| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868 |
- //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass performs global value numbering to eliminate fully redundant
- // instructions. It also performs simple dead load elimination.
- //
- // Note that this pass does the value numbering itself; it does not use the
- // ValueNumbering analysis passes.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/Loads.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/MemoryDependenceAnalysis.h"
- #include "llvm/Analysis/PHITransAddr.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Support/Allocator.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/SSAUpdater.h"
- #include <vector>
- #include "dxc/DXIL/DxilConstants.h" // HLSL Change
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "gvn"
- STATISTIC(NumGVNInstr, "Number of instructions deleted");
- STATISTIC(NumGVNLoad, "Number of loads deleted");
- STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
- STATISTIC(NumGVNBlocks, "Number of blocks merged");
- STATISTIC(NumGVNSimpl, "Number of instructions simplified");
- STATISTIC(NumGVNEqProp, "Number of equalities propagated");
- STATISTIC(NumPRELoad, "Number of loads PRE'd");
- #if 0 // HLSL Change Starts - option pending
- static cl::opt<bool> EnablePRE("enable-pre",
- cl::init(true), cl::Hidden);
- static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
- // Maximum allowed recursion depth.
- static cl::opt<uint32_t>
- MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
- cl::desc("Max recurse depth (default = 1000)"));
- #else
- static const bool EnablePRE = true;
- static const bool EnableLoadPRE = true;
- static const uint32_t MaxRecurseDepth = 1000;
- #endif // HLSL Change Ends
- //===----------------------------------------------------------------------===//
- // ValueTable Class
- //===----------------------------------------------------------------------===//
- /// This class holds the mapping between values and value numbers. It is used
- /// as an efficient mechanism to determine the expression-wise equivalence of
- /// two values.
- namespace {
- struct Expression {
- uint32_t opcode;
- Type *type;
- SmallVector<uint32_t, 4> varargs;
- Expression(uint32_t o = ~2U) : opcode(o) { }
- bool operator==(const Expression &other) const {
- if (opcode != other.opcode)
- return false;
- if (opcode == ~0U || opcode == ~1U)
- return true;
- if (type != other.type)
- return false;
- if (varargs != other.varargs)
- return false;
- return true;
- }
- friend hash_code hash_value(const Expression &Value) {
- return hash_combine(Value.opcode, Value.type,
- hash_combine_range(Value.varargs.begin(),
- Value.varargs.end()));
- }
- };
- class ValueTable {
- DenseMap<Value*, uint32_t> valueNumbering;
- DenseMap<Expression, uint32_t> expressionNumbering;
- AliasAnalysis *AA;
- MemoryDependenceAnalysis *MD;
- DominatorTree *DT;
- uint32_t nextValueNumber;
- Expression create_expression(Instruction* I);
- Expression create_cmp_expression(unsigned Opcode,
- CmpInst::Predicate Predicate,
- Value *LHS, Value *RHS);
- Expression create_extractvalue_expression(ExtractValueInst* EI);
- uint32_t lookup_or_add_call(CallInst* C);
- public:
- ValueTable() : nextValueNumber(1) { }
- uint32_t lookup_or_add(Value *V);
- uint32_t lookup(Value *V) const;
- uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
- Value *LHS, Value *RHS);
- void add(Value *V, uint32_t num);
- void clear();
- void erase(Value *v);
- void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
- AliasAnalysis *getAliasAnalysis() const { return AA; }
- void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
- void setDomTree(DominatorTree* D) { DT = D; }
- uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
- void verifyRemoved(const Value *) const;
- };
- }
- namespace llvm {
- template <> struct DenseMapInfo<Expression> {
- static inline Expression getEmptyKey() {
- return ~0U;
- }
- static inline Expression getTombstoneKey() {
- return ~1U;
- }
- static unsigned getHashValue(const Expression e) {
- using llvm::hash_value;
- return static_cast<unsigned>(hash_value(e));
- }
- static bool isEqual(const Expression &LHS, const Expression &RHS) {
- return LHS == RHS;
- }
- };
- }
- //===----------------------------------------------------------------------===//
- // ValueTable Internal Functions
- //===----------------------------------------------------------------------===//
- Expression ValueTable::create_expression(Instruction *I) {
- Expression e;
- e.type = I->getType();
- e.opcode = I->getOpcode();
- for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
- OI != OE; ++OI)
- e.varargs.push_back(lookup_or_add(*OI));
- if (I->isCommutative()) {
- // Ensure that commutative instructions that only differ by a permutation
- // of their operands get the same value number by sorting the operand value
- // numbers. Since all commutative instructions have two operands it is more
- // efficient to sort by hand rather than using, say, std::sort.
- assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
- if (e.varargs[0] > e.varargs[1])
- std::swap(e.varargs[0], e.varargs[1]);
- }
- if (CmpInst *C = dyn_cast<CmpInst>(I)) {
- // Sort the operand value numbers so x<y and y>x get the same value number.
- CmpInst::Predicate Predicate = C->getPredicate();
- if (e.varargs[0] > e.varargs[1]) {
- std::swap(e.varargs[0], e.varargs[1]);
- Predicate = CmpInst::getSwappedPredicate(Predicate);
- }
- e.opcode = (C->getOpcode() << 8) | Predicate;
- } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
- for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
- II != IE; ++II)
- e.varargs.push_back(*II);
- }
- return e;
- }
- Expression ValueTable::create_cmp_expression(unsigned Opcode,
- CmpInst::Predicate Predicate,
- Value *LHS, Value *RHS) {
- assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
- "Not a comparison!");
- Expression e;
- e.type = CmpInst::makeCmpResultType(LHS->getType());
- e.varargs.push_back(lookup_or_add(LHS));
- e.varargs.push_back(lookup_or_add(RHS));
- // Sort the operand value numbers so x<y and y>x get the same value number.
- if (e.varargs[0] > e.varargs[1]) {
- std::swap(e.varargs[0], e.varargs[1]);
- Predicate = CmpInst::getSwappedPredicate(Predicate);
- }
- e.opcode = (Opcode << 8) | Predicate;
- return e;
- }
- Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
- assert(EI && "Not an ExtractValueInst?");
- Expression e;
- e.type = EI->getType();
- e.opcode = 0;
- IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
- if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
- // EI might be an extract from one of our recognised intrinsics. If it
- // is we'll synthesize a semantically equivalent expression instead on
- // an extract value expression.
- switch (I->getIntrinsicID()) {
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::uadd_with_overflow:
- e.opcode = Instruction::Add;
- break;
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::usub_with_overflow:
- e.opcode = Instruction::Sub;
- break;
- case Intrinsic::smul_with_overflow:
- case Intrinsic::umul_with_overflow:
- e.opcode = Instruction::Mul;
- break;
- default:
- break;
- }
- if (e.opcode != 0) {
- // Intrinsic recognized. Grab its args to finish building the expression.
- assert(I->getNumArgOperands() == 2 &&
- "Expect two args for recognised intrinsics.");
- e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
- e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
- return e;
- }
- }
- // Not a recognised intrinsic. Fall back to producing an extract value
- // expression.
- e.opcode = EI->getOpcode();
- for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
- OI != OE; ++OI)
- e.varargs.push_back(lookup_or_add(*OI));
- for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
- II != IE; ++II)
- e.varargs.push_back(*II);
- return e;
- }
- //===----------------------------------------------------------------------===//
- // ValueTable External Functions
- //===----------------------------------------------------------------------===//
- /// add - Insert a value into the table with a specified value number.
- void ValueTable::add(Value *V, uint32_t num) {
- valueNumbering.insert(std::make_pair(V, num));
- }
- uint32_t ValueTable::lookup_or_add_call(CallInst *C) {
- if (AA->doesNotAccessMemory(C)) {
- Expression exp = create_expression(C);
- uint32_t &e = expressionNumbering[exp];
- if (!e) e = nextValueNumber++;
- valueNumbering[C] = e;
- return e;
- } else if (AA->onlyReadsMemory(C)) {
- Expression exp = create_expression(C);
- uint32_t &e = expressionNumbering[exp];
- if (!e) {
- e = nextValueNumber++;
- valueNumbering[C] = e;
- return e;
- }
- if (!MD) {
- e = nextValueNumber++;
- valueNumbering[C] = e;
- return e;
- }
- MemDepResult local_dep = MD->getDependency(C);
- if (!local_dep.isDef() && !local_dep.isNonLocal()) {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
- if (local_dep.isDef()) {
- CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
- if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
- for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
- uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
- uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
- if (c_vn != cd_vn) {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
- }
- uint32_t v = lookup_or_add(local_cdep);
- valueNumbering[C] = v;
- return v;
- }
- // Non-local case.
- const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
- MD->getNonLocalCallDependency(CallSite(C));
- // FIXME: Move the checking logic to MemDep!
- CallInst* cdep = nullptr;
- // Check to see if we have a single dominating call instruction that is
- // identical to C.
- for (unsigned i = 0, e = deps.size(); i != e; ++i) {
- const NonLocalDepEntry *I = &deps[i];
- if (I->getResult().isNonLocal())
- continue;
- // We don't handle non-definitions. If we already have a call, reject
- // instruction dependencies.
- if (!I->getResult().isDef() || cdep != nullptr) {
- cdep = nullptr;
- break;
- }
- CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
- // FIXME: All duplicated with non-local case.
- if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
- cdep = NonLocalDepCall;
- continue;
- }
- cdep = nullptr;
- break;
- }
- if (!cdep) {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
- if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
- for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
- uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
- uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
- if (c_vn != cd_vn) {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
- }
- uint32_t v = lookup_or_add(cdep);
- valueNumbering[C] = v;
- return v;
- } else {
- valueNumbering[C] = nextValueNumber;
- return nextValueNumber++;
- }
- }
- /// lookup_or_add - Returns the value number for the specified value, assigning
- /// it a new number if it did not have one before.
- uint32_t ValueTable::lookup_or_add(Value *V) {
- DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
- if (VI != valueNumbering.end())
- return VI->second;
- if (!isa<Instruction>(V)) {
- valueNumbering[V] = nextValueNumber;
- return nextValueNumber++;
- }
- Instruction* I = cast<Instruction>(V);
- Expression exp;
- switch (I->getOpcode()) {
- case Instruction::Call:
- return lookup_or_add_call(cast<CallInst>(I));
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::ICmp:
- case Instruction::FCmp:
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::BitCast:
- case Instruction::Select:
- case Instruction::ExtractElement:
- case Instruction::InsertElement:
- case Instruction::ShuffleVector:
- case Instruction::InsertValue:
- case Instruction::GetElementPtr:
- exp = create_expression(I);
- break;
- case Instruction::ExtractValue:
- exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
- break;
- default:
- valueNumbering[V] = nextValueNumber;
- return nextValueNumber++;
- }
- uint32_t& e = expressionNumbering[exp];
- if (!e) e = nextValueNumber++;
- valueNumbering[V] = e;
- return e;
- }
- /// Returns the value number of the specified value. Fails if
- /// the value has not yet been numbered.
- uint32_t ValueTable::lookup(Value *V) const {
- DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
- assert(VI != valueNumbering.end() && "Value not numbered?");
- return VI->second;
- }
- /// Returns the value number of the given comparison,
- /// assigning it a new number if it did not have one before. Useful when
- /// we deduced the result of a comparison, but don't immediately have an
- /// instruction realizing that comparison to hand.
- uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
- CmpInst::Predicate Predicate,
- Value *LHS, Value *RHS) {
- Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
- uint32_t& e = expressionNumbering[exp];
- if (!e) e = nextValueNumber++;
- return e;
- }
- /// Remove all entries from the ValueTable.
- void ValueTable::clear() {
- valueNumbering.clear();
- expressionNumbering.clear();
- nextValueNumber = 1;
- }
- /// Remove a value from the value numbering.
- void ValueTable::erase(Value *V) {
- valueNumbering.erase(V);
- }
- /// verifyRemoved - Verify that the value is removed from all internal data
- /// structures.
- void ValueTable::verifyRemoved(const Value *V) const {
- for (DenseMap<Value*, uint32_t>::const_iterator
- I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
- assert(I->first != V && "Inst still occurs in value numbering map!");
- }
- }
- //===----------------------------------------------------------------------===//
- // GVN Pass
- //===----------------------------------------------------------------------===//
- namespace {
- class GVN;
- struct AvailableValueInBlock {
- /// BB - The basic block in question.
- BasicBlock *BB;
- enum ValType {
- SimpleVal, // A simple offsetted value that is accessed.
- LoadVal, // A value produced by a load.
- MemIntrin, // A memory intrinsic which is loaded from.
- UndefVal // A UndefValue representing a value from dead block (which
- // is not yet physically removed from the CFG).
- };
-
- /// V - The value that is live out of the block.
- PointerIntPair<Value *, 2, ValType> Val;
-
- /// Offset - The byte offset in Val that is interesting for the load query.
- unsigned Offset;
-
- static AvailableValueInBlock get(BasicBlock *BB, Value *V,
- unsigned Offset = 0) {
- AvailableValueInBlock Res;
- Res.BB = BB;
- Res.Val.setPointer(V);
- Res.Val.setInt(SimpleVal);
- Res.Offset = Offset;
- return Res;
- }
-
- static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
- unsigned Offset = 0) {
- AvailableValueInBlock Res;
- Res.BB = BB;
- Res.Val.setPointer(MI);
- Res.Val.setInt(MemIntrin);
- Res.Offset = Offset;
- return Res;
- }
-
- static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
- unsigned Offset = 0) {
- AvailableValueInBlock Res;
- Res.BB = BB;
- Res.Val.setPointer(LI);
- Res.Val.setInt(LoadVal);
- Res.Offset = Offset;
- return Res;
- }
- static AvailableValueInBlock getUndef(BasicBlock *BB) {
- AvailableValueInBlock Res;
- Res.BB = BB;
- Res.Val.setPointer(nullptr);
- Res.Val.setInt(UndefVal);
- Res.Offset = 0;
- return Res;
- }
- bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
- bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
- bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
- bool isUndefValue() const { return Val.getInt() == UndefVal; }
-
- Value *getSimpleValue() const {
- assert(isSimpleValue() && "Wrong accessor");
- return Val.getPointer();
- }
-
- LoadInst *getCoercedLoadValue() const {
- assert(isCoercedLoadValue() && "Wrong accessor");
- return cast<LoadInst>(Val.getPointer());
- }
-
- MemIntrinsic *getMemIntrinValue() const {
- assert(isMemIntrinValue() && "Wrong accessor");
- return cast<MemIntrinsic>(Val.getPointer());
- }
-
- /// Emit code into this block to adjust the value defined here to the
- /// specified type. This handles various coercion cases.
- Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const;
- };
- class GVN : public FunctionPass {
- bool NoLoads;
- MemoryDependenceAnalysis *MD;
- DominatorTree *DT;
- const TargetLibraryInfo *TLI;
- AssumptionCache *AC;
- SetVector<BasicBlock *> DeadBlocks;
- ValueTable VN;
- /// A mapping from value numbers to lists of Value*'s that
- /// have that value number. Use findLeader to query it.
- struct LeaderTableEntry {
- Value *Val;
- const BasicBlock *BB;
- LeaderTableEntry *Next;
- };
- DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
- BumpPtrAllocator TableAllocator;
- SmallVector<Instruction*, 8> InstrsToErase;
- typedef SmallVector<NonLocalDepResult, 64> LoadDepVect;
- typedef SmallVector<AvailableValueInBlock, 64> AvailValInBlkVect;
- typedef SmallVector<BasicBlock*, 64> UnavailBlkVect;
- public:
- static char ID; // Pass identification, replacement for typeid
- explicit GVN(bool noloads = false)
- : FunctionPass(ID), NoLoads(noloads), MD(nullptr) {
- initializeGVNPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override;
- /// This removes the specified instruction from
- /// our various maps and marks it for deletion.
- void markInstructionForDeletion(Instruction *I) {
- VN.erase(I);
- InstrsToErase.push_back(I);
- }
- DominatorTree &getDominatorTree() const { return *DT; }
- AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
- MemoryDependenceAnalysis &getMemDep() const { return *MD; }
- private:
- /// Push a new Value to the LeaderTable onto the list for its value number.
- void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
- LeaderTableEntry &Curr = LeaderTable[N];
- if (!Curr.Val) {
- Curr.Val = V;
- Curr.BB = BB;
- return;
- }
- LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
- Node->Val = V;
- Node->BB = BB;
- Node->Next = Curr.Next;
- Curr.Next = Node;
- }
- /// Scan the list of values corresponding to a given
- /// value number, and remove the given instruction if encountered.
- void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
- LeaderTableEntry* Prev = nullptr;
- LeaderTableEntry* Curr = &LeaderTable[N];
- while (Curr && (Curr->Val != I || Curr->BB != BB)) {
- Prev = Curr;
- Curr = Curr->Next;
- }
- if (!Curr)
- return;
- if (Prev) {
- Prev->Next = Curr->Next;
- } else {
- if (!Curr->Next) {
- Curr->Val = nullptr;
- Curr->BB = nullptr;
- } else {
- LeaderTableEntry* Next = Curr->Next;
- Curr->Val = Next->Val;
- Curr->BB = Next->BB;
- Curr->Next = Next->Next;
- }
- }
- }
- // List of critical edges to be split between iterations.
- SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
- // This transformation requires dominator postdominator info
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- if (!NoLoads)
- AU.addRequired<MemoryDependenceAnalysis>();
- AU.addRequired<AliasAnalysis>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<AliasAnalysis>();
- }
- // Helper fuctions of redundant load elimination
- bool processLoad(LoadInst *L);
- bool processNonLocalLoad(LoadInst *L);
- void AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
- AvailValInBlkVect &ValuesPerBlock,
- UnavailBlkVect &UnavailableBlocks);
- bool PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
- UnavailBlkVect &UnavailableBlocks);
- // Other helper routines
- bool processInstruction(Instruction *I);
- bool processBlock(BasicBlock *BB);
- void dump(DenseMap<uint32_t, Value*> &d);
- bool iterateOnFunction(Function &F);
- bool performPRE(Function &F);
- bool performScalarPRE(Instruction *I);
- bool performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
- unsigned int ValNo);
- Value *findLeader(const BasicBlock *BB, uint32_t num);
- void cleanupGlobalSets();
- void verifyRemoved(const Instruction *I) const;
- bool splitCriticalEdges();
- BasicBlock *splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ);
- bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root);
- bool processFoldableCondBr(BranchInst *BI);
- void addDeadBlock(BasicBlock *BB);
- void assignValNumForDeadCode();
- };
- char GVN::ID = 0;
- }
- // The public interface to this file...
- FunctionPass *llvm::createGVNPass(bool NoLoads) {
- return new GVN(NoLoads);
- }
- INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
- INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void GVN::dump(DenseMap<uint32_t, Value*>& d) {
- errs() << "{\n";
- for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
- E = d.end(); I != E; ++I) {
- errs() << I->first << "\n";
- I->second->dump();
- }
- errs() << "}\n";
- }
- #endif
- /// Return true if we can prove that the value
- /// we're analyzing is fully available in the specified block. As we go, keep
- /// track of which blocks we know are fully alive in FullyAvailableBlocks. This
- /// map is actually a tri-state map with the following values:
- /// 0) we know the block *is not* fully available.
- /// 1) we know the block *is* fully available.
- /// 2) we do not know whether the block is fully available or not, but we are
- /// currently speculating that it will be.
- /// 3) we are speculating for this block and have used that to speculate for
- /// other blocks.
- static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
- DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
- uint32_t RecurseDepth) {
- if (RecurseDepth > MaxRecurseDepth)
- return false;
- // Optimistically assume that the block is fully available and check to see
- // if we already know about this block in one lookup.
- std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
- FullyAvailableBlocks.insert(std::make_pair(BB, 2));
- // If the entry already existed for this block, return the precomputed value.
- if (!IV.second) {
- // If this is a speculative "available" value, mark it as being used for
- // speculation of other blocks.
- if (IV.first->second == 2)
- IV.first->second = 3;
- return IV.first->second != 0;
- }
- // Otherwise, see if it is fully available in all predecessors.
- pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
- // If this block has no predecessors, it isn't live-in here.
- if (PI == PE)
- goto SpeculationFailure;
- for (; PI != PE; ++PI)
- // If the value isn't fully available in one of our predecessors, then it
- // isn't fully available in this block either. Undo our previous
- // optimistic assumption and bail out.
- if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
- goto SpeculationFailure;
- return true;
- // If we get here, we found out that this is not, after
- // all, a fully-available block. We have a problem if we speculated on this and
- // used the speculation to mark other blocks as available.
- SpeculationFailure:
- char &BBVal = FullyAvailableBlocks[BB];
- // If we didn't speculate on this, just return with it set to false.
- if (BBVal == 2) {
- BBVal = 0;
- return false;
- }
- // If we did speculate on this value, we could have blocks set to 1 that are
- // incorrect. Walk the (transitive) successors of this block and mark them as
- // 0 if set to one.
- SmallVector<BasicBlock*, 32> BBWorklist;
- BBWorklist.push_back(BB);
- do {
- BasicBlock *Entry = BBWorklist.pop_back_val();
- // Note that this sets blocks to 0 (unavailable) if they happen to not
- // already be in FullyAvailableBlocks. This is safe.
- char &EntryVal = FullyAvailableBlocks[Entry];
- if (EntryVal == 0) continue; // Already unavailable.
- // Mark as unavailable.
- EntryVal = 0;
- BBWorklist.append(succ_begin(Entry), succ_end(Entry));
- } while (!BBWorklist.empty());
- return false;
- }
- /// Return true if CoerceAvailableValueToLoadType will succeed.
- static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
- Type *LoadTy,
- const DataLayout &DL) {
- // If the loaded or stored value is an first class array or struct, don't try
- // to transform them. We need to be able to bitcast to integer.
- if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
- StoredVal->getType()->isStructTy() ||
- StoredVal->getType()->isArrayTy())
- return false;
- // The store has to be at least as big as the load.
- if (DL.getTypeSizeInBits(StoredVal->getType()) <
- DL.getTypeSizeInBits(LoadTy))
- return false;
- return true;
- }
- /// If we saw a store of a value to memory, and
- /// then a load from a must-aliased pointer of a different type, try to coerce
- /// the stored value. LoadedTy is the type of the load we want to replace.
- /// IRB is IRBuilder used to insert new instructions.
- ///
- /// If we can't do it, return null.
- static Value *CoerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
- IRBuilder<> &IRB,
- const DataLayout &DL) {
- if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL))
- return nullptr;
- // If this is already the right type, just return it.
- Type *StoredValTy = StoredVal->getType();
- uint64_t StoreSize = DL.getTypeSizeInBits(StoredValTy);
- uint64_t LoadSize = DL.getTypeSizeInBits(LoadedTy);
- // If the store and reload are the same size, we can always reuse it.
- if (StoreSize == LoadSize) {
- // Pointer to Pointer -> use bitcast.
- if (StoredValTy->getScalarType()->isPointerTy() &&
- LoadedTy->getScalarType()->isPointerTy())
- return IRB.CreateBitCast(StoredVal, LoadedTy);
- // Convert source pointers to integers, which can be bitcast.
- if (StoredValTy->getScalarType()->isPointerTy()) {
- StoredValTy = DL.getIntPtrType(StoredValTy);
- StoredVal = IRB.CreatePtrToInt(StoredVal, StoredValTy);
- }
- Type *TypeToCastTo = LoadedTy;
- if (TypeToCastTo->getScalarType()->isPointerTy())
- TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
- if (StoredValTy != TypeToCastTo)
- StoredVal = IRB.CreateBitCast(StoredVal, TypeToCastTo);
- // Cast to pointer if the load needs a pointer type.
- if (LoadedTy->getScalarType()->isPointerTy())
- StoredVal = IRB.CreateIntToPtr(StoredVal, LoadedTy);
- return StoredVal;
- }
- // If the loaded value is smaller than the available value, then we can
- // extract out a piece from it. If the available value is too small, then we
- // can't do anything.
- assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
- // Convert source pointers to integers, which can be manipulated.
- if (StoredValTy->getScalarType()->isPointerTy()) {
- StoredValTy = DL.getIntPtrType(StoredValTy);
- StoredVal = IRB.CreatePtrToInt(StoredVal, StoredValTy);
- }
- // Convert vectors and fp to integer, which can be manipulated.
- if (!StoredValTy->isIntegerTy()) {
- StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
- StoredVal = IRB.CreateBitCast(StoredVal, StoredValTy);
- }
- // If this is a big-endian system, we need to shift the value down to the low
- // bits so that a truncate will work.
- if (DL.isBigEndian()) {
- StoredVal = IRB.CreateLShr(StoredVal, StoreSize - LoadSize, "tmp");
- }
- // Truncate the integer to the right size now.
- Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
- StoredVal = IRB.CreateTrunc(StoredVal, NewIntTy, "trunc");
- if (LoadedTy == NewIntTy)
- return StoredVal;
- // If the result is a pointer, inttoptr.
- if (LoadedTy->getScalarType()->isPointerTy())
- return IRB.CreateIntToPtr(StoredVal, LoadedTy, "inttoptr");
- // Otherwise, bitcast.
- return IRB.CreateBitCast(StoredVal, LoadedTy, "bitcast");
- }
- #if 0 // HLSL Change: Don't support bitcasting to different sizes.
- /// This function is called when we have a
- /// memdep query of a load that ends up being a clobbering memory write (store,
- /// memset, memcpy, memmove). This means that the write *may* provide bits used
- /// by the load but we can't be sure because the pointers don't mustalias.
- ///
- /// Check this case to see if there is anything more we can do before we give
- /// up. This returns -1 if we have to give up, or a byte number in the stored
- /// value of the piece that feeds the load.
- static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
- Value *WritePtr,
- uint64_t WriteSizeInBits,
- const DataLayout &DL) {
- // If the loaded or stored value is a first class array or struct, don't try
- // to transform them. We need to be able to bitcast to integer.
- if (LoadTy->isStructTy() || LoadTy->isArrayTy())
- return -1;
- int64_t StoreOffset = 0, LoadOffset = 0;
- Value *StoreBase =
- GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
- Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
- if (StoreBase != LoadBase)
- return -1;
- // If the load and store are to the exact same address, they should have been
- // a must alias. AA must have gotten confused.
- // FIXME: Study to see if/when this happens. One case is forwarding a memset
- // to a load from the base of the memset.
- #if 0
- if (LoadOffset == StoreOffset) {
- dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
- << "Base = " << *StoreBase << "\n"
- << "Store Ptr = " << *WritePtr << "\n"
- << "Store Offs = " << StoreOffset << "\n"
- << "Load Ptr = " << *LoadPtr << "\n";
- abort();
- }
- #endif
- // If the load and store don't overlap at all, the store doesn't provide
- // anything to the load. In this case, they really don't alias at all, AA
- // must have gotten confused.
- uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
- if ((WriteSizeInBits & 7) | (LoadSize & 7))
- return -1;
- uint64_t StoreSize = WriteSizeInBits >> 3; // Convert to bytes.
- LoadSize >>= 3;
- bool isAAFailure = false;
- if (StoreOffset < LoadOffset)
- isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
- else
- isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
- if (isAAFailure) {
- #if 0
- dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
- << "Base = " << *StoreBase << "\n"
- << "Store Ptr = " << *WritePtr << "\n"
- << "Store Offs = " << StoreOffset << "\n"
- << "Load Ptr = " << *LoadPtr << "\n";
- abort();
- #endif
- return -1;
- }
- // If the Load isn't completely contained within the stored bits, we don't
- // have all the bits to feed it. We could do something crazy in the future
- // (issue a smaller load then merge the bits in) but this seems unlikely to be
- // valuable.
- if (StoreOffset > LoadOffset ||
- StoreOffset+StoreSize < LoadOffset+LoadSize)
- return -1;
- // Okay, we can do this transformation. Return the number of bytes into the
- // store that the load is.
- return LoadOffset-StoreOffset;
- return -1;
- }
- #endif // HLSL Change: Don't support bitcasting to different sizes.
- /// This function is called when we have a
- /// memdep query of a load that ends up being a clobbering store.
- static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
- StoreInst *DepSI) {
- #if 0 // HLSL Change: Don't support bitcasting to different sizes.
- // Cannot handle reading from store of first-class aggregate yet.
- if (DepSI->getValueOperand()->getType()->isStructTy() ||
- DepSI->getValueOperand()->getType()->isArrayTy())
- return -1;
- const DataLayout &DL = DepSI->getModule()->getDataLayout();
- Value *StorePtr = DepSI->getPointerOperand();
- uint64_t StoreSize =DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
- return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
- StorePtr, StoreSize, DL);
- #endif // HLSL Change: Don't support bitcasting to different sizes.
- return -1;
- }
- /// This function is called when we have a
- /// memdep query of a load that ends up being clobbered by another load. See if
- /// the other load can feed into the second load.
- static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
- LoadInst *DepLI, const DataLayout &DL){
- #if 0 // HLSL Change: Don't support bitcasting to different sizes.
- // Cannot handle reading from store of first-class aggregate yet.
- if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
- return -1;
- Value *DepPtr = DepLI->getPointerOperand();
- uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
- int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
- if (R != -1) return R;
- // If we have a load/load clobber an DepLI can be widened to cover this load,
- // then we should widen it!
- int64_t LoadOffs = 0;
- const Value *LoadBase =
- GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
- unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
- unsigned Size = MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
- LoadBase, LoadOffs, LoadSize, DepLI);
- if (Size == 0) return -1;
- return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, DL);
- #endif
- return -1;
- }
- static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
- MemIntrinsic *MI,
- const DataLayout &DL) {
- #if 0 // HLSL Change: Don't support bitcasting to different sizes.
- // If the mem operation is a non-constant size, we can't handle it.
- ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
- if (!SizeCst) return -1;
- uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
- // If this is memset, we just need to see if the offset is valid in the size
- // of the memset..
- if (MI->getIntrinsicID() == Intrinsic::memset)
- return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
- MemSizeInBits, DL);
- // If we have a memcpy/memmove, the only case we can handle is if this is a
- // copy from constant memory. In that case, we can read directly from the
- // constant memory.
- MemTransferInst *MTI = cast<MemTransferInst>(MI);
- Constant *Src = dyn_cast<Constant>(MTI->getSource());
- if (!Src) return -1;
- GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL));
- if (!GV || !GV->isConstant()) return -1;
- // See if the access is within the bounds of the transfer.
- int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
- MI->getDest(), MemSizeInBits, DL);
- if (Offset == -1)
- return Offset;
- unsigned AS = Src->getType()->getPointerAddressSpace();
- // Otherwise, see if we can constant fold a load from the constant with the
- // offset applied as appropriate.
- Src = ConstantExpr::getBitCast(Src,
- Type::getInt8PtrTy(Src->getContext(), AS));
- Constant *OffsetCst =
- ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
- Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
- OffsetCst);
- Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
- if (ConstantFoldLoadFromConstPtr(Src, DL))
- return Offset;
- #endif
- return -1;
- }
- /// This function is called when we have a
- /// memdep query of a load that ends up being a clobbering store. This means
- /// that the store provides bits used by the load but we the pointers don't
- /// mustalias. Check this case to see if there is anything more we can do
- /// before we give up.
- static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
- Type *LoadTy,
- Instruction *InsertPt, const DataLayout &DL){
- LLVMContext &Ctx = SrcVal->getType()->getContext();
- uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
- uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
- IRBuilder<> Builder(InsertPt);
- // Compute which bits of the stored value are being used by the load. Convert
- // to an integer type to start with.
- if (SrcVal->getType()->getScalarType()->isPointerTy())
- SrcVal = Builder.CreatePtrToInt(SrcVal,
- DL.getIntPtrType(SrcVal->getType()));
- if (!SrcVal->getType()->isIntegerTy())
- SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
- // Shift the bits to the least significant depending on endianness.
- unsigned ShiftAmt;
- if (DL.isLittleEndian())
- ShiftAmt = Offset*8;
- else
- ShiftAmt = (StoreSize-LoadSize-Offset)*8;
- if (ShiftAmt)
- SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
- if (LoadSize != StoreSize)
- SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
- return CoerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, DL);
- }
- /// This function is called when we have a
- /// memdep query of a load that ends up being a clobbering load. This means
- /// that the load *may* provide bits used by the load but we can't be sure
- /// because the pointers don't mustalias. Check this case to see if there is
- /// anything more we can do before we give up.
- static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
- Type *LoadTy, Instruction *InsertPt,
- GVN &gvn) {
- const DataLayout &DL = SrcVal->getModule()->getDataLayout();
- // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
- // widen SrcVal out to a larger load.
- unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType());
- unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
- if (Offset+LoadSize > SrcValSize) {
- assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
- assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
- // If we have a load/load clobber an DepLI can be widened to cover this
- // load, then we should widen it to the next power of 2 size big enough!
- unsigned NewLoadSize = Offset+LoadSize;
- if (!isPowerOf2_32(NewLoadSize))
- NewLoadSize = NextPowerOf2(NewLoadSize);
- Value *PtrVal = SrcVal->getPointerOperand();
- // Insert the new load after the old load. This ensures that subsequent
- // memdep queries will find the new load. We can't easily remove the old
- // load completely because it is already in the value numbering table.
- IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
- Type *DestPTy =
- IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
- DestPTy = PointerType::get(DestPTy,
- PtrVal->getType()->getPointerAddressSpace());
- Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
- PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
- LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
- NewLoad->takeName(SrcVal);
- NewLoad->setAlignment(SrcVal->getAlignment());
- DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
- DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
- // Replace uses of the original load with the wider load. On a big endian
- // system, we need to shift down to get the relevant bits.
- Value *RV = NewLoad;
- if (DL.isBigEndian())
- RV = Builder.CreateLShr(RV,
- NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
- RV = Builder.CreateTrunc(RV, SrcVal->getType());
- SrcVal->replaceAllUsesWith(RV);
- // We would like to use gvn.markInstructionForDeletion here, but we can't
- // because the load is already memoized into the leader map table that GVN
- // tracks. It is potentially possible to remove the load from the table,
- // but then there all of the operations based on it would need to be
- // rehashed. Just leave the dead load around.
- gvn.getMemDep().removeInstruction(SrcVal);
- SrcVal = NewLoad;
- }
- return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
- }
- /// This function is called when we have a
- /// memdep query of a load that ends up being a clobbering mem intrinsic.
- static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
- Type *LoadTy, Instruction *InsertPt,
- const DataLayout &DL){
- LLVMContext &Ctx = LoadTy->getContext();
- uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy)/8;
- IRBuilder<> Builder(InsertPt);
- // We know that this method is only called when the mem transfer fully
- // provides the bits for the load.
- if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
- // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
- // independently of what the offset is.
- Value *Val = MSI->getValue();
- if (LoadSize != 1)
- Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
- Value *OneElt = Val;
- // Splat the value out to the right number of bits.
- for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
- // If we can double the number of bytes set, do it.
- if (NumBytesSet*2 <= LoadSize) {
- Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
- Val = Builder.CreateOr(Val, ShVal);
- NumBytesSet <<= 1;
- continue;
- }
- // Otherwise insert one byte at a time.
- Value *ShVal = Builder.CreateShl(Val, 1*8);
- Val = Builder.CreateOr(OneElt, ShVal);
- ++NumBytesSet;
- }
- return CoerceAvailableValueToLoadType(Val, LoadTy, Builder, DL);
- }
- // Otherwise, this is a memcpy/memmove from a constant global.
- MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
- Constant *Src = cast<Constant>(MTI->getSource());
- unsigned AS = Src->getType()->getPointerAddressSpace();
- // Otherwise, see if we can constant fold a load from the constant with the
- // offset applied as appropriate.
- Src = ConstantExpr::getBitCast(Src,
- Type::getInt8PtrTy(Src->getContext(), AS));
- Constant *OffsetCst =
- ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
- Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
- OffsetCst);
- Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
- return ConstantFoldLoadFromConstPtr(Src, DL);
- }
- /// Given a set of loads specified by ValuesPerBlock,
- /// construct SSA form, allowing us to eliminate LI. This returns the value
- /// that should be used at LI's definition site.
- static Value *ConstructSSAForLoadSet(LoadInst *LI,
- SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
- GVN &gvn) {
- // Check for the fully redundant, dominating load case. In this case, we can
- // just use the dominating value directly.
- if (ValuesPerBlock.size() == 1 &&
- gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
- LI->getParent())) {
- assert(!ValuesPerBlock[0].isUndefValue() && "Dead BB dominate this block");
- return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
- }
- // Otherwise, we have to construct SSA form.
- SmallVector<PHINode*, 8> NewPHIs;
- SSAUpdater SSAUpdate(&NewPHIs);
- SSAUpdate.Initialize(LI->getType(), LI->getName());
- for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
- const AvailableValueInBlock &AV = ValuesPerBlock[i];
- BasicBlock *BB = AV.BB;
- if (SSAUpdate.HasValueForBlock(BB))
- continue;
- SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
- }
- // Perform PHI construction.
- Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
- // If new PHI nodes were created, notify alias analysis.
- if (V->getType()->getScalarType()->isPointerTy()) {
- AliasAnalysis *AA = gvn.getAliasAnalysis();
- // Scan the new PHIs and inform alias analysis that we've added potentially
- // escaping uses to any values that are operands to these PHIs.
- for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
- PHINode *P = NewPHIs[i];
- for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
- unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
- AA->addEscapingUse(P->getOperandUse(jj));
- }
- }
- }
- return V;
- }
- Value *AvailableValueInBlock::MaterializeAdjustedValue(LoadInst *LI,
- GVN &gvn) const {
- Value *Res;
- Type *LoadTy = LI->getType();
- const DataLayout &DL = LI->getModule()->getDataLayout();
- if (isSimpleValue()) {
- Res = getSimpleValue();
- if (Res->getType() != LoadTy) {
- Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(), DL);
- DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " "
- << *getSimpleValue() << '\n'
- << *Res << '\n' << "\n\n\n");
- }
- } else if (isCoercedLoadValue()) {
- LoadInst *Load = getCoercedLoadValue();
- if (Load->getType() == LoadTy && Offset == 0) {
- Res = Load;
- } else {
- Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
- gvn);
-
- DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << " "
- << *getCoercedLoadValue() << '\n'
- << *Res << '\n' << "\n\n\n");
- }
- } else if (isMemIntrinValue()) {
- Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
- BB->getTerminator(), DL);
- DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
- << " " << *getMemIntrinValue() << '\n'
- << *Res << '\n' << "\n\n\n");
- } else {
- assert(isUndefValue() && "Should be UndefVal");
- DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
- return UndefValue::get(LoadTy);
- }
- return Res;
- }
- static bool isLifetimeStart(const Instruction *Inst) {
- if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
- return II->getIntrinsicID() == Intrinsic::lifetime_start;
- return false;
- }
- void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
- AvailValInBlkVect &ValuesPerBlock,
- UnavailBlkVect &UnavailableBlocks) {
- // Filter out useless results (non-locals, etc). Keep track of the blocks
- // where we have a value available in repl, also keep track of whether we see
- // dependencies that produce an unknown value for the load (such as a call
- // that could potentially clobber the load).
- unsigned NumDeps = Deps.size();
- const DataLayout &DL = LI->getModule()->getDataLayout();
- for (unsigned i = 0, e = NumDeps; i != e; ++i) {
- BasicBlock *DepBB = Deps[i].getBB();
- MemDepResult DepInfo = Deps[i].getResult();
- if (DeadBlocks.count(DepBB)) {
- // Dead dependent mem-op disguise as a load evaluating the same value
- // as the load in question.
- ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
- continue;
- }
- if (!DepInfo.isDef() && !DepInfo.isClobber()) {
- UnavailableBlocks.push_back(DepBB);
- continue;
- }
- if (DepInfo.isClobber()) {
- // The address being loaded in this non-local block may not be the same as
- // the pointer operand of the load if PHI translation occurs. Make sure
- // to consider the right address.
- Value *Address = Deps[i].getAddress();
- // If the dependence is to a store that writes to a superset of the bits
- // read by the load, we can extract the bits we need for the load from the
- // stored value.
- if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
- if (Address) {
- int Offset =
- AnalyzeLoadFromClobberingStore(LI->getType(), Address, DepSI);
- if (Offset != -1) {
- ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
- DepSI->getValueOperand(),
- Offset));
- continue;
- }
- }
- }
- // Check to see if we have something like this:
- // load i32* P
- // load i8* (P+1)
- // if we have this, replace the later with an extraction from the former.
- if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
- // If this is a clobber and L is the first instruction in its block, then
- // we have the first instruction in the entry block.
- if (DepLI != LI && Address) {
- int Offset =
- AnalyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
- if (Offset != -1) {
- ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
- Offset));
- continue;
- }
- }
- }
- // If the clobbering value is a memset/memcpy/memmove, see if we can
- // forward a value on from it.
- if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
- if (Address) {
- int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
- DepMI, DL);
- if (Offset != -1) {
- ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
- Offset));
- continue;
- }
- }
- }
- UnavailableBlocks.push_back(DepBB);
- continue;
- }
- // DepInfo.isDef() here
- Instruction *DepInst = DepInfo.getInst();
- // Loading the allocation -> undef.
- if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
- // Loading immediately after lifetime begin -> undef.
- isLifetimeStart(DepInst)) {
- ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
- UndefValue::get(LI->getType())));
- continue;
- }
- // Loading from calloc (which zero initializes memory) -> zero
- if (isCallocLikeFn(DepInst, TLI)) {
- ValuesPerBlock.push_back(AvailableValueInBlock::get(
- DepBB, Constant::getNullValue(LI->getType())));
- continue;
- }
- if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
- // Reject loads and stores that are to the same address but are of
- // different types if we have to.
- if (S->getValueOperand()->getType() != LI->getType()) {
- // If the stored value is larger or equal to the loaded value, we can
- // reuse it.
- if (!CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
- LI->getType(), DL)) {
- UnavailableBlocks.push_back(DepBB);
- continue;
- }
- }
- ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
- S->getValueOperand()));
- continue;
- }
- if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
- // If the types mismatch and we can't handle it, reject reuse of the load.
- if (LD->getType() != LI->getType()) {
- // If the stored value is larger or equal to the loaded value, we can
- // reuse it.
- if (!CanCoerceMustAliasedValueToLoad(LD, LI->getType(), DL)) {
- UnavailableBlocks.push_back(DepBB);
- continue;
- }
- }
- ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
- continue;
- }
- UnavailableBlocks.push_back(DepBB);
- }
- }
- bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
- UnavailBlkVect &UnavailableBlocks) {
- // Okay, we have *some* definitions of the value. This means that the value
- // is available in some of our (transitive) predecessors. Lets think about
- // doing PRE of this load. This will involve inserting a new load into the
- // predecessor when it's not available. We could do this in general, but
- // prefer to not increase code size. As such, we only do this when we know
- // that we only have to insert *one* load (which means we're basically moving
- // the load, not inserting a new one).
- SmallPtrSet<BasicBlock *, 4> Blockers;
- for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
- Blockers.insert(UnavailableBlocks[i]);
- // Let's find the first basic block with more than one predecessor. Walk
- // backwards through predecessors if needed.
- BasicBlock *LoadBB = LI->getParent();
- BasicBlock *TmpBB = LoadBB;
- while (TmpBB->getSinglePredecessor()) {
- TmpBB = TmpBB->getSinglePredecessor();
- if (TmpBB == LoadBB) // Infinite (unreachable) loop.
- return false;
- if (Blockers.count(TmpBB))
- return false;
- // If any of these blocks has more than one successor (i.e. if the edge we
- // just traversed was critical), then there are other paths through this
- // block along which the load may not be anticipated. Hoisting the load
- // above this block would be adding the load to execution paths along
- // which it was not previously executed.
- if (TmpBB->getTerminator()->getNumSuccessors() != 1)
- return false;
- }
- assert(TmpBB);
- LoadBB = TmpBB;
- // Check to see how many predecessors have the loaded value fully
- // available.
- MapVector<BasicBlock *, Value *> PredLoads;
- DenseMap<BasicBlock*, char> FullyAvailableBlocks;
- for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
- FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
- for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
- FullyAvailableBlocks[UnavailableBlocks[i]] = false;
- SmallVector<BasicBlock *, 4> CriticalEdgePred;
- for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
- PI != E; ++PI) {
- BasicBlock *Pred = *PI;
- if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
- continue;
- }
- if (Pred->getTerminator()->getNumSuccessors() != 1) {
- if (isa<IndirectBrInst>(Pred->getTerminator())) {
- DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
- << Pred->getName() << "': " << *LI << '\n');
- return false;
- }
- if (LoadBB->isLandingPad()) {
- DEBUG(dbgs()
- << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
- << Pred->getName() << "': " << *LI << '\n');
- return false;
- }
- CriticalEdgePred.push_back(Pred);
- } else {
- // Only add the predecessors that will not be split for now.
- PredLoads[Pred] = nullptr;
- }
- }
- // Decide whether PRE is profitable for this load.
- unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
- assert(NumUnavailablePreds != 0 &&
- "Fully available value should already be eliminated!");
- // If this load is unavailable in multiple predecessors, reject it.
- // FIXME: If we could restructure the CFG, we could make a common pred with
- // all the preds that don't have an available LI and insert a new load into
- // that one block.
- if (NumUnavailablePreds != 1)
- return false;
- // Split critical edges, and update the unavailable predecessors accordingly.
- for (BasicBlock *OrigPred : CriticalEdgePred) {
- BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
- assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
- PredLoads[NewPred] = nullptr;
- DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
- << LoadBB->getName() << '\n');
- }
- // Check if the load can safely be moved to all the unavailable predecessors.
- bool CanDoPRE = true;
- const DataLayout &DL = LI->getModule()->getDataLayout();
- SmallVector<Instruction*, 8> NewInsts;
- for (auto &PredLoad : PredLoads) {
- BasicBlock *UnavailablePred = PredLoad.first;
- // Do PHI translation to get its value in the predecessor if necessary. The
- // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
- // If all preds have a single successor, then we know it is safe to insert
- // the load on the pred (?!?), so we can insert code to materialize the
- // pointer if it is not available.
- PHITransAddr Address(LI->getPointerOperand(), DL, AC);
- Value *LoadPtr = nullptr;
- LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
- *DT, NewInsts);
- // If we couldn't find or insert a computation of this phi translated value,
- // we fail PRE.
- if (!LoadPtr) {
- DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
- << *LI->getPointerOperand() << "\n");
- CanDoPRE = false;
- break;
- }
- PredLoad.second = LoadPtr;
- }
- if (!CanDoPRE) {
- while (!NewInsts.empty()) {
- Instruction *I = NewInsts.pop_back_val();
- if (MD) MD->removeInstruction(I);
- I->eraseFromParent();
- }
- // HINT: Don't revert the edge-splitting as following transformation may
- // also need to split these critical edges.
- return !CriticalEdgePred.empty();
- }
- // Okay, we can eliminate this load by inserting a reload in the predecessor
- // and using PHI construction to get the value in the other predecessors, do
- // it.
- DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
- DEBUG(if (!NewInsts.empty())
- dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
- << *NewInsts.back() << '\n');
- // Assign value numbers to the new instructions.
- for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
- // FIXME: We really _ought_ to insert these value numbers into their
- // parent's availability map. However, in doing so, we risk getting into
- // ordering issues. If a block hasn't been processed yet, we would be
- // marking a value as AVAIL-IN, which isn't what we intend.
- VN.lookup_or_add(NewInsts[i]);
- }
- for (const auto &PredLoad : PredLoads) {
- BasicBlock *UnavailablePred = PredLoad.first;
- Value *LoadPtr = PredLoad.second;
- Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
- LI->getAlignment(),
- UnavailablePred->getTerminator());
- // Transfer the old load's AA tags to the new load.
- AAMDNodes Tags;
- LI->getAAMetadata(Tags);
- if (Tags)
- NewLoad->setAAMetadata(Tags);
- // Transfer DebugLoc.
- NewLoad->setDebugLoc(LI->getDebugLoc());
- // Add the newly created load.
- ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
- NewLoad));
- MD->invalidateCachedPointerInfo(LoadPtr);
- DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
- }
- // Perform PHI construction.
- Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
- LI->replaceAllUsesWith(V);
- if (isa<PHINode>(V))
- V->takeName(LI);
- if (Instruction *I = dyn_cast<Instruction>(V))
- I->setDebugLoc(LI->getDebugLoc());
- if (V->getType()->getScalarType()->isPointerTy())
- MD->invalidateCachedPointerInfo(V);
- markInstructionForDeletion(LI);
- ++NumPRELoad;
- return true;
- }
- /// Attempt to eliminate a load whose dependencies are
- /// non-local by performing PHI construction.
- bool GVN::processNonLocalLoad(LoadInst *LI) {
- // Step 1: Find the non-local dependencies of the load.
- LoadDepVect Deps;
- MD->getNonLocalPointerDependency(LI, Deps);
- // If we had to process more than one hundred blocks to find the
- // dependencies, this load isn't worth worrying about. Optimizing
- // it will be too expensive.
- unsigned NumDeps = Deps.size();
- if (NumDeps > 100)
- return false;
- // If we had a phi translation failure, we'll have a single entry which is a
- // clobber in the current block. Reject this early.
- if (NumDeps == 1 &&
- !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
- DEBUG(
- dbgs() << "GVN: non-local load ";
- LI->printAsOperand(dbgs());
- dbgs() << " has unknown dependencies\n";
- );
- return false;
- }
- // If this load follows a GEP, see if we can PRE the indices before analyzing.
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
- for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
- OE = GEP->idx_end();
- OI != OE; ++OI)
- if (Instruction *I = dyn_cast<Instruction>(OI->get()))
- performScalarPRE(I);
- }
- // Step 2: Analyze the availability of the load
- AvailValInBlkVect ValuesPerBlock;
- UnavailBlkVect UnavailableBlocks;
- AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
- // If we have no predecessors that produce a known value for this load, exit
- // early.
- if (ValuesPerBlock.empty())
- return false;
- // Step 3: Eliminate fully redundancy.
- //
- // If all of the instructions we depend on produce a known value for this
- // load, then it is fully redundant and we can use PHI insertion to compute
- // its value. Insert PHIs and remove the fully redundant value now.
- if (UnavailableBlocks.empty()) {
- DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
- // Perform PHI construction.
- Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
- LI->replaceAllUsesWith(V);
- if (isa<PHINode>(V))
- V->takeName(LI);
- if (Instruction *I = dyn_cast<Instruction>(V))
- I->setDebugLoc(LI->getDebugLoc());
- if (V->getType()->getScalarType()->isPointerTy())
- MD->invalidateCachedPointerInfo(V);
- markInstructionForDeletion(LI);
- ++NumGVNLoad;
- return true;
- }
- // Step 4: Eliminate partial redundancy.
- if (!EnablePRE || !EnableLoadPRE)
- return false;
- return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
- }
- static void patchReplacementInstruction(Instruction *I, Value *Repl) {
- // Patch the replacement so that it is not more restrictive than the value
- // being replaced.
- BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
- BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
- if (Op && ReplOp)
- ReplOp->andIRFlags(Op);
- if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
- // FIXME: If both the original and replacement value are part of the
- // same control-flow region (meaning that the execution of one
- // guarentees the executation of the other), then we can combine the
- // noalias scopes here and do better than the general conservative
- // answer used in combineMetadata().
- // In general, GVN unifies expressions over different control-flow
- // regions, and so we need a conservative combination of the noalias
- // scopes.
- static const unsigned KnownIDs[] = {
- LLVMContext::MD_tbaa,
- LLVMContext::MD_alias_scope,
- LLVMContext::MD_noalias,
- LLVMContext::MD_range,
- LLVMContext::MD_fpmath,
- LLVMContext::MD_invariant_load,
- };
- combineMetadata(ReplInst, I, KnownIDs);
- }
- }
- static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
- patchReplacementInstruction(I, Repl);
- I->replaceAllUsesWith(Repl);
- }
- /// Attempt to eliminate a load, first by eliminating it
- /// locally, and then attempting non-local elimination if that fails.
- bool GVN::processLoad(LoadInst *L) {
- if (!MD)
- return false;
- if (!L->isSimple())
- return false;
- if (L->use_empty()) {
- markInstructionForDeletion(L);
- return true;
- }
- // ... to a pointer that has been loaded from before...
- MemDepResult Dep = MD->getDependency(L);
- const DataLayout &DL = L->getModule()->getDataLayout();
- // If we have a clobber and target data is around, see if this is a clobber
- // that we can fix up through code synthesis.
- if (Dep.isClobber()) {
- // Check to see if we have something like this:
- // store i32 123, i32* %P
- // %A = bitcast i32* %P to i8*
- // %B = gep i8* %A, i32 1
- // %C = load i8* %B
- //
- // We could do that by recognizing if the clobber instructions are obviously
- // a common base + constant offset, and if the previous store (or memset)
- // completely covers this load. This sort of thing can happen in bitfield
- // access code.
- Value *AvailVal = nullptr;
- if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
- int Offset = AnalyzeLoadFromClobberingStore(
- L->getType(), L->getPointerOperand(), DepSI);
- if (Offset != -1)
- AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
- L->getType(), L, DL);
- }
- // Check to see if we have something like this:
- // load i32* P
- // load i8* (P+1)
- // if we have this, replace the later with an extraction from the former.
- if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
- // If this is a clobber and L is the first instruction in its block, then
- // we have the first instruction in the entry block.
- if (DepLI == L)
- return false;
- int Offset = AnalyzeLoadFromClobberingLoad(
- L->getType(), L->getPointerOperand(), DepLI, DL);
- if (Offset != -1)
- AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
- }
- // If the clobbering value is a memset/memcpy/memmove, see if we can forward
- // a value on from it.
- if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
- int Offset = AnalyzeLoadFromClobberingMemInst(
- L->getType(), L->getPointerOperand(), DepMI, DL);
- if (Offset != -1)
- AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, DL);
- }
- if (AvailVal) {
- DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
- << *AvailVal << '\n' << *L << "\n\n\n");
- // Replace the load!
- L->replaceAllUsesWith(AvailVal);
- if (AvailVal->getType()->getScalarType()->isPointerTy())
- MD->invalidateCachedPointerInfo(AvailVal);
- markInstructionForDeletion(L);
- ++NumGVNLoad;
- return true;
- }
- }
- // If the value isn't available, don't do anything!
- if (Dep.isClobber()) {
- DEBUG(
- // fast print dep, using operator<< on instruction is too slow.
- dbgs() << "GVN: load ";
- L->printAsOperand(dbgs());
- Instruction *I = Dep.getInst();
- dbgs() << " is clobbered by " << *I << '\n';
- );
- return false;
- }
- // If it is defined in another block, try harder.
- if (Dep.isNonLocal())
- return processNonLocalLoad(L);
- if (!Dep.isDef()) {
- DEBUG(
- // fast print dep, using operator<< on instruction is too slow.
- dbgs() << "GVN: load ";
- L->printAsOperand(dbgs());
- dbgs() << " has unknown dependence\n";
- );
- return false;
- }
- Instruction *DepInst = Dep.getInst();
- if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
- Value *StoredVal = DepSI->getValueOperand();
- // The store and load are to a must-aliased pointer, but they may not
- // actually have the same type. See if we know how to reuse the stored
- // value (depending on its type).
- if (StoredVal->getType() != L->getType()) {
- IRBuilder<> Builder(L);
- StoredVal =
- CoerceAvailableValueToLoadType(StoredVal, L->getType(), Builder, DL);
- if (!StoredVal)
- return false;
- DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
- << '\n' << *L << "\n\n\n");
- }
- // Remove it!
- L->replaceAllUsesWith(StoredVal);
- if (StoredVal->getType()->getScalarType()->isPointerTy())
- MD->invalidateCachedPointerInfo(StoredVal);
- markInstructionForDeletion(L);
- ++NumGVNLoad;
- return true;
- }
- if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
- Value *AvailableVal = DepLI;
- // The loads are of a must-aliased pointer, but they may not actually have
- // the same type. See if we know how to reuse the previously loaded value
- // (depending on its type).
- if (DepLI->getType() != L->getType()) {
- IRBuilder<> Builder(L);
- AvailableVal =
- CoerceAvailableValueToLoadType(DepLI, L->getType(), Builder, DL);
- if (!AvailableVal)
- return false;
- DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
- << "\n" << *L << "\n\n\n");
- }
- // Remove it!
- patchAndReplaceAllUsesWith(L, AvailableVal);
- if (DepLI->getType()->getScalarType()->isPointerTy())
- MD->invalidateCachedPointerInfo(DepLI);
- markInstructionForDeletion(L);
- ++NumGVNLoad;
- return true;
- }
- // If this load really doesn't depend on anything, then we must be loading an
- // undef value. This can happen when loading for a fresh allocation with no
- // intervening stores, for example.
- if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
- L->replaceAllUsesWith(UndefValue::get(L->getType()));
- markInstructionForDeletion(L);
- ++NumGVNLoad;
- return true;
- }
- // If this load occurs either right after a lifetime begin,
- // then the loaded value is undefined.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
- if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
- L->replaceAllUsesWith(UndefValue::get(L->getType()));
- markInstructionForDeletion(L);
- ++NumGVNLoad;
- return true;
- }
- }
- // If this load follows a calloc (which zero initializes memory),
- // then the loaded value is zero
- if (isCallocLikeFn(DepInst, TLI)) {
- L->replaceAllUsesWith(Constant::getNullValue(L->getType()));
- markInstructionForDeletion(L);
- ++NumGVNLoad;
- return true;
- }
- return false;
- }
- // In order to find a leader for a given value number at a
- // specific basic block, we first obtain the list of all Values for that number,
- // and then scan the list to find one whose block dominates the block in
- // question. This is fast because dominator tree queries consist of only
- // a few comparisons of DFS numbers.
- Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
- LeaderTableEntry Vals = LeaderTable[num];
- if (!Vals.Val) return nullptr;
- Value *Val = nullptr;
- if (DT->dominates(Vals.BB, BB)) {
- Val = Vals.Val;
- if (isa<Constant>(Val)) return Val;
- }
- LeaderTableEntry* Next = Vals.Next;
- while (Next) {
- if (DT->dominates(Next->BB, BB)) {
- if (isa<Constant>(Next->Val)) return Next->Val;
- if (!Val) Val = Next->Val;
- }
- Next = Next->Next;
- }
- return Val;
- }
- /// There is an edge from 'Src' to 'Dst'. Return
- /// true if every path from the entry block to 'Dst' passes via this edge. In
- /// particular 'Dst' must not be reachable via another edge from 'Src'.
- static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
- DominatorTree *DT) {
- // While in theory it is interesting to consider the case in which Dst has
- // more than one predecessor, because Dst might be part of a loop which is
- // only reachable from Src, in practice it is pointless since at the time
- // GVN runs all such loops have preheaders, which means that Dst will have
- // been changed to have only one predecessor, namely Src.
- const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
- const BasicBlock *Src = E.getStart();
- assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
- (void)Src;
- return Pred != nullptr;
- }
- /// The given values are known to be equal in every block
- /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with
- /// 'RHS' everywhere in the scope. Returns whether a change was made.
- bool GVN::propagateEquality(Value *LHS, Value *RHS,
- const BasicBlockEdge &Root) {
- SmallVector<std::pair<Value*, Value*>, 4> Worklist;
- Worklist.push_back(std::make_pair(LHS, RHS));
- bool Changed = false;
- // For speed, compute a conservative fast approximation to
- // DT->dominates(Root, Root.getEnd());
- bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
- while (!Worklist.empty()) {
- std::pair<Value*, Value*> Item = Worklist.pop_back_val();
- LHS = Item.first; RHS = Item.second;
- if (LHS == RHS) continue;
- assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
- // Don't try to propagate equalities between constants.
- if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
- // Prefer a constant on the right-hand side, or an Argument if no constants.
- if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
- std::swap(LHS, RHS);
- assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
- // If there is no obvious reason to prefer the left-hand side over the
- // right-hand side, ensure the longest lived term is on the right-hand side,
- // so the shortest lived term will be replaced by the longest lived.
- // This tends to expose more simplifications.
- uint32_t LVN = VN.lookup_or_add(LHS);
- if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
- (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
- // Move the 'oldest' value to the right-hand side, using the value number
- // as a proxy for age.
- uint32_t RVN = VN.lookup_or_add(RHS);
- if (LVN < RVN) {
- std::swap(LHS, RHS);
- LVN = RVN;
- }
- }
- // If value numbering later sees that an instruction in the scope is equal
- // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve
- // the invariant that instructions only occur in the leader table for their
- // own value number (this is used by removeFromLeaderTable), do not do this
- // if RHS is an instruction (if an instruction in the scope is morphed into
- // LHS then it will be turned into RHS by the next GVN iteration anyway, so
- // using the leader table is about compiling faster, not optimizing better).
- // The leader table only tracks basic blocks, not edges. Only add to if we
- // have the simple case where the edge dominates the end.
- if (RootDominatesEnd && !isa<Instruction>(RHS))
- addToLeaderTable(LVN, RHS, Root.getEnd());
- // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As
- // LHS always has at least one use that is not dominated by Root, this will
- // never do anything if LHS has only one use.
- if (!LHS->hasOneUse()) {
- unsigned NumReplacements = replaceDominatedUsesWith(LHS, RHS, *DT, Root);
- Changed |= NumReplacements > 0;
- NumGVNEqProp += NumReplacements;
- }
- // Now try to deduce additional equalities from this one. For example, if
- // the known equality was "(A != B)" == "false" then it follows that A and B
- // are equal in the scope. Only boolean equalities with an explicit true or
- // false RHS are currently supported.
- if (!RHS->getType()->isIntegerTy(1))
- // Not a boolean equality - bail out.
- continue;
- ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
- if (!CI)
- // RHS neither 'true' nor 'false' - bail out.
- continue;
- // Whether RHS equals 'true'. Otherwise it equals 'false'.
- bool isKnownTrue = CI->isAllOnesValue();
- bool isKnownFalse = !isKnownTrue;
- // If "A && B" is known true then both A and B are known true. If "A || B"
- // is known false then both A and B are known false.
- Value *A, *B;
- if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
- (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
- Worklist.push_back(std::make_pair(A, RHS));
- Worklist.push_back(std::make_pair(B, RHS));
- continue;
- }
- // If we are propagating an equality like "(A == B)" == "true" then also
- // propagate the equality A == B. When propagating a comparison such as
- // "(A >= B)" == "true", replace all instances of "A < B" with "false".
- if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
- Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
- // If "A == B" is known true, or "A != B" is known false, then replace
- // A with B everywhere in the scope.
- if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
- (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
- Worklist.push_back(std::make_pair(Op0, Op1));
- // Handle the floating point versions of equality comparisons too.
- if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
- (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
- // Floating point -0.0 and 0.0 compare equal, so we can only
- // propagate values if we know that we have a constant and that
- // its value is non-zero.
-
- // FIXME: We should do this optimization if 'no signed zeros' is
- // applicable via an instruction-level fast-math-flag or some other
- // indicator that relaxed FP semantics are being used.
- if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero())
- Worklist.push_back(std::make_pair(Op0, Op1));
- }
-
- // If "A >= B" is known true, replace "A < B" with false everywhere.
- CmpInst::Predicate NotPred = Cmp->getInversePredicate();
- Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
- // Since we don't have the instruction "A < B" immediately to hand, work
- // out the value number that it would have and use that to find an
- // appropriate instruction (if any).
- uint32_t NextNum = VN.getNextUnusedValueNumber();
- uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
- // If the number we were assigned was brand new then there is no point in
- // looking for an instruction realizing it: there cannot be one!
- if (Num < NextNum) {
- Value *NotCmp = findLeader(Root.getEnd(), Num);
- if (NotCmp && isa<Instruction>(NotCmp)) {
- unsigned NumReplacements =
- replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root);
- Changed |= NumReplacements > 0;
- NumGVNEqProp += NumReplacements;
- }
- }
- // Ensure that any instruction in scope that gets the "A < B" value number
- // is replaced with false.
- // The leader table only tracks basic blocks, not edges. Only add to if we
- // have the simple case where the edge dominates the end.
- if (RootDominatesEnd)
- addToLeaderTable(Num, NotVal, Root.getEnd());
- continue;
- }
- }
- return Changed;
- }
- /// When calculating availability, handle an instruction
- /// by inserting it into the appropriate sets
- bool GVN::processInstruction(Instruction *I) {
- // Ignore dbg info intrinsics.
- if (isa<DbgInfoIntrinsic>(I))
- return false;
- // If the instruction can be easily simplified then do so now in preference
- // to value numbering it. Value numbering often exposes redundancies, for
- // example if it determines that %y is equal to %x then the instruction
- // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
- const DataLayout &DL = I->getModule()->getDataLayout();
- if (Value *V = SimplifyInstruction(I, DL, TLI, DT, AC)) {
- I->replaceAllUsesWith(V);
- if (MD && V->getType()->getScalarType()->isPointerTy())
- MD->invalidateCachedPointerInfo(V);
- markInstructionForDeletion(I);
- ++NumGVNSimpl;
- return true;
- }
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- if (processLoad(LI))
- return true;
- unsigned Num = VN.lookup_or_add(LI);
- addToLeaderTable(Num, LI, LI->getParent());
- return false;
- }
- // For conditional branches, we can perform simple conditional propagation on
- // the condition value itself.
- if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
- if (!BI->isConditional())
- return false;
- if (isa<Constant>(BI->getCondition()))
- return processFoldableCondBr(BI);
- Value *BranchCond = BI->getCondition();
- BasicBlock *TrueSucc = BI->getSuccessor(0);
- BasicBlock *FalseSucc = BI->getSuccessor(1);
- // Avoid multiple edges early.
- if (TrueSucc == FalseSucc)
- return false;
- BasicBlock *Parent = BI->getParent();
- bool Changed = false;
- Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
- BasicBlockEdge TrueE(Parent, TrueSucc);
- Changed |= propagateEquality(BranchCond, TrueVal, TrueE);
- Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
- BasicBlockEdge FalseE(Parent, FalseSucc);
- Changed |= propagateEquality(BranchCond, FalseVal, FalseE);
- return Changed;
- }
- // For switches, propagate the case values into the case destinations.
- if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
- Value *SwitchCond = SI->getCondition();
- BasicBlock *Parent = SI->getParent();
- bool Changed = false;
- // Remember how many outgoing edges there are to every successor.
- SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
- for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
- ++SwitchEdges[SI->getSuccessor(i)];
- for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
- i != e; ++i) {
- BasicBlock *Dst = i.getCaseSuccessor();
- // If there is only a single edge, propagate the case value into it.
- if (SwitchEdges.lookup(Dst) == 1) {
- BasicBlockEdge E(Parent, Dst);
- Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E);
- }
- }
- return Changed;
- }
- // Instructions with void type don't return a value, so there's
- // no point in trying to find redundancies in them.
- if (I->getType()->isVoidTy()) return false;
- uint32_t NextNum = VN.getNextUnusedValueNumber();
- unsigned Num = VN.lookup_or_add(I);
- // Allocations are always uniquely numbered, so we can save time and memory
- // by fast failing them.
- if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
- addToLeaderTable(Num, I, I->getParent());
- return false;
- }
- // If the number we were assigned was a brand new VN, then we don't
- // need to do a lookup to see if the number already exists
- // somewhere in the domtree: it can't!
- if (Num >= NextNum) {
- addToLeaderTable(Num, I, I->getParent());
- return false;
- }
- // Perform fast-path value-number based elimination of values inherited from
- // dominators.
- Value *repl = findLeader(I->getParent(), Num);
- if (!repl) {
- // Failure, just remember this instance for future use.
- addToLeaderTable(Num, I, I->getParent());
- return false;
- }
- // Remove it!
- patchAndReplaceAllUsesWith(I, repl);
- if (MD && repl->getType()->getScalarType()->isPointerTy())
- MD->invalidateCachedPointerInfo(repl);
- markInstructionForDeletion(I);
- return true;
- }
- /// runOnFunction - This is the main transformation entry point for a function.
- bool GVN::runOnFunction(Function& F) {
- if (skipOptnoneFunction(F))
- return false;
- if (!NoLoads)
- MD = &getAnalysis<MemoryDependenceAnalysis>();
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
- VN.setMemDep(MD);
- VN.setDomTree(DT);
- bool Changed = false;
- bool ShouldContinue = true;
- // Merge unconditional branches, allowing PRE to catch more
- // optimization opportunities.
- for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
- BasicBlock *BB = FI++;
- bool removedBlock = MergeBlockIntoPredecessor(
- BB, DT, /* LoopInfo */ nullptr, VN.getAliasAnalysis(), MD);
- if (removedBlock) ++NumGVNBlocks;
- Changed |= removedBlock;
- }
- unsigned Iteration = 0;
- while (ShouldContinue) {
- DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
- ShouldContinue = iterateOnFunction(F);
- Changed |= ShouldContinue;
- ++Iteration;
- }
- if (EnablePRE) {
- // Fabricate val-num for dead-code in order to suppress assertion in
- // performPRE().
- assignValNumForDeadCode();
- bool PREChanged = true;
- while (PREChanged) {
- PREChanged = performPRE(F);
- Changed |= PREChanged;
- }
- }
- // FIXME: Should perform GVN again after PRE does something. PRE can move
- // computations into blocks where they become fully redundant. Note that
- // we can't do this until PRE's critical edge splitting updates memdep.
- // Actually, when this happens, we should just fully integrate PRE into GVN.
- cleanupGlobalSets();
- // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
- // iteration.
- DeadBlocks.clear();
- return Changed;
- }
- bool GVN::processBlock(BasicBlock *BB) {
- // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
- // (and incrementing BI before processing an instruction).
- assert(InstrsToErase.empty() &&
- "We expect InstrsToErase to be empty across iterations");
- if (DeadBlocks.count(BB))
- return false;
- bool ChangedFunction = false;
- for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
- BI != BE;) {
- ChangedFunction |= processInstruction(BI);
- if (InstrsToErase.empty()) {
- ++BI;
- continue;
- }
- // If we need some instructions deleted, do it now.
- NumGVNInstr += InstrsToErase.size();
- // Avoid iterator invalidation.
- bool AtStart = BI == BB->begin();
- if (!AtStart)
- --BI;
- for (SmallVectorImpl<Instruction *>::iterator I = InstrsToErase.begin(),
- E = InstrsToErase.end(); I != E; ++I) {
- DEBUG(dbgs() << "GVN removed: " << **I << '\n');
- if (MD) MD->removeInstruction(*I);
- DEBUG(verifyRemoved(*I));
- (*I)->eraseFromParent();
- }
- InstrsToErase.clear();
- if (AtStart)
- BI = BB->begin();
- else
- ++BI;
- }
- return ChangedFunction;
- }
- // Instantiate an expression in a predecessor that lacked it.
- bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
- unsigned int ValNo) {
- // Because we are going top-down through the block, all value numbers
- // will be available in the predecessor by the time we need them. Any
- // that weren't originally present will have been instantiated earlier
- // in this loop.
- bool success = true;
- for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
- Value *Op = Instr->getOperand(i);
- if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
- continue;
- if (Value *V = findLeader(Pred, VN.lookup(Op))) {
- Instr->setOperand(i, V);
- } else {
- success = false;
- break;
- }
- }
- // Fail out if we encounter an operand that is not available in
- // the PRE predecessor. This is typically because of loads which
- // are not value numbered precisely.
- if (!success)
- return false;
- Instr->insertBefore(Pred->getTerminator());
- Instr->setName(Instr->getName() + ".pre");
- Instr->setDebugLoc(Instr->getDebugLoc());
- VN.add(Instr, ValNo);
- // Update the availability map to include the new instruction.
- addToLeaderTable(ValNo, Instr, Pred);
- return true;
- }
- bool GVN::performScalarPRE(Instruction *CurInst) {
- SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap;
- if (isa<AllocaInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
- isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
- CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
- isa<DbgInfoIntrinsic>(CurInst))
- return false;
- // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
- // sinking the compare again, and it would force the code generator to
- // move the i1 from processor flags or predicate registers into a general
- // purpose register.
- if (isa<CmpInst>(CurInst))
- return false;
- // HLSL Change Begin - Don't do PRE on pointer which may generate phi of
- // pointers.
- if (dyn_cast<PointerType>(CurInst->getType())) {
- return false;
- }
- // HLSL Change End
- // We don't currently value number ANY inline asm calls.
- if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
- if (CallI->isInlineAsm())
- return false;
- uint32_t ValNo = VN.lookup(CurInst);
- // Look for the predecessors for PRE opportunities. We're
- // only trying to solve the basic diamond case, where
- // a value is computed in the successor and one predecessor,
- // but not the other. We also explicitly disallow cases
- // where the successor is its own predecessor, because they're
- // more complicated to get right.
- unsigned NumWith = 0;
- unsigned NumWithout = 0;
- BasicBlock *PREPred = nullptr;
- BasicBlock *CurrentBlock = CurInst->getParent();
- predMap.clear();
- for (pred_iterator PI = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
- PI != PE; ++PI) {
- BasicBlock *P = *PI;
- // We're not interested in PRE where the block is its
- // own predecessor, or in blocks with predecessors
- // that are not reachable.
- if (P == CurrentBlock) {
- NumWithout = 2;
- break;
- } else if (!DT->isReachableFromEntry(P)) {
- NumWithout = 2;
- break;
- }
- Value *predV = findLeader(P, ValNo);
- if (!predV) {
- predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
- PREPred = P;
- ++NumWithout;
- } else if (predV == CurInst) {
- /* CurInst dominates this predecessor. */
- NumWithout = 2;
- break;
- } else {
- predMap.push_back(std::make_pair(predV, P));
- ++NumWith;
- }
- }
- // Don't do PRE when it might increase code size, i.e. when
- // we would need to insert instructions in more than one pred.
- if (NumWithout > 1 || NumWith == 0)
- return false;
- // We may have a case where all predecessors have the instruction,
- // and we just need to insert a phi node. Otherwise, perform
- // insertion.
- Instruction *PREInstr = nullptr;
- if (NumWithout != 0) {
- // Don't do PRE across indirect branch.
- if (isa<IndirectBrInst>(PREPred->getTerminator()))
- return false;
- // We can't do PRE safely on a critical edge, so instead we schedule
- // the edge to be split and perform the PRE the next time we iterate
- // on the function.
- unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
- if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
- toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
- return false;
- }
- // We need to insert somewhere, so let's give it a shot
- PREInstr = CurInst->clone();
- if (!performScalarPREInsertion(PREInstr, PREPred, ValNo)) {
- // If we failed insertion, make sure we remove the instruction.
- DEBUG(verifyRemoved(PREInstr));
- delete PREInstr;
- return false;
- }
- }
- // Either we should have filled in the PRE instruction, or we should
- // not have needed insertions.
- assert (PREInstr != nullptr || NumWithout == 0);
- ++NumGVNPRE;
- // Create a PHI to make the value available in this block.
- PHINode *Phi =
- PHINode::Create(CurInst->getType(), predMap.size(),
- CurInst->getName() + ".pre-phi", CurrentBlock->begin());
- for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
- if (Value *V = predMap[i].first)
- Phi->addIncoming(V, predMap[i].second);
- else
- Phi->addIncoming(PREInstr, PREPred);
- }
- VN.add(Phi, ValNo);
- addToLeaderTable(ValNo, Phi, CurrentBlock);
- Phi->setDebugLoc(CurInst->getDebugLoc());
- CurInst->replaceAllUsesWith(Phi);
- if (Phi->getType()->getScalarType()->isPointerTy()) {
- // Because we have added a PHI-use of the pointer value, it has now
- // "escaped" from alias analysis' perspective. We need to inform
- // AA of this.
- for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee; ++ii) {
- unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
- VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
- }
- if (MD)
- MD->invalidateCachedPointerInfo(Phi);
- }
- VN.erase(CurInst);
- removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
- DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
- if (MD)
- MD->removeInstruction(CurInst);
- DEBUG(verifyRemoved(CurInst));
- CurInst->eraseFromParent();
- ++NumGVNInstr;
-
- return true;
- }
- /// Perform a purely local form of PRE that looks for diamond
- /// control flow patterns and attempts to perform simple PRE at the join point.
- bool GVN::performPRE(Function &F) {
- bool Changed = false;
- for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
- // Nothing to PRE in the entry block.
- if (CurrentBlock == &F.getEntryBlock())
- continue;
- // Don't perform PRE on a landing pad.
- if (CurrentBlock->isLandingPad())
- continue;
- for (BasicBlock::iterator BI = CurrentBlock->begin(),
- BE = CurrentBlock->end();
- BI != BE;) {
- Instruction *CurInst = BI++;
- Changed = performScalarPRE(CurInst);
- }
- }
- if (splitCriticalEdges())
- Changed = true;
- return Changed;
- }
- /// Split the critical edge connecting the given two blocks, and return
- /// the block inserted to the critical edge.
- BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
- BasicBlock *BB = SplitCriticalEdge(
- Pred, Succ, CriticalEdgeSplittingOptions(getAliasAnalysis(), DT));
- if (MD)
- MD->invalidateCachedPredecessors();
- return BB;
- }
- /// Split critical edges found during the previous
- /// iteration that may enable further optimization.
- bool GVN::splitCriticalEdges() {
- if (toSplit.empty())
- return false;
- do {
- std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
- SplitCriticalEdge(Edge.first, Edge.second,
- CriticalEdgeSplittingOptions(getAliasAnalysis(), DT));
- } while (!toSplit.empty());
- if (MD) MD->invalidateCachedPredecessors();
- return true;
- }
- /// Executes one iteration of GVN
- bool GVN::iterateOnFunction(Function &F) {
- cleanupGlobalSets();
- // Top-down walk of the dominator tree
- bool Changed = false;
- // Save the blocks this function have before transformation begins. GVN may
- // split critical edge, and hence may invalidate the RPO/DT iterator.
- //
- std::vector<BasicBlock *> BBVect;
- BBVect.reserve(256);
- // Needed for value numbering with phi construction to work.
- ReversePostOrderTraversal<Function *> RPOT(&F);
- for (ReversePostOrderTraversal<Function *>::rpo_iterator RI = RPOT.begin(),
- RE = RPOT.end();
- RI != RE; ++RI)
- BBVect.push_back(*RI);
- for (std::vector<BasicBlock *>::iterator I = BBVect.begin(), E = BBVect.end();
- I != E; I++)
- Changed |= processBlock(*I);
- return Changed;
- }
- void GVN::cleanupGlobalSets() {
- VN.clear();
- LeaderTable.clear();
- TableAllocator.Reset();
- }
- /// Verify that the specified instruction does not occur in our
- /// internal data structures.
- void GVN::verifyRemoved(const Instruction *Inst) const {
- VN.verifyRemoved(Inst);
- // Walk through the value number scope to make sure the instruction isn't
- // ferreted away in it.
- for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
- I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
- const LeaderTableEntry *Node = &I->second;
- assert(Node->Val != Inst && "Inst still in value numbering scope!");
- while (Node->Next) {
- Node = Node->Next;
- assert(Node->Val != Inst && "Inst still in value numbering scope!");
- }
- }
- }
- /// BB is declared dead, which implied other blocks become dead as well. This
- /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
- /// live successors, update their phi nodes by replacing the operands
- /// corresponding to dead blocks with UndefVal.
- void GVN::addDeadBlock(BasicBlock *BB) {
- SmallVector<BasicBlock *, 4> NewDead;
- SmallSetVector<BasicBlock *, 4> DF;
- NewDead.push_back(BB);
- while (!NewDead.empty()) {
- BasicBlock *D = NewDead.pop_back_val();
- if (DeadBlocks.count(D))
- continue;
- // All blocks dominated by D are dead.
- SmallVector<BasicBlock *, 8> Dom;
- DT->getDescendants(D, Dom);
- DeadBlocks.insert(Dom.begin(), Dom.end());
-
- // Figure out the dominance-frontier(D).
- for (SmallVectorImpl<BasicBlock *>::iterator I = Dom.begin(),
- E = Dom.end(); I != E; I++) {
- BasicBlock *B = *I;
- for (succ_iterator SI = succ_begin(B), SE = succ_end(B); SI != SE; SI++) {
- BasicBlock *S = *SI;
- if (DeadBlocks.count(S))
- continue;
- bool AllPredDead = true;
- for (pred_iterator PI = pred_begin(S), PE = pred_end(S); PI != PE; PI++)
- if (!DeadBlocks.count(*PI)) {
- AllPredDead = false;
- break;
- }
- if (!AllPredDead) {
- // S could be proved dead later on. That is why we don't update phi
- // operands at this moment.
- DF.insert(S);
- } else {
- // While S is not dominated by D, it is dead by now. This could take
- // place if S already have a dead predecessor before D is declared
- // dead.
- NewDead.push_back(S);
- }
- }
- }
- }
- // For the dead blocks' live successors, update their phi nodes by replacing
- // the operands corresponding to dead blocks with UndefVal.
- for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
- I != E; I++) {
- BasicBlock *B = *I;
- if (DeadBlocks.count(B))
- continue;
- SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
- for (SmallVectorImpl<BasicBlock *>::iterator PI = Preds.begin(),
- PE = Preds.end(); PI != PE; PI++) {
- BasicBlock *P = *PI;
- if (!DeadBlocks.count(P))
- continue;
- if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
- if (BasicBlock *S = splitCriticalEdges(P, B))
- DeadBlocks.insert(P = S);
- }
- for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
- PHINode &Phi = cast<PHINode>(*II);
- Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
- UndefValue::get(Phi.getType()));
- }
- }
- }
- }
- // If the given branch is recognized as a foldable branch (i.e. conditional
- // branch with constant condition), it will perform following analyses and
- // transformation.
- // 1) If the dead out-coming edge is a critical-edge, split it. Let
- // R be the target of the dead out-coming edge.
- // 1) Identify the set of dead blocks implied by the branch's dead outcoming
- // edge. The result of this step will be {X| X is dominated by R}
- // 2) Identify those blocks which haves at least one dead prodecessor. The
- // result of this step will be dominance-frontier(R).
- // 3) Update the PHIs in DF(R) by replacing the operands corresponding to
- // dead blocks with "UndefVal" in an hope these PHIs will optimized away.
- //
- // Return true iff *NEW* dead code are found.
- bool GVN::processFoldableCondBr(BranchInst *BI) {
- if (!BI || BI->isUnconditional())
- return false;
- // If a branch has two identical successors, we cannot declare either dead.
- if (BI->getSuccessor(0) == BI->getSuccessor(1))
- return false;
- ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
- if (!Cond)
- return false;
- BasicBlock *DeadRoot = Cond->getZExtValue() ?
- BI->getSuccessor(1) : BI->getSuccessor(0);
- if (DeadBlocks.count(DeadRoot))
- return false;
- if (!DeadRoot->getSinglePredecessor())
- DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
- addDeadBlock(DeadRoot);
- return true;
- }
- // performPRE() will trigger assert if it comes across an instruction without
- // associated val-num. As it normally has far more live instructions than dead
- // instructions, it makes more sense just to "fabricate" a val-number for the
- // dead code than checking if instruction involved is dead or not.
- void GVN::assignValNumForDeadCode() {
- for (SetVector<BasicBlock *>::iterator I = DeadBlocks.begin(),
- E = DeadBlocks.end(); I != E; I++) {
- BasicBlock *BB = *I;
- for (BasicBlock::iterator II = BB->begin(), EE = BB->end();
- II != EE; II++) {
- Instruction *Inst = &*II;
- unsigned ValNum = VN.lookup_or_add(Inst);
- addToLeaderTable(ValNum, Inst, BB);
- }
- }
- }
|