
  157. template <class E, class T>
  158. SourceLocation getExprLocImpl(const Expr *expr,
  159. SourceLocation (T::*v)() const) {
  160. return static_cast<const E*>(expr)->getExprLoc();
  161. }
  162. /// This implementation is used when a class doesn't provide
  163. /// a custom implementation of getExprLoc. Overload resolution
  164. /// should pick it over the implementation above because it's
  165. /// more specialized according to function template partial ordering.
  166. template <class E>
  167. SourceLocation getExprLocImpl(const Expr *expr,
  168. SourceLocation (Expr::*v)() const) {
  169. return static_cast<const E*>(expr)->getLocStart();
  170. }
  171. }
  172. SourceLocation Expr::getExprLoc() const {
  173. switch (getStmtClass()) {
  174. case Stmt::NoStmtClass: llvm_unreachable("statement without class");
  175. #define ABSTRACT_STMT(type)
  176. #define STMT(type, base) \
  177. case Stmt::type##Class: break;
  178. #define EXPR(type, base) \
  179. case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
  180. #include "clang/AST/StmtNodes.inc"
  181. }
  182. llvm_unreachable("unknown expression kind");
  183. }
  184. //===----------------------------------------------------------------------===//
  185. // Primary Expressions.
  186. //===----------------------------------------------------------------------===//
  187. /// \brief Compute the type-, value-, and instantiation-dependence of a
  188. /// declaration reference
  189. /// based on the declaration being referenced.
  190. static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
  191. QualType T, bool &TypeDependent,
  192. bool &ValueDependent,
  193. bool &InstantiationDependent) {
  194. TypeDependent = false;
  195. ValueDependent = false;
  196. InstantiationDependent = false;
  197. // (TD) C++ [temp.dep.expr]p3:
  198. // An id-expression is type-dependent if it contains:
  199. //
  200. // and
  201. //
  202. // (VD) C++ [temp.dep.constexpr]p2:
  203. // An identifier is value-dependent if it is:
  204. // (TD) - an identifier that was declared with dependent type
  205. // (VD) - a name declared with a dependent type,
  206. if (T->isDependentType()) {
  207. TypeDependent = true;
  208. ValueDependent = true;
  209. InstantiationDependent = true;
  210. return;
  211. } else if (T->isInstantiationDependentType()) {
  212. InstantiationDependent = true;
  213. }
  214. // (TD) - a conversion-function-id that specifies a dependent type
  215. if (D->getDeclName().getNameKind()
  216. == DeclarationName::CXXConversionFunctionName) {
  217. QualType T = D->getDeclName().getCXXNameType();
  218. if (T->isDependentType()) {
  219. TypeDependent = true;
  220. ValueDependent = true;
  221. InstantiationDependent = true;
  222. return;
  223. }
  224. if (T->isInstantiationDependentType())
  225. InstantiationDependent = true;
  226. }
  227. // (VD) - the name of a non-type template parameter,
  228. if (isa<NonTypeTemplateParmDecl>(D)) {
  229. ValueDependent = true;
  230. InstantiationDependent = true;
  231. return;
  232. }
  233. // (VD) - a constant with integral or enumeration type and is
  234. // initialized with an expression that is value-dependent.
  235. // (VD) - a constant with literal type and is initialized with an
  236. // expression that is value-dependent [C++11].
  237. // (VD) - FIXME: Missing from the standard:
  238. // - an entity with reference type and is initialized with an
  239. // expression that is value-dependent [C++11]
  240. if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
  241. if ((Ctx.getLangOpts().CPlusPlus11 ?
  242. Var->getType()->isLiteralType(Ctx) :
  243. Var->getType()->isIntegralOrEnumerationType()) &&
  244. (Var->getType().isConstQualified() ||
  245. Var->getType()->isReferenceType())) {
  246. if (const Expr *Init = Var->getAnyInitializer())
  247. if (Init->isValueDependent()) {
  248. ValueDependent = true;
  249. InstantiationDependent = true;
  250. }
  251. }
  252. // (VD) - FIXME: Missing from the standard:
  253. // - a member function or a static data member of the current
  254. // instantiation
  255. if (Var->isStaticDataMember() &&
  256. Var->getDeclContext()->isDependentContext()) {
  257. ValueDependent = true;
  258. InstantiationDependent = true;
  259. TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
  260. if (TInfo->getType()->isIncompleteArrayType())
  261. TypeDependent = true;
  262. }
  263. return;
  264. }
  265. // (VD) - FIXME: Missing from the standard:
  266. // - a member function or a static data member of the current
  267. // instantiation
  268. if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
  269. ValueDependent = true;
  270. InstantiationDependent = true;
  271. }
  272. }
  273. void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
  274. bool TypeDependent = false;
  275. bool ValueDependent = false;
  276. bool InstantiationDependent = false;
  277. computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
  278. ValueDependent, InstantiationDependent);
  279. ExprBits.TypeDependent |= TypeDependent;
  280. ExprBits.ValueDependent |= ValueDependent;
  281. ExprBits.InstantiationDependent |= InstantiationDependent;
  282. // Is the declaration a parameter pack?
  283. if (getDecl()->isParameterPack())
  284. ExprBits.ContainsUnexpandedParameterPack = true;
  285. }
  286. DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
  287. NestedNameSpecifierLoc QualifierLoc,
  288. SourceLocation TemplateKWLoc,
  289. ValueDecl *D, bool RefersToEnclosingVariableOrCapture,
  290. const DeclarationNameInfo &NameInfo,
  291. NamedDecl *FoundD,
  292. const TemplateArgumentListInfo *TemplateArgs,
  293. QualType T, ExprValueKind VK)
  294. : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
  295. D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
  296. DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
  297. if (QualifierLoc) {
  298. getInternalQualifierLoc() = QualifierLoc;
  299. auto *NNS = QualifierLoc.getNestedNameSpecifier();
  300. if (NNS->isInstantiationDependent())
  301. ExprBits.InstantiationDependent = true;
  302. if (NNS->containsUnexpandedParameterPack())
  303. ExprBits.ContainsUnexpandedParameterPack = true;
  304. }
  305. DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
  306. if (FoundD)
  307. getInternalFoundDecl() = FoundD;
  308. DeclRefExprBits.HasTemplateKWAndArgsInfo
  309. = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
  310. DeclRefExprBits.RefersToEnclosingVariableOrCapture =
  311. RefersToEnclosingVariableOrCapture;
  312. if (TemplateArgs) {
  313. bool Dependent = false;
  314. bool InstantiationDependent = false;
  315. bool ContainsUnexpandedParameterPack = false;
  316. getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
  317. Dependent,
  318. InstantiationDependent,
  319. ContainsUnexpandedParameterPack);
  320. assert(!Dependent && "built a DeclRefExpr with dependent template args");
  321. ExprBits.InstantiationDependent |= InstantiationDependent;
  322. ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
  323. } else if (TemplateKWLoc.isValid()) {
  324. getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
  325. }
  326. DeclRefExprBits.HadMultipleCandidates = 0;
  327. computeDependence(Ctx);
  328. }
  329. DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
  330. NestedNameSpecifierLoc QualifierLoc,
  331. SourceLocation TemplateKWLoc,
  332. ValueDecl *D,
  333. bool RefersToEnclosingVariableOrCapture,
  334. SourceLocation NameLoc,
  335. QualType T,
  336. ExprValueKind VK,
  337. NamedDecl *FoundD,
  338. const TemplateArgumentListInfo *TemplateArgs) {
  339. return Create(Context, QualifierLoc, TemplateKWLoc, D,
  340. RefersToEnclosingVariableOrCapture,
  341. DeclarationNameInfo(D->getDeclName(), NameLoc),
  342. T, VK, FoundD, TemplateArgs);
  343. }
  344. DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
  345. NestedNameSpecifierLoc QualifierLoc,
  346. SourceLocation TemplateKWLoc,
  347. ValueDecl *D,
  348. bool RefersToEnclosingVariableOrCapture,
  349. const DeclarationNameInfo &NameInfo,
  350. QualType T,
  351. ExprValueKind VK,
  352. NamedDecl *FoundD,
  353. const TemplateArgumentListInfo *TemplateArgs) {
  354. // Filter out cases where the found Decl is the same as the value refenenced.
  355. if (D == FoundD)
  356. FoundD = nullptr;
  357. std::size_t Size = sizeof(DeclRefExpr);
  358. if (QualifierLoc)
  359. Size += sizeof(NestedNameSpecifierLoc);
  360. if (FoundD)
  361. Size += sizeof(NamedDecl *);
  362. if (TemplateArgs)
  363. Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
  364. else if (TemplateKWLoc.isValid())
  365. Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
  366. void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
  367. return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
  368. RefersToEnclosingVariableOrCapture,
  369. NameInfo, FoundD, TemplateArgs, T, VK);
  370. }
  371. DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
  372. bool HasQualifier,
  373. bool HasFoundDecl,
  374. bool HasTemplateKWAndArgsInfo,
  375. unsigned NumTemplateArgs) {
  376. std::size_t Size = sizeof(DeclRefExpr);
  377. if (HasQualifier)
  378. Size += sizeof(NestedNameSpecifierLoc);
  379. if (HasFoundDecl)
  380. Size += sizeof(NamedDecl *);
  381. if (HasTemplateKWAndArgsInfo)
  382. Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
  383. void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
  384. return new (Mem) DeclRefExpr(EmptyShell());
  385. }
  386. SourceLocation DeclRefExpr::getLocStart() const {
  387. if (hasQualifier())
  388. return getQualifierLoc().getBeginLoc();
  389. return getNameInfo().getLocStart();
  390. }
  391. SourceLocation DeclRefExpr::getLocEnd() const {
  392. if (hasExplicitTemplateArgs())
  393. return getRAngleLoc();
  394. return getNameInfo().getLocEnd();
  395. }
  396. PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
  397. StringLiteral *SL)
  398. : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
  399. FNTy->isDependentType(), FNTy->isDependentType(),
  400. FNTy->isInstantiationDependentType(),
  401. /*ContainsUnexpandedParameterPack=*/false),
  402. Loc(L), Type(IT), FnName(SL) {}
  403. StringLiteral *PredefinedExpr::getFunctionName() {
  404. return cast_or_null<StringLiteral>(FnName);
  405. }
  406. StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) {
  407. switch (IT) {
  408. case Func:
  409. return "__func__";
  410. case Function:
  411. return "__FUNCTION__";
  412. case FuncDName:
  413. return "__FUNCDNAME__";
  414. case LFunction:
  415. return "L__FUNCTION__";
  416. case PrettyFunction:
  417. return "__PRETTY_FUNCTION__";
  418. case FuncSig:
  419. return "__FUNCSIG__";
  420. case PrettyFunctionNoVirtual:
  421. break;
  422. }
  423. llvm_unreachable("Unknown ident type for PredefinedExpr");
  424. }
  425. // FIXME: Maybe this should use DeclPrinter with a special "print predefined
  426. // expr" policy instead.
  427. std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
  428. ASTContext &Context = CurrentDecl->getASTContext();
  429. if (IT == PredefinedExpr::FuncDName) {
  430. if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
  431. std::unique_ptr<MangleContext> MC;
  432. MC.reset(Context.createMangleContext());
  433. if (MC->shouldMangleDeclName(ND)) {
  434. SmallString<256> Buffer;
  435. llvm::raw_svector_ostream Out(Buffer);
  436. if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
  437. MC->mangleCXXCtor(CD, Ctor_Base, Out);
  438. else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
  439. MC->mangleCXXDtor(DD, Dtor_Base, Out);
  440. else
  441. MC->mangleName(ND, Out);
  442. Out.flush();
  443. if (!Buffer.empty() && Buffer.front() == '\01')
  444. return Buffer.substr(1);
  445. return Buffer.str();
  446. } else
  447. return ND->getIdentifier()->getName();
  448. }
  449. return "";
  450. }
  451. if (auto *BD = dyn_cast<BlockDecl>(CurrentDecl)) {
  452. std::unique_ptr<MangleContext> MC;
  453. MC.reset(Context.createMangleContext());
  454. SmallString<256> Buffer;
  455. llvm::raw_svector_ostream Out(Buffer);
  456. auto DC = CurrentDecl->getDeclContext();
  457. if (DC->isFileContext())
  458. MC->mangleGlobalBlock(BD, /*ID*/ nullptr, Out);
  459. else if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
  460. MC->mangleCtorBlock(CD, /*CT*/ Ctor_Complete, BD, Out);
  461. else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
  462. MC->mangleDtorBlock(DD, /*DT*/ Dtor_Complete, BD, Out);
  463. else
  464. MC->mangleBlock(DC, BD, Out);
  465. return Out.str();
  466. }
  467. if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
  468. if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig)
  469. return FD->getNameAsString();
  470. SmallString<256> Name;
  471. llvm::raw_svector_ostream Out(Name);
  472. if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
  473. if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
  474. Out << "virtual ";
  475. if (MD->isStatic())
  476. Out << "static ";
  477. }
  478. PrintingPolicy Policy(Context.getLangOpts());
  479. std::string Proto;
  480. llvm::raw_string_ostream POut(Proto);
  481. const FunctionDecl *Decl = FD;
  482. if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
  483. Decl = Pattern;
  484. const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
  485. const FunctionProtoType *FT = nullptr;
  486. if (FD->hasWrittenPrototype())
  487. FT = dyn_cast<FunctionProtoType>(AFT);
  488. if (IT == FuncSig) {
  489. switch (FT->getCallConv()) {
  490. case CC_C: POut << "__cdecl "; break;
  491. case CC_X86StdCall: POut << "__stdcall "; break;
  492. case CC_X86FastCall: POut << "__fastcall "; break;
  493. case CC_X86ThisCall: POut << "__thiscall "; break;
  494. case CC_X86VectorCall: POut << "__vectorcall "; break;
  495. // Only bother printing the conventions that MSVC knows about.
  496. default: break;
  497. }
  498. }
  499. FD->printQualifiedName(POut, Policy);
  500. POut << "(";
  501. if (FT) {
  502. for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
  503. if (i) POut << ", ";
  504. POut << Decl->getParamDecl(i)->getType().stream(Policy);
  505. }
  506. if (FT->isVariadic()) {
  507. if (FD->getNumParams()) POut << ", ";
  508. POut << "...";
  509. }
  510. }
  511. POut << ")";
  512. if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
  513. const FunctionType *FT = MD->getType()->castAs<FunctionType>();
  514. if (FT->isConst())
  515. POut << " const";
  516. if (FT->isVolatile())
  517. POut << " volatile";
  518. RefQualifierKind Ref = MD->getRefQualifier();
  519. if (Ref == RQ_LValue)
  520. POut << " &";
  521. else if (Ref == RQ_RValue)
  522. POut << " &&";
  523. }
  524. typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
  525. SpecsTy Specs;
  526. const DeclContext *Ctx = FD->getDeclContext();
  527. while (Ctx && isa<NamedDecl>(Ctx)) {
  528. const ClassTemplateSpecializationDecl *Spec
  529. = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
  530. if (Spec && !Spec->isExplicitSpecialization())
  531. Specs.push_back(Spec);
  532. Ctx = Ctx->getParent();
  533. }
  534. std::string TemplateParams;
  535. llvm::raw_string_ostream TOut(TemplateParams);
  536. for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
  537. I != E; ++I) {
  538. const TemplateParameterList *Params
  539. = (*I)->getSpecializedTemplate()->getTemplateParameters();
  540. const TemplateArgumentList &Args = (*I)->getTemplateArgs();
  541. assert(Params->size() == Args.size());
  542. for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
  543. StringRef Param = Params->getParam(i)->getName();
  544. if (Param.empty()) continue;
  545. TOut << Param << " = ";
  546. Args.get(i).print(Policy, TOut);
  547. TOut << ", ";
  548. }
  549. }
  550. FunctionTemplateSpecializationInfo *FSI
  551. = FD->getTemplateSpecializationInfo();
  552. if (FSI && !FSI->isExplicitSpecialization()) {
  553. const TemplateParameterList* Params
  554. = FSI->getTemplate()->getTemplateParameters();
  555. const TemplateArgumentList* Args = FSI->TemplateArguments;
  556. assert(Params->size() == Args->size());
  557. for (unsigned i = 0, e = Params->size(); i != e; ++i) {
  558. StringRef Param = Params->getParam(i)->getName();
  559. if (Param.empty()) continue;
  560. TOut << Param << " = ";
  561. Args->get(i).print(Policy, TOut);
  562. TOut << ", ";
  563. }
  564. }
  565. TOut.flush();
  566. if (!TemplateParams.empty()) {
  567. // remove the trailing comma and space
  568. TemplateParams.resize(TemplateParams.size() - 2);
  569. POut << " [" << TemplateParams << "]";
  570. }
  571. POut.flush();
  572. // Print "auto" for all deduced return types. This includes C++1y return
  573. // type deduction and lambdas. For trailing return types resolve the
  574. // decltype expression. Otherwise print the real type when this is
  575. // not a constructor or destructor.
  576. if (isa<CXXMethodDecl>(FD) &&
  577. cast<CXXMethodDecl>(FD)->getParent()->isLambda())
  578. Proto = "auto " + Proto;
  579. else if (FT && FT->getReturnType()->getAs<DecltypeType>())
  580. FT->getReturnType()
  581. ->getAs<DecltypeType>()
  582. ->getUnderlyingType()
  583. .getAsStringInternal(Proto, Policy);
  584. else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
  585. AFT->getReturnType().getAsStringInternal(Proto, Policy);
  586. Out << Proto;
  587. Out.flush();
  588. return Name.str().str();
  589. }
  590. if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
  591. for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
  592. // Skip to its enclosing function or method, but not its enclosing
  593. // CapturedDecl.
  594. if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
  595. const Decl *D = Decl::castFromDeclContext(DC);
  596. return ComputeName(IT, D);
  597. }
  598. llvm_unreachable("CapturedDecl not inside a function or method");
  599. }
  600. if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
  601. SmallString<256> Name;
  602. llvm::raw_svector_ostream Out(Name);
  603. Out << (MD->isInstanceMethod() ? '-' : '+');
  604. Out << '[';
  605. // For incorrect code, there might not be an ObjCInterfaceDecl. Do
  606. // a null check to avoid a crash.
  607. if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
  608. Out << *ID;
  609. if (const ObjCCategoryImplDecl *CID =
  610. dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
  611. Out << '(' << *CID << ')';
  612. Out << ' ';
  613. MD->getSelector().print(Out);
  614. Out << ']';
  615. Out.flush();
  616. return Name.str().str();
  617. }
  618. if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
  619. // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
  620. return "top level";
  621. }
  622. return "";
  623. }
  624. void APNumericStorage::setIntValue(const ASTContext &C,
  625. const llvm::APInt &Val) {
  626. if (hasAllocation())
  627. C.Deallocate(pVal);
  628. BitWidth = Val.getBitWidth();
  629. unsigned NumWords = Val.getNumWords();
  630. const uint64_t* Words = Val.getRawData();
  631. if (NumWords > 1) {
  632. pVal = new (C) uint64_t[NumWords];
  633. std::copy(Words, Words + NumWords, pVal);
  634. } else if (NumWords == 1)
  635. VAL = Words[0];
  636. else
  637. VAL = 0;
  638. }
  639. IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
  640. QualType type, SourceLocation l)
  641. : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
  642. false, false),
  643. Loc(l) {
  644. assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
  645. assert(V.getBitWidth() == C.getIntWidth(type) &&
  646. "Integer type is not the correct size for constant.");
  647. setValue(C, V);
  648. }
  649. IntegerLiteral *
  650. IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
  651. QualType type, SourceLocation l) {
  652. return new (C) IntegerLiteral(C, V, type, l);
  653. }
  654. IntegerLiteral *
  655. IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
  656. return new (C) IntegerLiteral(Empty);
  657. }
  658. FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
  659. bool isexact, QualType Type, SourceLocation L)
  660. : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
  661. false, false), Loc(L) {
  662. setSemantics(V.getSemantics());
  663. FloatingLiteralBits.IsExact = isexact;
  664. setValue(C, V);
  665. }
  666. FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
  667. : Expr(FloatingLiteralClass, Empty) {
  668. setRawSemantics(IEEEhalf);
  669. FloatingLiteralBits.IsExact = false;
  670. }
  671. FloatingLiteral *
  672. FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
  673. bool isexact, QualType Type, SourceLocation L) {
  674. return new (C) FloatingLiteral(C, V, isexact, Type, L);
  675. }
  676. FloatingLiteral *
  677. FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
  678. return new (C) FloatingLiteral(C, Empty);
  679. }
  680. const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
  681. switch(FloatingLiteralBits.Semantics) {
  682. case IEEEhalf:
  683. return llvm::APFloat::IEEEhalf;
  684. case IEEEsingle:
  685. return llvm::APFloat::IEEEsingle;
  686. case IEEEdouble:
  687. return llvm::APFloat::IEEEdouble;
  688. case x87DoubleExtended:
  689. return llvm::APFloat::x87DoubleExtended;
  690. case IEEEquad:
  691. return llvm::APFloat::IEEEquad;
  692. case PPCDoubleDouble:
  693. return llvm::APFloat::PPCDoubleDouble;
  694. }
  695. llvm_unreachable("Unrecognised floating semantics");
  696. }
  697. void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
  698. if (&Sem == &llvm::APFloat::IEEEhalf)
  699. FloatingLiteralBits.Semantics = IEEEhalf;
  700. else if (&Sem == &llvm::APFloat::IEEEsingle)
  701. FloatingLiteralBits.Semantics = IEEEsingle;
  702. else if (&Sem == &llvm::APFloat::IEEEdouble)
  703. FloatingLiteralBits.Semantics = IEEEdouble;
  704. else if (&Sem == &llvm::APFloat::x87DoubleExtended)
  705. FloatingLiteralBits.Semantics = x87DoubleExtended;
  706. else if (&Sem == &llvm::APFloat::IEEEquad)
  707. FloatingLiteralBits.Semantics = IEEEquad;
  708. else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
  709. FloatingLiteralBits.Semantics = PPCDoubleDouble;
  710. else
  711. llvm_unreachable("Unknown floating semantics");
  712. }
  713. /// getValueAsApproximateDouble - This returns the value as an inaccurate
  714. /// double. Note that this may cause loss of precision, but is useful for
  715. /// debugging dumps, etc.
  716. double FloatingLiteral::getValueAsApproximateDouble() const {
  717. llvm::APFloat V = getValue();
  718. bool ignored;
  719. V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
  720. &ignored);
  721. return V.convertToDouble();
  722. }
  723. int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
  724. int CharByteWidth = 0;
  725. switch(k) {
  726. case Ascii:
  727. case UTF8:
  728. CharByteWidth = target.getCharWidth();
  729. break;
  730. case Wide:
  731. CharByteWidth = target.getWCharWidth();
  732. break;
  733. case UTF16:
  734. CharByteWidth = target.getChar16Width();
  735. break;
  736. case UTF32:
  737. CharByteWidth = target.getChar32Width();
  738. break;
  739. }
  740. assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
  741. CharByteWidth /= 8;
  742. assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
  743. && "character byte widths supported are 1, 2, and 4 only");
  744. return CharByteWidth;
  745. }
  746. StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
  747. StringKind Kind, bool Pascal, QualType Ty,
  748. const SourceLocation *Loc,
  749. unsigned NumStrs) {
  750. assert(C.getAsConstantArrayType(Ty) &&
  751. "StringLiteral must be of constant array type!");
  752. // Allocate enough space for the StringLiteral plus an array of locations for
  753. // any concatenated string tokens.
  754. void *Mem = C.Allocate(sizeof(StringLiteral)+
  755. sizeof(SourceLocation)*(NumStrs-1),
  756. llvm::alignOf<StringLiteral>());
  757. StringLiteral *SL = new (Mem) StringLiteral(Ty);
  758. // OPTIMIZE: could allocate this appended to the StringLiteral.
  759. SL->setString(C,Str,Kind,Pascal);
  760. SL->TokLocs[0] = Loc[0];
  761. SL->NumConcatenated = NumStrs;
  762. if (NumStrs != 1)
  763. memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
  764. return SL;
  765. }
  766. StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
  767. unsigned NumStrs) {
  768. void *Mem = C.Allocate(sizeof(StringLiteral)+
  769. sizeof(SourceLocation)*(NumStrs-1),
  770. llvm::alignOf<StringLiteral>());
  771. StringLiteral *SL = new (Mem) StringLiteral(QualType());
  772. SL->CharByteWidth = 0;
  773. SL->Length = 0;
  774. SL->NumConcatenated = NumStrs;
  775. return SL;
  776. }
  777. void StringLiteral::outputString(raw_ostream &OS) const {
  778. switch (getKind()) {
  779. case Ascii: break; // no prefix.
  780. case Wide: OS << 'L'; break;
  781. case UTF8: OS << "u8"; break;
  782. case UTF16: OS << 'u'; break;
  783. case UTF32: OS << 'U'; break;
  784. }
  785. OS << '"';
  786. static const char Hex[] = "0123456789ABCDEF";
  787. unsigned LastSlashX = getLength();
  788. for (unsigned I = 0, N = getLength(); I != N; ++I) {
  789. switch (uint32_t Char = getCodeUnit(I)) {
  790. default:
  791. // FIXME: Convert UTF-8 back to codepoints before rendering.
  792. // Convert UTF-16 surrogate pairs back to codepoints before rendering.
  793. // Leave invalid surrogates alone; we'll use \x for those.
  794. if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
  795. Char <= 0xdbff) {
  796. uint32_t Trail = getCodeUnit(I + 1);
  797. if (Trail >= 0xdc00 && Trail <= 0xdfff) {
  798. Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
  799. ++I;
  800. }
  801. }
  802. if (Char > 0xff) {
  803. // If this is a wide string, output characters over 0xff using \x
  804. // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
  805. // codepoint: use \x escapes for invalid codepoints.
  806. if (getKind() == Wide ||
  807. (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
  808. // FIXME: Is this the best way to print wchar_t?
  809. OS << "\\x";
  810. int Shift = 28;
  811. while ((Char >> Shift) == 0)
  812. Shift -= 4;
  813. for (/**/; Shift >= 0; Shift -= 4)
  814. OS << Hex[(Char >> Shift) & 15];
  815. LastSlashX = I;
  816. break;
  817. }
  818. if (Char > 0xffff)
  819. OS << "\\U00"
  820. << Hex[(Char >> 20) & 15]
  821. << Hex[(Char >> 16) & 15];
  822. else
  823. OS << "\\u";
  824. OS << Hex[(Char >> 12) & 15]
  825. << Hex[(Char >> 8) & 15]
  826. << Hex[(Char >> 4) & 15]
  827. << Hex[(Char >> 0) & 15];
  828. break;
  829. }
  830. // If we used \x... for the previous character, and this character is a
  831. // hexadecimal digit, prevent it being slurped as part of the \x.
  832. if (LastSlashX + 1 == I) {
  833. switch (Char) {
  834. case '0': case '1': case '2': case '3': case '4':
  835. case '5': case '6': case '7': case '8': case '9':
  836. case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
  837. case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
  838. OS << "\"\"";
  839. }
  840. }
  841. assert(Char <= 0xff &&
  842. "Characters above 0xff should already have been handled.");
  843. if (isPrintable(Char))
  844. OS << (char)Char;
  845. else // Output anything hard as an octal escape.
  846. OS << '\\'
  847. << (char)('0' + ((Char >> 6) & 7))
  848. << (char)('0' + ((Char >> 3) & 7))
  849. << (char)('0' + ((Char >> 0) & 7));
  850. break;
  851. // Handle some common non-printable cases to make dumps prettier.
  852. case '\\': OS << "\\\\"; break;
  853. case '"': OS << "\\\""; break;
  854. case '\n': OS << "\\n"; break;
  855. case '\t': OS << "\\t"; break;
  856. case '\a': OS << "\\a"; break;
  857. case '\b': OS << "\\b"; break;
  858. }
  859. }
  860. OS << '"';
  861. }
  862. void StringLiteral::setString(const ASTContext &C, StringRef Str,
  863. StringKind Kind, bool IsPascal) {
  864. //FIXME: we assume that the string data comes from a target that uses the same
  865. // code unit size and endianess for the type of string.
  866. this->Kind = Kind;
  867. this->IsPascal = IsPascal;
  868. CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
  869. assert((Str.size()%CharByteWidth == 0)
  870. && "size of data must be multiple of CharByteWidth");
  871. Length = Str.size()/CharByteWidth;
  872. switch(CharByteWidth) {
  873. case 1: {
  874. char *AStrData = new (C) char[Length];
  875. std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
  876. StrData.asChar = AStrData;
  877. break;
  878. }
  879. case 2: {
  880. uint16_t *AStrData = new (C) uint16_t[Length];
  881. std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
  882. StrData.asUInt16 = AStrData;
  883. break;
  884. }
  885. case 4: {
  886. uint32_t *AStrData = new (C) uint32_t[Length];
  887. std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
  888. StrData.asUInt32 = AStrData;
  889. break;
  890. }
  891. default:
  892. assert(false && "unsupported CharByteWidth");
  893. }
  894. }
  895. /// getLocationOfByte - Return a source location that points to the specified
  896. /// byte of this string literal.
  897. ///
  898. /// Strings are amazingly complex. They can be formed from multiple tokens and
  899. /// can have escape sequences in them in addition to the usual trigraph and
  900. /// escaped newline business. This routine handles this complexity.
  901. ///
  902. SourceLocation StringLiteral::
  903. getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
  904. const LangOptions &Features, const TargetInfo &Target) const {
  905. assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
  906. "Only narrow string literals are currently supported");
  907. // Loop over all of the tokens in this string until we find the one that
  908. // contains the byte we're looking for.
  909. unsigned TokNo = 0;
  910. while (1) {
  911. assert(TokNo < getNumConcatenated() && "Invalid byte number!");
  912. SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
  913. // Get the spelling of the string so that we can get the data that makes up
  914. // the string literal, not the identifier for the macro it is potentially
  915. // expanded through.
  916. SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
  917. // Re-lex the token to get its length and original spelling.
  918. std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
  919. bool Invalid = false;
  920. StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
  921. if (Invalid)
  922. return StrTokSpellingLoc;
  923. const char *StrData = Buffer.data()+LocInfo.second;
  924. // Create a lexer starting at the beginning of this token.
  925. Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
  926. Buffer.begin(), StrData, Buffer.end());
  927. Token TheTok;
  928. TheLexer.LexFromRawLexer(TheTok);
  929. // Use the StringLiteralParser to compute the length of the string in bytes.
  930. StringLiteralParser SLP(TheTok, SM, Features, Target);
  931. unsigned TokNumBytes = SLP.GetStringLength();
  932. // If the byte is in this token, return the location of the byte.
  933. if (ByteNo < TokNumBytes ||
  934. (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
  935. unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
  936. // Now that we know the offset of the token in the spelling, use the
  937. // preprocessor to get the offset in the original source.
  938. return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
  939. }
  940. // Move to the next string token.
  941. ++TokNo;
  942. ByteNo -= TokNumBytes;
  943. }
  944. }
  945. /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
  946. /// corresponds to, e.g. "sizeof" or "[pre]++".
  947. StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
  948. switch (Op) {
  949. case UO_PostInc: return "++";
  950. case UO_PostDec: return "--";
  951. case UO_PreInc: return "++";
  952. case UO_PreDec: return "--";
  953. case UO_AddrOf: return "&";
  954. case UO_Deref: return "*";
  955. case UO_Plus: return "+";
  956. case UO_Minus: return "-";
  957. case UO_Not: return "~";
  958. case UO_LNot: return "!";
  959. case UO_Real: return "__real";
  960. case UO_Imag: return "__imag";
  961. case UO_Extension: return "__extension__";
  962. }
  963. llvm_unreachable("Unknown unary operator");
  964. }
  965. UnaryOperatorKind
  966. UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
  967. switch (OO) {
  968. default: llvm_unreachable("No unary operator for overloaded function");
  969. case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
  970. case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
  971. case OO_Amp: return UO_AddrOf;
  972. case OO_Star: return UO_Deref;
  973. case OO_Plus: return UO_Plus;
  974. case OO_Minus: return UO_Minus;
  975. case OO_Tilde: return UO_Not;
  976. case OO_Exclaim: return UO_LNot;
  977. }
  978. }
  979. OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
  980. switch (Opc) {
  981. case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
  982. case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
  983. case UO_AddrOf: return OO_Amp;
  984. case UO_Deref: return OO_Star;
  985. case UO_Plus: return OO_Plus;
  986. case UO_Minus: return OO_Minus;
  987. case UO_Not: return OO_Tilde;
  988. case UO_LNot: return OO_Exclaim;
  989. default: return OO_None;
  990. }
  991. }
  992. //===----------------------------------------------------------------------===//
  993. // Postfix Operators.
  994. //===----------------------------------------------------------------------===//
  995. CallExpr::CallExpr(const ASTContext& C, StmtClass SC, Expr *fn,
  996. unsigned NumPreArgs, ArrayRef<Expr*> args, QualType t,
  997. ExprValueKind VK, SourceLocation rparenloc)
  998. : Expr(SC, t, VK, OK_Ordinary,
  999. fn->isTypeDependent(),
  1000. fn->isValueDependent(),
  1001. fn->isInstantiationDependent(),
  1002. fn->containsUnexpandedParameterPack()),
  1003. NumArgs(args.size()) {
  1004. SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
  1005. SubExprs[FN] = fn;
  1006. for (unsigned i = 0; i != args.size(); ++i) {
  1007. if (args[i]->isTypeDependent())
  1008. ExprBits.TypeDependent = true;
  1009. if (args[i]->isValueDependent())
  1010. ExprBits.ValueDependent = true;
  1011. if (args[i]->isInstantiationDependent())
  1012. ExprBits.InstantiationDependent = true;
  1013. if (args[i]->containsUnexpandedParameterPack())
  1014. ExprBits.ContainsUnexpandedParameterPack = true;
  1015. SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
  1016. }
  1017. CallExprBits.NumPreArgs = NumPreArgs;
  1018. RParenLoc = rparenloc;
  1019. }
  1020. CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args,
  1021. QualType t, ExprValueKind VK, SourceLocation rparenloc)
  1022. : CallExpr(C, CallExprClass, fn, /*NumPreArgs=*/0, args, t, VK, rparenloc) {
  1023. }
  1024. CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
  1025. : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {}
  1026. CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
  1027. EmptyShell Empty)
  1028. : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
  1029. // FIXME: Why do we allocate this?
  1030. SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
  1031. CallExprBits.NumPreArgs = NumPreArgs;
  1032. }
  1033. Decl *CallExpr::getCalleeDecl() {
  1034. Expr *CEE = getCallee()->IgnoreParenImpCasts();
  1035. while (SubstNonTypeTemplateParmExpr *NTTP
  1036. = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
  1037. CEE = NTTP->getReplacement()->IgnoreParenCasts();
  1038. }
  1039. // If we're calling a dereference, look at the pointer instead.
  1040. if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
  1041. if (BO->isPtrMemOp())
  1042. CEE = BO->getRHS()->IgnoreParenCasts();
  1043. } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
  1044. if (UO->getOpcode() == UO_Deref)
  1045. CEE = UO->getSubExpr()->IgnoreParenCasts();
  1046. }
  1047. if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
  1048. return DRE->getDecl();
  1049. if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
  1050. return ME->getMemberDecl();
  1051. return nullptr;
  1052. }
  1053. FunctionDecl *CallExpr::getDirectCallee() {
  1054. return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
  1055. }
  1056. /// setNumArgs - This changes the number of arguments present in this call.
  1057. /// Any orphaned expressions are deleted by this, and any new operands are set
  1058. /// to null.
  1059. void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
  1060. // No change, just return.
  1061. if (NumArgs == getNumArgs()) return;
  1062. // If shrinking # arguments, just delete the extras and forgot them.
  1063. if (NumArgs < getNumArgs()) {
  1064. this->NumArgs = NumArgs;
  1065. return;
  1066. }
  1067. // Otherwise, we are growing the # arguments. New an bigger argument array.
  1068. unsigned NumPreArgs = getNumPreArgs();
  1069. Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
  1070. // Copy over args.
  1071. for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
  1072. NewSubExprs[i] = SubExprs[i];
  1073. // Null out new args.
  1074. for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
  1075. i != NumArgs+PREARGS_START+NumPreArgs; ++i)
  1076. NewSubExprs[i] = nullptr;
  1077. if (SubExprs) C.Deallocate(SubExprs);
  1078. SubExprs = NewSubExprs;
  1079. this->NumArgs = NumArgs;
  1080. }
  1081. /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
  1082. /// not, return 0.
  1083. unsigned CallExpr::getBuiltinCallee() const {
  1084. // All simple function calls (e.g. func()) are implicitly cast to pointer to
  1085. // function. As a result, we try and obtain the DeclRefExpr from the
  1086. // ImplicitCastExpr.
  1087. const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
  1088. if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
  1089. return 0;
  1090. const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
  1091. if (!DRE)
  1092. return 0;
  1093. const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
  1094. if (!FDecl)
  1095. return 0;
  1096. if (!FDecl->getIdentifier())
  1097. return 0;
  1098. return FDecl->getBuiltinID();
  1099. }
  1100. bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
  1101. if (unsigned BI = getBuiltinCallee())
  1102. return Ctx.BuiltinInfo.isUnevaluated(BI);
  1103. return false;
  1104. }
  1105. QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
  1106. const Expr *Callee = getCallee();
  1107. QualType CalleeType = Callee->getType();
  1108. if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
  1109. CalleeType = FnTypePtr->getPointeeType();
  1110. } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
  1111. CalleeType = BPT->getPointeeType();
  1112. } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
  1113. if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
  1114. return Ctx.VoidTy;
  1115. // This should never be overloaded and so should never return null.
  1116. CalleeType = Expr::findBoundMemberType(Callee);
  1117. }
  1118. const FunctionType *FnType = CalleeType->castAs<FunctionType>();
  1119. return FnType->getReturnType();
  1120. }
  1121. SourceLocation CallExpr::getLocStart() const {
  1122. if (isa<CXXOperatorCallExpr>(this))
  1123. return cast<CXXOperatorCallExpr>(this)->getLocStart();
  1124. SourceLocation begin = getCallee()->getLocStart();
  1125. if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
  1126. begin = getArg(0)->getLocStart();
  1127. return begin;
  1128. }
  1129. SourceLocation CallExpr::getLocEnd() const {
  1130. if (isa<CXXOperatorCallExpr>(this))
  1131. return cast<CXXOperatorCallExpr>(this)->getLocEnd();
  1132. SourceLocation end = getRParenLoc();
  1133. if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
  1134. end = getArg(getNumArgs() - 1)->getLocEnd();
  1135. return end;
  1136. }
  1137. OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
  1138. SourceLocation OperatorLoc,
  1139. TypeSourceInfo *tsi,
  1140. ArrayRef<OffsetOfNode> comps,
  1141. ArrayRef<Expr*> exprs,
  1142. SourceLocation RParenLoc) {
  1143. void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
  1144. sizeof(OffsetOfNode) * comps.size() +
  1145. sizeof(Expr*) * exprs.size());
  1146. return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
  1147. RParenLoc);
  1148. }
  1149. OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
  1150. unsigned numComps, unsigned numExprs) {
  1151. void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
  1152. sizeof(OffsetOfNode) * numComps +
  1153. sizeof(Expr*) * numExprs);
  1154. return new (Mem) OffsetOfExpr(numComps, numExprs);
  1155. }
  1156. OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
  1157. SourceLocation OperatorLoc, TypeSourceInfo *tsi,
  1158. ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
  1159. SourceLocation RParenLoc)
  1160. : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
  1161. /*TypeDependent=*/false,
  1162. /*ValueDependent=*/tsi->getType()->isDependentType(),
  1163. tsi->getType()->isInstantiationDependentType(),
  1164. tsi->getType()->containsUnexpandedParameterPack()),
  1165. OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
  1166. NumComps(comps.size()), NumExprs(exprs.size())
  1167. {
  1168. for (unsigned i = 0; i != comps.size(); ++i) {
  1169. setComponent(i, comps[i]);
  1170. }
  1171. for (unsigned i = 0; i != exprs.size(); ++i) {
  1172. if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
  1173. ExprBits.ValueDependent = true;
  1174. if (exprs[i]->containsUnexpandedParameterPack())
  1175. ExprBits.ContainsUnexpandedParameterPack = true;
  1176. setIndexExpr(i, exprs[i]);
  1177. }
  1178. }
  1179. IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
  1180. assert(getKind() == Field || getKind() == Identifier);
  1181. if (getKind() == Field)
  1182. return getField()->getIdentifier();
  1183. return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
  1184. }
  1185. UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
  1186. UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
  1187. SourceLocation op, SourceLocation rp)
  1188. : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
  1189. false, // Never type-dependent (C++ [temp.dep.expr]p3).
  1190. // Value-dependent if the argument is type-dependent.
  1191. E->isTypeDependent(), E->isInstantiationDependent(),
  1192. E->containsUnexpandedParameterPack()),
  1193. OpLoc(op), RParenLoc(rp) {
  1194. UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
  1195. UnaryExprOrTypeTraitExprBits.IsType = false;
  1196. Argument.Ex = E;
  1197. // Check to see if we are in the situation where alignof(decl) should be
  1198. // dependent because decl's alignment is dependent.
  1199. if (ExprKind == UETT_AlignOf) {
  1200. if (!isValueDependent() || !isInstantiationDependent()) {
  1201. E = E->IgnoreParens();
  1202. const ValueDecl *D = nullptr;
  1203. if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
  1204. D = DRE->getDecl();
  1205. else if (const auto *ME = dyn_cast<MemberExpr>(E))
  1206. D = ME->getMemberDecl();
  1207. if (D) {
  1208. for (const auto *I : D->specific_attrs<AlignedAttr>()) {
  1209. if (I->isAlignmentDependent()) {
  1210. setValueDependent(true);
  1211. setInstantiationDependent(true);
  1212. break;
  1213. }
  1214. }
  1215. }
  1216. }
  1217. }
  1218. }
  1219. MemberExpr *MemberExpr::Create(
  1220. const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc,
  1221. NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
  1222. ValueDecl *memberdecl, DeclAccessPair founddecl,
  1223. DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs,
  1224. QualType ty, ExprValueKind vk, ExprObjectKind ok) {
  1225. std::size_t Size = sizeof(MemberExpr);
  1226. bool hasQualOrFound = (QualifierLoc ||
  1227. founddecl.getDecl() != memberdecl ||
  1228. founddecl.getAccess() != memberdecl->getAccess());
  1229. if (hasQualOrFound)
  1230. Size += sizeof(MemberNameQualifier);
  1231. if (targs)
  1232. Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
  1233. else if (TemplateKWLoc.isValid())
  1234. Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
  1235. void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
  1236. MemberExpr *E = new (Mem)
  1237. MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok);
  1238. if (hasQualOrFound) {
  1239. // FIXME: Wrong. We should be looking at the member declaration we found.
  1240. if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
  1241. E->setValueDependent(true);
  1242. E->setTypeDependent(true);
  1243. E->setInstantiationDependent(true);
  1244. }
  1245. else if (QualifierLoc &&
  1246. QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
  1247. E->setInstantiationDependent(true);
  1248. E->HasQualifierOrFoundDecl = true;
  1249. MemberNameQualifier *NQ = E->getMemberQualifier();
  1250. NQ->QualifierLoc = QualifierLoc;
  1251. NQ->FoundDecl = founddecl;
  1252. }
  1253. E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
  1254. if (targs) {
  1255. bool Dependent = false;
  1256. bool InstantiationDependent = false;
  1257. bool ContainsUnexpandedParameterPack = false;
  1258. E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
  1259. Dependent,
  1260. InstantiationDependent,
  1261. ContainsUnexpandedParameterPack);
  1262. if (InstantiationDependent)
  1263. E->setInstantiationDependent(true);
  1264. } else if (TemplateKWLoc.isValid()) {
  1265. E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
  1266. }
  1267. return E;
  1268. }
  1269. SourceLocation MemberExpr::getLocStart() const {
  1270. if (isImplicitAccess()) {
  1271. if (hasQualifier())
  1272. return getQualifierLoc().getBeginLoc();
  1273. return MemberLoc;
  1274. }
  1275. // FIXME: We don't want this to happen. Rather, we should be able to
  1276. // detect all kinds of implicit accesses more cleanly.
  1277. SourceLocation BaseStartLoc = getBase()->getLocStart();
  1278. if (BaseStartLoc.isValid())
  1279. return BaseStartLoc;
  1280. return MemberLoc;
  1281. }
  1282. SourceLocation MemberExpr::getLocEnd() const {
  1283. SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
  1284. if (hasExplicitTemplateArgs())
  1285. EndLoc = getRAngleLoc();
  1286. else if (EndLoc.isInvalid())
  1287. EndLoc = getBase()->getLocEnd();
  1288. return EndLoc;
  1289. }
  1290. bool CastExpr::CastConsistency() const {
  1291. switch (getCastKind()) {
  1292. case CK_DerivedToBase:
  1293. case CK_UncheckedDerivedToBase:
  1294. case CK_DerivedToBaseMemberPointer:
  1295. case CK_BaseToDerived:
  1296. case CK_BaseToDerivedMemberPointer:
  1297. assert(!path_empty() && "Cast kind should have a base path!");
  1298. break;
  1299. case CK_CPointerToObjCPointerCast:
  1300. assert(getType()->isObjCObjectPointerType());
  1301. assert(getSubExpr()->getType()->isPointerType());
  1302. goto CheckNoBasePath;
  1303. case CK_BlockPointerToObjCPointerCast:
  1304. assert(getType()->isObjCObjectPointerType());
  1305. assert(getSubExpr()->getType()->isBlockPointerType());
  1306. goto CheckNoBasePath;
  1307. case CK_ReinterpretMemberPointer:
  1308. assert(getType()->isMemberPointerType());
  1309. assert(getSubExpr()->getType()->isMemberPointerType());
  1310. goto CheckNoBasePath;
  1311. case CK_BitCast:
  1312. // Arbitrary casts to C pointer types count as bitcasts.
  1313. // Otherwise, we should only have block and ObjC pointer casts
  1314. // here if they stay within the type kind.
  1315. if (!getType()->isPointerType()) {
  1316. assert(getType()->isObjCObjectPointerType() ==
  1317. getSubExpr()->getType()->isObjCObjectPointerType());
  1318. assert(getType()->isBlockPointerType() ==
  1319. getSubExpr()->getType()->isBlockPointerType());
  1320. }
  1321. goto CheckNoBasePath;
  1322. case CK_AnyPointerToBlockPointerCast:
  1323. assert(getType()->isBlockPointerType());
  1324. assert(getSubExpr()->getType()->isAnyPointerType() &&
  1325. !getSubExpr()->getType()->isBlockPointerType());
  1326. goto CheckNoBasePath;
  1327. case CK_CopyAndAutoreleaseBlockObject:
  1328. assert(getType()->isBlockPointerType());
  1329. assert(getSubExpr()->getType()->isBlockPointerType());
  1330. goto CheckNoBasePath;
  1331. case CK_FunctionToPointerDecay:
  1332. assert(getType()->isPointerType());
  1333. assert(getSubExpr()->getType()->isFunctionType());
  1334. goto CheckNoBasePath;
  1335. case CK_AddressSpaceConversion:
  1336. assert(getType()->isPointerType());
  1337. assert(getSubExpr()->getType()->isPointerType());
  1338. assert(getType()->getPointeeType().getAddressSpace() !=
  1339. getSubExpr()->getType()->getPointeeType().getAddressSpace());
  1340. // These should not have an inheritance path.
  1341. case CK_Dynamic:
  1342. case CK_ToUnion:
  1343. case CK_ArrayToPointerDecay:
  1344. case CK_NullToMemberPointer:
  1345. case CK_NullToPointer:
  1346. case CK_ConstructorConversion:
  1347. case CK_IntegralToPointer:
  1348. case CK_PointerToIntegral:
  1349. case CK_ToVoid:
  1350. case CK_VectorSplat:
  1351. case CK_IntegralCast:
  1352. case CK_IntegralToFloating:
  1353. case CK_FloatingToIntegral:
  1354. case CK_FloatingCast:
  1355. case CK_ObjCObjectLValueCast:
  1356. case CK_FloatingRealToComplex:
  1357. case CK_FloatingComplexToReal:
  1358. case CK_FloatingComplexCast:
  1359. case CK_FloatingComplexToIntegralComplex:
  1360. case CK_IntegralRealToComplex:
  1361. case CK_IntegralComplexToReal:
  1362. case CK_IntegralComplexCast:
  1363. case CK_IntegralComplexToFloatingComplex:
  1364. case CK_ARCProduceObject:
  1365. case CK_ARCConsumeObject:
  1366. case CK_ARCReclaimReturnedObject:
  1367. case CK_ARCExtendBlockObject:
  1368. case CK_ZeroToOCLEvent:
  1369. assert(!getType()->isBooleanType() && "unheralded conversion to bool");
  1370. goto CheckNoBasePath;
  1371. case CK_Dependent:
  1372. case CK_LValueToRValue:
  1373. case CK_NoOp:
  1374. case CK_AtomicToNonAtomic:
  1375. case CK_NonAtomicToAtomic:
  1376. case CK_PointerToBoolean:
  1377. case CK_IntegralToBoolean:
  1378. case CK_FloatingToBoolean:
  1379. case CK_MemberPointerToBoolean:
  1380. case CK_FloatingComplexToBoolean:
  1381. case CK_IntegralComplexToBoolean:
  1382. case CK_LValueBitCast: // -> bool&
  1383. case CK_UserDefinedConversion: // operator bool()
  1384. case CK_BuiltinFnToFnPtr:
  1385. CheckNoBasePath:
  1386. assert(path_empty() && "Cast kind should not have a base path!");
  1387. break;
  1388. }
  1389. return true;
  1390. }
  1391. const char *CastExpr::getCastKindName() const {
  1392. switch (getCastKind()) {
  1393. case CK_Dependent:
  1394. return "Dependent";
  1395. case CK_BitCast:
  1396. return "BitCast";
  1397. case CK_LValueBitCast:
  1398. return "LValueBitCast";
  1399. case CK_LValueToRValue:
  1400. return "LValueToRValue";
  1401. case CK_NoOp:
  1402. return "NoOp";
  1403. case CK_BaseToDerived:
  1404. return "BaseToDerived";
  1405. case CK_DerivedToBase:
  1406. return "DerivedToBase";
  1407. case CK_UncheckedDerivedToBase:
  1408. return "UncheckedDerivedToBase";
  1409. case CK_Dynamic:
  1410. return "Dynamic";
  1411. case CK_ToUnion:
  1412. return "ToUnion";
  1413. case CK_ArrayToPointerDecay:
  1414. return "ArrayToPointerDecay";
  1415. case CK_FunctionToPointerDecay:
  1416. return "FunctionToPointerDecay";
  1417. case CK_NullToMemberPointer:
  1418. return "NullToMemberPointer";
  1419. case CK_NullToPointer:
  1420. return "NullToPointer";
  1421. case CK_BaseToDerivedMemberPointer:
  1422. return "BaseToDerivedMemberPointer";
  1423. case CK_DerivedToBaseMemberPointer:
  1424. return "DerivedToBaseMemberPointer";
  1425. case CK_ReinterpretMemberPointer:
  1426. return "ReinterpretMemberPointer";
  1427. case CK_UserDefinedConversion:
  1428. return "UserDefinedConversion";
  1429. case CK_ConstructorConversion:
  1430. return "ConstructorConversion";
  1431. case CK_IntegralToPointer:
  1432. return "IntegralToPointer";
  1433. case CK_PointerToIntegral:
  1434. return "PointerToIntegral";
  1435. case CK_PointerToBoolean:
  1436. return "PointerToBoolean";
  1437. case CK_ToVoid:
  1438. return "ToVoid";
  1439. case CK_VectorSplat:
  1440. return "VectorSplat";
  1441. case CK_IntegralCast:
  1442. return "IntegralCast";
  1443. case CK_IntegralToBoolean:
  1444. return "IntegralToBoolean";
  1445. case CK_IntegralToFloating:
  1446. return "IntegralToFloating";
  1447. case CK_FloatingToIntegral:
  1448. return "FloatingToIntegral";
  1449. case CK_FloatingCast:
  1450. return "FloatingCast";
  1451. case CK_FloatingToBoolean:
  1452. return "FloatingToBoolean";
  1453. case CK_MemberPointerToBoolean:
  1454. return "MemberPointerToBoolean";
  1455. case CK_CPointerToObjCPointerCast:
  1456. return "CPointerToObjCPointerCast";
  1457. case CK_BlockPointerToObjCPointerCast:
  1458. return "BlockPointerToObjCPointerCast";
  1459. case CK_AnyPointerToBlockPointerCast:
  1460. return "AnyPointerToBlockPointerCast";
  1461. case CK_ObjCObjectLValueCast:
  1462. return "ObjCObjectLValueCast";
  1463. case CK_FloatingRealToComplex:
  1464. return "FloatingRealToComplex";
  1465. case CK_FloatingComplexToReal:
  1466. return "FloatingComplexToReal";
  1467. case CK_FloatingComplexToBoolean:
  1468. return "FloatingComplexToBoolean";
  1469. case CK_FloatingComplexCast:
  1470. return "FloatingComplexCast";
  1471. case CK_FloatingComplexToIntegralComplex:
  1472. return "FloatingComplexToIntegralComplex";
  1473. case CK_IntegralRealToComplex:
  1474. return "IntegralRealToComplex";
  1475. case CK_IntegralComplexToReal:
  1476. return "IntegralComplexToReal";
  1477. case CK_IntegralComplexToBoolean:
  1478. return "IntegralComplexToBoolean";
  1479. case CK_IntegralComplexCast:
  1480. return "IntegralComplexCast";
  1481. case CK_IntegralComplexToFloatingComplex:
  1482. return "IntegralComplexToFloatingComplex";
  1483. case CK_ARCConsumeObject:
  1484. return "ARCConsumeObject";
  1485. case CK_ARCProduceObject:
  1486. return "ARCProduceObject";
  1487. case CK_ARCReclaimReturnedObject:
  1488. return "ARCReclaimReturnedObject";
  1489. case CK_ARCExtendBlockObject:
  1490. return "ARCExtendBlockObject";
  1491. case CK_AtomicToNonAtomic:
  1492. return "AtomicToNonAtomic";
  1493. case CK_NonAtomicToAtomic:
  1494. return "NonAtomicToAtomic";
  1495. case CK_CopyAndAutoreleaseBlockObject:
  1496. return "CopyAndAutoreleaseBlockObject";
  1497. case CK_BuiltinFnToFnPtr:
  1498. return "BuiltinFnToFnPtr";
  1499. case CK_ZeroToOCLEvent:
  1500. return "ZeroToOCLEvent";
  1501. case CK_AddressSpaceConversion:
  1502. return "AddressSpaceConversion";
  1503. // HLSL Change Starts
  1504. case CK_FlatConversion:
  1505. return "FlatConversion";
  1506. case CK_HLSLVectorSplat:
  1507. return "HLSLVectorSplat";
  1508. case CK_HLSLMatrixSplat:
  1509. return "HLSLMatrixSplat";
  1510. case CK_HLSLVectorToScalarCast:
  1511. return "HLSLVectorToScalarCast";
  1512. case CK_HLSLMatrixToScalarCast:
  1513. return "HLSLMatrixToScalarCast";
  1514. case CK_HLSLVectorTruncationCast:
  1515. return "HLSLVectorTruncationCast";
  1516. case CK_HLSLMatrixTruncationCast:
  1517. return "HLSLMatrixTruncationCast";
  1518. case CK_HLSLVectorToMatrixCast:
  1519. return "HLSLVectorToMatrixCast";
  1520. case CK_HLSLMatrixToVectorCast:
  1521. return "HLSLMatrixToVectorCast";
  1522. case CK_HLSLCC_IntegralCast:
  1523. return "HLSLCC_IntegralCast";
  1524. case CK_HLSLCC_IntegralToBoolean:
  1525. return "HLSLCC_IntegralToBoolean";
  1526. case CK_HLSLCC_IntegralToFloating:
  1527. return "HLSLCC_IntegralToFloating";
  1528. case CK_HLSLCC_FloatingToIntegral:
  1529. return "HLSLCC_FloatingToIntegral";
  1530. case CK_HLSLCC_FloatingToBoolean:
  1531. return "HLSLCC_FloatingToBoolean";
  1532. case CK_HLSLCC_FloatingCast:
  1533. return "HLSLCC_FloatingCast";
  1534. // HLSL Change Ends
  1535. }
  1536. llvm_unreachable("Unhandled cast kind!");
  1537. }
  1538. Expr *CastExpr::getSubExprAsWritten() {
  1539. Expr *SubExpr = nullptr;
  1540. CastExpr *E = this;
  1541. do {
  1542. SubExpr = E->getSubExpr();
  1543. // Skip through reference binding to temporary.
  1544. if (MaterializeTemporaryExpr *Materialize
  1545. = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
  1546. SubExpr = Materialize->GetTemporaryExpr();
  1547. // Skip any temporary bindings; they're implicit.
  1548. if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
  1549. SubExpr = Binder->getSubExpr();
  1550. // Conversions by constructor and conversion functions have a
  1551. // subexpression describing the call; strip it off.
  1552. if (E->getCastKind() == CK_ConstructorConversion)
  1553. SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
  1554. else if (E->getCastKind() == CK_UserDefinedConversion)
  1555. SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
  1556. // If the subexpression we're left with is an implicit cast, look
  1557. // through that, too.
  1558. } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
  1559. return SubExpr;
  1560. }
  1561. CXXBaseSpecifier **CastExpr::path_buffer() {
  1562. switch (getStmtClass()) {
  1563. #define ABSTRACT_STMT(x)
  1564. #define CASTEXPR(Type, Base) \
  1565. case Stmt::Type##Class: \
  1566. return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
  1567. #define STMT(Type, Base)
  1568. #include "clang/AST/StmtNodes.inc"
  1569. default:
  1570. llvm_unreachable("non-cast expressions not possible here");
  1571. }
  1572. }
  1573. void CastExpr::setCastPath(const CXXCastPath &Path) {
  1574. assert(Path.size() == path_size());
  1575. memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
  1576. }
  1577. ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
  1578. CastKind Kind, Expr *Operand,
  1579. const CXXCastPath *BasePath,
  1580. ExprValueKind VK) {
  1581. unsigned PathSize = (BasePath ? BasePath->size() : 0);
  1582. void *Buffer =
  1583. C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
  1584. ImplicitCastExpr *E =
  1585. new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
  1586. if (PathSize) E->setCastPath(*BasePath);
  1587. return E;
  1588. }
  1589. ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
  1590. unsigned PathSize) {
  1591. void *Buffer =
  1592. C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
  1593. return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
  1594. }
  1595. CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
  1596. ExprValueKind VK, CastKind K, Expr *Op,
  1597. const CXXCastPath *BasePath,
  1598. TypeSourceInfo *WrittenTy,
  1599. SourceLocation L, SourceLocation R) {
  1600. unsigned PathSize = (BasePath ? BasePath->size() : 0);
  1601. void *Buffer =
  1602. C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
  1603. CStyleCastExpr *E =
  1604. new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
  1605. if (PathSize) E->setCastPath(*BasePath);
  1606. return E;
  1607. }
  1608. CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
  1609. unsigned PathSize) {
  1610. void *Buffer =
  1611. C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
  1612. return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
  1613. }
  1614. /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
  1615. /// corresponds to, e.g. "<<=".
  1616. StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
  1617. switch (Op) {
  1618. case BO_PtrMemD: return ".*";
  1619. case BO_PtrMemI: return "->*";
  1620. case BO_Mul: return "*";
  1621. case BO_Div: return "/";
  1622. case BO_Rem: return "%";
  1623. case BO_Add: return "+";
  1624. case BO_Sub: return "-";
  1625. case BO_Shl: return "<<";
  1626. case BO_Shr: return ">>";
  1627. case BO_LT: return "<";
  1628. case BO_GT: return ">";
  1629. case BO_LE: return "<=";
  1630. case BO_GE: return ">=";
  1631. case BO_EQ: return "==";
  1632. case BO_NE: return "!=";
  1633. case BO_And: return "&";
  1634. case BO_Xor: return "^";
  1635. case BO_Or: return "|";
  1636. case BO_LAnd: return "&&";
  1637. case BO_LOr: return "||";
  1638. case BO_Assign: return "=";
  1639. case BO_MulAssign: return "*=";
  1640. case BO_DivAssign: return "/=";
  1641. case BO_RemAssign: return "%=";
  1642. case BO_AddAssign: return "+=";
  1643. case BO_SubAssign: return "-=";
  1644. case BO_ShlAssign: return "<<=";
  1645. case BO_ShrAssign: return ">>=";
  1646. case BO_AndAssign: return "&=";
  1647. case BO_XorAssign: return "^=";
  1648. case BO_OrAssign: return "|=";
  1649. case BO_Comma: return ",";
  1650. }
  1651. llvm_unreachable("Invalid OpCode!");
  1652. }
  1653. BinaryOperatorKind
  1654. BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
  1655. switch (OO) {
  1656. default: llvm_unreachable("Not an overloadable binary operator");
  1657. case OO_Plus: return BO_Add;
  1658. case OO_Minus: return BO_Sub;
  1659. case OO_Star: return BO_Mul;
  1660. case OO_Slash: return BO_Div;
  1661. case OO_Percent: return BO_Rem;
  1662. case OO_Caret: return BO_Xor;
  1663. case OO_Amp: return BO_And;
  1664. case OO_Pipe: return BO_Or;
  1665. case OO_Equal: return BO_Assign;
  1666. case OO_Less: return BO_LT;
  1667. case OO_Greater: return BO_GT;
  1668. case OO_PlusEqual: return BO_AddAssign;
  1669. case OO_MinusEqual: return BO_SubAssign;
  1670. case OO_StarEqual: return BO_MulAssign;
  1671. case OO_SlashEqual: return BO_DivAssign;
  1672. case OO_PercentEqual: return BO_RemAssign;
  1673. case OO_CaretEqual: return BO_XorAssign;
  1674. case OO_AmpEqual: return BO_AndAssign;
  1675. case OO_PipeEqual: return BO_OrAssign;
  1676. case OO_LessLess: return BO_Shl;
  1677. case OO_GreaterGreater: return BO_Shr;
  1678. case OO_LessLessEqual: return BO_ShlAssign;
  1679. case OO_GreaterGreaterEqual: return BO_ShrAssign;
  1680. case OO_EqualEqual: return BO_EQ;
  1681. case OO_ExclaimEqual: return BO_NE;
  1682. case OO_LessEqual: return BO_LE;
  1683. case OO_GreaterEqual: return BO_GE;
  1684. case OO_AmpAmp: return BO_LAnd;
  1685. case OO_PipePipe: return BO_LOr;
  1686. case OO_Comma: return BO_Comma;
  1687. case OO_ArrowStar: return BO_PtrMemI;
  1688. }
  1689. }
  1690. OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
  1691. static const OverloadedOperatorKind OverOps[] = {
  1692. /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
  1693. OO_Star, OO_Slash, OO_Percent,
  1694. OO_Plus, OO_Minus,
  1695. OO_LessLess, OO_GreaterGreater,
  1696. OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
  1697. OO_EqualEqual, OO_ExclaimEqual,
  1698. OO_Amp,
  1699. OO_Caret,
  1700. OO_Pipe,
  1701. OO_AmpAmp,
  1702. OO_PipePipe,
  1703. OO_Equal, OO_StarEqual,
  1704. OO_SlashEqual, OO_PercentEqual,
  1705. OO_PlusEqual, OO_MinusEqual,
  1706. OO_LessLessEqual, OO_GreaterGreaterEqual,
  1707. OO_AmpEqual, OO_CaretEqual,
  1708. OO_PipeEqual,
  1709. OO_Comma
  1710. };
  1711. return OverOps[Opc];
  1712. }
  1713. InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
  1714. ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
  1715. : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
  1716. false, false),
  1717. InitExprs(C, initExprs.size()),
  1718. LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
  1719. {
  1720. sawArrayRangeDesignator(false);
  1721. for (unsigned I = 0; I != initExprs.size(); ++I) {
  1722. if (initExprs[I]->isTypeDependent())
  1723. ExprBits.TypeDependent = true;
  1724. if (initExprs[I]->isValueDependent())
  1725. ExprBits.ValueDependent = true;
  1726. if (initExprs[I]->isInstantiationDependent())
  1727. ExprBits.InstantiationDependent = true;
  1728. if (initExprs[I]->containsUnexpandedParameterPack())
  1729. ExprBits.ContainsUnexpandedParameterPack = true;
  1730. }
  1731. InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
  1732. }
  1733. void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
  1734. if (NumInits > InitExprs.size())
  1735. InitExprs.reserve(C, NumInits);
  1736. }
  1737. void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
  1738. InitExprs.resize(C, NumInits, nullptr);
  1739. }
  1740. Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
  1741. if (Init >= InitExprs.size()) {
  1742. InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
  1743. setInit(Init, expr);
  1744. return nullptr;
  1745. }
  1746. Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
  1747. setInit(Init, expr);
  1748. return Result;
  1749. }
  1750. void InitListExpr::setArrayFiller(Expr *filler) {
  1751. assert(!hasArrayFiller() && "Filler already set!");
  1752. ArrayFillerOrUnionFieldInit = filler;
  1753. // Fill out any "holes" in the array due to designated initializers.
  1754. Expr **inits = getInits();
  1755. for (unsigned i = 0, e = getNumInits(); i != e; ++i)
  1756. if (inits[i] == nullptr)
  1757. inits[i] = filler;
  1758. }
  1759. bool InitListExpr::isStringLiteralInit() const {
  1760. if (getNumInits() != 1)
  1761. return false;
  1762. const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
  1763. if (!AT || !AT->getElementType()->isIntegerType())
  1764. return false;
  1765. // It is possible for getInit() to return null.
  1766. const Expr *Init = getInit(0);
  1767. if (!Init)
  1768. return false;
  1769. Init = Init->IgnoreParens();
  1770. return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
  1771. }
  1772. SourceLocation InitListExpr::getLocStart() const {
  1773. if (InitListExpr *SyntacticForm = getSyntacticForm())
  1774. return SyntacticForm->getLocStart();
  1775. SourceLocation Beg = LBraceLoc;
  1776. if (Beg.isInvalid()) {
  1777. // Find the first non-null initializer.
  1778. for (InitExprsTy::const_iterator I = InitExprs.begin(),
  1779. E = InitExprs.end();
  1780. I != E; ++I) {
  1781. if (Stmt *S = *I) {
  1782. Beg = S->getLocStart();
  1783. break;
  1784. }
  1785. }
  1786. }
  1787. return Beg;
  1788. }
  1789. SourceLocation InitListExpr::getLocEnd() const {
  1790. if (InitListExpr *SyntacticForm = getSyntacticForm())
  1791. return SyntacticForm->getLocEnd();
  1792. SourceLocation End = RBraceLoc;
  1793. if (End.isInvalid()) {
  1794. // Find the first non-null initializer from the end.
  1795. for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
  1796. E = InitExprs.rend();
  1797. I != E; ++I) {
  1798. if (Stmt *S = *I) {
  1799. End = S->getLocEnd();
  1800. break;
  1801. }
  1802. }
  1803. }
  1804. return End;
  1805. }
  1806. /// getFunctionType - Return the underlying function type for this block.
  1807. ///
  1808. const FunctionProtoType *BlockExpr::getFunctionType() const {
  1809. // The block pointer is never sugared, but the function type might be.
  1810. return cast<BlockPointerType>(getType())
  1811. ->getPointeeType()->castAs<FunctionProtoType>();
  1812. }
  1813. SourceLocation BlockExpr::getCaretLocation() const {
  1814. return TheBlock->getCaretLocation();
  1815. }
  1816. const Stmt *BlockExpr::getBody() const {
  1817. return TheBlock->getBody();
  1818. }
  1819. Stmt *BlockExpr::getBody() {
  1820. return TheBlock->getBody();
  1821. }
  1822. //===----------------------------------------------------------------------===//
  1823. // Generic Expression Routines
  1824. //===----------------------------------------------------------------------===//
  1825. /// isUnusedResultAWarning - Return true if this immediate expression should
  1826. /// be warned about if the result is unused. If so, fill in Loc and Ranges
  1827. /// with location to warn on and the source range[s] to report with the
  1828. /// warning.
  1829. bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
  1830. SourceRange &R1, SourceRange &R2,
  1831. ASTContext &Ctx) const {
  1832. // Don't warn if the expr is type dependent. The type could end up
  1833. // instantiating to void.
  1834. if (isTypeDependent())
  1835. return false;
  1836. switch (getStmtClass()) {
  1837. default:
  1838. if (getType()->isVoidType())
  1839. return false;
  1840. WarnE = this;
  1841. Loc = getExprLoc();
  1842. R1 = getSourceRange();
  1843. return true;
  1844. case ParenExprClass:
  1845. return cast<ParenExpr>(this)->getSubExpr()->
  1846. isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  1847. case GenericSelectionExprClass:
  1848. return cast<GenericSelectionExpr>(this)->getResultExpr()->
  1849. isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  1850. case ChooseExprClass:
  1851. return cast<ChooseExpr>(this)->getChosenSubExpr()->
  1852. isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  1853. case UnaryOperatorClass: {
  1854. const UnaryOperator *UO = cast<UnaryOperator>(this);
  1855. switch (UO->getOpcode()) {
  1856. case UO_Plus:
  1857. case UO_Minus:
  1858. case UO_AddrOf:
  1859. case UO_Not:
  1860. case UO_LNot:
  1861. case UO_Deref:
  1862. break;
  1863. case UO_PostInc:
  1864. case UO_PostDec:
  1865. case UO_PreInc:
  1866. case UO_PreDec: // ++/--
  1867. return false; // Not a warning.
  1868. case UO_Real:
  1869. case UO_Imag:
  1870. // accessing a piece of a volatile complex is a side-effect.
  1871. if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
  1872. .isVolatileQualified())
  1873. return false;
  1874. break;
  1875. case UO_Extension:
  1876. return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  1877. }
  1878. WarnE = this;
  1879. Loc = UO->getOperatorLoc();
  1880. R1 = UO->getSubExpr()->getSourceRange();
  1881. return true;
  1882. }
  1883. case BinaryOperatorClass: {
  1884. const BinaryOperator *BO = cast<BinaryOperator>(this);
  1885. switch (BO->getOpcode()) {
  1886. default:
  1887. break;
  1888. // Consider the RHS of comma for side effects. LHS was checked by
  1889. // Sema::CheckCommaOperands.
  1890. case BO_Comma:
  1891. // ((foo = <blah>), 0) is an idiom for hiding the result (and
  1892. // lvalue-ness) of an assignment written in a macro.
  1893. if (IntegerLiteral *IE =
  1894. dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
  1895. if (IE->getValue() == 0)
  1896. return false;
  1897. return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  1898. // Consider '||', '&&' to have side effects if the LHS or RHS does.
  1899. case BO_LAnd:
  1900. case BO_LOr:
  1901. if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
  1902. !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
  1903. return false;
  1904. break;
  1905. }
  1906. if (BO->isAssignmentOp())
  1907. return false;
  1908. WarnE = this;
  1909. Loc = BO->getOperatorLoc();
  1910. R1 = BO->getLHS()->getSourceRange();
  1911. R2 = BO->getRHS()->getSourceRange();
  1912. return true;
  1913. }
  1914. case CompoundAssignOperatorClass:
  1915. case VAArgExprClass:
  1916. case AtomicExprClass:
  1917. return false;
  1918. case ConditionalOperatorClass: {
  1919. // If only one of the LHS or RHS is a warning, the operator might
  1920. // be being used for control flow. Only warn if both the LHS and
  1921. // RHS are warnings.
  1922. const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
  1923. if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
  1924. return false;
  1925. if (!Exp->getLHS())
  1926. return true;
  1927. return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  1928. }
  1929. case MemberExprClass:
  1930. WarnE = this;
  1931. Loc = cast<MemberExpr>(this)->getMemberLoc();
  1932. R1 = SourceRange(Loc, Loc);
  1933. R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
  1934. return true;
  1935. case ArraySubscriptExprClass:
  1936. WarnE = this;
  1937. Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
  1938. R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
  1939. R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
  1940. return true;
  1941. case CXXOperatorCallExprClass: {
  1942. // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
  1943. // overloads as there is no reasonable way to define these such that they
  1944. // have non-trivial, desirable side-effects. See the -Wunused-comparison
  1945. // warning: operators == and != are commonly typo'ed, and so warning on them
  1946. // provides additional value as well. If this list is updated,
  1947. // DiagnoseUnusedComparison should be as well.
  1948. const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
  1949. switch (Op->getOperator()) {
  1950. default:
  1951. break;
  1952. case OO_EqualEqual:
  1953. case OO_ExclaimEqual:
  1954. case OO_Less:
  1955. case OO_Greater:
  1956. case OO_GreaterEqual:
  1957. case OO_LessEqual:
  1958. if (Op->getCallReturnType(Ctx)->isReferenceType() ||
  1959. Op->getCallReturnType(Ctx)->isVoidType())
  1960. break;
  1961. WarnE = this;
  1962. Loc = Op->getOperatorLoc();
  1963. R1 = Op->getSourceRange();
  1964. return true;
  1965. }
  1966. // Fallthrough for generic call handling.
  1967. }
  1968. case CallExprClass:
  1969. case CXXMemberCallExprClass:
  1970. case UserDefinedLiteralClass: {
  1971. // If this is a direct call, get the callee.
  1972. const CallExpr *CE = cast<CallExpr>(this);
  1973. if (const Decl *FD = CE->getCalleeDecl()) {
  1974. const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
  1975. bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr()
  1976. : FD->hasAttr<WarnUnusedResultAttr>();
  1977. // If the callee has attribute pure, const, or warn_unused_result, warn
  1978. // about it. void foo() { strlen("bar"); } should warn.
  1979. //
  1980. // Note: If new cases are added here, DiagnoseUnusedExprResult should be
  1981. // updated to match for QoI.
  1982. if (HasWarnUnusedResultAttr ||
  1983. FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
  1984. WarnE = this;
  1985. Loc = CE->getCallee()->getLocStart();
  1986. R1 = CE->getCallee()->getSourceRange();
  1987. if (unsigned NumArgs = CE->getNumArgs())
  1988. R2 = SourceRange(CE->getArg(0)->getLocStart(),
  1989. CE->getArg(NumArgs-1)->getLocEnd());
  1990. return true;
  1991. }
  1992. }
  1993. return false;
  1994. }
  1995. // If we don't know precisely what we're looking at, let's not warn.
  1996. case UnresolvedLookupExprClass:
  1997. case CXXUnresolvedConstructExprClass:
  1998. return false;
  1999. case CXXTemporaryObjectExprClass:
  2000. case CXXConstructExprClass: {
  2001. if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
  2002. if (Type->hasAttr<WarnUnusedAttr>()) {
  2003. WarnE = this;
  2004. Loc = getLocStart();
  2005. R1 = getSourceRange();
  2006. return true;
  2007. }
  2008. }
  2009. return false;
  2010. }
  2011. case ObjCMessageExprClass: {
  2012. const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
  2013. if (Ctx.getLangOpts().ObjCAutoRefCount &&
  2014. ME->isInstanceMessage() &&
  2015. !ME->getType()->isVoidType() &&
  2016. ME->getMethodFamily() == OMF_init) {
  2017. WarnE = this;
  2018. Loc = getExprLoc();
  2019. R1 = ME->getSourceRange();
  2020. return true;
  2021. }
  2022. if (const ObjCMethodDecl *MD = ME->getMethodDecl())
  2023. if (MD->hasAttr<WarnUnusedResultAttr>()) {
  2024. WarnE = this;
  2025. Loc = getExprLoc();
  2026. return true;
  2027. }
  2028. return false;
  2029. }
  2030. case ObjCPropertyRefExprClass:
  2031. WarnE = this;
  2032. Loc = getExprLoc();
  2033. R1 = getSourceRange();
  2034. return true;
  2035. case PseudoObjectExprClass: {
  2036. const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
  2037. // Only complain about things that have the form of a getter.
  2038. if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
  2039. isa<BinaryOperator>(PO->getSyntacticForm()))
  2040. return false;
  2041. WarnE = this;
  2042. Loc = getExprLoc();
  2043. R1 = getSourceRange();
  2044. return true;
  2045. }
  2046. case StmtExprClass: {
  2047. // Statement exprs don't logically have side effects themselves, but are
  2048. // sometimes used in macros in ways that give them a type that is unused.
  2049. // For example ({ blah; foo(); }) will end up with a type if foo has a type.
  2050. // however, if the result of the stmt expr is dead, we don't want to emit a
  2051. // warning.
  2052. const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
  2053. if (!CS->body_empty()) {
  2054. if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
  2055. return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2056. if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
  2057. if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
  2058. return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2059. }
  2060. if (getType()->isVoidType())
  2061. return false;
  2062. WarnE = this;
  2063. Loc = cast<StmtExpr>(this)->getLParenLoc();
  2064. R1 = getSourceRange();
  2065. return true;
  2066. }
  2067. case CXXFunctionalCastExprClass:
  2068. case CStyleCastExprClass: {
  2069. // Ignore an explicit cast to void unless the operand is a non-trivial
  2070. // volatile lvalue.
  2071. const CastExpr *CE = cast<CastExpr>(this);
  2072. if (CE->getCastKind() == CK_ToVoid) {
  2073. if (CE->getSubExpr()->isGLValue() &&
  2074. CE->getSubExpr()->getType().isVolatileQualified()) {
  2075. const DeclRefExpr *DRE =
  2076. dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
  2077. if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
  2078. cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
  2079. return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
  2080. R1, R2, Ctx);
  2081. }
  2082. }
  2083. return false;
  2084. }
  2085. // If this is a cast to a constructor conversion, check the operand.
  2086. // Otherwise, the result of the cast is unused.
  2087. if (CE->getCastKind() == CK_ConstructorConversion)
  2088. return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2089. WarnE = this;
  2090. if (const CXXFunctionalCastExpr *CXXCE =
  2091. dyn_cast<CXXFunctionalCastExpr>(this)) {
  2092. Loc = CXXCE->getLocStart();
  2093. R1 = CXXCE->getSubExpr()->getSourceRange();
  2094. } else {
  2095. const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
  2096. Loc = CStyleCE->getLParenLoc();
  2097. R1 = CStyleCE->getSubExpr()->getSourceRange();
  2098. }
  2099. return true;
  2100. }
  2101. case ImplicitCastExprClass: {
  2102. const CastExpr *ICE = cast<ImplicitCastExpr>(this);
  2103. // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
  2104. if (ICE->getCastKind() == CK_LValueToRValue &&
  2105. ICE->getSubExpr()->getType().isVolatileQualified())
  2106. return false;
  2107. return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2108. }
  2109. case CXXDefaultArgExprClass:
  2110. return (cast<CXXDefaultArgExpr>(this)
  2111. ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
  2112. case CXXDefaultInitExprClass:
  2113. return (cast<CXXDefaultInitExpr>(this)
  2114. ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
  2115. case CXXNewExprClass:
  2116. // FIXME: In theory, there might be new expressions that don't have side
  2117. // effects (e.g. a placement new with an uninitialized POD).
  2118. case CXXDeleteExprClass:
  2119. return false;
  2120. case CXXBindTemporaryExprClass:
  2121. return (cast<CXXBindTemporaryExpr>(this)
  2122. ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
  2123. case ExprWithCleanupsClass:
  2124. return (cast<ExprWithCleanups>(this)
  2125. ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
  2126. }
  2127. }
  2128. /// isOBJCGCCandidate - Check if an expression is objc gc'able.
  2129. /// returns true, if it is; false otherwise.
  2130. bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
  2131. const Expr *E = IgnoreParens();
  2132. switch (E->getStmtClass()) {
  2133. default:
  2134. return false;
  2135. case ObjCIvarRefExprClass:
  2136. return true;
  2137. case Expr::UnaryOperatorClass:
  2138. return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
  2139. case ImplicitCastExprClass:
  2140. return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
  2141. case MaterializeTemporaryExprClass:
  2142. return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
  2143. ->isOBJCGCCandidate(Ctx);
  2144. case CStyleCastExprClass:
  2145. return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
  2146. case DeclRefExprClass: {
  2147. const Decl *D = cast<DeclRefExpr>(E)->getDecl();
  2148. if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
  2149. if (VD->hasGlobalStorage())
  2150. return true;
  2151. QualType T = VD->getType();
  2152. // dereferencing to a pointer is always a gc'able candidate,
  2153. // unless it is __weak.
  2154. return T->isPointerType() &&
  2155. (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
  2156. }
  2157. return false;
  2158. }
  2159. case MemberExprClass: {
  2160. const MemberExpr *M = cast<MemberExpr>(E);
  2161. return M->getBase()->isOBJCGCCandidate(Ctx);
  2162. }
  2163. case ArraySubscriptExprClass:
  2164. return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
  2165. }
  2166. }
  2167. bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
  2168. if (isTypeDependent())
  2169. return false;
  2170. return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
  2171. }
  2172. QualType Expr::findBoundMemberType(const Expr *expr) {
  2173. assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
  2174. // Bound member expressions are always one of these possibilities:
  2175. // x->m x.m x->*y x.*y
  2176. // (possibly parenthesized)
  2177. expr = expr->IgnoreParens();
  2178. if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
  2179. assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
  2180. return mem->getMemberDecl()->getType();
  2181. }
  2182. if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
  2183. QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
  2184. ->getPointeeType();
  2185. assert(type->isFunctionType());
  2186. return type;
  2187. }
  2188. assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
  2189. return QualType();
  2190. }
  2191. Expr* Expr::IgnoreParens() {
  2192. Expr* E = this;
  2193. while (true) {
  2194. if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
  2195. E = P->getSubExpr();
  2196. continue;
  2197. }
  2198. if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
  2199. if (P->getOpcode() == UO_Extension) {
  2200. E = P->getSubExpr();
  2201. continue;
  2202. }
  2203. }
  2204. if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
  2205. if (!P->isResultDependent()) {
  2206. E = P->getResultExpr();
  2207. continue;
  2208. }
  2209. }
  2210. if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
  2211. if (!P->isConditionDependent()) {
  2212. E = P->getChosenSubExpr();
  2213. continue;
  2214. }
  2215. }
  2216. return E;
  2217. }
  2218. }
  2219. /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
  2220. /// or CastExprs or ImplicitCastExprs, returning their operand.
  2221. Expr *Expr::IgnoreParenCasts() {
  2222. Expr *E = this;
  2223. while (true) {
  2224. E = E->IgnoreParens();
  2225. if (CastExpr *P = dyn_cast<CastExpr>(E)) {
  2226. E = P->getSubExpr();
  2227. continue;
  2228. }
  2229. if (MaterializeTemporaryExpr *Materialize
  2230. = dyn_cast<MaterializeTemporaryExpr>(E)) {
  2231. E = Materialize->GetTemporaryExpr();
  2232. continue;
  2233. }
  2234. if (SubstNonTypeTemplateParmExpr *NTTP
  2235. = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
  2236. E = NTTP->getReplacement();
  2237. continue;
  2238. }
  2239. return E;
  2240. }
  2241. }
  2242. Expr *Expr::IgnoreCasts() {
  2243. Expr *E = this;
  2244. while (true) {
  2245. if (CastExpr *P = dyn_cast<CastExpr>(E)) {
  2246. E = P->getSubExpr();
  2247. continue;
  2248. }
  2249. if (MaterializeTemporaryExpr *Materialize
  2250. = dyn_cast<MaterializeTemporaryExpr>(E)) {
  2251. E = Materialize->GetTemporaryExpr();
  2252. continue;
  2253. }
  2254. if (SubstNonTypeTemplateParmExpr *NTTP
  2255. = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
  2256. E = NTTP->getReplacement();
  2257. continue;
  2258. }
  2259. return E;
  2260. }
  2261. }
  2262. /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
  2263. /// casts. This is intended purely as a temporary workaround for code
  2264. /// that hasn't yet been rewritten to do the right thing about those
  2265. /// casts, and may disappear along with the last internal use.
  2266. Expr *Expr::IgnoreParenLValueCasts() {
  2267. Expr *E = this;
  2268. while (true) {
  2269. E = E->IgnoreParens();
  2270. if (CastExpr *P = dyn_cast<CastExpr>(E)) {
  2271. if (P->getCastKind() == CK_LValueToRValue) {
  2272. E = P->getSubExpr();
  2273. continue;
  2274. }
  2275. } else if (MaterializeTemporaryExpr *Materialize
  2276. = dyn_cast<MaterializeTemporaryExpr>(E)) {
  2277. E = Materialize->GetTemporaryExpr();
  2278. continue;
  2279. } else if (SubstNonTypeTemplateParmExpr *NTTP
  2280. = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
  2281. E = NTTP->getReplacement();
  2282. continue;
  2283. }
  2284. break;
  2285. }
  2286. return E;
  2287. }
  2288. Expr *Expr::ignoreParenBaseCasts() {
  2289. Expr *E = this;
  2290. while (true) {
  2291. E = E->IgnoreParens();
  2292. if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
  2293. if (CE->getCastKind() == CK_DerivedToBase ||
  2294. CE->getCastKind() == CK_UncheckedDerivedToBase ||
  2295. CE->getCastKind() == CK_NoOp) {
  2296. E = CE->getSubExpr();
  2297. continue;
  2298. }
  2299. }
  2300. return E;
  2301. }
  2302. }
  2303. Expr *Expr::IgnoreParenImpCasts() {
  2304. Expr *E = this;
  2305. while (true) {
  2306. E = E->IgnoreParens();
  2307. if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
  2308. E = P->getSubExpr();
  2309. continue;
  2310. }
  2311. if (MaterializeTemporaryExpr *Materialize
  2312. = dyn_cast<MaterializeTemporaryExpr>(E)) {
  2313. E = Materialize->GetTemporaryExpr();
  2314. continue;
  2315. }
  2316. if (SubstNonTypeTemplateParmExpr *NTTP
  2317. = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
  2318. E = NTTP->getReplacement();
  2319. continue;
  2320. }
  2321. return E;
  2322. }
  2323. }
  2324. Expr *Expr::IgnoreConversionOperator() {
  2325. if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
  2326. if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
  2327. return MCE->getImplicitObjectArgument();
  2328. }
  2329. return this;
  2330. }
  2331. /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
  2332. /// value (including ptr->int casts of the same size). Strip off any
  2333. /// ParenExpr or CastExprs, returning their operand.
  2334. Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
  2335. Expr *E = this;
  2336. while (true) {
  2337. E = E->IgnoreParens();
  2338. if (CastExpr *P = dyn_cast<CastExpr>(E)) {
  2339. // We ignore integer <-> casts that are of the same width, ptr<->ptr and
  2340. // ptr<->int casts of the same width. We also ignore all identity casts.
  2341. Expr *SE = P->getSubExpr();
  2342. if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
  2343. E = SE;
  2344. continue;
  2345. }
  2346. if ((E->getType()->isPointerType() ||
  2347. E->getType()->isIntegralType(Ctx)) &&
  2348. (SE->getType()->isPointerType() ||
  2349. SE->getType()->isIntegralType(Ctx)) &&
  2350. Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
  2351. E = SE;
  2352. continue;
  2353. }
  2354. }
  2355. if (SubstNonTypeTemplateParmExpr *NTTP
  2356. = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
  2357. E = NTTP->getReplacement();
  2358. continue;
  2359. }
  2360. return E;
  2361. }
  2362. }
  2363. bool Expr::isDefaultArgument() const {
  2364. const Expr *E = this;
  2365. if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
  2366. E = M->GetTemporaryExpr();
  2367. while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
  2368. E = ICE->getSubExprAsWritten();
  2369. return isa<CXXDefaultArgExpr>(E);
  2370. }
  2371. /// \brief Skip over any no-op casts and any temporary-binding
  2372. /// expressions.
  2373. static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
  2374. if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
  2375. E = M->GetTemporaryExpr();
  2376. while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  2377. if (ICE->getCastKind() == CK_NoOp)
  2378. E = ICE->getSubExpr();
  2379. else
  2380. break;
  2381. }
  2382. while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
  2383. E = BE->getSubExpr();
  2384. while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  2385. if (ICE->getCastKind() == CK_NoOp)
  2386. E = ICE->getSubExpr();
  2387. else
  2388. break;
  2389. }
  2390. return E->IgnoreParens();
  2391. }
  2392. /// isTemporaryObject - Determines if this expression produces a
  2393. /// temporary of the given class type.
  2394. bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
  2395. if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
  2396. return false;
  2397. const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
  2398. // Temporaries are by definition pr-values of class type.
  2399. if (!E->Classify(C).isPRValue()) {
  2400. // In this context, property reference is a message call and is pr-value.
  2401. if (!isa<ObjCPropertyRefExpr>(E))
  2402. return false;
  2403. }
  2404. // Black-list a few cases which yield pr-values of class type that don't
  2405. // refer to temporaries of that type:
  2406. // - implicit derived-to-base conversions
  2407. if (isa<ImplicitCastExpr>(E)) {
  2408. switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
  2409. case CK_DerivedToBase:
  2410. case CK_UncheckedDerivedToBase:
  2411. return false;
  2412. default:
  2413. break;
  2414. }
  2415. }
  2416. // - member expressions (all)
  2417. if (isa<MemberExpr>(E))
  2418. return false;
  2419. if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
  2420. if (BO->isPtrMemOp())
  2421. return false;
  2422. // - opaque values (all)
  2423. if (isa<OpaqueValueExpr>(E))
  2424. return false;
  2425. return true;
  2426. }
  2427. bool Expr::isImplicitCXXThis() const {
  2428. const Expr *E = this;
  2429. // Strip away parentheses and casts we don't care about.
  2430. while (true) {
  2431. if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
  2432. E = Paren->getSubExpr();
  2433. continue;
  2434. }
  2435. if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  2436. if (ICE->getCastKind() == CK_NoOp ||
  2437. ICE->getCastKind() == CK_LValueToRValue ||
  2438. ICE->getCastKind() == CK_DerivedToBase ||
  2439. ICE->getCastKind() == CK_UncheckedDerivedToBase) {
  2440. E = ICE->getSubExpr();
  2441. continue;
  2442. }
  2443. }
  2444. if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
  2445. if (UnOp->getOpcode() == UO_Extension) {
  2446. E = UnOp->getSubExpr();
  2447. continue;
  2448. }
  2449. }
  2450. if (const MaterializeTemporaryExpr *M
  2451. = dyn_cast<MaterializeTemporaryExpr>(E)) {
  2452. E = M->GetTemporaryExpr();
  2453. continue;
  2454. }
  2455. break;
  2456. }
  2457. if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
  2458. return This->isImplicit();
  2459. return false;
  2460. }
  2461. /// hasAnyTypeDependentArguments - Determines if any of the expressions
  2462. /// in Exprs is type-dependent.
  2463. bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
  2464. for (unsigned I = 0; I < Exprs.size(); ++I)
  2465. if (Exprs[I]->isTypeDependent())
  2466. return true;
  2467. return false;
  2468. }
  2469. bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
  2470. const Expr **Culprit) const {
  2471. // This function is attempting whether an expression is an initializer
  2472. // which can be evaluated at compile-time. It very closely parallels
  2473. // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
  2474. // will lead to unexpected results. Like ConstExprEmitter, it falls back
  2475. // to isEvaluatable most of the time.
  2476. //
  2477. // If we ever capture reference-binding directly in the AST, we can
  2478. // kill the second parameter.
  2479. if (IsForRef) {
  2480. EvalResult Result;
  2481. if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
  2482. return true;
  2483. if (Culprit)
  2484. *Culprit = this;
  2485. return false;
  2486. }
  2487. switch (getStmtClass()) {
  2488. default: break;
  2489. case StringLiteralClass:
  2490. case ObjCEncodeExprClass:
  2491. return true;
  2492. case CXXTemporaryObjectExprClass:
  2493. case CXXConstructExprClass: {
  2494. const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
  2495. if (CE->getConstructor()->isTrivial() &&
  2496. CE->getConstructor()->getParent()->hasTrivialDestructor()) {
  2497. // Trivial default constructor
  2498. if (!CE->getNumArgs()) return true;
  2499. // Trivial copy constructor
  2500. assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
  2501. return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
  2502. }
  2503. break;
  2504. }
  2505. case CompoundLiteralExprClass: {
  2506. // This handles gcc's extension that allows global initializers like
  2507. // "struct x {int x;} x = (struct x) {};".
  2508. // FIXME: This accepts other cases it shouldn't!
  2509. const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
  2510. return Exp->isConstantInitializer(Ctx, false, Culprit);
  2511. }
  2512. case DesignatedInitUpdateExprClass: {
  2513. const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
  2514. return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
  2515. DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
  2516. }
  2517. case InitListExprClass: {
  2518. const InitListExpr *ILE = cast<InitListExpr>(this);
  2519. if (ILE->getType()->isArrayType()) {
  2520. unsigned numInits = ILE->getNumInits();
  2521. for (unsigned i = 0; i < numInits; i++) {
  2522. if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
  2523. return false;
  2524. }
  2525. return true;
  2526. }
  2527. if (ILE->getType()->isRecordType()) {
  2528. unsigned ElementNo = 0;
  2529. RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
  2530. for (const auto *Field : RD->fields()) {
  2531. // If this is a union, skip all the fields that aren't being initialized.
  2532. if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
  2533. continue;
  2534. // Don't emit anonymous bitfields, they just affect layout.
  2535. if (Field->isUnnamedBitfield())
  2536. continue;
  2537. if (ElementNo < ILE->getNumInits()) {
  2538. const Expr *Elt = ILE->getInit(ElementNo++);
  2539. if (Field->isBitField()) {
  2540. // Bitfields have to evaluate to an integer.
  2541. llvm::APSInt ResultTmp;
  2542. if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) {
  2543. if (Culprit)
  2544. *Culprit = Elt;
  2545. return false;
  2546. }
  2547. } else {
  2548. bool RefType = Field->getType()->isReferenceType();
  2549. if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
  2550. return false;
  2551. }
  2552. }
  2553. }
  2554. return true;
  2555. }
  2556. break;
  2557. }
  2558. case ImplicitValueInitExprClass:
  2559. case NoInitExprClass:
  2560. return true;
  2561. case ParenExprClass:
  2562. return cast<ParenExpr>(this)->getSubExpr()
  2563. ->isConstantInitializer(Ctx, IsForRef, Culprit);
  2564. case GenericSelectionExprClass:
  2565. return cast<GenericSelectionExpr>(this)->getResultExpr()
  2566. ->isConstantInitializer(Ctx, IsForRef, Culprit);
  2567. case ChooseExprClass:
  2568. if (cast<ChooseExpr>(this)->isConditionDependent()) {
  2569. if (Culprit)
  2570. *Culprit = this;
  2571. return false;
  2572. }
  2573. return cast<ChooseExpr>(this)->getChosenSubExpr()
  2574. ->isConstantInitializer(Ctx, IsForRef, Culprit);
  2575. case UnaryOperatorClass: {
  2576. const UnaryOperator* Exp = cast<UnaryOperator>(this);
  2577. if (Exp->getOpcode() == UO_Extension)
  2578. return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
  2579. break;
  2580. }
  2581. case CXXFunctionalCastExprClass:
  2582. case CXXStaticCastExprClass:
  2583. case ImplicitCastExprClass:
  2584. case CStyleCastExprClass:
  2585. case ObjCBridgedCastExprClass:
  2586. case CXXDynamicCastExprClass:
  2587. case CXXReinterpretCastExprClass:
  2588. case CXXConstCastExprClass: {
  2589. const CastExpr *CE = cast<CastExpr>(this);
  2590. // Handle misc casts we want to ignore.
  2591. if (CE->getCastKind() == CK_NoOp ||
  2592. CE->getCastKind() == CK_LValueToRValue ||
  2593. CE->getCastKind() == CK_ToUnion ||
  2594. CE->getCastKind() == CK_ConstructorConversion ||
  2595. CE->getCastKind() == CK_NonAtomicToAtomic ||
  2596. CE->getCastKind() == CK_AtomicToNonAtomic)
  2597. return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
  2598. break;
  2599. }
  2600. case MaterializeTemporaryExprClass:
  2601. return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
  2602. ->isConstantInitializer(Ctx, false, Culprit);
  2603. case SubstNonTypeTemplateParmExprClass:
  2604. return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
  2605. ->isConstantInitializer(Ctx, false, Culprit);
  2606. case CXXDefaultArgExprClass:
  2607. return cast<CXXDefaultArgExpr>(this)->getExpr()
  2608. ->isConstantInitializer(Ctx, false, Culprit);
  2609. case CXXDefaultInitExprClass:
  2610. return cast<CXXDefaultInitExpr>(this)->getExpr()
  2611. ->isConstantInitializer(Ctx, false, Culprit);
  2612. }
  2613. if (isEvaluatable(Ctx))
  2614. return true;
  2615. if (Culprit)
  2616. *Culprit = this;
  2617. return false;
  2618. }
  2619. namespace {
  2620. /// \brief Look for any side effects within a Stmt.
  2621. class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
  2622. typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
  2623. const bool IncludePossibleEffects;
  2624. bool HasSideEffects;
  2625. public:
  2626. explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
  2627. : Inherited(Context),
  2628. IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
  2629. bool hasSideEffects() const { return HasSideEffects; }
  2630. void VisitExpr(const Expr *E) {
  2631. if (!HasSideEffects &&
  2632. E->HasSideEffects(Context, IncludePossibleEffects))
  2633. HasSideEffects = true;
  2634. }
  2635. };
  2636. }
  2637. bool Expr::HasSideEffects(const ASTContext &Ctx,
  2638. bool IncludePossibleEffects) const {
  2639. // In circumstances where we care about definite side effects instead of
  2640. // potential side effects, we want to ignore expressions that are part of a
  2641. // macro expansion as a potential side effect.
  2642. if (!IncludePossibleEffects && getExprLoc().isMacroID())
  2643. return false;
  2644. if (isInstantiationDependent())
  2645. return IncludePossibleEffects;
  2646. switch (getStmtClass()) {
  2647. case NoStmtClass:
  2648. #define ABSTRACT_STMT(Type)
  2649. #define STMT(Type, Base) case Type##Class:
  2650. #define EXPR(Type, Base)
  2651. #include "clang/AST/StmtNodes.inc"
  2652. llvm_unreachable("unexpected Expr kind");
  2653. case DependentScopeDeclRefExprClass:
  2654. case CXXUnresolvedConstructExprClass:
  2655. case CXXDependentScopeMemberExprClass:
  2656. case UnresolvedLookupExprClass:
  2657. case UnresolvedMemberExprClass:
  2658. case PackExpansionExprClass:
  2659. case SubstNonTypeTemplateParmPackExprClass:
  2660. case FunctionParmPackExprClass:
  2661. case TypoExprClass:
  2662. case CXXFoldExprClass:
  2663. llvm_unreachable("shouldn't see dependent / unresolved nodes here");
  2664. case DeclRefExprClass:
  2665. case ObjCIvarRefExprClass:
  2666. case PredefinedExprClass:
  2667. case IntegerLiteralClass:
  2668. case FloatingLiteralClass:
  2669. case ImaginaryLiteralClass:
  2670. case StringLiteralClass:
  2671. case CharacterLiteralClass:
  2672. case OffsetOfExprClass:
  2673. case ImplicitValueInitExprClass:
  2674. case UnaryExprOrTypeTraitExprClass:
  2675. case AddrLabelExprClass:
  2676. case GNUNullExprClass:
  2677. case NoInitExprClass:
  2678. case CXXBoolLiteralExprClass:
  2679. case CXXNullPtrLiteralExprClass:
  2680. case CXXThisExprClass:
  2681. case CXXScalarValueInitExprClass:
  2682. case TypeTraitExprClass:
  2683. case ArrayTypeTraitExprClass:
  2684. case ExpressionTraitExprClass:
  2685. case CXXNoexceptExprClass:
  2686. case SizeOfPackExprClass:
  2687. case ObjCStringLiteralClass:
  2688. case ObjCEncodeExprClass:
  2689. case ObjCBoolLiteralExprClass:
  2690. case CXXUuidofExprClass:
  2691. case OpaqueValueExprClass:
  2692. // These never have a side-effect.
  2693. return false;
  2694. case CallExprClass:
  2695. case CXXOperatorCallExprClass:
  2696. case CXXMemberCallExprClass:
  2697. case CUDAKernelCallExprClass:
  2698. case UserDefinedLiteralClass: {
  2699. // We don't know a call definitely has side effects, except for calls
  2700. // to pure/const functions that definitely don't.
  2701. // If the call itself is considered side-effect free, check the operands.
  2702. const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
  2703. bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
  2704. if (IsPure || !IncludePossibleEffects)
  2705. break;
  2706. return true;
  2707. }
  2708. case BlockExprClass:
  2709. case CXXBindTemporaryExprClass:
  2710. if (!IncludePossibleEffects)
  2711. break;
  2712. return true;
  2713. case MSPropertyRefExprClass:
  2714. case CompoundAssignOperatorClass:
  2715. case VAArgExprClass:
  2716. case AtomicExprClass:
  2717. case CXXThrowExprClass:
  2718. case CXXNewExprClass:
  2719. case CXXDeleteExprClass:
  2720. case ExprWithCleanupsClass:
  2721. // These always have a side-effect.
  2722. return true;
  2723. case StmtExprClass: {
  2724. // StmtExprs have a side-effect if any substatement does.
  2725. SideEffectFinder Finder(Ctx, IncludePossibleEffects);
  2726. Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
  2727. return Finder.hasSideEffects();
  2728. }
  2729. case ParenExprClass:
  2730. case ArraySubscriptExprClass:
  2731. case MemberExprClass:
  2732. case ConditionalOperatorClass:
  2733. case BinaryConditionalOperatorClass:
  2734. case CompoundLiteralExprClass:
  2735. case ExtVectorElementExprClass:
  2736. case ExtMatrixElementExprClass: // HLSL Change
  2737. case HLSLVectorElementExprClass: // HLSL Change
  2738. case DesignatedInitExprClass:
  2739. case DesignatedInitUpdateExprClass:
  2740. case ParenListExprClass:
  2741. case CXXPseudoDestructorExprClass:
  2742. case CXXStdInitializerListExprClass:
  2743. case SubstNonTypeTemplateParmExprClass:
  2744. case MaterializeTemporaryExprClass:
  2745. case ShuffleVectorExprClass:
  2746. case ConvertVectorExprClass:
  2747. case AsTypeExprClass:
  2748. // These have a side-effect if any subexpression does.
  2749. break;
  2750. case UnaryOperatorClass:
  2751. if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
  2752. return true;
  2753. break;
  2754. case BinaryOperatorClass:
  2755. if (cast<BinaryOperator>(this)->isAssignmentOp())
  2756. return true;
  2757. break;
  2758. case InitListExprClass:
  2759. // FIXME: The children for an InitListExpr doesn't include the array filler.
  2760. if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
  2761. if (E->HasSideEffects(Ctx, IncludePossibleEffects))
  2762. return true;
  2763. break;
  2764. case GenericSelectionExprClass:
  2765. return cast<GenericSelectionExpr>(this)->getResultExpr()->
  2766. HasSideEffects(Ctx, IncludePossibleEffects);
  2767. case ChooseExprClass:
  2768. return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
  2769. Ctx, IncludePossibleEffects);
  2770. case CXXDefaultArgExprClass:
  2771. return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
  2772. Ctx, IncludePossibleEffects);
  2773. case CXXDefaultInitExprClass: {
  2774. const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
  2775. if (const Expr *E = FD->getInClassInitializer())
  2776. return E->HasSideEffects(Ctx, IncludePossibleEffects);
  2777. // If we've not yet parsed the initializer, assume it has side-effects.
  2778. return true;
  2779. }
  2780. case CXXDynamicCastExprClass: {
  2781. // A dynamic_cast expression has side-effects if it can throw.
  2782. const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
  2783. if (DCE->getTypeAsWritten()->isReferenceType() &&
  2784. DCE->getCastKind() == CK_Dynamic)
  2785. return true;
  2786. } // Fall through.
  2787. case ImplicitCastExprClass:
  2788. case CStyleCastExprClass:
  2789. case CXXStaticCastExprClass:
  2790. case CXXReinterpretCastExprClass:
  2791. case CXXConstCastExprClass:
  2792. case CXXFunctionalCastExprClass: {
  2793. // While volatile reads are side-effecting in both C and C++, we treat them
  2794. // as having possible (not definite) side-effects. This allows idiomatic
  2795. // code to behave without warning, such as sizeof(*v) for a volatile-
  2796. // qualified pointer.
  2797. if (!IncludePossibleEffects)
  2798. break;
  2799. const CastExpr *CE = cast<CastExpr>(this);
  2800. if (CE->getCastKind() == CK_LValueToRValue &&
  2801. CE->getSubExpr()->getType().isVolatileQualified())
  2802. return true;
  2803. break;
  2804. }
  2805. case CXXTypeidExprClass:
  2806. // typeid might throw if its subexpression is potentially-evaluated, so has
  2807. // side-effects in that case whether or not its subexpression does.
  2808. return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
  2809. case CXXConstructExprClass:
  2810. case CXXTemporaryObjectExprClass: {
  2811. const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
  2812. if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
  2813. return true;
  2814. // A trivial constructor does not add any side-effects of its own. Just look
  2815. // at its arguments.
  2816. break;
  2817. }
  2818. case LambdaExprClass: {
  2819. const LambdaExpr *LE = cast<LambdaExpr>(this);
  2820. for (LambdaExpr::capture_iterator I = LE->capture_begin(),
  2821. E = LE->capture_end(); I != E; ++I)
  2822. if (I->getCaptureKind() == LCK_ByCopy)
  2823. // FIXME: Only has a side-effect if the variable is volatile or if
  2824. // the copy would invoke a non-trivial copy constructor.
  2825. return true;
  2826. return false;
  2827. }
  2828. case PseudoObjectExprClass: {
  2829. // Only look for side-effects in the semantic form, and look past
  2830. // OpaqueValueExpr bindings in that form.
  2831. const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
  2832. for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
  2833. E = PO->semantics_end();
  2834. I != E; ++I) {
  2835. const Expr *Subexpr = *I;
  2836. if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
  2837. Subexpr = OVE->getSourceExpr();
  2838. if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
  2839. return true;
  2840. }
  2841. return false;
  2842. }
  2843. case ObjCBoxedExprClass:
  2844. case ObjCArrayLiteralClass:
  2845. case ObjCDictionaryLiteralClass:
  2846. case ObjCSelectorExprClass:
  2847. case ObjCProtocolExprClass:
  2848. case ObjCIsaExprClass:
  2849. case ObjCIndirectCopyRestoreExprClass:
  2850. case ObjCSubscriptRefExprClass:
  2851. case ObjCBridgedCastExprClass:
  2852. case ObjCMessageExprClass:
  2853. case ObjCPropertyRefExprClass:
  2854. // FIXME: Classify these cases better.
  2855. if (IncludePossibleEffects)
  2856. return true;
  2857. break;
  2858. }
  2859. // Recurse to children.
  2860. for (const Stmt *SubStmt : children())
  2861. if (SubStmt &&
  2862. cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
  2863. return true;
  2864. return false;
  2865. }
  2866. namespace {
  2867. /// \brief Look for a call to a non-trivial function within an expression.
  2868. class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
  2869. {
  2870. typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
  2871. bool NonTrivial;
  2872. public:
  2873. explicit NonTrivialCallFinder(const ASTContext &Context)
  2874. : Inherited(Context), NonTrivial(false) { }
  2875. bool hasNonTrivialCall() const { return NonTrivial; }
  2876. void VisitCallExpr(const CallExpr *E) {
  2877. if (const CXXMethodDecl *Method
  2878. = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
  2879. if (Method->isTrivial()) {
  2880. // Recurse to children of the call.
  2881. Inherited::VisitStmt(E);
  2882. return;
  2883. }
  2884. }
  2885. NonTrivial = true;
  2886. }
  2887. void VisitCXXConstructExpr(const CXXConstructExpr *E) {
  2888. if (E->getConstructor()->isTrivial()) {
  2889. // Recurse to children of the call.
  2890. Inherited::VisitStmt(E);
  2891. return;
  2892. }
  2893. NonTrivial = true;
  2894. }
  2895. void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
  2896. if (E->getTemporary()->getDestructor()->isTrivial()) {
  2897. Inherited::VisitStmt(E);
  2898. return;
  2899. }
  2900. NonTrivial = true;
  2901. }
  2902. };
  2903. }
  2904. bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
  2905. NonTrivialCallFinder Finder(Ctx);
  2906. Finder.Visit(this);
  2907. return Finder.hasNonTrivialCall();
  2908. }
  2909. /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
  2910. /// pointer constant or not, as well as the specific kind of constant detected.
  2911. /// Null pointer constants can be integer constant expressions with the
  2912. /// value zero, casts of zero to void*, nullptr (C++0X), or __null
  2913. /// (a GNU extension).
  2914. Expr::NullPointerConstantKind
  2915. Expr::isNullPointerConstant(ASTContext &Ctx,
  2916. NullPointerConstantValueDependence NPC) const {
  2917. if (isValueDependent() &&
  2918. (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
  2919. switch (NPC) {
  2920. case NPC_NeverValueDependent:
  2921. llvm_unreachable("Unexpected value dependent expression!");
  2922. case NPC_ValueDependentIsNull:
  2923. if (isTypeDependent() || getType()->isIntegralType(Ctx))
  2924. return NPCK_ZeroExpression;
  2925. else
  2926. return NPCK_NotNull;
  2927. case NPC_ValueDependentIsNotNull:
  2928. return NPCK_NotNull;
  2929. }
  2930. }
  2931. // Strip off a cast to void*, if it exists. Except in C++.
  2932. if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
  2933. if (!Ctx.getLangOpts().CPlusPlus) {
  2934. // Check that it is a cast to void*.
  2935. if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
  2936. QualType Pointee = PT->getPointeeType();
  2937. if (!Pointee.hasQualifiers() &&
  2938. Pointee->isVoidType() && // to void*
  2939. CE->getSubExpr()->getType()->isIntegerType()) // from int.
  2940. return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
  2941. }
  2942. }
  2943. } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
  2944. // Ignore the ImplicitCastExpr type entirely.
  2945. return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
  2946. } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
  2947. // Accept ((void*)0) as a null pointer constant, as many other
  2948. // implementations do.
  2949. return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
  2950. } else if (const GenericSelectionExpr *GE =
  2951. dyn_cast<GenericSelectionExpr>(this)) {
  2952. if (GE->isResultDependent())
  2953. return NPCK_NotNull;
  2954. return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
  2955. } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
  2956. if (CE->isConditionDependent())
  2957. return NPCK_NotNull;
  2958. return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
  2959. } else if (const CXXDefaultArgExpr *DefaultArg
  2960. = dyn_cast<CXXDefaultArgExpr>(this)) {
  2961. // See through default argument expressions.
  2962. return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
  2963. } else if (const CXXDefaultInitExpr *DefaultInit
  2964. = dyn_cast<CXXDefaultInitExpr>(this)) {
  2965. // See through default initializer expressions.
  2966. return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
  2967. } else if (isa<GNUNullExpr>(this)) {
  2968. // The GNU __null extension is always a null pointer constant.
  2969. return NPCK_GNUNull;
  2970. } else if (const MaterializeTemporaryExpr *M
  2971. = dyn_cast<MaterializeTemporaryExpr>(this)) {
  2972. return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
  2973. } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
  2974. if (const Expr *Source = OVE->getSourceExpr())
  2975. return Source->isNullPointerConstant(Ctx, NPC);
  2976. }
  2977. // C++11 nullptr_t is always a null pointer constant.
  2978. if (getType()->isNullPtrType())
  2979. return NPCK_CXX11_nullptr;
  2980. if (const RecordType *UT = getType()->getAsUnionType())
  2981. if (!Ctx.getLangOpts().CPlusPlus11 &&
  2982. UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
  2983. if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
  2984. const Expr *InitExpr = CLE->getInitializer();
  2985. if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
  2986. return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
  2987. }
  2988. // This expression must be an integer type.
  2989. if (!getType()->isIntegerType() ||
  2990. (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
  2991. return NPCK_NotNull;
  2992. if (Ctx.getLangOpts().CPlusPlus11) {
  2993. // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
  2994. // value zero or a prvalue of type std::nullptr_t.
  2995. // Microsoft mode permits C++98 rules reflecting MSVC behavior.
  2996. const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
  2997. if (Lit && !Lit->getValue())
  2998. return NPCK_ZeroLiteral;
  2999. else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
  3000. return NPCK_NotNull;
  3001. } else {
  3002. // If we have an integer constant expression, we need to *evaluate* it and
  3003. // test for the value 0.
  3004. if (!isIntegerConstantExpr(Ctx))
  3005. return NPCK_NotNull;
  3006. }
  3007. if (EvaluateKnownConstInt(Ctx) != 0)
  3008. return NPCK_NotNull;
  3009. if (isa<IntegerLiteral>(this))
  3010. return NPCK_ZeroLiteral;
  3011. return NPCK_ZeroExpression;
  3012. }
  3013. /// \brief If this expression is an l-value for an Objective C
  3014. /// property, find the underlying property reference expression.
  3015. const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
  3016. const Expr *E = this;
  3017. while (true) {
  3018. assert((E->getValueKind() == VK_LValue &&
  3019. E->getObjectKind() == OK_ObjCProperty) &&
  3020. "expression is not a property reference");
  3021. E = E->IgnoreParenCasts();
  3022. if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
  3023. if (BO->getOpcode() == BO_Comma) {
  3024. E = BO->getRHS();
  3025. continue;
  3026. }
  3027. }
  3028. break;
  3029. }
  3030. return cast<ObjCPropertyRefExpr>(E);
  3031. }
  3032. bool Expr::isObjCSelfExpr() const {
  3033. const Expr *E = IgnoreParenImpCasts();
  3034. const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
  3035. if (!DRE)
  3036. return false;
  3037. const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
  3038. if (!Param)
  3039. return false;
  3040. const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
  3041. if (!M)
  3042. return false;
  3043. return M->getSelfDecl() == Param;
  3044. }
  3045. FieldDecl *Expr::getSourceBitField() {
  3046. Expr *E = this->IgnoreParens();
  3047. while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  3048. if (ICE->getCastKind() == CK_LValueToRValue ||
  3049. (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
  3050. E = ICE->getSubExpr()->IgnoreParens();
  3051. else
  3052. break;
  3053. }
  3054. if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
  3055. if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
  3056. if (Field->isBitField())
  3057. return Field;
  3058. if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
  3059. if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
  3060. if (Ivar->isBitField())
  3061. return Ivar;
  3062. if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
  3063. if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
  3064. if (Field->isBitField())
  3065. return Field;
  3066. if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
  3067. if (BinOp->isAssignmentOp() && BinOp->getLHS())
  3068. return BinOp->getLHS()->getSourceBitField();
  3069. if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
  3070. return BinOp->getRHS()->getSourceBitField();
  3071. }
  3072. if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
  3073. if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
  3074. return UnOp->getSubExpr()->getSourceBitField();
  3075. return nullptr;
  3076. }
  3077. bool Expr::refersToVectorElement() const {
  3078. const Expr *E = this->IgnoreParens();
  3079. while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  3080. if (ICE->getValueKind() != VK_RValue &&
  3081. ICE->getCastKind() == CK_NoOp)
  3082. E = ICE->getSubExpr()->IgnoreParens();
  3083. else
  3084. break;
  3085. }
  3086. if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
  3087. return ASE->getBase()->getType()->isVectorType();
  3088. if (isa<ExtVectorElementExpr>(E))
  3089. return true;
  3090. return false;
  3091. }
  3092. /// isArrow - Return true if the base expression is a pointer to vector,
  3093. /// return false if the base expression is a vector.
  3094. bool ExtVectorElementExpr::isArrow() const {
  3095. return getBase()->getType()->isPointerType();
  3096. }
  3097. unsigned ExtVectorElementExpr::getNumElements() const {
  3098. if (const VectorType *VT = getType()->getAs<VectorType>())
  3099. return VT->getNumElements();
  3100. return 1;
  3101. }
  3102. /// containsDuplicateElements - Return true if any element access is repeated.
  3103. bool ExtVectorElementExpr::containsDuplicateElements() const {
  3104. // FIXME: Refactor this code to an accessor on the AST node which returns the
  3105. // "type" of component access, and share with code below and in Sema.
  3106. StringRef Comp = Accessor->getName();
  3107. // Halving swizzles do not contain duplicate elements.
  3108. if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
  3109. return false;
  3110. // Advance past s-char prefix on hex swizzles.
  3111. if (Comp[0] == 's' || Comp[0] == 'S')
  3112. Comp = Comp.substr(1);
  3113. for (unsigned i = 0, e = Comp.size(); i != e; ++i)
  3114. if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
  3115. return true;
  3116. return false;
  3117. }
  3118. /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
  3119. void ExtVectorElementExpr::getEncodedElementAccess(
  3120. SmallVectorImpl<unsigned> &Elts) const {
  3121. StringRef Comp = Accessor->getName();
  3122. if (Comp[0] == 's' || Comp[0] == 'S')
  3123. Comp = Comp.substr(1);
  3124. bool isHi = Comp == "hi";
  3125. bool isLo = Comp == "lo";
  3126. bool isEven = Comp == "even";
  3127. bool isOdd = Comp == "odd";
  3128. for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
  3129. uint64_t Index;
  3130. if (isHi)
  3131. Index = e + i;
  3132. else if (isLo)
  3133. Index = i;
  3134. else if (isEven)
  3135. Index = 2 * i;
  3136. else if (isOdd)
  3137. Index = 2 * i + 1;
  3138. else
  3139. Index = ExtVectorType::getAccessorIdx(Comp[i]);
  3140. Elts.push_back(Index);
  3141. }
  3142. }
  3143. ObjCMessageExpr::ObjCMessageExpr(QualType T,
  3144. ExprValueKind VK,
  3145. SourceLocation LBracLoc,
  3146. SourceLocation SuperLoc,
  3147. bool IsInstanceSuper,
  3148. QualType SuperType,
  3149. Selector Sel,
  3150. ArrayRef<SourceLocation> SelLocs,
  3151. SelectorLocationsKind SelLocsK,
  3152. ObjCMethodDecl *Method,
  3153. ArrayRef<Expr *> Args,
  3154. SourceLocation RBracLoc,
  3155. bool isImplicit)
  3156. : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
  3157. /*TypeDependent=*/false, /*ValueDependent=*/false,
  3158. /*InstantiationDependent=*/false,
  3159. /*ContainsUnexpandedParameterPack=*/false),
  3160. SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
  3161. : Sel.getAsOpaquePtr())),
  3162. Kind(IsInstanceSuper? SuperInstance : SuperClass),
  3163. HasMethod(Method != nullptr), IsDelegateInitCall(false),
  3164. IsImplicit(isImplicit), SuperLoc(SuperLoc), LBracLoc(LBracLoc),
  3165. RBracLoc(RBracLoc)
  3166. {
  3167. initArgsAndSelLocs(Args, SelLocs, SelLocsK);
  3168. setReceiverPointer(SuperType.getAsOpaquePtr());
  3169. }
  3170. ObjCMessageExpr::ObjCMessageExpr(QualType T,
  3171. ExprValueKind VK,
  3172. SourceLocation LBracLoc,
  3173. TypeSourceInfo *Receiver,
  3174. Selector Sel,
  3175. ArrayRef<SourceLocation> SelLocs,
  3176. SelectorLocationsKind SelLocsK,
  3177. ObjCMethodDecl *Method,
  3178. ArrayRef<Expr *> Args,
  3179. SourceLocation RBracLoc,
  3180. bool isImplicit)
  3181. : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
  3182. T->isDependentType(), T->isInstantiationDependentType(),
  3183. T->containsUnexpandedParameterPack()),
  3184. SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
  3185. : Sel.getAsOpaquePtr())),
  3186. Kind(Class),
  3187. HasMethod(Method != nullptr), IsDelegateInitCall(false),
  3188. IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
  3189. {
  3190. initArgsAndSelLocs(Args, SelLocs, SelLocsK);
  3191. setReceiverPointer(Receiver);
  3192. }
  3193. ObjCMessageExpr::ObjCMessageExpr(QualType T,
  3194. ExprValueKind VK,
  3195. SourceLocation LBracLoc,
  3196. Expr *Receiver,
  3197. Selector Sel,
  3198. ArrayRef<SourceLocation> SelLocs,
  3199. SelectorLocationsKind SelLocsK,
  3200. ObjCMethodDecl *Method,
  3201. ArrayRef<Expr *> Args,
  3202. SourceLocation RBracLoc,
  3203. bool isImplicit)
  3204. : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
  3205. Receiver->isTypeDependent(),
  3206. Receiver->isInstantiationDependent(),
  3207. Receiver->containsUnexpandedParameterPack()),
  3208. SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
  3209. : Sel.getAsOpaquePtr())),
  3210. Kind(Instance),
  3211. HasMethod(Method != nullptr), IsDelegateInitCall(false),
  3212. IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
  3213. {
  3214. initArgsAndSelLocs(Args, SelLocs, SelLocsK);
  3215. setReceiverPointer(Receiver);
  3216. }
  3217. void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
  3218. ArrayRef<SourceLocation> SelLocs,
  3219. SelectorLocationsKind SelLocsK) {
  3220. setNumArgs(Args.size());
  3221. Expr **MyArgs = getArgs();
  3222. for (unsigned I = 0; I != Args.size(); ++I) {
  3223. if (Args[I]->isTypeDependent())
  3224. ExprBits.TypeDependent = true;
  3225. if (Args[I]->isValueDependent())
  3226. ExprBits.ValueDependent = true;
  3227. if (Args[I]->isInstantiationDependent())
  3228. ExprBits.InstantiationDependent = true;
  3229. if (Args[I]->containsUnexpandedParameterPack())
  3230. ExprBits.ContainsUnexpandedParameterPack = true;
  3231. MyArgs[I] = Args[I];
  3232. }
  3233. SelLocsKind = SelLocsK;
  3234. if (!isImplicit()) {
  3235. if (SelLocsK == SelLoc_NonStandard)
  3236. std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
  3237. }
  3238. }
  3239. ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
  3240. ExprValueKind VK,
  3241. SourceLocation LBracLoc,
  3242. SourceLocation SuperLoc,
  3243. bool IsInstanceSuper,
  3244. QualType SuperType,
  3245. Selector Sel,
  3246. ArrayRef<SourceLocation> SelLocs,
  3247. ObjCMethodDecl *Method,
  3248. ArrayRef<Expr *> Args,
  3249. SourceLocation RBracLoc,
  3250. bool isImplicit) {
  3251. assert((!SelLocs.empty() || isImplicit) &&
  3252. "No selector locs for non-implicit message");
  3253. ObjCMessageExpr *Mem;
  3254. SelectorLocationsKind SelLocsK = SelectorLocationsKind();
  3255. if (isImplicit)
  3256. Mem = alloc(Context, Args.size(), 0);
  3257. else
  3258. Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
  3259. return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
  3260. SuperType, Sel, SelLocs, SelLocsK,
  3261. Method, Args, RBracLoc, isImplicit);
  3262. }
  3263. ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
  3264. ExprValueKind VK,
  3265. SourceLocation LBracLoc,
  3266. TypeSourceInfo *Receiver,
  3267. Selector Sel,
  3268. ArrayRef<SourceLocation> SelLocs,
  3269. ObjCMethodDecl *Method,
  3270. ArrayRef<Expr *> Args,
  3271. SourceLocation RBracLoc,
  3272. bool isImplicit) {
  3273. assert((!SelLocs.empty() || isImplicit) &&
  3274. "No selector locs for non-implicit message");
  3275. ObjCMessageExpr *Mem;
  3276. SelectorLocationsKind SelLocsK = SelectorLocationsKind();
  3277. if (isImplicit)
  3278. Mem = alloc(Context, Args.size(), 0);
  3279. else
  3280. Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
  3281. return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
  3282. SelLocs, SelLocsK, Method, Args, RBracLoc,
  3283. isImplicit);
  3284. }
  3285. ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
  3286. ExprValueKind VK,
  3287. SourceLocation LBracLoc,
  3288. Expr *Receiver,
  3289. Selector Sel,
  3290. ArrayRef<SourceLocation> SelLocs,
  3291. ObjCMethodDecl *Method,
  3292. ArrayRef<Expr *> Args,
  3293. SourceLocation RBracLoc,
  3294. bool isImplicit) {
  3295. assert((!SelLocs.empty() || isImplicit) &&
  3296. "No selector locs for non-implicit message");
  3297. ObjCMessageExpr *Mem;
  3298. SelectorLocationsKind SelLocsK = SelectorLocationsKind();
  3299. if (isImplicit)
  3300. Mem = alloc(Context, Args.size(), 0);
  3301. else
  3302. Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
  3303. return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
  3304. SelLocs, SelLocsK, Method, Args, RBracLoc,
  3305. isImplicit);
  3306. }
  3307. ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(const ASTContext &Context,
  3308. unsigned NumArgs,
  3309. unsigned NumStoredSelLocs) {
  3310. ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
  3311. return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
  3312. }
  3313. ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
  3314. ArrayRef<Expr *> Args,
  3315. SourceLocation RBraceLoc,
  3316. ArrayRef<SourceLocation> SelLocs,
  3317. Selector Sel,
  3318. SelectorLocationsKind &SelLocsK) {
  3319. SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
  3320. unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
  3321. : 0;
  3322. return alloc(C, Args.size(), NumStoredSelLocs);
  3323. }
  3324. ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
  3325. unsigned NumArgs,
  3326. unsigned NumStoredSelLocs) {
  3327. unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
  3328. NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
  3329. return (ObjCMessageExpr *)C.Allocate(Size,
  3330. llvm::AlignOf<ObjCMessageExpr>::Alignment);
  3331. }
  3332. void ObjCMessageExpr::getSelectorLocs(
  3333. SmallVectorImpl<SourceLocation> &SelLocs) const {
  3334. for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
  3335. SelLocs.push_back(getSelectorLoc(i));
  3336. }
  3337. SourceRange ObjCMessageExpr::getReceiverRange() const {
  3338. switch (getReceiverKind()) {
  3339. case Instance:
  3340. return getInstanceReceiver()->getSourceRange();
  3341. case Class:
  3342. return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
  3343. case SuperInstance:
  3344. case SuperClass:
  3345. return getSuperLoc();
  3346. }
  3347. llvm_unreachable("Invalid ReceiverKind!");
  3348. }
  3349. Selector ObjCMessageExpr::getSelector() const {
  3350. if (HasMethod)
  3351. return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
  3352. ->getSelector();
  3353. return Selector(SelectorOrMethod);
  3354. }
  3355. QualType ObjCMessageExpr::getReceiverType() const {
  3356. switch (getReceiverKind()) {
  3357. case Instance:
  3358. return getInstanceReceiver()->getType();
  3359. case Class:
  3360. return getClassReceiver();
  3361. case SuperInstance:
  3362. case SuperClass:
  3363. return getSuperType();
  3364. }
  3365. llvm_unreachable("unexpected receiver kind");
  3366. }
  3367. ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
  3368. QualType T = getReceiverType();
  3369. if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
  3370. return Ptr->getInterfaceDecl();
  3371. if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
  3372. return Ty->getInterface();
  3373. return nullptr;
  3374. }
  3375. QualType ObjCPropertyRefExpr::getReceiverType(const ASTContext &ctx) const {
  3376. if (isClassReceiver())
  3377. return ctx.getObjCInterfaceType(getClassReceiver());
  3378. if (isSuperReceiver())
  3379. return getSuperReceiverType();
  3380. return getBase()->getType();
  3381. }
  3382. StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
  3383. switch (getBridgeKind()) {
  3384. case OBC_Bridge:
  3385. return "__bridge";
  3386. case OBC_BridgeTransfer:
  3387. return "__bridge_transfer";
  3388. case OBC_BridgeRetained:
  3389. return "__bridge_retained";
  3390. }
  3391. llvm_unreachable("Invalid BridgeKind!");
  3392. }
  3393. ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
  3394. QualType Type, SourceLocation BLoc,
  3395. SourceLocation RP)
  3396. : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
  3397. Type->isDependentType(), Type->isDependentType(),
  3398. Type->isInstantiationDependentType(),
  3399. Type->containsUnexpandedParameterPack()),
  3400. BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
  3401. {
  3402. SubExprs = new (C) Stmt*[args.size()];
  3403. for (unsigned i = 0; i != args.size(); i++) {
  3404. if (args[i]->isTypeDependent())
  3405. ExprBits.TypeDependent = true;
  3406. if (args[i]->isValueDependent())
  3407. ExprBits.ValueDependent = true;
  3408. if (args[i]->isInstantiationDependent())
  3409. ExprBits.InstantiationDependent = true;
  3410. if (args[i]->containsUnexpandedParameterPack())
  3411. ExprBits.ContainsUnexpandedParameterPack = true;
  3412. SubExprs[i] = args[i];
  3413. }
  3414. }
  3415. void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
  3416. if (SubExprs) C.Deallocate(SubExprs);
  3417. this->NumExprs = Exprs.size();
  3418. SubExprs = new (C) Stmt*[NumExprs];
  3419. memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
  3420. }
  3421. GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
  3422. SourceLocation GenericLoc, Expr *ControllingExpr,
  3423. ArrayRef<TypeSourceInfo*> AssocTypes,
  3424. ArrayRef<Expr*> AssocExprs,
  3425. SourceLocation DefaultLoc,
  3426. SourceLocation RParenLoc,
  3427. bool ContainsUnexpandedParameterPack,
  3428. unsigned ResultIndex)
  3429. : Expr(GenericSelectionExprClass,
  3430. AssocExprs[ResultIndex]->getType(),
  3431. AssocExprs[ResultIndex]->getValueKind(),
  3432. AssocExprs[ResultIndex]->getObjectKind(),
  3433. AssocExprs[ResultIndex]->isTypeDependent(),
  3434. AssocExprs[ResultIndex]->isValueDependent(),
  3435. AssocExprs[ResultIndex]->isInstantiationDependent(),
  3436. ContainsUnexpandedParameterPack),
  3437. AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
  3438. SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
  3439. NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
  3440. GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
  3441. SubExprs[CONTROLLING] = ControllingExpr;
  3442. assert(AssocTypes.size() == AssocExprs.size());
  3443. std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
  3444. std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
  3445. }
  3446. GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
  3447. SourceLocation GenericLoc, Expr *ControllingExpr,
  3448. ArrayRef<TypeSourceInfo*> AssocTypes,
  3449. ArrayRef<Expr*> AssocExprs,
  3450. SourceLocation DefaultLoc,
  3451. SourceLocation RParenLoc,
  3452. bool ContainsUnexpandedParameterPack)
  3453. : Expr(GenericSelectionExprClass,
  3454. Context.DependentTy,
  3455. VK_RValue,
  3456. OK_Ordinary,
  3457. /*isTypeDependent=*/true,
  3458. /*isValueDependent=*/true,
  3459. /*isInstantiationDependent=*/true,
  3460. ContainsUnexpandedParameterPack),
  3461. AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
  3462. SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
  3463. NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
  3464. DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
  3465. SubExprs[CONTROLLING] = ControllingExpr;
  3466. assert(AssocTypes.size() == AssocExprs.size());
  3467. std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
  3468. std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
  3469. }
  3470. //===----------------------------------------------------------------------===//
  3471. // DesignatedInitExpr
  3472. //===----------------------------------------------------------------------===//
  3473. IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
  3474. assert(Kind == FieldDesignator && "Only valid on a field designator");
  3475. if (Field.NameOrField & 0x01)
  3476. return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
  3477. else
  3478. return getField()->getIdentifier();
  3479. }
  3480. DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
  3481. unsigned NumDesignators,
  3482. const Designator *Designators,
  3483. SourceLocation EqualOrColonLoc,
  3484. bool GNUSyntax,
  3485. ArrayRef<Expr*> IndexExprs,
  3486. Expr *Init)
  3487. : Expr(DesignatedInitExprClass, Ty,
  3488. Init->getValueKind(), Init->getObjectKind(),
  3489. Init->isTypeDependent(), Init->isValueDependent(),
  3490. Init->isInstantiationDependent(),
  3491. Init->containsUnexpandedParameterPack()),
  3492. EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
  3493. NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
  3494. this->Designators = new (C) Designator[NumDesignators];
  3495. // Record the initializer itself.
  3496. child_range Child = children();
  3497. *Child++ = Init;
  3498. // Copy the designators and their subexpressions, computing
  3499. // value-dependence along the way.
  3500. unsigned IndexIdx = 0;
  3501. for (unsigned I = 0; I != NumDesignators; ++I) {
  3502. this->Designators[I] = Designators[I];
  3503. if (this->Designators[I].isArrayDesignator()) {
  3504. // Compute type- and value-dependence.
  3505. Expr *Index = IndexExprs[IndexIdx];
  3506. if (Index->isTypeDependent() || Index->isValueDependent())
  3507. ExprBits.TypeDependent = ExprBits.ValueDependent = true;
  3508. if (Index->isInstantiationDependent())
  3509. ExprBits.InstantiationDependent = true;
  3510. // Propagate unexpanded parameter packs.
  3511. if (Index->containsUnexpandedParameterPack())
  3512. ExprBits.ContainsUnexpandedParameterPack = true;
  3513. // Copy the index expressions into permanent storage.
  3514. *Child++ = IndexExprs[IndexIdx++];
  3515. } else if (this->Designators[I].isArrayRangeDesignator()) {
  3516. // Compute type- and value-dependence.
  3517. Expr *Start = IndexExprs[IndexIdx];
  3518. Expr *End = IndexExprs[IndexIdx + 1];
  3519. if (Start->isTypeDependent() || Start->isValueDependent() ||
  3520. End->isTypeDependent() || End->isValueDependent()) {
  3521. ExprBits.TypeDependent = ExprBits.ValueDependent = true;
  3522. ExprBits.InstantiationDependent = true;
  3523. } else if (Start->isInstantiationDependent() ||
  3524. End->isInstantiationDependent()) {
  3525. ExprBits.InstantiationDependent = true;
  3526. }
  3527. // Propagate unexpanded parameter packs.
  3528. if (Start->containsUnexpandedParameterPack() ||
  3529. End->containsUnexpandedParameterPack())
  3530. ExprBits.ContainsUnexpandedParameterPack = true;
  3531. // Copy the start/end expressions into permanent storage.
  3532. *Child++ = IndexExprs[IndexIdx++];
  3533. *Child++ = IndexExprs[IndexIdx++];
  3534. }
  3535. }
  3536. assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
  3537. }
  3538. DesignatedInitExpr *
  3539. DesignatedInitExpr::Create(const ASTContext &C, Designator *Designators,
  3540. unsigned NumDesignators,
  3541. ArrayRef<Expr*> IndexExprs,
  3542. SourceLocation ColonOrEqualLoc,
  3543. bool UsesColonSyntax, Expr *Init) {
  3544. void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
  3545. sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
  3546. return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
  3547. ColonOrEqualLoc, UsesColonSyntax,
  3548. IndexExprs, Init);
  3549. }
  3550. DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
  3551. unsigned NumIndexExprs) {
  3552. void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
  3553. sizeof(Stmt *) * (NumIndexExprs + 1), 8);
  3554. return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
  3555. }
  3556. void DesignatedInitExpr::setDesignators(const ASTContext &C,
  3557. const Designator *Desigs,
  3558. unsigned NumDesigs) {
  3559. Designators = new (C) Designator[NumDesigs];
  3560. NumDesignators = NumDesigs;
  3561. for (unsigned I = 0; I != NumDesigs; ++I)
  3562. Designators[I] = Desigs[I];
  3563. }
  3564. SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
  3565. DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
  3566. if (size() == 1)
  3567. return DIE->getDesignator(0)->getSourceRange();
  3568. return SourceRange(DIE->getDesignator(0)->getLocStart(),
  3569. DIE->getDesignator(size()-1)->getLocEnd());
  3570. }
  3571. SourceLocation DesignatedInitExpr::getLocStart() const {
  3572. SourceLocation StartLoc;
  3573. Designator &First =
  3574. *const_cast<DesignatedInitExpr*>(this)->designators_begin();
  3575. if (First.isFieldDesignator()) {
  3576. if (GNUSyntax)
  3577. StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
  3578. else
  3579. StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
  3580. } else
  3581. StartLoc =
  3582. SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
  3583. return StartLoc;
  3584. }
  3585. SourceLocation DesignatedInitExpr::getLocEnd() const {
  3586. return getInit()->getLocEnd();
  3587. }
  3588. Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
  3589. assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
  3590. Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
  3591. return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
  3592. }
  3593. Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
  3594. assert(D.Kind == Designator::ArrayRangeDesignator &&
  3595. "Requires array range designator");
  3596. Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
  3597. return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
  3598. }
  3599. Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
  3600. assert(D.Kind == Designator::ArrayRangeDesignator &&
  3601. "Requires array range designator");
  3602. Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
  3603. return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
  3604. }
  3605. /// \brief Replaces the designator at index @p Idx with the series
  3606. /// of designators in [First, Last).
  3607. void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
  3608. const Designator *First,
  3609. const Designator *Last) {
  3610. unsigned NumNewDesignators = Last - First;
  3611. if (NumNewDesignators == 0) {
  3612. std::copy_backward(Designators + Idx + 1,
  3613. Designators + NumDesignators,
  3614. Designators + Idx);
  3615. --NumNewDesignators;
  3616. return;
  3617. } else if (NumNewDesignators == 1) {
  3618. Designators[Idx] = *First;
  3619. return;
  3620. }
  3621. Designator *NewDesignators
  3622. = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
  3623. std::copy(Designators, Designators + Idx, NewDesignators);
  3624. std::copy(First, Last, NewDesignators + Idx);
  3625. std::copy(Designators + Idx + 1, Designators + NumDesignators,
  3626. NewDesignators + Idx + NumNewDesignators);
  3627. Designators = NewDesignators;
  3628. NumDesignators = NumDesignators - 1 + NumNewDesignators;
  3629. }
  3630. DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
  3631. SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
  3632. : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
  3633. OK_Ordinary, false, false, false, false) {
  3634. BaseAndUpdaterExprs[0] = baseExpr;
  3635. InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
  3636. ILE->setType(baseExpr->getType());
  3637. BaseAndUpdaterExprs[1] = ILE;
  3638. }
  3639. SourceLocation DesignatedInitUpdateExpr::getLocStart() const {
  3640. return getBase()->getLocStart();
  3641. }
  3642. SourceLocation DesignatedInitUpdateExpr::getLocEnd() const {
  3643. return getBase()->getLocEnd();
  3644. }
  3645. ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
  3646. ArrayRef<Expr*> exprs,
  3647. SourceLocation rparenloc)
  3648. : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
  3649. false, false, false, false),
  3650. NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
  3651. Exprs = new (C) Stmt*[exprs.size()];
  3652. for (unsigned i = 0; i != exprs.size(); ++i) {
  3653. if (exprs[i]->isTypeDependent())
  3654. ExprBits.TypeDependent = true;
  3655. if (exprs[i]->isValueDependent())
  3656. ExprBits.ValueDependent = true;
  3657. if (exprs[i]->isInstantiationDependent())
  3658. ExprBits.InstantiationDependent = true;
  3659. if (exprs[i]->containsUnexpandedParameterPack())
  3660. ExprBits.ContainsUnexpandedParameterPack = true;
  3661. Exprs[i] = exprs[i];
  3662. }
  3663. }
  3664. const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
  3665. if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
  3666. e = ewc->getSubExpr();
  3667. if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
  3668. e = m->GetTemporaryExpr();
  3669. e = cast<CXXConstructExpr>(e)->getArg(0);
  3670. while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
  3671. e = ice->getSubExpr();
  3672. return cast<OpaqueValueExpr>(e);
  3673. }
  3674. PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
  3675. EmptyShell sh,
  3676. unsigned numSemanticExprs) {
  3677. void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
  3678. (1 + numSemanticExprs) * sizeof(Expr*),
  3679. llvm::alignOf<PseudoObjectExpr>());
  3680. return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
  3681. }
  3682. PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
  3683. : Expr(PseudoObjectExprClass, shell) {
  3684. PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
  3685. }
  3686. PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
  3687. ArrayRef<Expr*> semantics,
  3688. unsigned resultIndex) {
  3689. assert(syntax && "no syntactic expression!");
  3690. assert(semantics.size() && "no semantic expressions!");
  3691. QualType type;
  3692. ExprValueKind VK;
  3693. if (resultIndex == NoResult) {
  3694. type = C.VoidTy;
  3695. VK = VK_RValue;
  3696. } else {
  3697. assert(resultIndex < semantics.size());
  3698. type = semantics[resultIndex]->getType();
  3699. VK = semantics[resultIndex]->getValueKind();
  3700. assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
  3701. }
  3702. void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
  3703. (1 + semantics.size()) * sizeof(Expr*),
  3704. llvm::alignOf<PseudoObjectExpr>());
  3705. return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
  3706. resultIndex);
  3707. }
  3708. PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
  3709. Expr *syntax, ArrayRef<Expr*> semantics,
  3710. unsigned resultIndex)
  3711. : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
  3712. /*filled in at end of ctor*/ false, false, false, false) {
  3713. PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
  3714. PseudoObjectExprBits.ResultIndex = resultIndex + 1;
  3715. for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
  3716. Expr *E = (i == 0 ? syntax : semantics[i-1]);
  3717. getSubExprsBuffer()[i] = E;
  3718. if (E->isTypeDependent())
  3719. ExprBits.TypeDependent = true;
  3720. if (E->isValueDependent())
  3721. ExprBits.ValueDependent = true;
  3722. if (E->isInstantiationDependent())
  3723. ExprBits.InstantiationDependent = true;
  3724. if (E->containsUnexpandedParameterPack())
  3725. ExprBits.ContainsUnexpandedParameterPack = true;
  3726. if (isa<OpaqueValueExpr>(E))
  3727. assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
  3728. "opaque-value semantic expressions for pseudo-object "
  3729. "operations must have sources");
  3730. }
  3731. }
  3732. //===----------------------------------------------------------------------===//
  3733. // ExprIterator.
  3734. //===----------------------------------------------------------------------===//
  3735. Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
  3736. Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
  3737. Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
  3738. const Expr* ConstExprIterator::operator[](size_t idx) const {
  3739. return cast<Expr>(I[idx]);
  3740. }
  3741. const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
  3742. const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
  3743. //===----------------------------------------------------------------------===//
  3744. // Child Iterators for iterating over subexpressions/substatements
  3745. //===----------------------------------------------------------------------===//
  3746. // UnaryExprOrTypeTraitExpr
  3747. Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
  3748. // If this is of a type and the type is a VLA type (and not a typedef), the
  3749. // size expression of the VLA needs to be treated as an executable expression.
  3750. // Why isn't this weirdness documented better in StmtIterator?
  3751. if (isArgumentType()) {
  3752. if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
  3753. getArgumentType().getTypePtr()))
  3754. return child_range(child_iterator(T), child_iterator());
  3755. return child_range();
  3756. }
  3757. return child_range(&Argument.Ex, &Argument.Ex + 1);
  3758. }
  3759. // ObjCMessageExpr
  3760. Stmt::child_range ObjCMessageExpr::children() {
  3761. Stmt **begin;
  3762. if (getReceiverKind() == Instance)
  3763. begin = reinterpret_cast<Stmt **>(this + 1);
  3764. else
  3765. begin = reinterpret_cast<Stmt **>(getArgs());
  3766. return child_range(begin,
  3767. reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
  3768. }
  3769. ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements,
  3770. QualType T, ObjCMethodDecl *Method,
  3771. SourceRange SR)
  3772. : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
  3773. false, false, false, false),
  3774. NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
  3775. {
  3776. Expr **SaveElements = getElements();
  3777. for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
  3778. if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
  3779. ExprBits.ValueDependent = true;
  3780. if (Elements[I]->isInstantiationDependent())
  3781. ExprBits.InstantiationDependent = true;
  3782. if (Elements[I]->containsUnexpandedParameterPack())
  3783. ExprBits.ContainsUnexpandedParameterPack = true;
  3784. SaveElements[I] = Elements[I];
  3785. }
  3786. }
  3787. ObjCArrayLiteral *ObjCArrayLiteral::Create(const ASTContext &C,
  3788. ArrayRef<Expr *> Elements,
  3789. QualType T, ObjCMethodDecl * Method,
  3790. SourceRange SR) {
  3791. void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
  3792. + Elements.size() * sizeof(Expr *));
  3793. return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
  3794. }
  3795. ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(const ASTContext &C,
  3796. unsigned NumElements) {
  3797. void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
  3798. + NumElements * sizeof(Expr *));
  3799. return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
  3800. }
  3801. ObjCDictionaryLiteral::ObjCDictionaryLiteral(
  3802. ArrayRef<ObjCDictionaryElement> VK,
  3803. bool HasPackExpansions,
  3804. QualType T, ObjCMethodDecl *method,
  3805. SourceRange SR)
  3806. : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
  3807. false, false),
  3808. NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
  3809. DictWithObjectsMethod(method)
  3810. {
  3811. KeyValuePair *KeyValues = getKeyValues();
  3812. ExpansionData *Expansions = getExpansionData();
  3813. for (unsigned I = 0; I < NumElements; I++) {
  3814. if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
  3815. VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
  3816. ExprBits.ValueDependent = true;
  3817. if (VK[I].Key->isInstantiationDependent() ||
  3818. VK[I].Value->isInstantiationDependent())
  3819. ExprBits.InstantiationDependent = true;
  3820. if (VK[I].EllipsisLoc.isInvalid() &&
  3821. (VK[I].Key->containsUnexpandedParameterPack() ||
  3822. VK[I].Value->containsUnexpandedParameterPack()))
  3823. ExprBits.ContainsUnexpandedParameterPack = true;
  3824. KeyValues[I].Key = VK[I].Key;
  3825. KeyValues[I].Value = VK[I].Value;
  3826. if (Expansions) {
  3827. Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
  3828. if (VK[I].NumExpansions)
  3829. Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
  3830. else
  3831. Expansions[I].NumExpansionsPlusOne = 0;
  3832. }
  3833. }
  3834. }
  3835. ObjCDictionaryLiteral *
  3836. ObjCDictionaryLiteral::Create(const ASTContext &C,
  3837. ArrayRef<ObjCDictionaryElement> VK,
  3838. bool HasPackExpansions,
  3839. QualType T, ObjCMethodDecl *method,
  3840. SourceRange SR) {
  3841. unsigned ExpansionsSize = 0;
  3842. if (HasPackExpansions)
  3843. ExpansionsSize = sizeof(ExpansionData) * VK.size();
  3844. void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
  3845. sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
  3846. return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
  3847. }
  3848. ObjCDictionaryLiteral *
  3849. ObjCDictionaryLiteral::CreateEmpty(const ASTContext &C, unsigned NumElements,
  3850. bool HasPackExpansions) {
  3851. unsigned ExpansionsSize = 0;
  3852. if (HasPackExpansions)
  3853. ExpansionsSize = sizeof(ExpansionData) * NumElements;
  3854. void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
  3855. sizeof(KeyValuePair) * NumElements + ExpansionsSize);
  3856. return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
  3857. HasPackExpansions);
  3858. }
  3859. ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(const ASTContext &C,
  3860. Expr *base,
  3861. Expr *key, QualType T,
  3862. ObjCMethodDecl *getMethod,
  3863. ObjCMethodDecl *setMethod,
  3864. SourceLocation RB) {
  3865. void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
  3866. return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
  3867. OK_ObjCSubscript,
  3868. getMethod, setMethod, RB);
  3869. }
  3870. AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
  3871. QualType t, AtomicOp op, SourceLocation RP)
  3872. : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
  3873. false, false, false, false),
  3874. NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
  3875. {
  3876. assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
  3877. for (unsigned i = 0; i != args.size(); i++) {
  3878. if (args[i]->isTypeDependent())
  3879. ExprBits.TypeDependent = true;
  3880. if (args[i]->isValueDependent())
  3881. ExprBits.ValueDependent = true;
  3882. if (args[i]->isInstantiationDependent())
  3883. ExprBits.InstantiationDependent = true;
  3884. if (args[i]->containsUnexpandedParameterPack())
  3885. ExprBits.ContainsUnexpandedParameterPack = true;
  3886. SubExprs[i] = args[i];
  3887. }
  3888. }
  3889. unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
  3890. switch (Op) {
  3891. case AO__c11_atomic_init:
  3892. case AO__c11_atomic_load:
  3893. case AO__atomic_load_n:
  3894. return 2;
  3895. case AO__c11_atomic_store:
  3896. case AO__c11_atomic_exchange:
  3897. case AO__atomic_load:
  3898. case AO__atomic_store:
  3899. case AO__atomic_store_n:
  3900. case AO__atomic_exchange_n:
  3901. case AO__c11_atomic_fetch_add:
  3902. case AO__c11_atomic_fetch_sub:
  3903. case AO__c11_atomic_fetch_and:
  3904. case AO__c11_atomic_fetch_or:
  3905. case AO__c11_atomic_fetch_xor:
  3906. case AO__atomic_fetch_add:
  3907. case AO__atomic_fetch_sub:
  3908. case AO__atomic_fetch_and:
  3909. case AO__atomic_fetch_or:
  3910. case AO__atomic_fetch_xor:
  3911. case AO__atomic_fetch_nand:
  3912. case AO__atomic_add_fetch:
  3913. case AO__atomic_sub_fetch:
  3914. case AO__atomic_and_fetch:
  3915. case AO__atomic_or_fetch:
  3916. case AO__atomic_xor_fetch:
  3917. case AO__atomic_nand_fetch:
  3918. return 3;
  3919. case AO__atomic_exchange:
  3920. return 4;
  3921. case AO__c11_atomic_compare_exchange_strong:
  3922. case AO__c11_atomic_compare_exchange_weak:
  3923. return 5;
  3924. case AO__atomic_compare_exchange:
  3925. case AO__atomic_compare_exchange_n:
  3926. return 6;
  3927. }
  3928. llvm_unreachable("unknown atomic op");
  3929. }