| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112 |
- //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This transformation analyzes and transforms the induction variables (and
- // computations derived from them) into simpler forms suitable for subsequent
- // analysis and transformation.
- //
- // If the trip count of a loop is computable, this pass also makes the following
- // changes:
- // 1. The exit condition for the loop is canonicalized to compare the
- // induction value against the exit value. This turns loops like:
- // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
- // 2. Any use outside of the loop of an expression derived from the indvar
- // is changed to compute the derived value outside of the loop, eliminating
- // the dependence on the exit value of the induction variable. If the only
- // purpose of the loop is to compute the exit value of some derived
- // expression, this transformation will make the loop dead.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/ScalarEvolutionExpander.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/SimplifyIndVar.h"
- using namespace llvm;
- #define DEBUG_TYPE "indvars"
- STATISTIC(NumWidened , "Number of indvars widened");
- STATISTIC(NumReplaced , "Number of exit values replaced");
- STATISTIC(NumLFTR , "Number of loop exit tests replaced");
- STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
- STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
- #if 0 // HLSL Change Starts - option pending
- // Trip count verification can be enabled by default under NDEBUG if we
- // implement a strong expression equivalence checker in SCEV. Until then, we
- // use the verify-indvars flag, which may assert in some cases.
- static cl::opt<bool> VerifyIndvars(
- "verify-indvars", cl::Hidden,
- cl::desc("Verify the ScalarEvolution result after running indvars"));
- static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
- cl::desc("Reduce live induction variables."));
- enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
- static cl::opt<ReplaceExitVal> ReplaceExitValue(
- "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
- cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
- cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
- clEnumValN(OnlyCheapRepl, "cheap",
- "only replace exit value when the cost is cheap"),
- clEnumValN(AlwaysRepl, "always",
- "always replace exit value whenever possible"),
- clEnumValEnd));
- #else
- static const bool ReduceLiveIVs = false;
- enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
- static const ReplaceExitVal ReplaceExitValue = OnlyCheapRepl;
- #endif // HLSL Change Ends - option pending
- namespace {
- struct RewritePhi;
- }
- namespace {
- class IndVarSimplify : public LoopPass {
- LoopInfo *LI;
- ScalarEvolution *SE;
- DominatorTree *DT;
- TargetLibraryInfo *TLI;
- const TargetTransformInfo *TTI;
- SmallVector<WeakVH, 16> DeadInsts;
- bool Changed;
- public:
- static char ID; // Pass identification, replacement for typeid
- IndVarSimplify()
- : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) {
- initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
- }
- bool runOnLoop(Loop *L, LPPassManager &LPM) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addRequired<ScalarEvolution>();
- AU.addRequiredID(LoopSimplifyID);
- AU.addRequiredID(LCSSAID);
- AU.addPreserved<ScalarEvolution>();
- AU.addPreservedID(LoopSimplifyID);
- AU.addPreservedID(LCSSAID);
- AU.setPreservesCFG();
- }
- private:
- void releaseMemory() override {
- DeadInsts.clear();
- }
- bool isValidRewrite(Value *FromVal, Value *ToVal);
- void HandleFloatingPointIV(Loop *L, PHINode *PH);
- void RewriteNonIntegerIVs(Loop *L);
- void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
- bool CanLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
- void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
- Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
- PHINode *IndVar, SCEVExpander &Rewriter);
- void SinkUnusedInvariants(Loop *L);
- Value *ExpandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L,
- Instruction *InsertPt, Type *Ty,
- bool &IsHighCostExpansion);
- };
- }
- char IndVarSimplify::ID = 0;
- INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
- "Induction Variable Simplification", false, false)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
- INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
- INITIALIZE_PASS_DEPENDENCY(LCSSA)
- INITIALIZE_PASS_END(IndVarSimplify, "indvars",
- "Induction Variable Simplification", false, false)
- Pass *llvm::createIndVarSimplifyPass() {
- return new IndVarSimplify();
- }
- /// isValidRewrite - Return true if the SCEV expansion generated by the
- /// rewriter can replace the original value. SCEV guarantees that it
- /// produces the same value, but the way it is produced may be illegal IR.
- /// Ideally, this function will only be called for verification.
- bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
- // If an SCEV expression subsumed multiple pointers, its expansion could
- // reassociate the GEP changing the base pointer. This is illegal because the
- // final address produced by a GEP chain must be inbounds relative to its
- // underlying object. Otherwise basic alias analysis, among other things,
- // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
- // producing an expression involving multiple pointers. Until then, we must
- // bail out here.
- //
- // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
- // because it understands lcssa phis while SCEV does not.
- Value *FromPtr = FromVal;
- Value *ToPtr = ToVal;
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
- FromPtr = GEP->getPointerOperand();
- }
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
- ToPtr = GEP->getPointerOperand();
- }
- if (FromPtr != FromVal || ToPtr != ToVal) {
- // Quickly check the common case
- if (FromPtr == ToPtr)
- return true;
- // SCEV may have rewritten an expression that produces the GEP's pointer
- // operand. That's ok as long as the pointer operand has the same base
- // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
- // base of a recurrence. This handles the case in which SCEV expansion
- // converts a pointer type recurrence into a nonrecurrent pointer base
- // indexed by an integer recurrence.
- // If the GEP base pointer is a vector of pointers, abort.
- if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
- return false;
- const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
- const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
- if (FromBase == ToBase)
- return true;
- DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
- << *FromBase << " != " << *ToBase << "\n");
- return false;
- }
- return true;
- }
- /// Determine the insertion point for this user. By default, insert immediately
- /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
- /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
- /// common dominator for the incoming blocks.
- static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
- DominatorTree *DT) {
- PHINode *PHI = dyn_cast<PHINode>(User);
- if (!PHI)
- return User;
- Instruction *InsertPt = nullptr;
- for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
- if (PHI->getIncomingValue(i) != Def)
- continue;
- BasicBlock *InsertBB = PHI->getIncomingBlock(i);
- if (!InsertPt) {
- InsertPt = InsertBB->getTerminator();
- continue;
- }
- InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
- InsertPt = InsertBB->getTerminator();
- }
- assert(InsertPt && "Missing phi operand");
- assert((!isa<Instruction>(Def) ||
- DT->dominates(cast<Instruction>(Def), InsertPt)) &&
- "def does not dominate all uses");
- return InsertPt;
- }
- //===----------------------------------------------------------------------===//
- // RewriteNonIntegerIVs and helpers. Prefer integer IVs.
- //===----------------------------------------------------------------------===//
- /// ConvertToSInt - Convert APF to an integer, if possible.
- static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
- bool isExact = false;
- // See if we can convert this to an int64_t
- uint64_t UIntVal;
- if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
- &isExact) != APFloat::opOK || !isExact)
- return false;
- IntVal = UIntVal;
- return true;
- }
- /// HandleFloatingPointIV - If the loop has floating induction variable
- /// then insert corresponding integer induction variable if possible.
- /// For example,
- /// for(double i = 0; i < 10000; ++i)
- /// bar(i)
- /// is converted into
- /// for(int i = 0; i < 10000; ++i)
- /// bar((double)i);
- ///
- void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
- unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
- unsigned BackEdge = IncomingEdge^1;
- // Check incoming value.
- ConstantFP *InitValueVal =
- dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
- int64_t InitValue;
- if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
- return;
- // Check IV increment. Reject this PN if increment operation is not
- // an add or increment value can not be represented by an integer.
- BinaryOperator *Incr =
- dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
- if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
- // If this is not an add of the PHI with a constantfp, or if the constant fp
- // is not an integer, bail out.
- ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
- int64_t IncValue;
- if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
- !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
- return;
- // Check Incr uses. One user is PN and the other user is an exit condition
- // used by the conditional terminator.
- Value::user_iterator IncrUse = Incr->user_begin();
- Instruction *U1 = cast<Instruction>(*IncrUse++);
- if (IncrUse == Incr->user_end()) return;
- Instruction *U2 = cast<Instruction>(*IncrUse++);
- if (IncrUse != Incr->user_end()) return;
- // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
- // only used by a branch, we can't transform it.
- FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
- if (!Compare)
- Compare = dyn_cast<FCmpInst>(U2);
- if (!Compare || !Compare->hasOneUse() ||
- !isa<BranchInst>(Compare->user_back()))
- return;
- BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
- // We need to verify that the branch actually controls the iteration count
- // of the loop. If not, the new IV can overflow and no one will notice.
- // The branch block must be in the loop and one of the successors must be out
- // of the loop.
- assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
- if (!L->contains(TheBr->getParent()) ||
- (L->contains(TheBr->getSuccessor(0)) &&
- L->contains(TheBr->getSuccessor(1))))
- return;
- // If it isn't a comparison with an integer-as-fp (the exit value), we can't
- // transform it.
- ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
- int64_t ExitValue;
- if (ExitValueVal == nullptr ||
- !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
- return;
- // Find new predicate for integer comparison.
- CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
- switch (Compare->getPredicate()) {
- default: return; // Unknown comparison.
- case CmpInst::FCMP_OEQ:
- case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
- case CmpInst::FCMP_ONE:
- case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
- case CmpInst::FCMP_OGT:
- case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
- case CmpInst::FCMP_OGE:
- case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
- case CmpInst::FCMP_OLT:
- case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
- case CmpInst::FCMP_OLE:
- case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
- }
- // We convert the floating point induction variable to a signed i32 value if
- // we can. This is only safe if the comparison will not overflow in a way
- // that won't be trapped by the integer equivalent operations. Check for this
- // now.
- // TODO: We could use i64 if it is native and the range requires it.
- // The start/stride/exit values must all fit in signed i32.
- if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
- return;
- // If not actually striding (add x, 0.0), avoid touching the code.
- if (IncValue == 0)
- return;
- // Positive and negative strides have different safety conditions.
- if (IncValue > 0) {
- // If we have a positive stride, we require the init to be less than the
- // exit value.
- if (InitValue >= ExitValue)
- return;
- uint32_t Range = uint32_t(ExitValue-InitValue);
- // Check for infinite loop, either:
- // while (i <= Exit) or until (i > Exit)
- if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
- if (++Range == 0) return; // Range overflows.
- }
- unsigned Leftover = Range % uint32_t(IncValue);
- // If this is an equality comparison, we require that the strided value
- // exactly land on the exit value, otherwise the IV condition will wrap
- // around and do things the fp IV wouldn't.
- if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
- Leftover != 0)
- return;
- // If the stride would wrap around the i32 before exiting, we can't
- // transform the IV.
- if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
- return;
- } else {
- // If we have a negative stride, we require the init to be greater than the
- // exit value.
- if (InitValue <= ExitValue)
- return;
- uint32_t Range = uint32_t(InitValue-ExitValue);
- // Check for infinite loop, either:
- // while (i >= Exit) or until (i < Exit)
- if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
- if (++Range == 0) return; // Range overflows.
- }
- unsigned Leftover = Range % uint32_t(-IncValue);
- // If this is an equality comparison, we require that the strided value
- // exactly land on the exit value, otherwise the IV condition will wrap
- // around and do things the fp IV wouldn't.
- if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
- Leftover != 0)
- return;
- // If the stride would wrap around the i32 before exiting, we can't
- // transform the IV.
- if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
- return;
- }
- IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
- // Insert new integer induction variable.
- PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
- NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
- PN->getIncomingBlock(IncomingEdge));
- Value *NewAdd =
- BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
- Incr->getName()+".int", Incr);
- NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
- ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
- ConstantInt::get(Int32Ty, ExitValue),
- Compare->getName());
- // In the following deletions, PN may become dead and may be deleted.
- // Use a WeakVH to observe whether this happens.
- WeakVH WeakPH = PN;
- // Delete the old floating point exit comparison. The branch starts using the
- // new comparison.
- NewCompare->takeName(Compare);
- Compare->replaceAllUsesWith(NewCompare);
- RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
- // Delete the old floating point increment.
- Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
- RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
- // If the FP induction variable still has uses, this is because something else
- // in the loop uses its value. In order to canonicalize the induction
- // variable, we chose to eliminate the IV and rewrite it in terms of an
- // int->fp cast.
- //
- // We give preference to sitofp over uitofp because it is faster on most
- // platforms.
- if (WeakPH) {
- Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
- PN->getParent()->getFirstInsertionPt());
- PN->replaceAllUsesWith(Conv);
- RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
- }
- Changed = true;
- }
- void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
- // First step. Check to see if there are any floating-point recurrences.
- // If there are, change them into integer recurrences, permitting analysis by
- // the SCEV routines.
- //
- BasicBlock *Header = L->getHeader();
- SmallVector<WeakVH, 8> PHIs;
- for (BasicBlock::iterator I = Header->begin();
- PHINode *PN = dyn_cast<PHINode>(I); ++I)
- PHIs.push_back(PN);
- for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
- if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
- HandleFloatingPointIV(L, PN);
- // If the loop previously had floating-point IV, ScalarEvolution
- // may not have been able to compute a trip count. Now that we've done some
- // re-writing, the trip count may be computable.
- if (Changed)
- SE->forgetLoop(L);
- }
- namespace {
- // Collect information about PHI nodes which can be transformed in
- // RewriteLoopExitValues.
- struct RewritePhi {
- PHINode *PN;
- unsigned Ith; // Ith incoming value.
- Value *Val; // Exit value after expansion.
- bool HighCost; // High Cost when expansion.
- bool SafePhi; // LCSSASafePhiForRAUW.
- RewritePhi(PHINode *P, unsigned I, Value *V, bool H, bool S)
- : PN(P), Ith(I), Val(V), HighCost(H), SafePhi(S) {}
- };
- }
- Value *IndVarSimplify::ExpandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S,
- Loop *L, Instruction *InsertPt,
- Type *ResultTy,
- bool &IsHighCostExpansion) {
- using namespace llvm::PatternMatch;
- if (!Rewriter.isHighCostExpansion(S, L)) {
- IsHighCostExpansion = false;
- return Rewriter.expandCodeFor(S, ResultTy, InsertPt);
- }
- // Before expanding S into an expensive LLVM expression, see if we can use an
- // already existing value as the expansion for S. There is potential to make
- // this significantly smarter, but this simple heuristic already gets some
- // interesting cases.
- SmallVector<BasicBlock *, 4> Latches;
- L->getLoopLatches(Latches);
- for (BasicBlock *BB : Latches) {
- ICmpInst::Predicate Pred;
- Instruction *LHS, *RHS;
- BasicBlock *TrueBB, *FalseBB;
- if (!match(BB->getTerminator(),
- m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
- TrueBB, FalseBB)))
- continue;
- if (SE->getSCEV(LHS) == S && DT->dominates(LHS, InsertPt)) {
- IsHighCostExpansion = false;
- return LHS;
- }
- if (SE->getSCEV(RHS) == S && DT->dominates(RHS, InsertPt)) {
- IsHighCostExpansion = false;
- return RHS;
- }
- }
- // We didn't find anything, fall back to using SCEVExpander.
- assert(Rewriter.isHighCostExpansion(S, L) && "this should not have changed!");
- IsHighCostExpansion = true;
- return Rewriter.expandCodeFor(S, ResultTy, InsertPt);
- }
- //===----------------------------------------------------------------------===//
- // RewriteLoopExitValues - Optimize IV users outside the loop.
- // As a side effect, reduces the amount of IV processing within the loop.
- //===----------------------------------------------------------------------===//
- /// RewriteLoopExitValues - Check to see if this loop has a computable
- /// loop-invariant execution count. If so, this means that we can compute the
- /// final value of any expressions that are recurrent in the loop, and
- /// substitute the exit values from the loop into any instructions outside of
- /// the loop that use the final values of the current expressions.
- ///
- /// This is mostly redundant with the regular IndVarSimplify activities that
- /// happen later, except that it's more powerful in some cases, because it's
- /// able to brute-force evaluate arbitrary instructions as long as they have
- /// constant operands at the beginning of the loop.
- void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
- // Verify the input to the pass in already in LCSSA form.
- assert(L->isLCSSAForm(*DT));
- SmallVector<BasicBlock*, 8> ExitBlocks;
- L->getUniqueExitBlocks(ExitBlocks);
- SmallVector<RewritePhi, 8> RewritePhiSet;
- // Find all values that are computed inside the loop, but used outside of it.
- // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
- // the exit blocks of the loop to find them.
- for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
- BasicBlock *ExitBB = ExitBlocks[i];
- // If there are no PHI nodes in this exit block, then no values defined
- // inside the loop are used on this path, skip it.
- PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
- if (!PN) continue;
- unsigned NumPreds = PN->getNumIncomingValues();
- // We would like to be able to RAUW single-incoming value PHI nodes. We
- // have to be certain this is safe even when this is an LCSSA PHI node.
- // While the computed exit value is no longer varying in *this* loop, the
- // exit block may be an exit block for an outer containing loop as well,
- // the exit value may be varying in the outer loop, and thus it may still
- // require an LCSSA PHI node. The safe case is when this is
- // single-predecessor PHI node (LCSSA) and the exit block containing it is
- // part of the enclosing loop, or this is the outer most loop of the nest.
- // In either case the exit value could (at most) be varying in the same
- // loop body as the phi node itself. Thus if it is in turn used outside of
- // an enclosing loop it will only be via a separate LCSSA node.
- bool LCSSASafePhiForRAUW =
- NumPreds == 1 &&
- (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB));
- // Iterate over all of the PHI nodes.
- BasicBlock::iterator BBI = ExitBB->begin();
- while ((PN = dyn_cast<PHINode>(BBI++))) {
- if (PN->use_empty())
- continue; // dead use, don't replace it
- // SCEV only supports integer expressions for now.
- if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
- continue;
- // It's necessary to tell ScalarEvolution about this explicitly so that
- // it can walk the def-use list and forget all SCEVs, as it may not be
- // watching the PHI itself. Once the new exit value is in place, there
- // may not be a def-use connection between the loop and every instruction
- // which got a SCEVAddRecExpr for that loop.
- SE->forgetValue(PN);
- // Iterate over all of the values in all the PHI nodes.
- for (unsigned i = 0; i != NumPreds; ++i) {
- // If the value being merged in is not integer or is not defined
- // in the loop, skip it.
- Value *InVal = PN->getIncomingValue(i);
- if (!isa<Instruction>(InVal))
- continue;
- // If this pred is for a subloop, not L itself, skip it.
- if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
- continue; // The Block is in a subloop, skip it.
- // Check that InVal is defined in the loop.
- Instruction *Inst = cast<Instruction>(InVal);
- if (!L->contains(Inst))
- continue;
- // Okay, this instruction has a user outside of the current loop
- // and varies predictably *inside* the loop. Evaluate the value it
- // contains when the loop exits, if possible.
- const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
- if (!SE->isLoopInvariant(ExitValue, L) ||
- !isSafeToExpand(ExitValue, *SE))
- continue;
- // Computing the value outside of the loop brings no benefit if :
- // - it is definitely used inside the loop in a way which can not be
- // optimized away.
- // - no use outside of the loop can take advantage of hoisting the
- // computation out of the loop
- if (ExitValue->getSCEVType()>=scMulExpr) {
- unsigned NumHardInternalUses = 0;
- unsigned NumSoftExternalUses = 0;
- unsigned NumUses = 0;
- for (auto IB = Inst->user_begin(), IE = Inst->user_end();
- IB != IE && NumUses <= 6; ++IB) {
- Instruction *UseInstr = cast<Instruction>(*IB);
- unsigned Opc = UseInstr->getOpcode();
- NumUses++;
- if (L->contains(UseInstr)) {
- if (Opc == Instruction::Call || Opc == Instruction::Ret)
- NumHardInternalUses++;
- } else {
- if (Opc == Instruction::PHI) {
- // Do not count the Phi as a use. LCSSA may have inserted
- // plenty of trivial ones.
- NumUses--;
- for (auto PB = UseInstr->user_begin(),
- PE = UseInstr->user_end();
- PB != PE && NumUses <= 6; ++PB, ++NumUses) {
- unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
- if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
- NumSoftExternalUses++;
- }
- continue;
- }
- if (Opc != Instruction::Call && Opc != Instruction::Ret)
- NumSoftExternalUses++;
- }
- }
- if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
- continue;
- }
- bool HighCost = false;
- Value *ExitVal = ExpandSCEVIfNeeded(Rewriter, ExitValue, L, Inst,
- PN->getType(), HighCost);
- DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
- << " LoopVal = " << *Inst << "\n");
- if (!isValidRewrite(Inst, ExitVal)) {
- DeadInsts.push_back(ExitVal);
- continue;
- }
- // Collect all the candidate PHINodes to be rewritten.
- RewritePhiSet.push_back(
- RewritePhi(PN, i, ExitVal, HighCost, LCSSASafePhiForRAUW));
- }
- }
- }
- bool LoopCanBeDel = CanLoopBeDeleted(L, RewritePhiSet);
- // Transformation.
- for (const RewritePhi &Phi : RewritePhiSet) {
- PHINode *PN = Phi.PN;
- Value *ExitVal = Phi.Val;
- // Only do the rewrite when the ExitValue can be expanded cheaply.
- // If LoopCanBeDel is true, rewrite exit value aggressively.
- if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
- DeadInsts.push_back(ExitVal);
- continue;
- }
- Changed = true;
- ++NumReplaced;
- Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
- PN->setIncomingValue(Phi.Ith, ExitVal);
- // If this instruction is dead now, delete it. Don't do it now to avoid
- // invalidating iterators.
- if (isInstructionTriviallyDead(Inst, TLI))
- DeadInsts.push_back(Inst);
- // If we determined that this PHI is safe to replace even if an LCSSA
- // PHI, do so.
- if (Phi.SafePhi) {
- PN->replaceAllUsesWith(ExitVal);
- PN->eraseFromParent();
- }
- }
- // The insertion point instruction may have been deleted; clear it out
- // so that the rewriter doesn't trip over it later.
- Rewriter.clearInsertPoint();
- }
- /// CanLoopBeDeleted - Check whether it is possible to delete the loop after
- /// rewriting exit value. If it is possible, ignore ReplaceExitValue and
- /// do rewriting aggressively.
- bool IndVarSimplify::CanLoopBeDeleted(
- Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
- BasicBlock *Preheader = L->getLoopPreheader();
- // If there is no preheader, the loop will not be deleted.
- if (!Preheader)
- return false;
- // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
- // We obviate multiple ExitingBlocks case for simplicity.
- // TODO: If we see testcase with multiple ExitingBlocks can be deleted
- // after exit value rewriting, we can enhance the logic here.
- SmallVector<BasicBlock *, 4> ExitingBlocks;
- L->getExitingBlocks(ExitingBlocks);
- SmallVector<BasicBlock *, 8> ExitBlocks;
- L->getUniqueExitBlocks(ExitBlocks);
- if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
- return false;
- BasicBlock *ExitBlock = ExitBlocks[0];
- BasicBlock::iterator BI = ExitBlock->begin();
- while (PHINode *P = dyn_cast<PHINode>(BI)) {
- Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
- // If the Incoming value of P is found in RewritePhiSet, we know it
- // could be rewritten to use a loop invariant value in transformation
- // phase later. Skip it in the loop invariant check below.
- bool found = false;
- for (const RewritePhi &Phi : RewritePhiSet) {
- unsigned i = Phi.Ith;
- if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
- found = true;
- break;
- }
- }
- Instruction *I;
- if (!found && (I = dyn_cast<Instruction>(Incoming)))
- if (!L->hasLoopInvariantOperands(I))
- return false;
- ++BI;
- }
- for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
- LI != LE; ++LI) {
- for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end(); BI != BE;
- ++BI) {
- if (BI->mayHaveSideEffects())
- return false;
- }
- }
- return true;
- }
- //===----------------------------------------------------------------------===//
- // IV Widening - Extend the width of an IV to cover its widest uses.
- //===----------------------------------------------------------------------===//
- namespace {
- // Collect information about induction variables that are used by sign/zero
- // extend operations. This information is recorded by CollectExtend and
- // provides the input to WidenIV.
- struct WideIVInfo {
- PHINode *NarrowIV;
- Type *WidestNativeType; // Widest integer type created [sz]ext
- bool IsSigned; // Was a sext user seen before a zext?
- WideIVInfo() : NarrowIV(nullptr), WidestNativeType(nullptr),
- IsSigned(false) {}
- };
- }
- /// visitCast - Update information about the induction variable that is
- /// extended by this sign or zero extend operation. This is used to determine
- /// the final width of the IV before actually widening it.
- static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
- const TargetTransformInfo *TTI) {
- bool IsSigned = Cast->getOpcode() == Instruction::SExt;
- if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
- return;
- Type *Ty = Cast->getType();
- uint64_t Width = SE->getTypeSizeInBits(Ty);
- if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
- return;
- // Cast is either an sext or zext up to this point.
- // We should not widen an indvar if arithmetics on the wider indvar are more
- // expensive than those on the narrower indvar. We check only the cost of ADD
- // because at least an ADD is required to increment the induction variable. We
- // could compute more comprehensively the cost of all instructions on the
- // induction variable when necessary.
- if (TTI &&
- TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
- TTI->getArithmeticInstrCost(Instruction::Add,
- Cast->getOperand(0)->getType())) {
- return;
- }
- if (!WI.WidestNativeType) {
- WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
- WI.IsSigned = IsSigned;
- return;
- }
- // We extend the IV to satisfy the sign of its first user, arbitrarily.
- if (WI.IsSigned != IsSigned)
- return;
- if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
- WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
- }
- namespace {
- /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
- /// WideIV that computes the same value as the Narrow IV def. This avoids
- /// caching Use* pointers.
- struct NarrowIVDefUse {
- Instruction *NarrowDef;
- Instruction *NarrowUse;
- Instruction *WideDef;
- NarrowIVDefUse(): NarrowDef(nullptr), NarrowUse(nullptr), WideDef(nullptr) {}
- NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
- NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
- };
- /// WidenIV - The goal of this transform is to remove sign and zero extends
- /// without creating any new induction variables. To do this, it creates a new
- /// phi of the wider type and redirects all users, either removing extends or
- /// inserting truncs whenever we stop propagating the type.
- ///
- class WidenIV {
- // Parameters
- PHINode *OrigPhi;
- Type *WideType;
- bool IsSigned;
- // Context
- LoopInfo *LI;
- Loop *L;
- ScalarEvolution *SE;
- DominatorTree *DT;
- // Result
- PHINode *WidePhi;
- Instruction *WideInc;
- const SCEV *WideIncExpr;
- SmallVectorImpl<WeakVH> &DeadInsts;
- SmallPtrSet<Instruction*,16> Widened;
- SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
- public:
- WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
- ScalarEvolution *SEv, DominatorTree *DTree,
- SmallVectorImpl<WeakVH> &DI) :
- OrigPhi(WI.NarrowIV),
- WideType(WI.WidestNativeType),
- IsSigned(WI.IsSigned),
- LI(LInfo),
- L(LI->getLoopFor(OrigPhi->getParent())),
- SE(SEv),
- DT(DTree),
- WidePhi(nullptr),
- WideInc(nullptr),
- WideIncExpr(nullptr),
- DeadInsts(DI) {
- assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
- }
- PHINode *CreateWideIV(SCEVExpander &Rewriter);
- protected:
- Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
- Instruction *Use);
- Instruction *CloneIVUser(NarrowIVDefUse DU);
- const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
- const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
- const SCEV *GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
- unsigned OpCode) const;
- Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
- bool WidenLoopCompare(NarrowIVDefUse DU);
- void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
- };
- } // anonymous namespace
- /// isLoopInvariant - Perform a quick domtree based check for loop invariance
- /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
- /// gratuitous for this purpose.
- static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
- Instruction *Inst = dyn_cast<Instruction>(V);
- if (!Inst)
- return true;
- return DT->properlyDominates(Inst->getParent(), L->getHeader());
- }
- Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
- Instruction *Use) {
- // Set the debug location and conservative insertion point.
- IRBuilder<> Builder(Use);
- // Hoist the insertion point into loop preheaders as far as possible.
- for (const Loop *L = LI->getLoopFor(Use->getParent());
- L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
- L = L->getParentLoop())
- Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
- return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
- Builder.CreateZExt(NarrowOper, WideType);
- }
- /// CloneIVUser - Instantiate a wide operation to replace a narrow
- /// operation. This only needs to handle operations that can evaluation to
- /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
- Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
- unsigned Opcode = DU.NarrowUse->getOpcode();
- switch (Opcode) {
- default:
- return nullptr;
- case Instruction::Add:
- case Instruction::Mul:
- case Instruction::UDiv:
- case Instruction::Sub:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
- // Replace NarrowDef operands with WideDef. Otherwise, we don't know
- // anything about the narrow operand yet so must insert a [sz]ext. It is
- // probably loop invariant and will be folded or hoisted. If it actually
- // comes from a widened IV, it should be removed during a future call to
- // WidenIVUse.
- Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
- getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
- Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
- getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
- BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
- BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
- LHS, RHS,
- NarrowBO->getName());
- IRBuilder<> Builder(DU.NarrowUse);
- Builder.Insert(WideBO);
- if (const OverflowingBinaryOperator *OBO =
- dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
- if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
- if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
- }
- return WideBO;
- }
- }
- const SCEV *WidenIV::GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
- unsigned OpCode) const {
- if (OpCode == Instruction::Add)
- return SE->getAddExpr(LHS, RHS);
- if (OpCode == Instruction::Sub)
- return SE->getMinusSCEV(LHS, RHS);
- if (OpCode == Instruction::Mul)
- return SE->getMulExpr(LHS, RHS);
- llvm_unreachable("Unsupported opcode.");
- }
- /// No-wrap operations can transfer sign extension of their result to their
- /// operands. Generate the SCEV value for the widened operation without
- /// actually modifying the IR yet. If the expression after extending the
- /// operands is an AddRec for this loop, return it.
- const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
- // Handle the common case of add<nsw/nuw>
- const unsigned OpCode = DU.NarrowUse->getOpcode();
- // Only Add/Sub/Mul instructions supported yet.
- if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
- OpCode != Instruction::Mul)
- return nullptr;
- // One operand (NarrowDef) has already been extended to WideDef. Now determine
- // if extending the other will lead to a recurrence.
- const unsigned ExtendOperIdx =
- DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
- assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
- const SCEV *ExtendOperExpr = nullptr;
- const OverflowingBinaryOperator *OBO =
- cast<OverflowingBinaryOperator>(DU.NarrowUse);
- if (IsSigned && OBO->hasNoSignedWrap())
- ExtendOperExpr = SE->getSignExtendExpr(
- SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
- else if(!IsSigned && OBO->hasNoUnsignedWrap())
- ExtendOperExpr = SE->getZeroExtendExpr(
- SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
- else
- return nullptr;
- // When creating this SCEV expr, don't apply the current operations NSW or NUW
- // flags. This instruction may be guarded by control flow that the no-wrap
- // behavior depends on. Non-control-equivalent instructions can be mapped to
- // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
- // semantics to those operations.
- const SCEV *lhs = SE->getSCEV(DU.WideDef);
- const SCEV *rhs = ExtendOperExpr;
- // Let's swap operands to the initial order for the case of non-commutative
- // operations, like SUB. See PR21014.
- if (ExtendOperIdx == 0)
- std::swap(lhs, rhs);
- const SCEVAddRecExpr *AddRec =
- dyn_cast<SCEVAddRecExpr>(GetSCEVByOpCode(lhs, rhs, OpCode));
- if (!AddRec || AddRec->getLoop() != L)
- return nullptr;
- return AddRec;
- }
- /// GetWideRecurrence - Is this instruction potentially interesting for further
- /// simplification after widening it's type? In other words, can the
- /// extend be safely hoisted out of the loop with SCEV reducing the value to a
- /// recurrence on the same loop. If so, return the sign or zero extended
- /// recurrence. Otherwise return NULL.
- const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
- if (!SE->isSCEVable(NarrowUse->getType()))
- return nullptr;
- const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
- if (SE->getTypeSizeInBits(NarrowExpr->getType())
- >= SE->getTypeSizeInBits(WideType)) {
- // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
- // index. So don't follow this use.
- return nullptr;
- }
- const SCEV *WideExpr = IsSigned ?
- SE->getSignExtendExpr(NarrowExpr, WideType) :
- SE->getZeroExtendExpr(NarrowExpr, WideType);
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
- if (!AddRec || AddRec->getLoop() != L)
- return nullptr;
- return AddRec;
- }
- /// This IV user cannot be widen. Replace this use of the original narrow IV
- /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
- static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) {
- DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
- << " for user " << *DU.NarrowUse << "\n");
- IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
- Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
- DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
- }
- /// If the narrow use is a compare instruction, then widen the compare
- // (and possibly the other operand). The extend operation is hoisted into the
- // loop preheader as far as possible.
- bool WidenIV::WidenLoopCompare(NarrowIVDefUse DU) {
- ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
- if (!Cmp)
- return false;
- // Sign of IV user and compare must match.
- if (IsSigned != CmpInst::isSigned(Cmp->getPredicate()))
- return false;
- Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
- unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
- unsigned IVWidth = SE->getTypeSizeInBits(WideType);
- assert (CastWidth <= IVWidth && "Unexpected width while widening compare.");
- // Widen the compare instruction.
- IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
- DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
- // Widen the other operand of the compare, if necessary.
- if (CastWidth < IVWidth) {
- Value *ExtOp = getExtend(Op, WideType, IsSigned, Cmp);
- DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
- }
- return true;
- }
- /// WidenIVUse - Determine whether an individual user of the narrow IV can be
- /// widened. If so, return the wide clone of the user.
- Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
- // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
- if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
- if (LI->getLoopFor(UsePhi->getParent()) != L) {
- // For LCSSA phis, sink the truncate outside the loop.
- // After SimplifyCFG most loop exit targets have a single predecessor.
- // Otherwise fall back to a truncate within the loop.
- if (UsePhi->getNumOperands() != 1)
- truncateIVUse(DU, DT);
- else {
- PHINode *WidePhi =
- PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
- UsePhi);
- WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
- IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt());
- Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
- UsePhi->replaceAllUsesWith(Trunc);
- DeadInsts.emplace_back(UsePhi);
- DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
- << " to " << *WidePhi << "\n");
- }
- return nullptr;
- }
- }
- // Our raison d'etre! Eliminate sign and zero extension.
- if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
- Value *NewDef = DU.WideDef;
- if (DU.NarrowUse->getType() != WideType) {
- unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
- unsigned IVWidth = SE->getTypeSizeInBits(WideType);
- if (CastWidth < IVWidth) {
- // The cast isn't as wide as the IV, so insert a Trunc.
- IRBuilder<> Builder(DU.NarrowUse);
- NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
- }
- else {
- // A wider extend was hidden behind a narrower one. This may induce
- // another round of IV widening in which the intermediate IV becomes
- // dead. It should be very rare.
- DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
- << " not wide enough to subsume " << *DU.NarrowUse << "\n");
- DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
- NewDef = DU.NarrowUse;
- }
- }
- if (NewDef != DU.NarrowUse) {
- DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
- << " replaced by " << *DU.WideDef << "\n");
- ++NumElimExt;
- DU.NarrowUse->replaceAllUsesWith(NewDef);
- DeadInsts.emplace_back(DU.NarrowUse);
- }
- // Now that the extend is gone, we want to expose it's uses for potential
- // further simplification. We don't need to directly inform SimplifyIVUsers
- // of the new users, because their parent IV will be processed later as a
- // new loop phi. If we preserved IVUsers analysis, we would also want to
- // push the uses of WideDef here.
- // No further widening is needed. The deceased [sz]ext had done it for us.
- return nullptr;
- }
- // Does this user itself evaluate to a recurrence after widening?
- const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
- if (!WideAddRec)
- WideAddRec = GetExtendedOperandRecurrence(DU);
- if (!WideAddRec) {
- // If use is a loop condition, try to promote the condition instead of
- // truncating the IV first.
- if (WidenLoopCompare(DU))
- return nullptr;
- // This user does not evaluate to a recurence after widening, so don't
- // follow it. Instead insert a Trunc to kill off the original use,
- // eventually isolating the original narrow IV so it can be removed.
- truncateIVUse(DU, DT);
- return nullptr;
- }
- // Assume block terminators cannot evaluate to a recurrence. We can't to
- // insert a Trunc after a terminator if there happens to be a critical edge.
- assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
- "SCEV is not expected to evaluate a block terminator");
- // Reuse the IV increment that SCEVExpander created as long as it dominates
- // NarrowUse.
- Instruction *WideUse = nullptr;
- if (WideAddRec == WideIncExpr
- && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
- WideUse = WideInc;
- else {
- WideUse = CloneIVUser(DU);
- if (!WideUse)
- return nullptr;
- }
- // Evaluation of WideAddRec ensured that the narrow expression could be
- // extended outside the loop without overflow. This suggests that the wide use
- // evaluates to the same expression as the extended narrow use, but doesn't
- // absolutely guarantee it. Hence the following failsafe check. In rare cases
- // where it fails, we simply throw away the newly created wide use.
- if (WideAddRec != SE->getSCEV(WideUse)) {
- DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
- << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
- DeadInsts.emplace_back(WideUse);
- return nullptr;
- }
- // Returning WideUse pushes it on the worklist.
- return WideUse;
- }
- /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
- ///
- void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
- for (User *U : NarrowDef->users()) {
- Instruction *NarrowUser = cast<Instruction>(U);
- // Handle data flow merges and bizarre phi cycles.
- if (!Widened.insert(NarrowUser).second)
- continue;
- NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUser, WideDef));
- }
- }
- /// CreateWideIV - Process a single induction variable. First use the
- /// SCEVExpander to create a wide induction variable that evaluates to the same
- /// recurrence as the original narrow IV. Then use a worklist to forward
- /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
- /// interesting IV users, the narrow IV will be isolated for removal by
- /// DeleteDeadPHIs.
- ///
- /// It would be simpler to delete uses as they are processed, but we must avoid
- /// invalidating SCEV expressions.
- ///
- PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
- // Is this phi an induction variable?
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
- if (!AddRec)
- return nullptr;
- // Widen the induction variable expression.
- const SCEV *WideIVExpr = IsSigned ?
- SE->getSignExtendExpr(AddRec, WideType) :
- SE->getZeroExtendExpr(AddRec, WideType);
- assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
- "Expect the new IV expression to preserve its type");
- // Can the IV be extended outside the loop without overflow?
- AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
- if (!AddRec || AddRec->getLoop() != L)
- return nullptr;
- // An AddRec must have loop-invariant operands. Since this AddRec is
- // materialized by a loop header phi, the expression cannot have any post-loop
- // operands, so they must dominate the loop header.
- assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
- SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
- && "Loop header phi recurrence inputs do not dominate the loop");
- // The rewriter provides a value for the desired IV expression. This may
- // either find an existing phi or materialize a new one. Either way, we
- // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
- // of the phi-SCC dominates the loop entry.
- Instruction *InsertPt = L->getHeader()->begin();
- WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
- // Remembering the WideIV increment generated by SCEVExpander allows
- // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
- // employ a general reuse mechanism because the call above is the only call to
- // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
- if (BasicBlock *LatchBlock = L->getLoopLatch()) {
- WideInc =
- cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
- WideIncExpr = SE->getSCEV(WideInc);
- }
- DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
- ++NumWidened;
- // Traverse the def-use chain using a worklist starting at the original IV.
- assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
- Widened.insert(OrigPhi);
- pushNarrowIVUsers(OrigPhi, WidePhi);
- while (!NarrowIVUsers.empty()) {
- NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
- // Process a def-use edge. This may replace the use, so don't hold a
- // use_iterator across it.
- Instruction *WideUse = WidenIVUse(DU, Rewriter);
- // Follow all def-use edges from the previous narrow use.
- if (WideUse)
- pushNarrowIVUsers(DU.NarrowUse, WideUse);
- // WidenIVUse may have removed the def-use edge.
- if (DU.NarrowDef->use_empty())
- DeadInsts.emplace_back(DU.NarrowDef);
- }
- return WidePhi;
- }
- //===----------------------------------------------------------------------===//
- // Live IV Reduction - Minimize IVs live across the loop.
- //===----------------------------------------------------------------------===//
- //===----------------------------------------------------------------------===//
- // Simplification of IV users based on SCEV evaluation.
- //===----------------------------------------------------------------------===//
- namespace {
- class IndVarSimplifyVisitor : public IVVisitor {
- ScalarEvolution *SE;
- const TargetTransformInfo *TTI;
- PHINode *IVPhi;
- public:
- WideIVInfo WI;
- IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
- const TargetTransformInfo *TTI,
- const DominatorTree *DTree)
- : SE(SCEV), TTI(TTI), IVPhi(IV) {
- DT = DTree;
- WI.NarrowIV = IVPhi;
- if (ReduceLiveIVs)
- setSplitOverflowIntrinsics();
- }
- // Implement the interface used by simplifyUsersOfIV.
- void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
- };
- }
- /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
- /// users. Each successive simplification may push more users which may
- /// themselves be candidates for simplification.
- ///
- /// Sign/Zero extend elimination is interleaved with IV simplification.
- ///
- void IndVarSimplify::SimplifyAndExtend(Loop *L,
- SCEVExpander &Rewriter,
- LPPassManager &LPM) {
- SmallVector<WideIVInfo, 8> WideIVs;
- SmallVector<PHINode*, 8> LoopPhis;
- for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
- LoopPhis.push_back(cast<PHINode>(I));
- }
- // Each round of simplification iterates through the SimplifyIVUsers worklist
- // for all current phis, then determines whether any IVs can be
- // widened. Widening adds new phis to LoopPhis, inducing another round of
- // simplification on the wide IVs.
- while (!LoopPhis.empty()) {
- // Evaluate as many IV expressions as possible before widening any IVs. This
- // forces SCEV to set no-wrap flags before evaluating sign/zero
- // extension. The first time SCEV attempts to normalize sign/zero extension,
- // the result becomes final. So for the most predictable results, we delay
- // evaluation of sign/zero extend evaluation until needed, and avoid running
- // other SCEV based analysis prior to SimplifyAndExtend.
- do {
- PHINode *CurrIV = LoopPhis.pop_back_val();
- // Information about sign/zero extensions of CurrIV.
- IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
- Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor);
- if (Visitor.WI.WidestNativeType) {
- WideIVs.push_back(Visitor.WI);
- }
- } while(!LoopPhis.empty());
- for (; !WideIVs.empty(); WideIVs.pop_back()) {
- WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
- if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
- Changed = true;
- LoopPhis.push_back(WidePhi);
- }
- }
- }
- }
- //===----------------------------------------------------------------------===//
- // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
- //===----------------------------------------------------------------------===//
- /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
- /// count expression can be safely and cheaply expanded into an instruction
- /// sequence that can be used by LinearFunctionTestReplace.
- ///
- /// TODO: This fails for pointer-type loop counters with greater than one byte
- /// strides, consequently preventing LFTR from running. For the purpose of LFTR
- /// we could skip this check in the case that the LFTR loop counter (chosen by
- /// FindLoopCounter) is also pointer type. Instead, we could directly convert
- /// the loop test to an inequality test by checking the target data's alignment
- /// of element types (given that the initial pointer value originates from or is
- /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
- /// However, we don't yet have a strong motivation for converting loop tests
- /// into inequality tests.
- static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
- SCEVExpander &Rewriter) {
- const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
- if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
- BackedgeTakenCount->isZero())
- return false;
- if (!L->getExitingBlock())
- return false;
- // Can't rewrite non-branch yet.
- if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
- return false;
- if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
- return false;
- return true;
- }
- /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
- /// invariant value to the phi.
- static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
- Instruction *IncI = dyn_cast<Instruction>(IncV);
- if (!IncI)
- return nullptr;
- switch (IncI->getOpcode()) {
- case Instruction::Add:
- case Instruction::Sub:
- break;
- case Instruction::GetElementPtr:
- // An IV counter must preserve its type.
- if (IncI->getNumOperands() == 2)
- break;
- default:
- return nullptr;
- }
- PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
- if (Phi && Phi->getParent() == L->getHeader()) {
- if (isLoopInvariant(IncI->getOperand(1), L, DT))
- return Phi;
- return nullptr;
- }
- if (IncI->getOpcode() == Instruction::GetElementPtr)
- return nullptr;
- // Allow add/sub to be commuted.
- Phi = dyn_cast<PHINode>(IncI->getOperand(1));
- if (Phi && Phi->getParent() == L->getHeader()) {
- if (isLoopInvariant(IncI->getOperand(0), L, DT))
- return Phi;
- }
- return nullptr;
- }
- /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
- static ICmpInst *getLoopTest(Loop *L) {
- assert(L->getExitingBlock() && "expected loop exit");
- BasicBlock *LatchBlock = L->getLoopLatch();
- // Don't bother with LFTR if the loop is not properly simplified.
- if (!LatchBlock)
- return nullptr;
- BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
- assert(BI && "expected exit branch");
- return dyn_cast<ICmpInst>(BI->getCondition());
- }
- /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
- /// that the current exit test is already sufficiently canonical.
- static bool needsLFTR(Loop *L, DominatorTree *DT) {
- // Do LFTR to simplify the exit condition to an ICMP.
- ICmpInst *Cond = getLoopTest(L);
- if (!Cond)
- return true;
- // Do LFTR to simplify the exit ICMP to EQ/NE
- ICmpInst::Predicate Pred = Cond->getPredicate();
- if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
- return true;
- // Look for a loop invariant RHS
- Value *LHS = Cond->getOperand(0);
- Value *RHS = Cond->getOperand(1);
- if (!isLoopInvariant(RHS, L, DT)) {
- if (!isLoopInvariant(LHS, L, DT))
- return true;
- std::swap(LHS, RHS);
- }
- // Look for a simple IV counter LHS
- PHINode *Phi = dyn_cast<PHINode>(LHS);
- if (!Phi)
- Phi = getLoopPhiForCounter(LHS, L, DT);
- if (!Phi)
- return true;
- // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
- int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
- if (Idx < 0)
- return true;
- // Do LFTR if the exit condition's IV is *not* a simple counter.
- Value *IncV = Phi->getIncomingValue(Idx);
- return Phi != getLoopPhiForCounter(IncV, L, DT);
- }
- /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
- /// down to checking that all operands are constant and listing instructions
- /// that may hide undef.
- static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
- unsigned Depth) {
- if (isa<Constant>(V))
- return !isa<UndefValue>(V);
- if (Depth >= 6)
- return false;
- // Conservatively handle non-constant non-instructions. For example, Arguments
- // may be undef.
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I)
- return false;
- // Load and return values may be undef.
- if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
- return false;
- // Optimistically handle other instructions.
- for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
- if (!Visited.insert(*OI).second)
- continue;
- if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
- return false;
- }
- return true;
- }
- /// Return true if the given value is concrete. We must prove that undef can
- /// never reach it.
- ///
- /// TODO: If we decide that this is a good approach to checking for undef, we
- /// may factor it into a common location.
- static bool hasConcreteDef(Value *V) {
- SmallPtrSet<Value*, 8> Visited;
- Visited.insert(V);
- return hasConcreteDefImpl(V, Visited, 0);
- }
- /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
- /// be rewritten) loop exit test.
- static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
- int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
- Value *IncV = Phi->getIncomingValue(LatchIdx);
- for (User *U : Phi->users())
- if (U != Cond && U != IncV) return false;
- for (User *U : IncV->users())
- if (U != Cond && U != Phi) return false;
- return true;
- }
- /// FindLoopCounter - Find an affine IV in canonical form.
- ///
- /// BECount may be an i8* pointer type. The pointer difference is already
- /// valid count without scaling the address stride, so it remains a pointer
- /// expression as far as SCEV is concerned.
- ///
- /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
- ///
- /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
- ///
- /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
- /// This is difficult in general for SCEV because of potential overflow. But we
- /// could at least handle constant BECounts.
- static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
- ScalarEvolution *SE, DominatorTree *DT) {
- uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
- Value *Cond =
- cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
- // Loop over all of the PHI nodes, looking for a simple counter.
- PHINode *BestPhi = nullptr;
- const SCEV *BestInit = nullptr;
- BasicBlock *LatchBlock = L->getLoopLatch();
- assert(LatchBlock && "needsLFTR should guarantee a loop latch");
- for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
- PHINode *Phi = cast<PHINode>(I);
- if (!SE->isSCEVable(Phi->getType()))
- continue;
- // Avoid comparing an integer IV against a pointer Limit.
- if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
- continue;
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
- if (!AR || AR->getLoop() != L || !AR->isAffine())
- continue;
- // AR may be a pointer type, while BECount is an integer type.
- // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
- // AR may not be a narrower type, or we may never exit.
- uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
- if (PhiWidth < BCWidth ||
- !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth))
- continue;
- const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
- if (!Step || !Step->isOne())
- continue;
- int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
- Value *IncV = Phi->getIncomingValue(LatchIdx);
- if (getLoopPhiForCounter(IncV, L, DT) != Phi)
- continue;
- // Avoid reusing a potentially undef value to compute other values that may
- // have originally had a concrete definition.
- if (!hasConcreteDef(Phi)) {
- // We explicitly allow unknown phis as long as they are already used by
- // the loop test. In this case we assume that performing LFTR could not
- // increase the number of undef users.
- if (ICmpInst *Cond = getLoopTest(L)) {
- if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
- && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
- continue;
- }
- }
- }
- const SCEV *Init = AR->getStart();
- if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
- // Don't force a live loop counter if another IV can be used.
- if (AlmostDeadIV(Phi, LatchBlock, Cond))
- continue;
- // Prefer to count-from-zero. This is a more "canonical" counter form. It
- // also prefers integer to pointer IVs.
- if (BestInit->isZero() != Init->isZero()) {
- if (BestInit->isZero())
- continue;
- }
- // If two IVs both count from zero or both count from nonzero then the
- // narrower is likely a dead phi that has been widened. Use the wider phi
- // to allow the other to be eliminated.
- else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
- continue;
- }
- BestPhi = Phi;
- BestInit = Init;
- }
- return BestPhi;
- }
- /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
- /// holds the RHS of the new loop test.
- static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
- SCEVExpander &Rewriter, ScalarEvolution *SE) {
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
- assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
- const SCEV *IVInit = AR->getStart();
- // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
- // finds a valid pointer IV. Sign extend BECount in order to materialize a
- // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
- // the existing GEPs whenever possible.
- if (IndVar->getType()->isPointerTy()
- && !IVCount->getType()->isPointerTy()) {
- // IVOffset will be the new GEP offset that is interpreted by GEP as a
- // signed value. IVCount on the other hand represents the loop trip count,
- // which is an unsigned value. FindLoopCounter only allows induction
- // variables that have a positive unit stride of one. This means we don't
- // have to handle the case of negative offsets (yet) and just need to zero
- // extend IVCount.
- Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
- const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
- // Expand the code for the iteration count.
- assert(SE->isLoopInvariant(IVOffset, L) &&
- "Computed iteration count is not loop invariant!");
- BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
- Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
- Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
- assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
- // We could handle pointer IVs other than i8*, but we need to compensate for
- // gep index scaling. See canExpandBackedgeTakenCount comments.
- assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
- cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
- && "unit stride pointer IV must be i8*");
- IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
- return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
- }
- else {
- // In any other case, convert both IVInit and IVCount to integers before
- // comparing. This may result in SCEV expension of pointers, but in practice
- // SCEV will fold the pointer arithmetic away as such:
- // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
- //
- // Valid Cases: (1) both integers is most common; (2) both may be pointers
- // for simple memset-style loops.
- //
- // IVInit integer and IVCount pointer would only occur if a canonical IV
- // were generated on top of case #2, which is not expected.
- const SCEV *IVLimit = nullptr;
- // For unit stride, IVCount = Start + BECount with 2's complement overflow.
- // For non-zero Start, compute IVCount here.
- if (AR->getStart()->isZero())
- IVLimit = IVCount;
- else {
- assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
- const SCEV *IVInit = AR->getStart();
- // For integer IVs, truncate the IV before computing IVInit + BECount.
- if (SE->getTypeSizeInBits(IVInit->getType())
- > SE->getTypeSizeInBits(IVCount->getType()))
- IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
- IVLimit = SE->getAddExpr(IVInit, IVCount);
- }
- // Expand the code for the iteration count.
- BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
- IRBuilder<> Builder(BI);
- assert(SE->isLoopInvariant(IVLimit, L) &&
- "Computed iteration count is not loop invariant!");
- // Ensure that we generate the same type as IndVar, or a smaller integer
- // type. In the presence of null pointer values, we have an integer type
- // SCEV expression (IVInit) for a pointer type IV value (IndVar).
- Type *LimitTy = IVCount->getType()->isPointerTy() ?
- IndVar->getType() : IVCount->getType();
- return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
- }
- }
- /// LinearFunctionTestReplace - This method rewrites the exit condition of the
- /// loop to be a canonical != comparison against the incremented loop induction
- /// variable. This pass is able to rewrite the exit tests of any loop where the
- /// SCEV analysis can determine a loop-invariant trip count of the loop, which
- /// is actually a much broader range than just linear tests.
- Value *IndVarSimplify::
- LinearFunctionTestReplace(Loop *L,
- const SCEV *BackedgeTakenCount,
- PHINode *IndVar,
- SCEVExpander &Rewriter) {
- assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
- // Initialize CmpIndVar and IVCount to their preincremented values.
- Value *CmpIndVar = IndVar;
- const SCEV *IVCount = BackedgeTakenCount;
- // If the exiting block is the same as the backedge block, we prefer to
- // compare against the post-incremented value, otherwise we must compare
- // against the preincremented value.
- if (L->getExitingBlock() == L->getLoopLatch()) {
- // Add one to the "backedge-taken" count to get the trip count.
- // This addition may overflow, which is valid as long as the comparison is
- // truncated to BackedgeTakenCount->getType().
- IVCount = SE->getAddExpr(BackedgeTakenCount,
- SE->getConstant(BackedgeTakenCount->getType(), 1));
- // The BackedgeTaken expression contains the number of times that the
- // backedge branches to the loop header. This is one less than the
- // number of times the loop executes, so use the incremented indvar.
- CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
- }
- Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
- assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
- && "genLoopLimit missed a cast");
- // Insert a new icmp_ne or icmp_eq instruction before the branch.
- BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
- ICmpInst::Predicate P;
- if (L->contains(BI->getSuccessor(0)))
- P = ICmpInst::ICMP_NE;
- else
- P = ICmpInst::ICMP_EQ;
- DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
- << " LHS:" << *CmpIndVar << '\n'
- << " op:\t"
- << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
- << " RHS:\t" << *ExitCnt << "\n"
- << " IVCount:\t" << *IVCount << "\n");
- IRBuilder<> Builder(BI);
- // LFTR can ignore IV overflow and truncate to the width of
- // BECount. This avoids materializing the add(zext(add)) expression.
- unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
- unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
- if (CmpIndVarSize > ExitCntSize) {
- const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
- const SCEV *ARStart = AR->getStart();
- const SCEV *ARStep = AR->getStepRecurrence(*SE);
- // For constant IVCount, avoid truncation.
- if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
- const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue();
- APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue();
- // Note that the post-inc value of BackedgeTakenCount may have overflowed
- // above such that IVCount is now zero.
- if (IVCount != BackedgeTakenCount && Count == 0) {
- Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
- ++Count;
- }
- else
- Count = Count.zext(CmpIndVarSize);
- APInt NewLimit;
- if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
- NewLimit = Start - Count;
- else
- NewLimit = Start + Count;
- ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
- DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n");
- } else {
- CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
- "lftr.wideiv");
- }
- }
- Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
- Value *OrigCond = BI->getCondition();
- // It's tempting to use replaceAllUsesWith here to fully replace the old
- // comparison, but that's not immediately safe, since users of the old
- // comparison may not be dominated by the new comparison. Instead, just
- // update the branch to use the new comparison; in the common case this
- // will make old comparison dead.
- BI->setCondition(Cond);
- DeadInsts.push_back(OrigCond);
- ++NumLFTR;
- Changed = true;
- return Cond;
- }
- //===----------------------------------------------------------------------===//
- // SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
- //===----------------------------------------------------------------------===//
- /// If there's a single exit block, sink any loop-invariant values that
- /// were defined in the preheader but not used inside the loop into the
- /// exit block to reduce register pressure in the loop.
- void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
- BasicBlock *ExitBlock = L->getExitBlock();
- if (!ExitBlock) return;
- BasicBlock *Preheader = L->getLoopPreheader();
- if (!Preheader) return;
- Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
- BasicBlock::iterator I = Preheader->getTerminator();
- while (I != Preheader->begin()) {
- --I;
- // New instructions were inserted at the end of the preheader.
- if (isa<PHINode>(I))
- break;
- // Don't move instructions which might have side effects, since the side
- // effects need to complete before instructions inside the loop. Also don't
- // move instructions which might read memory, since the loop may modify
- // memory. Note that it's okay if the instruction might have undefined
- // behavior: LoopSimplify guarantees that the preheader dominates the exit
- // block.
- if (I->mayHaveSideEffects() || I->mayReadFromMemory())
- continue;
- // Skip debug info intrinsics.
- if (isa<DbgInfoIntrinsic>(I))
- continue;
- // Skip landingpad instructions.
- if (isa<LandingPadInst>(I))
- continue;
- // Don't sink alloca: we never want to sink static alloca's out of the
- // entry block, and correctly sinking dynamic alloca's requires
- // checks for stacksave/stackrestore intrinsics.
- // FIXME: Refactor this check somehow?
- if (isa<AllocaInst>(I))
- continue;
- // Determine if there is a use in or before the loop (direct or
- // otherwise).
- bool UsedInLoop = false;
- for (Use &U : I->uses()) {
- Instruction *User = cast<Instruction>(U.getUser());
- BasicBlock *UseBB = User->getParent();
- if (PHINode *P = dyn_cast<PHINode>(User)) {
- unsigned i =
- PHINode::getIncomingValueNumForOperand(U.getOperandNo());
- UseBB = P->getIncomingBlock(i);
- }
- if (UseBB == Preheader || L->contains(UseBB)) {
- UsedInLoop = true;
- break;
- }
- }
- // If there is, the def must remain in the preheader.
- if (UsedInLoop)
- continue;
- // Otherwise, sink it to the exit block.
- Instruction *ToMove = I;
- bool Done = false;
- if (I != Preheader->begin()) {
- // Skip debug info intrinsics.
- do {
- --I;
- } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
- if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
- Done = true;
- } else {
- Done = true;
- }
- ToMove->moveBefore(InsertPt);
- if (Done) break;
- InsertPt = ToMove;
- }
- }
- //===----------------------------------------------------------------------===//
- // IndVarSimplify driver. Manage several subpasses of IV simplification.
- //===----------------------------------------------------------------------===//
- bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
- if (skipOptnoneFunction(L))
- return false;
- // If LoopSimplify form is not available, stay out of trouble. Some notes:
- // - LSR currently only supports LoopSimplify-form loops. Indvars'
- // canonicalization can be a pessimization without LSR to "clean up"
- // afterwards.
- // - We depend on having a preheader; in particular,
- // Loop::getCanonicalInductionVariable only supports loops with preheaders,
- // and we're in trouble if we can't find the induction variable even when
- // we've manually inserted one.
- if (!L->isLoopSimplifyForm())
- return false;
- LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- SE = &getAnalysis<ScalarEvolution>();
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
- TLI = TLIP ? &TLIP->getTLI() : nullptr;
- auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
- TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
- const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
- DeadInsts.clear();
- Changed = false;
- // If there are any floating-point recurrences, attempt to
- // transform them to use integer recurrences.
- RewriteNonIntegerIVs(L);
- const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
- // Create a rewriter object which we'll use to transform the code with.
- SCEVExpander Rewriter(*SE, DL, "indvars");
- #ifndef NDEBUG
- Rewriter.setDebugType(DEBUG_TYPE);
- #endif
- // Eliminate redundant IV users.
- //
- // Simplification works best when run before other consumers of SCEV. We
- // attempt to avoid evaluating SCEVs for sign/zero extend operations until
- // other expressions involving loop IVs have been evaluated. This helps SCEV
- // set no-wrap flags before normalizing sign/zero extension.
- Rewriter.disableCanonicalMode();
- SimplifyAndExtend(L, Rewriter, LPM);
- // Check to see if this loop has a computable loop-invariant execution count.
- // If so, this means that we can compute the final value of any expressions
- // that are recurrent in the loop, and substitute the exit values from the
- // loop into any instructions outside of the loop that use the final values of
- // the current expressions.
- //
- if (ReplaceExitValue != NeverRepl &&
- !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
- RewriteLoopExitValues(L, Rewriter);
- // Eliminate redundant IV cycles.
- NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
- // If we have a trip count expression, rewrite the loop's exit condition
- // using it. We can currently only handle loops with a single exit.
- if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) {
- PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
- if (IndVar) {
- // Check preconditions for proper SCEVExpander operation. SCEV does not
- // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
- // pass that uses the SCEVExpander must do it. This does not work well for
- // loop passes because SCEVExpander makes assumptions about all loops,
- // while LoopPassManager only forces the current loop to be simplified.
- //
- // FIXME: SCEV expansion has no way to bail out, so the caller must
- // explicitly check any assumptions made by SCEV. Brittle.
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
- if (!AR || AR->getLoop()->getLoopPreheader())
- (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
- Rewriter);
- }
- }
- // Clear the rewriter cache, because values that are in the rewriter's cache
- // can be deleted in the loop below, causing the AssertingVH in the cache to
- // trigger.
- Rewriter.clear();
- // Now that we're done iterating through lists, clean up any instructions
- // which are now dead.
- while (!DeadInsts.empty())
- if (Instruction *Inst =
- dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
- RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
- // The Rewriter may not be used from this point on.
- // Loop-invariant instructions in the preheader that aren't used in the
- // loop may be sunk below the loop to reduce register pressure.
- SinkUnusedInvariants(L);
- // Clean up dead instructions.
- Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
- // Check a post-condition.
- assert(L->isLCSSAForm(*DT) &&
- "Indvars did not leave the loop in lcssa form!");
- #if 0 // HLSL Change Starts - option pending
- // Verify that LFTR, and any other change have not interfered with SCEV's
- // ability to compute trip count.
- #ifndef NDEBUG
- if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
- SE->forgetLoop(L);
- const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
- if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
- SE->getTypeSizeInBits(NewBECount->getType()))
- NewBECount = SE->getTruncateOrNoop(NewBECount,
- BackedgeTakenCount->getType());
- else
- BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
- NewBECount->getType());
- assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
- }
- #endif
- #endif // HLSL Change Ends - option pending
- return Changed;
- }
|