DxilContainerAssembler.cpp 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860
  1. ///////////////////////////////////////////////////////////////////////////////
  2. // //
  3. // DxilContainerAssembler.cpp //
  4. // Copyright (C) Microsoft Corporation. All rights reserved. //
  5. // This file is distributed under the University of Illinois Open Source //
  6. // License. See LICENSE.TXT for details. //
  7. // //
  8. // Provides support for serializing a module into DXIL container structures. //
  9. // //
  10. ///////////////////////////////////////////////////////////////////////////////
  11. #include "llvm/ADT/MapVector.h"
  12. #include "llvm/ADT/SetVector.h"
  13. #include "llvm/IR/Module.h"
  14. #include "llvm/IR/DebugInfo.h"
  15. #include "llvm/IR/Instructions.h"
  16. #include "llvm/Bitcode/ReaderWriter.h"
  17. #include "llvm/Support/MD5.h"
  18. #include "llvm/ADT/STLExtras.h"
  19. #include "llvm/Transforms/Utils/Cloning.h"
  20. #include "dxc/DxilContainer/DxilContainer.h"
  21. #include "dxc/DXIL/DxilModule.h"
  22. #include "dxc/DXIL/DxilShaderModel.h"
  23. #include "dxc/DxilRootSignature/DxilRootSignature.h"
  24. #include "dxc/DxilContainer/DxilContainerAssembler.h"
  25. #include "dxc/DXIL/DxilUtil.h"
  26. #include "dxc/DXIL/DxilFunctionProps.h"
  27. #include "dxc/DXIL/DxilOperations.h"
  28. #include "dxc/DXIL/DxilInstructions.h"
  29. #include "dxc/Support/Global.h"
  30. #include "dxc/Support/Unicode.h"
  31. #include "dxc/Support/WinIncludes.h"
  32. #include "dxc/Support/FileIOHelper.h"
  33. #include "dxc/Support/dxcapi.impl.h"
  34. #include "dxc/DxilContainer/DxilPipelineStateValidation.h"
  35. #include "dxc/DxilContainer/DxilRuntimeReflection.h"
  36. #include <algorithm>
  37. #include <functional>
  38. using namespace llvm;
  39. using namespace hlsl;
  40. using namespace hlsl::RDAT;
  41. static_assert((unsigned)PSVShaderKind::Invalid == (unsigned)DXIL::ShaderKind::Invalid,
  42. "otherwise, PSVShaderKind enum out of sync.");
  43. static DxilProgramSigSemantic KindToSystemValue(Semantic::Kind kind, DXIL::TessellatorDomain domain) {
  44. switch (kind) {
  45. case Semantic::Kind::Arbitrary: return DxilProgramSigSemantic::Undefined;
  46. case Semantic::Kind::VertexID: return DxilProgramSigSemantic::VertexID;
  47. case Semantic::Kind::InstanceID: return DxilProgramSigSemantic::InstanceID;
  48. case Semantic::Kind::Position: return DxilProgramSigSemantic::Position;
  49. case Semantic::Kind::Coverage: return DxilProgramSigSemantic::Coverage;
  50. case Semantic::Kind::InnerCoverage: return DxilProgramSigSemantic::InnerCoverage;
  51. case Semantic::Kind::PrimitiveID: return DxilProgramSigSemantic::PrimitiveID;
  52. case Semantic::Kind::SampleIndex: return DxilProgramSigSemantic::SampleIndex;
  53. case Semantic::Kind::IsFrontFace: return DxilProgramSigSemantic::IsFrontFace;
  54. case Semantic::Kind::RenderTargetArrayIndex: return DxilProgramSigSemantic::RenderTargetArrayIndex;
  55. case Semantic::Kind::ViewPortArrayIndex: return DxilProgramSigSemantic::ViewPortArrayIndex;
  56. case Semantic::Kind::ClipDistance: return DxilProgramSigSemantic::ClipDistance;
  57. case Semantic::Kind::CullDistance: return DxilProgramSigSemantic::CullDistance;
  58. case Semantic::Kind::Barycentrics: return DxilProgramSigSemantic::Barycentrics;
  59. case Semantic::Kind::ShadingRate: return DxilProgramSigSemantic::ShadingRate;
  60. case Semantic::Kind::CullPrimitive: return DxilProgramSigSemantic::CullPrimitive;
  61. case Semantic::Kind::TessFactor: {
  62. switch (domain) {
  63. case DXIL::TessellatorDomain::IsoLine:
  64. // Will bu updated to DetailTessFactor in next row.
  65. return DxilProgramSigSemantic::FinalLineDensityTessfactor;
  66. case DXIL::TessellatorDomain::Tri:
  67. return DxilProgramSigSemantic::FinalTriEdgeTessfactor;
  68. case DXIL::TessellatorDomain::Quad:
  69. return DxilProgramSigSemantic::FinalQuadEdgeTessfactor;
  70. default:
  71. // No other valid TesselatorDomain options.
  72. return DxilProgramSigSemantic::Undefined;
  73. }
  74. }
  75. case Semantic::Kind::InsideTessFactor: {
  76. switch (domain) {
  77. case DXIL::TessellatorDomain::IsoLine:
  78. DXASSERT(0, "invalid semantic");
  79. return DxilProgramSigSemantic::Undefined;
  80. case DXIL::TessellatorDomain::Tri:
  81. return DxilProgramSigSemantic::FinalTriInsideTessfactor;
  82. case DXIL::TessellatorDomain::Quad:
  83. return DxilProgramSigSemantic::FinalQuadInsideTessfactor;
  84. default:
  85. // No other valid DxilProgramSigSemantic options.
  86. return DxilProgramSigSemantic::Undefined;
  87. }
  88. }
  89. case Semantic::Kind::Invalid:
  90. return DxilProgramSigSemantic::Undefined;
  91. case Semantic::Kind::Target: return DxilProgramSigSemantic::Target;
  92. case Semantic::Kind::Depth: return DxilProgramSigSemantic::Depth;
  93. case Semantic::Kind::DepthLessEqual: return DxilProgramSigSemantic::DepthLE;
  94. case Semantic::Kind::DepthGreaterEqual: return DxilProgramSigSemantic::DepthGE;
  95. case Semantic::Kind::StencilRef:
  96. __fallthrough;
  97. default:
  98. DXASSERT(kind == Semantic::Kind::StencilRef, "else Invalid or switch is missing a case");
  99. return DxilProgramSigSemantic::StencilRef;
  100. }
  101. // TODO: Final_* values need mappings
  102. }
  103. static DxilProgramSigCompType CompTypeToSigCompType(hlsl::CompType value, bool i1ToUnknownCompat) {
  104. switch (value.GetKind()) {
  105. case CompType::Kind::I32: return DxilProgramSigCompType::SInt32;
  106. case CompType::Kind::I1:
  107. // Validator 1.4 and below returned Unknown for i1
  108. if (i1ToUnknownCompat) return DxilProgramSigCompType::Unknown;
  109. else return DxilProgramSigCompType::UInt32;
  110. case CompType::Kind::U32: return DxilProgramSigCompType::UInt32;
  111. case CompType::Kind::F32: return DxilProgramSigCompType::Float32;
  112. case CompType::Kind::I16: return DxilProgramSigCompType::SInt16;
  113. case CompType::Kind::I64: return DxilProgramSigCompType::SInt64;
  114. case CompType::Kind::U16: return DxilProgramSigCompType::UInt16;
  115. case CompType::Kind::U64: return DxilProgramSigCompType::UInt64;
  116. case CompType::Kind::F16: return DxilProgramSigCompType::Float16;
  117. case CompType::Kind::F64: return DxilProgramSigCompType::Float64;
  118. case CompType::Kind::Invalid: __fallthrough;
  119. default:
  120. return DxilProgramSigCompType::Unknown;
  121. }
  122. }
  123. static DxilProgramSigMinPrecision CompTypeToSigMinPrecision(hlsl::CompType value) {
  124. switch (value.GetKind()) {
  125. case CompType::Kind::I32: return DxilProgramSigMinPrecision::Default;
  126. case CompType::Kind::U32: return DxilProgramSigMinPrecision::Default;
  127. case CompType::Kind::F32: return DxilProgramSigMinPrecision::Default;
  128. case CompType::Kind::I1: return DxilProgramSigMinPrecision::Default;
  129. case CompType::Kind::U64: __fallthrough;
  130. case CompType::Kind::I64: __fallthrough;
  131. case CompType::Kind::F64: return DxilProgramSigMinPrecision::Default;
  132. case CompType::Kind::I16: return DxilProgramSigMinPrecision::SInt16;
  133. case CompType::Kind::U16: return DxilProgramSigMinPrecision::UInt16;
  134. case CompType::Kind::F16: return DxilProgramSigMinPrecision::Float16; // Float2_8 is not supported in DXIL.
  135. case CompType::Kind::Invalid: __fallthrough;
  136. default:
  137. return DxilProgramSigMinPrecision::Default;
  138. }
  139. }
  140. template <typename T>
  141. struct sort_second {
  142. bool operator()(const T &a, const T &b) {
  143. return std::less<decltype(a.second)>()(a.second, b.second);
  144. }
  145. };
  146. struct sort_sig {
  147. bool operator()(const DxilProgramSignatureElement &a,
  148. const DxilProgramSignatureElement &b) {
  149. return (a.Stream < b.Stream) ||
  150. ((a.Stream == b.Stream) && (a.Register < b.Register)) ||
  151. ((a.Stream == b.Stream) && (a.Register == b.Register) &&
  152. (a.SemanticName < b.SemanticName));
  153. }
  154. };
  155. static uint8_t NegMask(uint8_t V) {
  156. V ^= 0xF;
  157. return V & 0xF;
  158. }
  159. class DxilProgramSignatureWriter : public DxilPartWriter {
  160. private:
  161. const DxilSignature &m_signature;
  162. DXIL::TessellatorDomain m_domain;
  163. bool m_isInput;
  164. bool m_useMinPrecision;
  165. bool m_bCompat_1_4;
  166. size_t m_fixedSize;
  167. typedef std::pair<const char *, uint32_t> NameOffsetPair;
  168. typedef llvm::SmallMapVector<const char *, uint32_t, 8> NameOffsetMap;
  169. uint32_t m_lastOffset;
  170. NameOffsetMap m_semanticNameOffsets;
  171. unsigned m_paramCount;
  172. const char *GetSemanticName(const hlsl::DxilSignatureElement *pElement) {
  173. DXASSERT_NOMSG(pElement != nullptr);
  174. DXASSERT(pElement->GetName() != nullptr, "else sig is malformed");
  175. return pElement->GetName();
  176. }
  177. uint32_t GetSemanticOffset(const hlsl::DxilSignatureElement *pElement) {
  178. const char *pName = GetSemanticName(pElement);
  179. NameOffsetMap::iterator nameOffset = m_semanticNameOffsets.find(pName);
  180. uint32_t result;
  181. if (nameOffset == m_semanticNameOffsets.end()) {
  182. result = m_lastOffset;
  183. m_semanticNameOffsets.insert(NameOffsetPair(pName, result));
  184. m_lastOffset += strlen(pName) + 1;
  185. }
  186. else {
  187. result = nameOffset->second;
  188. }
  189. return result;
  190. }
  191. void write(std::vector<DxilProgramSignatureElement> &orderedSig,
  192. const hlsl::DxilSignatureElement *pElement) {
  193. const std::vector<unsigned> &indexVec = pElement->GetSemanticIndexVec();
  194. unsigned eltCount = pElement->GetSemanticIndexVec().size();
  195. unsigned eltRows = 1;
  196. if (eltCount)
  197. eltRows = pElement->GetRows() / eltCount;
  198. DXASSERT_NOMSG(eltRows == 1);
  199. DxilProgramSignatureElement sig;
  200. memset(&sig, 0, sizeof(DxilProgramSignatureElement));
  201. sig.Stream = pElement->GetOutputStream();
  202. sig.SemanticName = GetSemanticOffset(pElement);
  203. sig.SystemValue = KindToSystemValue(pElement->GetKind(), m_domain);
  204. sig.CompType = CompTypeToSigCompType(pElement->GetCompType(), m_bCompat_1_4);
  205. sig.Register = pElement->GetStartRow();
  206. sig.Mask = pElement->GetColsAsMask();
  207. if (m_bCompat_1_4) {
  208. // Match what validator 1.4 and below expects
  209. // Only mark exist channel write for output.
  210. // All channel not used for input.
  211. if (!m_isInput)
  212. sig.NeverWrites_Mask = ~sig.Mask;
  213. else
  214. sig.AlwaysReads_Mask = 0;
  215. } else {
  216. unsigned UsageMask = pElement->GetUsageMask();
  217. if (pElement->IsAllocated())
  218. UsageMask <<= pElement->GetStartCol();
  219. if (!m_isInput)
  220. sig.NeverWrites_Mask = NegMask(UsageMask);
  221. else
  222. sig.AlwaysReads_Mask = UsageMask;
  223. }
  224. sig.MinPrecision = m_useMinPrecision
  225. ? CompTypeToSigMinPrecision(pElement->GetCompType())
  226. : DxilProgramSigMinPrecision::Default;
  227. for (unsigned i = 0; i < eltCount; ++i) {
  228. sig.SemanticIndex = indexVec[i];
  229. orderedSig.emplace_back(sig);
  230. if (pElement->IsAllocated())
  231. sig.Register += eltRows;
  232. if (sig.SystemValue == DxilProgramSigSemantic::FinalLineDensityTessfactor)
  233. sig.SystemValue = DxilProgramSigSemantic::FinalLineDetailTessfactor;
  234. }
  235. }
  236. void calcSizes() {
  237. // Calculate size for signature elements.
  238. const std::vector<std::unique_ptr<hlsl::DxilSignatureElement>> &elements = m_signature.GetElements();
  239. uint32_t result = sizeof(DxilProgramSignature);
  240. m_paramCount = 0;
  241. for (size_t i = 0; i < elements.size(); ++i) {
  242. DXIL::SemanticInterpretationKind I = elements[i]->GetInterpretation();
  243. if (I == DXIL::SemanticInterpretationKind::NA || I == DXIL::SemanticInterpretationKind::NotInSig)
  244. continue;
  245. unsigned semanticCount = elements[i]->GetSemanticIndexVec().size();
  246. result += semanticCount * sizeof(DxilProgramSignatureElement);
  247. m_paramCount += semanticCount;
  248. }
  249. m_fixedSize = result;
  250. m_lastOffset = m_fixedSize;
  251. // Calculate size for semantic strings.
  252. for (size_t i = 0; i < elements.size(); ++i) {
  253. GetSemanticOffset(elements[i].get());
  254. }
  255. }
  256. public:
  257. DxilProgramSignatureWriter(const DxilSignature &signature,
  258. DXIL::TessellatorDomain domain,
  259. bool isInput, bool UseMinPrecision,
  260. bool bCompat_1_4)
  261. : m_signature(signature), m_domain(domain),
  262. m_isInput(isInput), m_useMinPrecision(UseMinPrecision),
  263. m_bCompat_1_4(bCompat_1_4) {
  264. calcSizes();
  265. }
  266. uint32_t size() const override {
  267. return m_lastOffset;
  268. }
  269. void write(AbstractMemoryStream *pStream) override {
  270. UINT64 startPos = pStream->GetPosition();
  271. const std::vector<std::unique_ptr<hlsl::DxilSignatureElement>> &elements = m_signature.GetElements();
  272. DxilProgramSignature programSig;
  273. programSig.ParamCount = m_paramCount;
  274. programSig.ParamOffset = sizeof(DxilProgramSignature);
  275. IFT(WriteStreamValue(pStream, programSig));
  276. // Write structures in register order.
  277. std::vector<DxilProgramSignatureElement> orderedSig;
  278. for (size_t i = 0; i < elements.size(); ++i) {
  279. DXIL::SemanticInterpretationKind I = elements[i]->GetInterpretation();
  280. if (I == DXIL::SemanticInterpretationKind::NA || I == DXIL::SemanticInterpretationKind::NotInSig)
  281. continue;
  282. write(orderedSig, elements[i].get());
  283. }
  284. std::sort(orderedSig.begin(), orderedSig.end(), sort_sig());
  285. for (size_t i = 0; i < orderedSig.size(); ++i) {
  286. DxilProgramSignatureElement &sigElt = orderedSig[i];
  287. IFT(WriteStreamValue(pStream, sigElt));
  288. }
  289. // Write strings in the offset order.
  290. std::vector<NameOffsetPair> ordered;
  291. ordered.assign(m_semanticNameOffsets.begin(), m_semanticNameOffsets.end());
  292. std::sort(ordered.begin(), ordered.end(), sort_second<NameOffsetPair>());
  293. for (size_t i = 0; i < ordered.size(); ++i) {
  294. const char *pName = ordered[i].first;
  295. ULONG cbWritten;
  296. UINT64 offsetPos = pStream->GetPosition();
  297. DXASSERT_LOCALVAR(offsetPos, offsetPos - startPos == ordered[i].second, "else str offset is incorrect");
  298. IFT(pStream->Write(pName, strlen(pName) + 1, &cbWritten));
  299. }
  300. // Verify we wrote the bytes we though we would.
  301. UINT64 endPos = pStream->GetPosition();
  302. DXASSERT_LOCALVAR(endPos - startPos, endPos - startPos == size(), "else size is incorrect");
  303. }
  304. };
  305. DxilPartWriter *hlsl::NewProgramSignatureWriter(const DxilModule &M, DXIL::SignatureKind Kind) {
  306. DXIL::TessellatorDomain domain = DXIL::TessellatorDomain::Undefined;
  307. if (M.GetShaderModel()->IsHS() || M.GetShaderModel()->IsDS())
  308. domain = M.GetTessellatorDomain();
  309. unsigned ValMajor, ValMinor;
  310. M.GetValidatorVersion(ValMajor, ValMinor);
  311. bool bCompat_1_4 = DXIL::CompareVersions(ValMajor, ValMinor, 1, 5) < 0;
  312. switch (Kind) {
  313. case DXIL::SignatureKind::Input:
  314. return new DxilProgramSignatureWriter(
  315. M.GetInputSignature(), domain, true,
  316. M.GetUseMinPrecision(),
  317. bCompat_1_4);
  318. case DXIL::SignatureKind::Output:
  319. return new DxilProgramSignatureWriter(
  320. M.GetOutputSignature(), domain, false,
  321. M.GetUseMinPrecision(),
  322. bCompat_1_4);
  323. case DXIL::SignatureKind::PatchConstOrPrim:
  324. return new DxilProgramSignatureWriter(
  325. M.GetPatchConstOrPrimSignature(), domain,
  326. /*IsInput*/ M.GetShaderModel()->IsDS(),
  327. /*UseMinPrecision*/M.GetUseMinPrecision(),
  328. bCompat_1_4);
  329. case DXIL::SignatureKind::Invalid:
  330. return nullptr;
  331. }
  332. return nullptr;
  333. }
  334. class DxilProgramRootSignatureWriter : public DxilPartWriter {
  335. private:
  336. const RootSignatureHandle &m_Sig;
  337. public:
  338. DxilProgramRootSignatureWriter(const RootSignatureHandle &S) : m_Sig(S) {}
  339. uint32_t size() const {
  340. return m_Sig.GetSerializedSize();
  341. }
  342. void write(AbstractMemoryStream *pStream) {
  343. ULONG cbWritten;
  344. IFT(pStream->Write(m_Sig.GetSerializedBytes(), size(), &cbWritten));
  345. }
  346. };
  347. DxilPartWriter *hlsl::NewRootSignatureWriter(const RootSignatureHandle &S) {
  348. return new DxilProgramRootSignatureWriter(S);
  349. }
  350. class DxilFeatureInfoWriter : public DxilPartWriter {
  351. private:
  352. // Only save the shader properties after create class for it.
  353. DxilShaderFeatureInfo featureInfo;
  354. public:
  355. DxilFeatureInfoWriter(const DxilModule &M) {
  356. featureInfo.FeatureFlags = M.m_ShaderFlags.GetFeatureInfo();
  357. }
  358. uint32_t size() const override {
  359. return sizeof(DxilShaderFeatureInfo);
  360. }
  361. void write(AbstractMemoryStream *pStream) override {
  362. IFT(WriteStreamValue(pStream, featureInfo.FeatureFlags));
  363. }
  364. };
  365. DxilPartWriter *hlsl::NewFeatureInfoWriter(const DxilModule &M) {
  366. return new DxilFeatureInfoWriter(M);
  367. }
  368. class DxilPSVWriter : public DxilPartWriter {
  369. private:
  370. const DxilModule &m_Module;
  371. unsigned m_ValMajor, m_ValMinor;
  372. PSVInitInfo m_PSVInitInfo;
  373. DxilPipelineStateValidation m_PSV;
  374. uint32_t m_PSVBufferSize;
  375. SmallVector<char, 512> m_PSVBuffer;
  376. SmallVector<char, 256> m_StringBuffer;
  377. SmallVector<uint32_t, 8> m_SemanticIndexBuffer;
  378. std::vector<PSVSignatureElement0> m_SigInputElements;
  379. std::vector<PSVSignatureElement0> m_SigOutputElements;
  380. std::vector<PSVSignatureElement0> m_SigPatchConstOrPrimElements;
  381. void SetPSVSigElement(PSVSignatureElement0 &E, const DxilSignatureElement &SE) {
  382. memset(&E, 0, sizeof(PSVSignatureElement0));
  383. if (SE.GetKind() == DXIL::SemanticKind::Arbitrary && strlen(SE.GetName()) > 0) {
  384. E.SemanticName = (uint32_t)m_StringBuffer.size();
  385. StringRef Name(SE.GetName());
  386. m_StringBuffer.append(Name.size()+1, '\0');
  387. memcpy(m_StringBuffer.data() + E.SemanticName, Name.data(), Name.size());
  388. } else {
  389. // m_StringBuffer always starts with '\0' so offset 0 is empty string:
  390. E.SemanticName = 0;
  391. }
  392. // Search index buffer for matching semantic index sequence
  393. DXASSERT_NOMSG(SE.GetRows() == SE.GetSemanticIndexVec().size());
  394. auto &SemIdx = SE.GetSemanticIndexVec();
  395. bool match = false;
  396. for (uint32_t offset = 0; offset + SE.GetRows() - 1 < m_SemanticIndexBuffer.size(); offset++) {
  397. match = true;
  398. for (uint32_t row = 0; row < SE.GetRows(); row++) {
  399. if ((uint32_t)SemIdx[row] != m_SemanticIndexBuffer[offset + row]) {
  400. match = false;
  401. break;
  402. }
  403. }
  404. if (match) {
  405. E.SemanticIndexes = offset;
  406. break;
  407. }
  408. }
  409. if (!match) {
  410. E.SemanticIndexes = m_SemanticIndexBuffer.size();
  411. for (uint32_t row = 0; row < SemIdx.size(); row++) {
  412. m_SemanticIndexBuffer.push_back((uint32_t)SemIdx[row]);
  413. }
  414. }
  415. DXASSERT_NOMSG(SE.GetRows() <= 32);
  416. E.Rows = (uint8_t)SE.GetRows();
  417. DXASSERT_NOMSG(SE.GetCols() <= 4);
  418. E.ColsAndStart = (uint8_t)SE.GetCols() & 0xF;
  419. if (SE.IsAllocated()) {
  420. DXASSERT_NOMSG(SE.GetStartCol() < 4);
  421. DXASSERT_NOMSG(SE.GetStartRow() < 32);
  422. E.ColsAndStart |= 0x40 | (SE.GetStartCol() << 4);
  423. E.StartRow = (uint8_t)SE.GetStartRow();
  424. }
  425. E.SemanticKind = (uint8_t)SE.GetKind();
  426. E.ComponentType = (uint8_t)CompTypeToSigCompType(SE.GetCompType(),
  427. /*i1ToUnknownCompat*/DXIL::CompareVersions(m_ValMajor, m_ValMinor, 1, 5) < 0);
  428. E.InterpolationMode = (uint8_t)SE.GetInterpolationMode()->GetKind();
  429. DXASSERT_NOMSG(SE.GetOutputStream() < 4);
  430. E.DynamicMaskAndStream = (uint8_t)((SE.GetOutputStream() & 0x3) << 4);
  431. E.DynamicMaskAndStream |= (SE.GetDynIdxCompMask()) & 0xF;
  432. }
  433. const uint32_t *CopyViewIDState(const uint32_t *pSrc, uint32_t InputScalars, uint32_t OutputScalars, PSVComponentMask ViewIDMask, PSVDependencyTable IOTable) {
  434. unsigned MaskDwords = PSVComputeMaskDwordsFromVectors(PSVALIGN4(OutputScalars) / 4);
  435. if (ViewIDMask.IsValid()) {
  436. DXASSERT_NOMSG(!IOTable.Table || ViewIDMask.NumVectors == IOTable.OutputVectors);
  437. memcpy(ViewIDMask.Mask, pSrc, 4 * MaskDwords);
  438. pSrc += MaskDwords;
  439. }
  440. if (IOTable.IsValid() && IOTable.InputVectors && IOTable.OutputVectors) {
  441. DXASSERT_NOMSG((InputScalars <= IOTable.InputVectors * 4) && (IOTable.InputVectors * 4 - InputScalars < 4));
  442. DXASSERT_NOMSG((OutputScalars <= IOTable.OutputVectors * 4) && (IOTable.OutputVectors * 4 - OutputScalars < 4));
  443. memcpy(IOTable.Table, pSrc, 4 * MaskDwords * InputScalars);
  444. pSrc += MaskDwords * InputScalars;
  445. }
  446. return pSrc;
  447. }
  448. public:
  449. DxilPSVWriter(const DxilModule &mod, uint32_t PSVVersion = 0)
  450. : m_Module(mod),
  451. m_PSVInitInfo(PSVVersion)
  452. {
  453. m_Module.GetValidatorVersion(m_ValMajor, m_ValMinor);
  454. // Allow PSVVersion to be upgraded
  455. if (m_ValMajor == 0 && m_ValMinor == 0) {
  456. // Validation disabled upgrades to maximum PSVVersion
  457. m_PSVInitInfo.PSVVersion = MAX_PSV_VERSION;
  458. } else if (m_PSVInitInfo.PSVVersion < 1 && (m_ValMajor > 1 || (m_ValMajor == 1 && m_ValMinor >= 1))) {
  459. m_PSVInitInfo.PSVVersion = 1;
  460. }
  461. const ShaderModel *SM = m_Module.GetShaderModel();
  462. UINT uCBuffers = m_Module.GetCBuffers().size();
  463. UINT uSamplers = m_Module.GetSamplers().size();
  464. UINT uSRVs = m_Module.GetSRVs().size();
  465. UINT uUAVs = m_Module.GetUAVs().size();
  466. m_PSVInitInfo.ResourceCount = uCBuffers + uSamplers + uSRVs + uUAVs;
  467. // TODO: for >= 6.2 version, create more efficient structure
  468. if (m_PSVInitInfo.PSVVersion > 0) {
  469. m_PSVInitInfo.ShaderStage = (PSVShaderKind)SM->GetKind();
  470. // Copy Dxil Signatures
  471. m_StringBuffer.push_back('\0'); // For empty semantic name (system value)
  472. m_PSVInitInfo.SigInputElements = m_Module.GetInputSignature().GetElements().size();
  473. m_SigInputElements.resize(m_PSVInitInfo.SigInputElements);
  474. m_PSVInitInfo.SigOutputElements = m_Module.GetOutputSignature().GetElements().size();
  475. m_SigOutputElements.resize(m_PSVInitInfo.SigOutputElements);
  476. m_PSVInitInfo.SigPatchConstOrPrimElements = m_Module.GetPatchConstOrPrimSignature().GetElements().size();
  477. m_SigPatchConstOrPrimElements.resize(m_PSVInitInfo.SigPatchConstOrPrimElements);
  478. uint32_t i = 0;
  479. for (auto &SE : m_Module.GetInputSignature().GetElements()) {
  480. SetPSVSigElement(m_SigInputElements[i++], *(SE.get()));
  481. }
  482. i = 0;
  483. for (auto &SE : m_Module.GetOutputSignature().GetElements()) {
  484. SetPSVSigElement(m_SigOutputElements[i++], *(SE.get()));
  485. }
  486. i = 0;
  487. for (auto &SE : m_Module.GetPatchConstOrPrimSignature().GetElements()) {
  488. SetPSVSigElement(m_SigPatchConstOrPrimElements[i++], *(SE.get()));
  489. }
  490. // Set String and SemanticInput Tables
  491. m_PSVInitInfo.StringTable.Table = m_StringBuffer.data();
  492. m_PSVInitInfo.StringTable.Size = m_StringBuffer.size();
  493. m_PSVInitInfo.SemanticIndexTable.Table = m_SemanticIndexBuffer.data();
  494. m_PSVInitInfo.SemanticIndexTable.Entries = m_SemanticIndexBuffer.size();
  495. // Set up ViewID and signature dependency info
  496. m_PSVInitInfo.UsesViewID = m_Module.m_ShaderFlags.GetViewID() ? true : false;
  497. m_PSVInitInfo.SigInputVectors = m_Module.GetInputSignature().NumVectorsUsed(0);
  498. for (unsigned streamIndex = 0; streamIndex < 4; streamIndex++) {
  499. m_PSVInitInfo.SigOutputVectors[streamIndex] = m_Module.GetOutputSignature().NumVectorsUsed(streamIndex);
  500. }
  501. m_PSVInitInfo.SigPatchConstOrPrimVectors = 0;
  502. if (SM->IsHS() || SM->IsDS() || SM->IsMS()) {
  503. m_PSVInitInfo.SigPatchConstOrPrimVectors = m_Module.GetPatchConstOrPrimSignature().NumVectorsUsed(0);
  504. }
  505. }
  506. if (!m_PSV.InitNew(m_PSVInitInfo, nullptr, &m_PSVBufferSize)) {
  507. DXASSERT(false, "PSV InitNew failed computing size!");
  508. }
  509. }
  510. uint32_t size() const override {
  511. return m_PSVBufferSize;
  512. }
  513. void write(AbstractMemoryStream *pStream) override {
  514. m_PSVBuffer.resize(m_PSVBufferSize);
  515. if (!m_PSV.InitNew(m_PSVInitInfo, m_PSVBuffer.data(), &m_PSVBufferSize)) {
  516. DXASSERT(false, "PSV InitNew failed!");
  517. }
  518. DXASSERT_NOMSG(m_PSVBuffer.size() == m_PSVBufferSize);
  519. // Set DxilRuntimInfo
  520. PSVRuntimeInfo0* pInfo = m_PSV.GetPSVRuntimeInfo0();
  521. PSVRuntimeInfo1* pInfo1 = m_PSV.GetPSVRuntimeInfo1();
  522. const ShaderModel* SM = m_Module.GetShaderModel();
  523. pInfo->MinimumExpectedWaveLaneCount = 0;
  524. pInfo->MaximumExpectedWaveLaneCount = (UINT)-1;
  525. switch (SM->GetKind()) {
  526. case ShaderModel::Kind::Vertex: {
  527. pInfo->VS.OutputPositionPresent = 0;
  528. const DxilSignature &S = m_Module.GetOutputSignature();
  529. for (auto &&E : S.GetElements()) {
  530. if (E->GetKind() == Semantic::Kind::Position) {
  531. // Ideally, we might check never writes mask here,
  532. // but this is not yet part of the signature element in Dxil
  533. pInfo->VS.OutputPositionPresent = 1;
  534. break;
  535. }
  536. }
  537. break;
  538. }
  539. case ShaderModel::Kind::Hull: {
  540. pInfo->HS.InputControlPointCount = (UINT)m_Module.GetInputControlPointCount();
  541. pInfo->HS.OutputControlPointCount = (UINT)m_Module.GetOutputControlPointCount();
  542. pInfo->HS.TessellatorDomain = (UINT)m_Module.GetTessellatorDomain();
  543. pInfo->HS.TessellatorOutputPrimitive = (UINT)m_Module.GetTessellatorOutputPrimitive();
  544. break;
  545. }
  546. case ShaderModel::Kind::Domain: {
  547. pInfo->DS.InputControlPointCount = (UINT)m_Module.GetInputControlPointCount();
  548. pInfo->DS.OutputPositionPresent = 0;
  549. const DxilSignature &S = m_Module.GetOutputSignature();
  550. for (auto &&E : S.GetElements()) {
  551. if (E->GetKind() == Semantic::Kind::Position) {
  552. // Ideally, we might check never writes mask here,
  553. // but this is not yet part of the signature element in Dxil
  554. pInfo->DS.OutputPositionPresent = 1;
  555. break;
  556. }
  557. }
  558. pInfo->DS.TessellatorDomain = (UINT)m_Module.GetTessellatorDomain();
  559. break;
  560. }
  561. case ShaderModel::Kind::Geometry: {
  562. pInfo->GS.InputPrimitive = (UINT)m_Module.GetInputPrimitive();
  563. // NOTE: For OutputTopology, pick one from a used stream, or if none
  564. // are used, use stream 0, and set OutputStreamMask to 1.
  565. pInfo->GS.OutputTopology = (UINT)m_Module.GetStreamPrimitiveTopology();
  566. pInfo->GS.OutputStreamMask = m_Module.GetActiveStreamMask();
  567. if (pInfo->GS.OutputStreamMask == 0) {
  568. pInfo->GS.OutputStreamMask = 1; // This is what runtime expects.
  569. }
  570. pInfo->GS.OutputPositionPresent = 0;
  571. const DxilSignature &S = m_Module.GetOutputSignature();
  572. for (auto &&E : S.GetElements()) {
  573. if (E->GetKind() == Semantic::Kind::Position) {
  574. // Ideally, we might check never writes mask here,
  575. // but this is not yet part of the signature element in Dxil
  576. pInfo->GS.OutputPositionPresent = 1;
  577. break;
  578. }
  579. }
  580. break;
  581. }
  582. case ShaderModel::Kind::Pixel: {
  583. pInfo->PS.DepthOutput = 0;
  584. pInfo->PS.SampleFrequency = 0;
  585. {
  586. const DxilSignature &S = m_Module.GetInputSignature();
  587. for (auto &&E : S.GetElements()) {
  588. if (E->GetInterpolationMode()->IsAnySample() ||
  589. E->GetKind() == Semantic::Kind::SampleIndex) {
  590. pInfo->PS.SampleFrequency = 1;
  591. }
  592. }
  593. }
  594. {
  595. const DxilSignature &S = m_Module.GetOutputSignature();
  596. for (auto &&E : S.GetElements()) {
  597. if (E->IsAnyDepth()) {
  598. pInfo->PS.DepthOutput = 1;
  599. break;
  600. }
  601. }
  602. }
  603. break;
  604. }
  605. case ShaderModel::Kind::Compute:
  606. case ShaderModel::Kind::Library:
  607. case ShaderModel::Kind::Invalid:
  608. // Compute, Library, and Invalid not relevant to PSVRuntimeInfo0
  609. break;
  610. case ShaderModel::Kind::Mesh: {
  611. pInfo->MS.MaxOutputVertices = (UINT)m_Module.GetMaxOutputVertices();
  612. pInfo->MS.MaxOutputPrimitives = (UINT)m_Module.GetMaxOutputPrimitives();
  613. pInfo1->MS1.MeshOutputTopology = (UINT)m_Module.GetMeshOutputTopology();
  614. Module *mod = m_Module.GetModule();
  615. const DataLayout &DL = mod->getDataLayout();
  616. unsigned totalByteSize = 0;
  617. for (GlobalVariable &GV : mod->globals()) {
  618. PointerType *gvPtrType = cast<PointerType>(GV.getType());
  619. if (gvPtrType->getAddressSpace() == hlsl::DXIL::kTGSMAddrSpace) {
  620. Type *gvType = gvPtrType->getPointerElementType();
  621. unsigned byteSize = DL.getTypeAllocSize(gvType);
  622. totalByteSize += byteSize;
  623. }
  624. }
  625. pInfo->MS.GroupSharedBytesUsed = totalByteSize;
  626. pInfo->MS.PayloadSizeInBytes = m_Module.GetPayloadSizeInBytes();
  627. break;
  628. }
  629. case ShaderModel::Kind::Amplification: {
  630. pInfo->AS.PayloadSizeInBytes = m_Module.GetPayloadSizeInBytes();
  631. break;
  632. }
  633. }
  634. // Set resource binding information
  635. UINT uResIndex = 0;
  636. for (auto &&R : m_Module.GetCBuffers()) {
  637. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  638. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  639. DXASSERT_NOMSG(pBindInfo);
  640. pBindInfo->ResType = (UINT)PSVResourceType::CBV;
  641. pBindInfo->Space = R->GetSpaceID();
  642. pBindInfo->LowerBound = R->GetLowerBound();
  643. pBindInfo->UpperBound = R->GetUpperBound();
  644. uResIndex++;
  645. }
  646. for (auto &&R : m_Module.GetSamplers()) {
  647. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  648. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  649. DXASSERT_NOMSG(pBindInfo);
  650. pBindInfo->ResType = (UINT)PSVResourceType::Sampler;
  651. pBindInfo->Space = R->GetSpaceID();
  652. pBindInfo->LowerBound = R->GetLowerBound();
  653. pBindInfo->UpperBound = R->GetUpperBound();
  654. uResIndex++;
  655. }
  656. for (auto &&R : m_Module.GetSRVs()) {
  657. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  658. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  659. DXASSERT_NOMSG(pBindInfo);
  660. if (R->IsStructuredBuffer()) {
  661. pBindInfo->ResType = (UINT)PSVResourceType::SRVStructured;
  662. } else if (R->IsRawBuffer() || (R->GetKind() == DxilResourceBase::Kind::RTAccelerationStructure)) {
  663. pBindInfo->ResType = (UINT)PSVResourceType::SRVRaw;
  664. } else {
  665. pBindInfo->ResType = (UINT)PSVResourceType::SRVTyped;
  666. }
  667. pBindInfo->Space = R->GetSpaceID();
  668. pBindInfo->LowerBound = R->GetLowerBound();
  669. pBindInfo->UpperBound = R->GetUpperBound();
  670. uResIndex++;
  671. }
  672. for (auto &&R : m_Module.GetUAVs()) {
  673. DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
  674. PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
  675. DXASSERT_NOMSG(pBindInfo);
  676. if (R->IsStructuredBuffer()) {
  677. if (R->HasCounter())
  678. pBindInfo->ResType = (UINT)PSVResourceType::UAVStructuredWithCounter;
  679. else
  680. pBindInfo->ResType = (UINT)PSVResourceType::UAVStructured;
  681. } else if (R->IsRawBuffer()) {
  682. pBindInfo->ResType = (UINT)PSVResourceType::UAVRaw;
  683. } else {
  684. pBindInfo->ResType = (UINT)PSVResourceType::UAVTyped;
  685. }
  686. pBindInfo->Space = R->GetSpaceID();
  687. pBindInfo->LowerBound = R->GetLowerBound();
  688. pBindInfo->UpperBound = R->GetUpperBound();
  689. uResIndex++;
  690. }
  691. DXASSERT_NOMSG(uResIndex == m_PSVInitInfo.ResourceCount);
  692. if (m_PSVInitInfo.PSVVersion > 0) {
  693. DXASSERT_NOMSG(pInfo1);
  694. // Write MaxVertexCount
  695. if (SM->IsGS()) {
  696. DXASSERT_NOMSG(m_Module.GetMaxVertexCount() <= 1024);
  697. pInfo1->MaxVertexCount = (uint16_t)m_Module.GetMaxVertexCount();
  698. }
  699. // Write Dxil Signature Elements
  700. for (unsigned i = 0; i < m_PSV.GetSigInputElements(); i++) {
  701. PSVSignatureElement0 *pInputElement = m_PSV.GetInputElement0(i);
  702. DXASSERT_NOMSG(pInputElement);
  703. memcpy(pInputElement, &m_SigInputElements[i], sizeof(PSVSignatureElement0));
  704. }
  705. for (unsigned i = 0; i < m_PSV.GetSigOutputElements(); i++) {
  706. PSVSignatureElement0 *pOutputElement = m_PSV.GetOutputElement0(i);
  707. DXASSERT_NOMSG(pOutputElement);
  708. memcpy(pOutputElement, &m_SigOutputElements[i], sizeof(PSVSignatureElement0));
  709. }
  710. for (unsigned i = 0; i < m_PSV.GetSigPatchConstOrPrimElements(); i++) {
  711. PSVSignatureElement0 *pPatchConstOrPrimElement = m_PSV.GetPatchConstOrPrimElement0(i);
  712. DXASSERT_NOMSG(pPatchConstOrPrimElement);
  713. memcpy(pPatchConstOrPrimElement, &m_SigPatchConstOrPrimElements[i], sizeof(PSVSignatureElement0));
  714. }
  715. // Gather ViewID dependency information
  716. auto &viewState = m_Module.GetSerializedViewIdState();
  717. if (!viewState.empty()) {
  718. const uint32_t *pSrc = viewState.data();
  719. const uint32_t InputScalars = *(pSrc++);
  720. uint32_t OutputScalars[4];
  721. for (unsigned streamIndex = 0; streamIndex < 4; streamIndex++) {
  722. OutputScalars[streamIndex] = *(pSrc++);
  723. pSrc = CopyViewIDState(pSrc, InputScalars, OutputScalars[streamIndex], m_PSV.GetViewIDOutputMask(streamIndex), m_PSV.GetInputToOutputTable(streamIndex));
  724. if (!SM->IsGS())
  725. break;
  726. }
  727. if (SM->IsHS() || SM->IsMS()) {
  728. const uint32_t PCScalars = *(pSrc++);
  729. pSrc = CopyViewIDState(pSrc, InputScalars, PCScalars, m_PSV.GetViewIDPCOutputMask(), m_PSV.GetInputToPCOutputTable());
  730. } else if (SM->IsDS()) {
  731. const uint32_t PCScalars = *(pSrc++);
  732. pSrc = CopyViewIDState(pSrc, PCScalars, OutputScalars[0], PSVComponentMask(), m_PSV.GetPCInputToOutputTable());
  733. }
  734. DXASSERT_NOMSG(viewState.data() + viewState.size() == pSrc);
  735. }
  736. }
  737. ULONG cbWritten;
  738. IFT(pStream->Write(m_PSVBuffer.data(), m_PSVBufferSize, &cbWritten));
  739. DXASSERT_NOMSG(cbWritten == m_PSVBufferSize);
  740. }
  741. };
  742. // Size-checked writer
  743. // on overrun: throw buffer_overrun{};
  744. // on overlap: throw buffer_overlap{};
  745. class CheckedWriter {
  746. char *Ptr;
  747. size_t Size;
  748. size_t Offset;
  749. public:
  750. class exception : public std::exception {};
  751. class buffer_overrun : public exception {
  752. public:
  753. buffer_overrun() noexcept {}
  754. virtual const char * what() const noexcept override {
  755. return ("buffer_overrun");
  756. }
  757. };
  758. class buffer_overlap : public exception {
  759. public:
  760. buffer_overlap() noexcept {}
  761. virtual const char * what() const noexcept override {
  762. return ("buffer_overlap");
  763. }
  764. };
  765. CheckedWriter(void *ptr, size_t size) :
  766. Ptr(reinterpret_cast<char*>(ptr)), Size(size), Offset(0) {}
  767. size_t GetOffset() const { return Offset; }
  768. void Reset(size_t offset = 0) {
  769. if (offset >= Size) throw buffer_overrun{};
  770. Offset = offset;
  771. }
  772. // offset is absolute, ensure offset is >= current offset
  773. void Advance(size_t offset = 0) {
  774. if (offset < Offset) throw buffer_overlap{};
  775. if (offset >= Size) throw buffer_overrun{};
  776. Offset = offset;
  777. }
  778. void CheckBounds(size_t size) const {
  779. assert(Offset <= Size && "otherwise, offset larger than size");
  780. if (size > Size - Offset)
  781. throw buffer_overrun{};
  782. }
  783. template <typename T>
  784. T *Cast(size_t size = 0) {
  785. if (0 == size) size = sizeof(T);
  786. CheckBounds(size);
  787. return reinterpret_cast<T*>(Ptr + Offset);
  788. }
  789. // Map and Write advance Offset:
  790. template <typename T>
  791. T &Map() {
  792. const size_t size = sizeof(T);
  793. T * p = Cast<T>(size);
  794. Offset += size;
  795. return *p;
  796. }
  797. template <typename T>
  798. T *MapArray(size_t count = 1) {
  799. const size_t size = sizeof(T) * count;
  800. T *p = Cast<T>(size);
  801. Offset += size;
  802. return p;
  803. }
  804. template <typename T>
  805. void Write(const T &obj) {
  806. const size_t size = sizeof(T);
  807. *Cast<T>(size) = obj;
  808. Offset += size;
  809. }
  810. template <typename T>
  811. void WriteArray(const T *pArray, size_t count = 1) {
  812. const size_t size = sizeof(T) * count;
  813. memcpy(Cast<T>(size), pArray, size);
  814. Offset += size;
  815. }
  816. };
  817. // Like DXIL container, RDAT itself is a mini container that contains multiple RDAT parts
  818. class RDATPart {
  819. public:
  820. virtual uint32_t GetPartSize() const { return 0; }
  821. virtual void Write(void *ptr) {}
  822. virtual RuntimeDataPartType GetType() const { return RuntimeDataPartType::Invalid; }
  823. virtual ~RDATPart() {}
  824. };
  825. // Most RDAT parts are tables each containing a list of structures of same type.
  826. // Exceptions are string table and index table because each string or list of
  827. // indicies can be of different sizes.
  828. template <class T>
  829. class RDATTable : public RDATPart {
  830. protected:
  831. std::vector<T> m_rows;
  832. public:
  833. virtual void Insert(T *data) {}
  834. virtual ~RDATTable() {}
  835. void Insert(const T &data) {
  836. m_rows.push_back(data);
  837. }
  838. void Write(void *ptr) {
  839. char *pCur = (char*)ptr;
  840. RuntimeDataTableHeader &header = *reinterpret_cast<RuntimeDataTableHeader*>(pCur);
  841. header.RecordCount = m_rows.size();
  842. header.RecordStride = sizeof(T);
  843. pCur += sizeof(RuntimeDataTableHeader);
  844. memcpy(pCur, m_rows.data(), header.RecordCount * header.RecordStride);
  845. };
  846. uint32_t GetPartSize() const {
  847. if (m_rows.empty())
  848. return 0;
  849. return sizeof(RuntimeDataTableHeader) + m_rows.size() * sizeof(T);
  850. }
  851. };
  852. // Resource table will contain a list of RuntimeDataResourceInfo in order of
  853. // CBuffer, Sampler, SRV, and UAV resource classes.
  854. class ResourceTable : public RDATTable<RuntimeDataResourceInfo> {
  855. public:
  856. RuntimeDataPartType GetType() const { return RuntimeDataPartType::ResourceTable; }
  857. };
  858. class FunctionTable : public RDATTable<RuntimeDataFunctionInfo> {
  859. public:
  860. RuntimeDataPartType GetType() const { return RuntimeDataPartType::FunctionTable; }
  861. };
  862. class StringBufferPart : public RDATPart {
  863. private:
  864. StringMap<uint32_t> m_StringMap;
  865. SmallVector<char, 256> m_StringBuffer;
  866. public:
  867. StringBufferPart() : m_StringMap(), m_StringBuffer() {
  868. // Always start string table with null so empty/null strings have offset of zero
  869. m_StringBuffer.push_back('\0');
  870. }
  871. // returns the offset of the name inserted
  872. uint32_t Insert(StringRef name) {
  873. if (name.empty())
  874. return 0;
  875. // Don't add duplicate strings
  876. auto found = m_StringMap.find(name);
  877. if (found != m_StringMap.end())
  878. return found->second;
  879. uint32_t prevIndex = (uint32_t)m_StringBuffer.size();
  880. m_StringMap[name] = prevIndex;
  881. m_StringBuffer.reserve(m_StringBuffer.size() + name.size() + 1);
  882. m_StringBuffer.append(name.begin(), name.end());
  883. m_StringBuffer.push_back('\0');
  884. return prevIndex;
  885. }
  886. RuntimeDataPartType GetType() const { return RuntimeDataPartType::StringBuffer; }
  887. uint32_t GetPartSize() const { return m_StringBuffer.size(); }
  888. void Write(void *ptr) { memcpy(ptr, m_StringBuffer.data(), m_StringBuffer.size()); }
  889. };
  890. struct IndexArraysPart : public RDATPart {
  891. private:
  892. std::vector<uint32_t> m_IndexBuffer;
  893. // Use m_IndexSet with CmpIndices to avoid duplicate index arrays
  894. struct CmpIndices {
  895. const IndexArraysPart &Table;
  896. CmpIndices(const IndexArraysPart &table) : Table(table) {}
  897. bool operator()(uint32_t left, uint32_t right) const {
  898. const uint32_t *pLeft = Table.m_IndexBuffer.data() + left;
  899. const uint32_t *pRight = Table.m_IndexBuffer.data() + right;
  900. if (*pLeft != *pRight)
  901. return (*pLeft < *pRight);
  902. uint32_t count = *pLeft;
  903. for (unsigned i = 0; i < count; i++) {
  904. ++pLeft; ++pRight;
  905. if (*pLeft != *pRight)
  906. return (*pLeft < *pRight);
  907. }
  908. return false;
  909. }
  910. };
  911. std::set<uint32_t, CmpIndices> m_IndexSet;
  912. public:
  913. IndexArraysPart() : m_IndexBuffer(), m_IndexSet(*this) {}
  914. template <class iterator>
  915. uint32_t AddIndex(iterator begin, iterator end) {
  916. uint32_t newOffset = m_IndexBuffer.size();
  917. m_IndexBuffer.push_back(0); // Size: update after insertion
  918. m_IndexBuffer.insert(m_IndexBuffer.end(), begin, end);
  919. m_IndexBuffer[newOffset] = (m_IndexBuffer.size() - newOffset) - 1;
  920. // Check for duplicate, return new offset if not duplicate
  921. auto insertResult = m_IndexSet.insert(newOffset);
  922. if (insertResult.second)
  923. return newOffset;
  924. // Otherwise it was a duplicate, so chop off the size and return the original
  925. m_IndexBuffer.resize(newOffset);
  926. return *insertResult.first;
  927. }
  928. RuntimeDataPartType GetType() const { return RuntimeDataPartType::IndexArrays; }
  929. uint32_t GetPartSize() const {
  930. return sizeof(uint32_t) * m_IndexBuffer.size();
  931. }
  932. void Write(void *ptr) {
  933. memcpy(ptr, m_IndexBuffer.data(), m_IndexBuffer.size() * sizeof(uint32_t));
  934. }
  935. };
  936. class RawBytesPart : public RDATPart {
  937. private:
  938. std::unordered_map<const void *, uint32_t> m_PtrMap;
  939. std::vector<char> m_DataBuffer;
  940. public:
  941. RawBytesPart() : m_DataBuffer() {}
  942. uint32_t Insert(const void *pData, size_t dataSize) {
  943. auto it = m_PtrMap.find(pData);
  944. if (it != m_PtrMap.end())
  945. return it->second;
  946. if (dataSize + m_DataBuffer.size() > UINT_MAX)
  947. return UINT_MAX;
  948. uint32_t offset = (uint32_t)m_DataBuffer.size();
  949. m_DataBuffer.reserve(m_DataBuffer.size() + dataSize);
  950. m_DataBuffer.insert(m_DataBuffer.end(),
  951. (const char*)pData, (const char*)pData + dataSize);
  952. return offset;
  953. }
  954. RuntimeDataPartType GetType() const { return RuntimeDataPartType::RawBytes; }
  955. uint32_t GetPartSize() const { return m_DataBuffer.size(); }
  956. void Write(void *ptr) { memcpy(ptr, m_DataBuffer.data(), m_DataBuffer.size()); }
  957. };
  958. class SubobjectTable : public RDATTable<RuntimeDataSubobjectInfo> {
  959. public:
  960. RuntimeDataPartType GetType() const { return RuntimeDataPartType::SubobjectTable; }
  961. };
  962. using namespace DXIL;
  963. class DxilRDATWriter : public DxilPartWriter {
  964. private:
  965. SmallVector<char, 1024> m_RDATBuffer;
  966. std::vector<std::unique_ptr<RDATPart>> m_Parts;
  967. typedef llvm::SmallSetVector<uint32_t, 8> Indices;
  968. typedef std::unordered_map<const llvm::Function *, Indices> FunctionIndexMap;
  969. FunctionIndexMap m_FuncToResNameOffset; // list of resources used
  970. FunctionIndexMap m_FuncToDependencies; // list of unresolved functions used
  971. unsigned m_ValMajor, m_ValMinor;
  972. struct ShaderCompatInfo {
  973. ShaderCompatInfo()
  974. : minMajor(6), minMinor(0),
  975. mask(((unsigned)1 << (unsigned)DXIL::ShaderKind::Invalid) - 1)
  976. {}
  977. unsigned minMajor, minMinor, mask;
  978. };
  979. typedef std::unordered_map<const llvm::Function*, ShaderCompatInfo> FunctionShaderCompatMap;
  980. FunctionShaderCompatMap m_FuncToShaderCompat;
  981. void UpdateFunctionToShaderCompat(const llvm::Function* dxilFunc) {
  982. for (const auto &user : dxilFunc->users()) {
  983. if (const llvm::CallInst *CI = dyn_cast<const llvm::CallInst>(user)) {
  984. // Find calling function
  985. const llvm::Function *F = cast<const llvm::Function>(CI->getParent()->getParent());
  986. // Insert or lookup info
  987. ShaderCompatInfo &info = m_FuncToShaderCompat[F];
  988. unsigned major, minor, mask;
  989. // bWithTranslation = true for library modules
  990. OP::GetMinShaderModelAndMask(CI, /*bWithTranslation*/true,
  991. m_ValMajor, m_ValMinor,
  992. major, minor, mask);
  993. if (major > info.minMajor) {
  994. info.minMajor = major;
  995. info.minMinor = minor;
  996. } else if (major == info.minMajor && minor > info.minMinor) {
  997. info.minMinor = minor;
  998. }
  999. info.mask &= mask;
  1000. }
  1001. }
  1002. }
  1003. const llvm::Function *FindUsingFunction(const llvm::Value *User) {
  1004. if (const llvm::Instruction *I = dyn_cast<const llvm::Instruction>(User)) {
  1005. // Instruction should be inside a basic block, which is in a function
  1006. return cast<const llvm::Function>(I->getParent()->getParent());
  1007. }
  1008. // User can be either instruction, constant, or operator. But User is an
  1009. // operator only if constant is a scalar value, not resource pointer.
  1010. const llvm::Constant *CU = cast<const llvm::Constant>(User);
  1011. if (!CU->user_empty())
  1012. return FindUsingFunction(*CU->user_begin());
  1013. else
  1014. return nullptr;
  1015. }
  1016. void UpdateFunctionToResourceInfo(const DxilResourceBase *resource,
  1017. uint32_t offset) {
  1018. Constant *var = resource->GetGlobalSymbol();
  1019. if (var) {
  1020. for (auto user : var->users()) {
  1021. // Find the function.
  1022. const llvm::Function *F = FindUsingFunction(user);
  1023. if (!F)
  1024. continue;
  1025. if (m_FuncToResNameOffset.find(F) == m_FuncToResNameOffset.end()) {
  1026. m_FuncToResNameOffset[F] = Indices();
  1027. }
  1028. m_FuncToResNameOffset[F].insert(offset);
  1029. }
  1030. }
  1031. }
  1032. void InsertToResourceTable(DxilResourceBase &resource,
  1033. ResourceClass resourceClass,
  1034. uint32_t &resourceIndex) {
  1035. uint32_t stringIndex = m_pStringBufferPart->Insert(resource.GetGlobalName());
  1036. UpdateFunctionToResourceInfo(&resource, resourceIndex++);
  1037. RuntimeDataResourceInfo info = {};
  1038. info.ID = resource.GetID();
  1039. info.Class = static_cast<uint32_t>(resourceClass);
  1040. info.Kind = static_cast<uint32_t>(resource.GetKind());
  1041. info.Space = resource.GetSpaceID();
  1042. info.LowerBound = resource.GetLowerBound();
  1043. info.UpperBound = resource.GetUpperBound();
  1044. info.Name = stringIndex;
  1045. info.Flags = 0;
  1046. if (ResourceClass::UAV == resourceClass) {
  1047. DxilResource *pRes = static_cast<DxilResource*>(&resource);
  1048. if (pRes->HasCounter())
  1049. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVCounter);
  1050. if (pRes->IsGloballyCoherent())
  1051. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVGloballyCoherent);
  1052. if (pRes->IsROV())
  1053. info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVRasterizerOrderedView);
  1054. // TODO: add dynamic index flag
  1055. }
  1056. m_pResourceTable->Insert(info);
  1057. }
  1058. void UpdateResourceInfo(const DxilModule &DM) {
  1059. // Try to allocate string table for resources. String table is a sequence
  1060. // of strings delimited by \0
  1061. uint32_t resourceIndex = 0;
  1062. for (auto &resource : DM.GetCBuffers()) {
  1063. InsertToResourceTable(*resource.get(), ResourceClass::CBuffer, resourceIndex);
  1064. }
  1065. for (auto &resource : DM.GetSamplers()) {
  1066. InsertToResourceTable(*resource.get(), ResourceClass::Sampler, resourceIndex);
  1067. }
  1068. for (auto &resource : DM.GetSRVs()) {
  1069. InsertToResourceTable(*resource.get(), ResourceClass::SRV, resourceIndex);
  1070. }
  1071. for (auto &resource : DM.GetUAVs()) {
  1072. InsertToResourceTable(*resource.get(), ResourceClass::UAV, resourceIndex);
  1073. }
  1074. }
  1075. void UpdateFunctionDependency(llvm::Function *F) {
  1076. for (const auto &user : F->users()) {
  1077. const llvm::Function *userFunction = FindUsingFunction(user);
  1078. uint32_t index = m_pStringBufferPart->Insert(F->getName());
  1079. if (m_FuncToDependencies.find(userFunction) ==
  1080. m_FuncToDependencies.end()) {
  1081. m_FuncToDependencies[userFunction] =
  1082. Indices();
  1083. }
  1084. m_FuncToDependencies[userFunction].insert(index);
  1085. }
  1086. }
  1087. void UpdateFunctionInfo(const DxilModule &DM) {
  1088. // We must select the appropriate shader mask for the validator version,
  1089. // so we don't set any bits the validator doesn't recognize.
  1090. unsigned ValidShaderMask = (1 << ((unsigned)DXIL::ShaderKind::Amplification + 1)) - 1;
  1091. if (DXIL::CompareVersions(m_ValMajor, m_ValMinor, 1, 5) < 0) {
  1092. ValidShaderMask = (1 << ((unsigned)DXIL::ShaderKind::Callable + 1)) - 1;
  1093. }
  1094. for (auto &function : DM.GetModule()->getFunctionList()) {
  1095. if (function.isDeclaration() && !function.isIntrinsic()) {
  1096. if (OP::IsDxilOpFunc(&function)) {
  1097. // update min shader model and shader stage mask per function
  1098. UpdateFunctionToShaderCompat(&function);
  1099. } else {
  1100. // collect unresolved dependencies per function
  1101. UpdateFunctionDependency(&function);
  1102. }
  1103. }
  1104. }
  1105. for (auto &function : DM.GetModule()->getFunctionList()) {
  1106. if (!function.isDeclaration()) {
  1107. StringRef mangled = function.getName();
  1108. StringRef unmangled = hlsl::dxilutil::DemangleFunctionName(function.getName());
  1109. uint32_t mangledIndex = m_pStringBufferPart->Insert(mangled);
  1110. uint32_t unmangledIndex = m_pStringBufferPart->Insert(unmangled);
  1111. // Update resource Index
  1112. uint32_t resourceIndex = UINT_MAX;
  1113. uint32_t functionDependencies = UINT_MAX;
  1114. uint32_t payloadSizeInBytes = 0;
  1115. uint32_t attrSizeInBytes = 0;
  1116. uint32_t shaderKind = static_cast<uint32_t>(DXIL::ShaderKind::Library);
  1117. if (m_FuncToResNameOffset.find(&function) != m_FuncToResNameOffset.end())
  1118. resourceIndex =
  1119. m_pIndexArraysPart->AddIndex(m_FuncToResNameOffset[&function].begin(),
  1120. m_FuncToResNameOffset[&function].end());
  1121. if (m_FuncToDependencies.find(&function) != m_FuncToDependencies.end())
  1122. functionDependencies =
  1123. m_pIndexArraysPart->AddIndex(m_FuncToDependencies[&function].begin(),
  1124. m_FuncToDependencies[&function].end());
  1125. if (DM.HasDxilFunctionProps(&function)) {
  1126. auto props = DM.GetDxilFunctionProps(&function);
  1127. if (props.IsClosestHit() || props.IsAnyHit()) {
  1128. payloadSizeInBytes = props.ShaderProps.Ray.payloadSizeInBytes;
  1129. attrSizeInBytes = props.ShaderProps.Ray.attributeSizeInBytes;
  1130. }
  1131. else if (props.IsMiss()) {
  1132. payloadSizeInBytes = props.ShaderProps.Ray.payloadSizeInBytes;
  1133. }
  1134. else if (props.IsCallable()) {
  1135. payloadSizeInBytes = props.ShaderProps.Ray.paramSizeInBytes;
  1136. }
  1137. shaderKind = (uint32_t)props.shaderKind;
  1138. }
  1139. ShaderFlags flags = ShaderFlags::CollectShaderFlags(&function, &DM);
  1140. RuntimeDataFunctionInfo info = {};
  1141. info.Name = mangledIndex;
  1142. info.UnmangledName = unmangledIndex;
  1143. info.ShaderKind = shaderKind;
  1144. info.Resources = resourceIndex;
  1145. info.FunctionDependencies = functionDependencies;
  1146. info.PayloadSizeInBytes = payloadSizeInBytes;
  1147. info.AttributeSizeInBytes = attrSizeInBytes;
  1148. uint64_t featureFlags = flags.GetFeatureInfo();
  1149. info.FeatureInfo1 = featureFlags & 0xffffffff;
  1150. info.FeatureInfo2 = (featureFlags >> 32) & 0xffffffff;
  1151. // Init min target 6.0
  1152. unsigned minMajor = 6, minMinor = 0;
  1153. // Increase min target based on feature flags:
  1154. if (flags.GetUseNativeLowPrecision() && flags.GetLowPrecisionPresent()) {
  1155. minMinor = 2;
  1156. } else if (flags.GetBarycentrics() || flags.GetViewID()) {
  1157. minMinor = 1;
  1158. }
  1159. if ((DXIL::ShaderKind)shaderKind == DXIL::ShaderKind::Library) {
  1160. // Init mask to all kinds for library functions
  1161. info.ShaderStageFlag = ValidShaderMask;
  1162. } else {
  1163. // Init mask to current kind for shader functions
  1164. info.ShaderStageFlag = (unsigned)1 << shaderKind;
  1165. }
  1166. auto it = m_FuncToShaderCompat.find(&function);
  1167. if (it != m_FuncToShaderCompat.end()) {
  1168. auto &compatInfo = it->second;
  1169. if (compatInfo.minMajor > minMajor) {
  1170. minMajor = compatInfo.minMajor;
  1171. minMinor = compatInfo.minMinor;
  1172. } else if (compatInfo.minMinor > minMinor) {
  1173. minMinor = compatInfo.minMinor;
  1174. }
  1175. info.ShaderStageFlag &= compatInfo.mask;
  1176. }
  1177. info.MinShaderTarget = EncodeVersion((DXIL::ShaderKind)shaderKind, minMajor, minMinor);
  1178. m_pFunctionTable->Insert(info);
  1179. }
  1180. }
  1181. }
  1182. void UpdateSubobjectInfo(const DxilModule &DM) {
  1183. if (!DM.GetSubobjects())
  1184. return;
  1185. for (auto &it : DM.GetSubobjects()->GetSubobjects()) {
  1186. auto &obj = *it.second;
  1187. RuntimeDataSubobjectInfo info = {};
  1188. info.Name = m_pStringBufferPart->Insert(obj.GetName());
  1189. info.Kind = (uint32_t)obj.GetKind();
  1190. bool bLocalRS = false;
  1191. switch (obj.GetKind()) {
  1192. case DXIL::SubobjectKind::StateObjectConfig:
  1193. obj.GetStateObjectConfig(info.StateObjectConfig.Flags);
  1194. break;
  1195. case DXIL::SubobjectKind::LocalRootSignature:
  1196. bLocalRS = true;
  1197. __fallthrough;
  1198. case DXIL::SubobjectKind::GlobalRootSignature: {
  1199. const void *Data;
  1200. obj.GetRootSignature(bLocalRS, Data, info.RootSignature.SizeInBytes);
  1201. info.RootSignature.RawBytesOffset =
  1202. m_pRawBytesPart->Insert(Data, info.RootSignature.SizeInBytes);
  1203. break;
  1204. }
  1205. case DXIL::SubobjectKind::SubobjectToExportsAssociation: {
  1206. llvm::StringRef Subobject;
  1207. const char * const * Exports;
  1208. uint32_t NumExports;
  1209. std::vector<uint32_t> ExportIndices;
  1210. obj.GetSubobjectToExportsAssociation(Subobject, Exports, NumExports);
  1211. info.SubobjectToExportsAssociation.Subobject =
  1212. m_pStringBufferPart->Insert(Subobject);
  1213. ExportIndices.resize(NumExports);
  1214. for (unsigned i = 0; i < NumExports; ++i) {
  1215. ExportIndices[i] = m_pStringBufferPart->Insert(Exports[i]);
  1216. }
  1217. info.SubobjectToExportsAssociation.Exports =
  1218. m_pIndexArraysPart->AddIndex(
  1219. ExportIndices.begin(), ExportIndices.end());
  1220. break;
  1221. }
  1222. case DXIL::SubobjectKind::RaytracingShaderConfig:
  1223. obj.GetRaytracingShaderConfig(
  1224. info.RaytracingShaderConfig.MaxPayloadSizeInBytes,
  1225. info.RaytracingShaderConfig.MaxAttributeSizeInBytes);
  1226. break;
  1227. case DXIL::SubobjectKind::RaytracingPipelineConfig:
  1228. obj.GetRaytracingPipelineConfig(
  1229. info.RaytracingPipelineConfig.MaxTraceRecursionDepth);
  1230. break;
  1231. case DXIL::SubobjectKind::HitGroup:
  1232. {
  1233. HitGroupType hgType;
  1234. StringRef AnyHit;
  1235. StringRef ClosestHit;
  1236. StringRef Intersection;
  1237. obj.GetHitGroup(hgType, AnyHit, ClosestHit, Intersection);
  1238. info.HitGroup.Type = (uint32_t)hgType;
  1239. info.HitGroup.AnyHit = m_pStringBufferPart->Insert(AnyHit);
  1240. info.HitGroup.ClosestHit = m_pStringBufferPart->Insert(ClosestHit);
  1241. info.HitGroup.Intersection = m_pStringBufferPart->Insert(Intersection);
  1242. break;
  1243. }
  1244. case DXIL::SubobjectKind::RaytracingPipelineConfig1:
  1245. obj.GetRaytracingPipelineConfig1(
  1246. info.RaytracingPipelineConfig1.MaxTraceRecursionDepth,
  1247. info.RaytracingPipelineConfig1.Flags);
  1248. break;
  1249. }
  1250. m_pSubobjectTable->Insert(info);
  1251. }
  1252. }
  1253. void CreateParts() {
  1254. #define ADD_PART(type) \
  1255. m_Parts.emplace_back(llvm::make_unique<type>()); \
  1256. m_p##type = reinterpret_cast<type*>(m_Parts.back().get());
  1257. ADD_PART(StringBufferPart);
  1258. ADD_PART(ResourceTable);
  1259. ADD_PART(FunctionTable);
  1260. ADD_PART(IndexArraysPart);
  1261. ADD_PART(RawBytesPart);
  1262. ADD_PART(SubobjectTable);
  1263. #undef ADD_PART
  1264. }
  1265. StringBufferPart *m_pStringBufferPart;
  1266. IndexArraysPart *m_pIndexArraysPart;
  1267. RawBytesPart *m_pRawBytesPart;
  1268. FunctionTable *m_pFunctionTable;
  1269. ResourceTable *m_pResourceTable;
  1270. SubobjectTable *m_pSubobjectTable;
  1271. public:
  1272. DxilRDATWriter(const DxilModule &mod, uint32_t InfoVersion = 0)
  1273. : m_RDATBuffer(), m_Parts(), m_FuncToResNameOffset() {
  1274. // Keep track of validator version so we can make a compatible RDAT
  1275. mod.GetValidatorVersion(m_ValMajor, m_ValMinor);
  1276. CreateParts();
  1277. UpdateResourceInfo(mod);
  1278. UpdateFunctionInfo(mod);
  1279. UpdateSubobjectInfo(mod);
  1280. // Delete any empty parts:
  1281. std::vector<std::unique_ptr<RDATPart>>::iterator it = m_Parts.begin();
  1282. while (it != m_Parts.end()) {
  1283. if (it->get()->GetPartSize() == 0) {
  1284. it = m_Parts.erase(it);
  1285. }
  1286. else
  1287. it++;
  1288. }
  1289. }
  1290. uint32_t size() const override {
  1291. // header + offset array
  1292. uint32_t total = sizeof(RuntimeDataHeader) + m_Parts.size() * sizeof(uint32_t);
  1293. // For each part: part header + part size
  1294. for (auto &part : m_Parts)
  1295. total += sizeof(RuntimeDataPartHeader) + PSVALIGN4(part->GetPartSize());
  1296. return total;
  1297. }
  1298. void write(AbstractMemoryStream *pStream) override {
  1299. try {
  1300. m_RDATBuffer.resize(size(), 0);
  1301. CheckedWriter W(m_RDATBuffer.data(), m_RDATBuffer.size());
  1302. // write RDAT header
  1303. RuntimeDataHeader &header = W.Map<RuntimeDataHeader>();
  1304. header.Version = RDAT_Version_10;
  1305. header.PartCount = m_Parts.size();
  1306. // map offsets
  1307. uint32_t *offsets = W.MapArray<uint32_t>(header.PartCount);
  1308. // write parts
  1309. unsigned i = 0;
  1310. for (auto &part : m_Parts) {
  1311. offsets[i++] = W.GetOffset();
  1312. RuntimeDataPartHeader &partHeader = W.Map<RuntimeDataPartHeader>();
  1313. partHeader.Type = part->GetType();
  1314. partHeader.Size = PSVALIGN4(part->GetPartSize());
  1315. DXASSERT(partHeader.Size, "otherwise, failed to remove empty part");
  1316. char *bytes = W.MapArray<char>(partHeader.Size);
  1317. part->Write(bytes);
  1318. }
  1319. }
  1320. catch (CheckedWriter::exception e) {
  1321. throw hlsl::Exception(DXC_E_GENERAL_INTERNAL_ERROR, e.what());
  1322. }
  1323. ULONG cbWritten;
  1324. IFT(pStream->Write(m_RDATBuffer.data(), m_RDATBuffer.size(), &cbWritten));
  1325. DXASSERT_NOMSG(cbWritten == m_RDATBuffer.size());
  1326. }
  1327. };
  1328. DxilPartWriter *hlsl::NewPSVWriter(const DxilModule &M, uint32_t PSVVersion) {
  1329. return new DxilPSVWriter(M, PSVVersion);
  1330. }
  1331. DxilPartWriter *hlsl::NewRDATWriter(const DxilModule &M, uint32_t InfoVersion) {
  1332. return new DxilRDATWriter(M, InfoVersion);
  1333. }
  1334. class DxilContainerWriter_impl : public DxilContainerWriter {
  1335. private:
  1336. class DxilPart {
  1337. public:
  1338. DxilPartHeader Header;
  1339. WriteFn Write;
  1340. DxilPart(uint32_t fourCC, uint32_t size, WriteFn write) : Write(write) {
  1341. Header.PartFourCC = fourCC;
  1342. Header.PartSize = size;
  1343. }
  1344. };
  1345. llvm::SmallVector<DxilPart, 8> m_Parts;
  1346. public:
  1347. void AddPart(uint32_t FourCC, uint32_t Size, WriteFn Write) override {
  1348. m_Parts.emplace_back(FourCC, Size, Write);
  1349. }
  1350. uint32_t size() const override {
  1351. uint32_t partSize = 0;
  1352. for (auto &part : m_Parts) {
  1353. partSize += part.Header.PartSize;
  1354. }
  1355. return (uint32_t)GetDxilContainerSizeFromParts((uint32_t)m_Parts.size(), partSize);
  1356. }
  1357. void write(AbstractMemoryStream *pStream) override {
  1358. DxilContainerHeader header;
  1359. const uint32_t PartCount = (uint32_t)m_Parts.size();
  1360. uint32_t containerSizeInBytes = size();
  1361. InitDxilContainer(&header, PartCount, containerSizeInBytes);
  1362. IFT(pStream->Reserve(header.ContainerSizeInBytes));
  1363. IFT(WriteStreamValue(pStream, header));
  1364. uint32_t offset = sizeof(header) + (uint32_t)GetOffsetTableSize(PartCount);
  1365. for (auto &&part : m_Parts) {
  1366. IFT(WriteStreamValue(pStream, offset));
  1367. offset += sizeof(DxilPartHeader) + part.Header.PartSize;
  1368. }
  1369. for (auto &&part : m_Parts) {
  1370. IFT(WriteStreamValue(pStream, part.Header));
  1371. size_t start = pStream->GetPosition();
  1372. part.Write(pStream);
  1373. DXASSERT_LOCALVAR(start, pStream->GetPosition() - start == (size_t)part.Header.PartSize, "out of bound");
  1374. }
  1375. DXASSERT(containerSizeInBytes == (uint32_t)pStream->GetPosition(), "else stream size is incorrect");
  1376. }
  1377. };
  1378. DxilContainerWriter *hlsl::NewDxilContainerWriter() {
  1379. return new DxilContainerWriter_impl();
  1380. }
  1381. static bool HasDebugInfo(const Module &M) {
  1382. for (Module::const_named_metadata_iterator NMI = M.named_metadata_begin(),
  1383. NME = M.named_metadata_end();
  1384. NMI != NME; ++NMI) {
  1385. if (NMI->getName().startswith("llvm.dbg.")) {
  1386. return true;
  1387. }
  1388. }
  1389. return false;
  1390. }
  1391. static void GetPaddedProgramPartSize(AbstractMemoryStream *pStream,
  1392. uint32_t &bitcodeInUInt32,
  1393. uint32_t &bitcodePaddingBytes) {
  1394. bitcodeInUInt32 = pStream->GetPtrSize();
  1395. bitcodePaddingBytes = (bitcodeInUInt32 % 4);
  1396. bitcodeInUInt32 = (bitcodeInUInt32 / 4) + (bitcodePaddingBytes ? 1 : 0);
  1397. }
  1398. static void WriteProgramPart(const ShaderModel *pModel,
  1399. AbstractMemoryStream *pModuleBitcode,
  1400. AbstractMemoryStream *pStream) {
  1401. DXASSERT(pModel != nullptr, "else generation should have failed");
  1402. DxilProgramHeader programHeader;
  1403. uint32_t shaderVersion =
  1404. EncodeVersion(pModel->GetKind(), pModel->GetMajor(), pModel->GetMinor());
  1405. unsigned dxilMajor, dxilMinor;
  1406. pModel->GetDxilVersion(dxilMajor, dxilMinor);
  1407. uint32_t dxilVersion = DXIL::MakeDxilVersion(dxilMajor, dxilMinor);
  1408. InitProgramHeader(programHeader, shaderVersion, dxilVersion, pModuleBitcode->GetPtrSize());
  1409. uint32_t programInUInt32, programPaddingBytes;
  1410. GetPaddedProgramPartSize(pModuleBitcode, programInUInt32,
  1411. programPaddingBytes);
  1412. ULONG cbWritten;
  1413. IFT(WriteStreamValue(pStream, programHeader));
  1414. IFT(pStream->Write(pModuleBitcode->GetPtr(), pModuleBitcode->GetPtrSize(),
  1415. &cbWritten));
  1416. if (programPaddingBytes) {
  1417. uint32_t paddingValue = 0;
  1418. IFT(pStream->Write(&paddingValue, programPaddingBytes, &cbWritten));
  1419. }
  1420. }
  1421. namespace {
  1422. class RootSignatureWriter : public DxilPartWriter {
  1423. private:
  1424. std::vector<uint8_t> m_Sig;
  1425. public:
  1426. RootSignatureWriter(std::vector<uint8_t> &&S) : m_Sig(std::move(S)) {}
  1427. uint32_t size() const { return m_Sig.size(); }
  1428. void write(AbstractMemoryStream *pStream) {
  1429. ULONG cbWritten;
  1430. IFT(pStream->Write(m_Sig.data(), size(), &cbWritten));
  1431. }
  1432. };
  1433. } // namespace
  1434. void hlsl::SerializeDxilContainerForModule(DxilModule *pModule,
  1435. AbstractMemoryStream *pModuleBitcode,
  1436. AbstractMemoryStream *pFinalStream,
  1437. llvm::StringRef DebugName,
  1438. SerializeDxilFlags Flags,
  1439. DxilShaderHash *pShaderHashOut,
  1440. AbstractMemoryStream *pReflectionStreamOut,
  1441. AbstractMemoryStream *pRootSigStreamOut) {
  1442. // TODO: add a flag to update the module and remove information that is not part
  1443. // of DXIL proper and is used only to assemble the container.
  1444. DXASSERT_NOMSG(pModule != nullptr);
  1445. DXASSERT_NOMSG(pModuleBitcode != nullptr);
  1446. DXASSERT_NOMSG(pFinalStream != nullptr);
  1447. unsigned ValMajor, ValMinor;
  1448. pModule->GetValidatorVersion(ValMajor, ValMinor);
  1449. if (DXIL::CompareVersions(ValMajor, ValMinor, 1, 1) < 0)
  1450. Flags &= ~SerializeDxilFlags::IncludeDebugNamePart;
  1451. bool bSupportsShaderHash = DXIL::CompareVersions(ValMajor, ValMinor, 1, 5) >= 0;
  1452. bool bCompat_1_4 = DXIL::CompareVersions(ValMajor, ValMinor, 1, 5) < 0;
  1453. bool bEmitReflection = Flags & SerializeDxilFlags::IncludeReflectionPart ||
  1454. pReflectionStreamOut;
  1455. DxilContainerWriter_impl writer;
  1456. // Write the feature part.
  1457. DxilFeatureInfoWriter featureInfoWriter(*pModule);
  1458. writer.AddPart(DFCC_FeatureInfo, featureInfoWriter.size(), [&](AbstractMemoryStream *pStream) {
  1459. featureInfoWriter.write(pStream);
  1460. });
  1461. std::unique_ptr<DxilProgramSignatureWriter> pInputSigWriter = nullptr;
  1462. std::unique_ptr<DxilProgramSignatureWriter> pOutputSigWriter = nullptr;
  1463. std::unique_ptr<DxilProgramSignatureWriter> pPatchConstOrPrimSigWriter = nullptr;
  1464. if (!pModule->GetShaderModel()->IsLib()) {
  1465. DXIL::TessellatorDomain domain = DXIL::TessellatorDomain::Undefined;
  1466. if (pModule->GetShaderModel()->IsHS() || pModule->GetShaderModel()->IsDS())
  1467. domain = pModule->GetTessellatorDomain();
  1468. pInputSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
  1469. pModule->GetInputSignature(), domain,
  1470. /*IsInput*/ true,
  1471. /*UseMinPrecision*/ pModule->GetUseMinPrecision(),
  1472. bCompat_1_4);
  1473. pOutputSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
  1474. pModule->GetOutputSignature(), domain,
  1475. /*IsInput*/ false,
  1476. /*UseMinPrecision*/ pModule->GetUseMinPrecision(),
  1477. bCompat_1_4);
  1478. // Write the input and output signature parts.
  1479. writer.AddPart(DFCC_InputSignature, pInputSigWriter->size(),
  1480. [&](AbstractMemoryStream *pStream) {
  1481. pInputSigWriter->write(pStream);
  1482. });
  1483. writer.AddPart(DFCC_OutputSignature, pOutputSigWriter->size(),
  1484. [&](AbstractMemoryStream *pStream) {
  1485. pOutputSigWriter->write(pStream);
  1486. });
  1487. pPatchConstOrPrimSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
  1488. pModule->GetPatchConstOrPrimSignature(), domain,
  1489. /*IsInput*/ pModule->GetShaderModel()->IsDS(),
  1490. /*UseMinPrecision*/ pModule->GetUseMinPrecision(),
  1491. bCompat_1_4);
  1492. if (pModule->GetPatchConstOrPrimSignature().GetElements().size()) {
  1493. writer.AddPart(DFCC_PatchConstantSignature,
  1494. pPatchConstOrPrimSigWriter->size(),
  1495. [&](AbstractMemoryStream *pStream) {
  1496. pPatchConstOrPrimSigWriter->write(pStream);
  1497. });
  1498. }
  1499. }
  1500. std::unique_ptr<DxilRDATWriter> pRDATWriter = nullptr;
  1501. std::unique_ptr<DxilPSVWriter> pPSVWriter = nullptr;
  1502. unsigned int major, minor;
  1503. pModule->GetDxilVersion(major, minor);
  1504. RootSignatureWriter rootSigWriter(std::move(pModule->GetSerializedRootSignature())); // Grab RS here
  1505. DXASSERT_NOMSG(pModule->GetSerializedRootSignature().empty());
  1506. bool bMetadataStripped = false;
  1507. if (pModule->GetShaderModel()->IsLib()) {
  1508. DXASSERT(pModule->GetSerializedRootSignature().empty(),
  1509. "otherwise, library has root signature outside subobject definitions");
  1510. // Write the DxilRuntimeData (RDAT) part.
  1511. pRDATWriter = llvm::make_unique<DxilRDATWriter>(*pModule);
  1512. writer.AddPart(
  1513. DFCC_RuntimeData, pRDATWriter->size(),
  1514. [&](AbstractMemoryStream *pStream) { pRDATWriter->write(pStream); });
  1515. bMetadataStripped |= pModule->StripSubobjectsFromMetadata();
  1516. pModule->ResetSubobjects(nullptr);
  1517. } else {
  1518. // Write the DxilPipelineStateValidation (PSV0) part.
  1519. pPSVWriter = llvm::make_unique<DxilPSVWriter>(*pModule);
  1520. writer.AddPart(
  1521. DFCC_PipelineStateValidation, pPSVWriter->size(),
  1522. [&](AbstractMemoryStream *pStream) { pPSVWriter->write(pStream); });
  1523. // Write the root signature (RTS0) part.
  1524. if (rootSigWriter.size()) {
  1525. if (pRootSigStreamOut) {
  1526. // Write root signature wrapped in container for separate output
  1527. DxilContainerWriter_impl rootSigContainerWriter;
  1528. rootSigContainerWriter.AddPart(
  1529. DFCC_RootSignature, rootSigWriter.size(),
  1530. [&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
  1531. rootSigContainerWriter.write(pRootSigStreamOut);
  1532. }
  1533. if ((Flags & SerializeDxilFlags::StripRootSignature) == 0) {
  1534. // Write embedded root signature
  1535. writer.AddPart(
  1536. DFCC_RootSignature, rootSigWriter.size(),
  1537. [&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
  1538. }
  1539. bMetadataStripped |= pModule->StripRootSignatureFromMetadata();
  1540. }
  1541. }
  1542. // If metadata was stripped, re-serialize the input module.
  1543. CComPtr<AbstractMemoryStream> pInputProgramStream = pModuleBitcode;
  1544. if (bMetadataStripped) {
  1545. pInputProgramStream.Release();
  1546. IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pInputProgramStream));
  1547. raw_stream_ostream outStream(pInputProgramStream.p);
  1548. WriteBitcodeToFile(pModule->GetModule(), outStream, true);
  1549. }
  1550. // If we have debug information present, serialize it to a debug part, then use the stripped version as the canonical program version.
  1551. CComPtr<AbstractMemoryStream> pProgramStream = pInputProgramStream;
  1552. bool bModuleStripped = false;
  1553. bool bHasDebugInfo = HasDebugInfo(*pModule->GetModule());
  1554. if (bHasDebugInfo) {
  1555. uint32_t debugInUInt32, debugPaddingBytes;
  1556. GetPaddedProgramPartSize(pInputProgramStream, debugInUInt32, debugPaddingBytes);
  1557. if (Flags & SerializeDxilFlags::IncludeDebugInfoPart) {
  1558. writer.AddPart(DFCC_ShaderDebugInfoDXIL, debugInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader), [&](AbstractMemoryStream *pStream) {
  1559. WriteProgramPart(pModule->GetShaderModel(), pInputProgramStream, pStream);
  1560. });
  1561. }
  1562. llvm::StripDebugInfo(*pModule->GetModule());
  1563. pModule->StripDebugRelatedCode();
  1564. bModuleStripped = true;
  1565. } else {
  1566. // If no debug info, clear DebugNameDependOnSource
  1567. // (it's default, and this scenario can happen)
  1568. Flags &= ~SerializeDxilFlags::DebugNameDependOnSource;
  1569. }
  1570. // Clone module for reflection, strip function defs
  1571. std::unique_ptr<Module> reflectionModule;
  1572. if (bEmitReflection) {
  1573. // Retain usage information in metadata for reflection by:
  1574. // Upgrade validator version, re-emit metadata, then clone module for reflection.
  1575. // 0,0 = Not meant to be validated, support latest
  1576. pModule->SetValidatorVersion(0, 0);
  1577. pModule->ReEmitDxilResources();
  1578. reflectionModule.reset(llvm::CloneModule(pModule->GetModule()));
  1579. // Now restore validator version on main module and re-emit metadata.
  1580. pModule->SetValidatorVersion(ValMajor, ValMinor);
  1581. pModule->ReEmitDxilResources();
  1582. for (Function &F : reflectionModule->functions()) {
  1583. if (!F.isDeclaration()) {
  1584. F.deleteBody();
  1585. }
  1586. }
  1587. // Just make sure this doesn't crash/assert on debug build:
  1588. DXASSERT_NOMSG(&reflectionModule->GetOrCreateDxilModule());
  1589. }
  1590. CComPtr<AbstractMemoryStream> pReflectionBitcodeStream;
  1591. uint32_t reflectPartSizeInBytes = 0;
  1592. if (bEmitReflection)
  1593. {
  1594. IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pReflectionBitcodeStream));
  1595. raw_stream_ostream outStream(pReflectionBitcodeStream.p);
  1596. WriteBitcodeToFile(reflectionModule.get(), outStream, false);
  1597. outStream.flush();
  1598. uint32_t reflectInUInt32 = 0, reflectPaddingBytes = 0;
  1599. GetPaddedProgramPartSize(pReflectionBitcodeStream, reflectInUInt32, reflectPaddingBytes);
  1600. reflectPartSizeInBytes = reflectInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader);
  1601. }
  1602. if (pReflectionStreamOut) {
  1603. DxilPartHeader partSTAT;
  1604. partSTAT.PartFourCC = DFCC_ShaderStatistics;
  1605. partSTAT.PartSize = reflectPartSizeInBytes;
  1606. IFT(WriteStreamValue(pReflectionStreamOut, partSTAT));
  1607. WriteProgramPart(pModule->GetShaderModel(), pReflectionBitcodeStream, pReflectionStreamOut);
  1608. // If library, we need RDAT part as well. For now, we just append it
  1609. if (pModule->GetShaderModel()->IsLib()) {
  1610. DxilPartHeader partRDAT;
  1611. partRDAT.PartFourCC = DFCC_RuntimeData;
  1612. partRDAT.PartSize = pRDATWriter->size();
  1613. IFT(WriteStreamValue(pReflectionStreamOut, partRDAT));
  1614. pRDATWriter->write(pReflectionStreamOut);
  1615. }
  1616. }
  1617. if (Flags & SerializeDxilFlags::IncludeReflectionPart) {
  1618. writer.AddPart(DFCC_ShaderStatistics, reflectPartSizeInBytes,
  1619. [pModule, pReflectionBitcodeStream](AbstractMemoryStream *pStream) {
  1620. WriteProgramPart(pModule->GetShaderModel(), pReflectionBitcodeStream, pStream);
  1621. });
  1622. }
  1623. if (Flags & SerializeDxilFlags::StripReflectionFromDxilPart) {
  1624. bModuleStripped |= pModule->StripReflection();
  1625. }
  1626. // If debug info or reflection was stripped, re-serialize the module.
  1627. if (bModuleStripped) {
  1628. pProgramStream.Release();
  1629. IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pProgramStream));
  1630. raw_stream_ostream outStream(pProgramStream.p);
  1631. WriteBitcodeToFile(pModule->GetModule(), outStream, false);
  1632. }
  1633. // Compute hash if needed.
  1634. DxilShaderHash HashContent;
  1635. SmallString<32> HashStr;
  1636. if (bSupportsShaderHash || pShaderHashOut ||
  1637. (Flags & SerializeDxilFlags::IncludeDebugNamePart &&
  1638. DebugName.empty()))
  1639. {
  1640. // If the debug name should be specific to the sources, base the name on the debug
  1641. // bitcode, which will include the source references, line numbers, etc. Otherwise,
  1642. // do it exclusively on the target shader bitcode.
  1643. llvm::MD5 md5;
  1644. if (Flags & SerializeDxilFlags::DebugNameDependOnSource) {
  1645. md5.update(ArrayRef<uint8_t>(pModuleBitcode->GetPtr(), pModuleBitcode->GetPtrSize()));
  1646. HashContent.Flags = (uint32_t)DxilShaderHashFlags::IncludesSource;
  1647. } else {
  1648. md5.update(ArrayRef<uint8_t>(pProgramStream->GetPtr(), pProgramStream->GetPtrSize()));
  1649. HashContent.Flags = (uint32_t)DxilShaderHashFlags::None;
  1650. }
  1651. md5.final(HashContent.Digest);
  1652. md5.stringifyResult(HashContent.Digest, HashStr);
  1653. }
  1654. // Serialize debug name if requested.
  1655. std::string DebugNameStr; // Used if constructing name based on hash
  1656. if (Flags & SerializeDxilFlags::IncludeDebugNamePart) {
  1657. if (DebugName.empty()) {
  1658. DebugNameStr += HashStr;
  1659. DebugNameStr += ".pdb";
  1660. DebugName = DebugNameStr;
  1661. }
  1662. // Calculate the size of the blob part.
  1663. const uint32_t DebugInfoContentLen = PSVALIGN4(
  1664. sizeof(DxilShaderDebugName) + DebugName.size() + 1); // 1 for null
  1665. writer.AddPart(DFCC_ShaderDebugName, DebugInfoContentLen,
  1666. [DebugName]
  1667. (AbstractMemoryStream *pStream)
  1668. {
  1669. DxilShaderDebugName NameContent;
  1670. NameContent.Flags = 0;
  1671. NameContent.NameLength = DebugName.size();
  1672. IFT(WriteStreamValue(pStream, NameContent));
  1673. ULONG cbWritten;
  1674. IFT(pStream->Write(DebugName.begin(), DebugName.size(), &cbWritten));
  1675. const char Pad[] = { '\0','\0','\0','\0' };
  1676. // Always writes at least one null to align size
  1677. unsigned padLen = (4 - ((sizeof(DxilShaderDebugName) + cbWritten) & 0x3));
  1678. IFT(pStream->Write(Pad, padLen, &cbWritten));
  1679. });
  1680. }
  1681. // Add hash to container if supported by validator version.
  1682. if (bSupportsShaderHash) {
  1683. writer.AddPart(DFCC_ShaderHash, sizeof(HashContent),
  1684. [HashContent]
  1685. (AbstractMemoryStream *pStream)
  1686. {
  1687. IFT(WriteStreamValue(pStream, HashContent));
  1688. });
  1689. }
  1690. // Write hash to separate output if requested.
  1691. if (pShaderHashOut) {
  1692. memcpy(pShaderHashOut, &HashContent, sizeof(DxilShaderHash));
  1693. }
  1694. // Compute padded bitcode size.
  1695. uint32_t programInUInt32, programPaddingBytes;
  1696. GetPaddedProgramPartSize(pProgramStream, programInUInt32, programPaddingBytes);
  1697. // Write the program part.
  1698. writer.AddPart(DFCC_DXIL, programInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader), [&](AbstractMemoryStream *pStream) {
  1699. WriteProgramPart(pModule->GetShaderModel(), pProgramStream, pStream);
  1700. });
  1701. writer.write(pFinalStream);
  1702. }
  1703. void hlsl::SerializeDxilContainerForRootSignature(hlsl::RootSignatureHandle *pRootSigHandle,
  1704. AbstractMemoryStream *pFinalStream) {
  1705. DXASSERT_NOMSG(pRootSigHandle != nullptr);
  1706. DXASSERT_NOMSG(pFinalStream != nullptr);
  1707. DxilContainerWriter_impl writer;
  1708. // Write the root signature (RTS0) part.
  1709. DxilProgramRootSignatureWriter rootSigWriter(*pRootSigHandle);
  1710. if (!pRootSigHandle->IsEmpty()) {
  1711. writer.AddPart(
  1712. DFCC_RootSignature, rootSigWriter.size(),
  1713. [&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
  1714. }
  1715. writer.write(pFinalStream);
  1716. }