| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945 |
- //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements sparse conditional constant propagation and merging:
- //
- // Specifically, this:
- // * Assumes values are constant unless proven otherwise
- // * Assumes BasicBlocks are dead unless proven otherwise
- // * Proves values to be constant, and replaces them with constants
- // * Proves conditional branches to be unconditional
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/PointerIntPair.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/InstVisitor.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/IPO.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <algorithm>
- using namespace llvm;
- #define DEBUG_TYPE "sccp"
- STATISTIC(NumInstRemoved, "Number of instructions removed");
- STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
- STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
- STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
- STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
- namespace {
- /// LatticeVal class - This class represents the different lattice values that
- /// an LLVM value may occupy. It is a simple class with value semantics.
- ///
- class LatticeVal {
- enum LatticeValueTy {
- /// undefined - This LLVM Value has no known value yet.
- undefined,
- /// constant - This LLVM Value has a specific constant value.
- constant,
- /// forcedconstant - This LLVM Value was thought to be undef until
- /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
- /// with another (different) constant, it goes to overdefined, instead of
- /// asserting.
- forcedconstant,
- /// overdefined - This instruction is not known to be constant, and we know
- /// it has a value.
- overdefined
- };
- /// Val: This stores the current lattice value along with the Constant* for
- /// the constant if this is a 'constant' or 'forcedconstant' value.
- PointerIntPair<Constant *, 2, LatticeValueTy> Val;
- LatticeValueTy getLatticeValue() const {
- return Val.getInt();
- }
- public:
- LatticeVal() : Val(nullptr, undefined) {}
- bool isUndefined() const { return getLatticeValue() == undefined; }
- bool isConstant() const {
- return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
- }
- bool isOverdefined() const { return getLatticeValue() == overdefined; }
- Constant *getConstant() const {
- assert(isConstant() && "Cannot get the constant of a non-constant!");
- return Val.getPointer();
- }
- /// markOverdefined - Return true if this is a change in status.
- bool markOverdefined() {
- if (isOverdefined())
- return false;
- Val.setInt(overdefined);
- return true;
- }
- /// markConstant - Return true if this is a change in status.
- bool markConstant(Constant *V) {
- if (getLatticeValue() == constant) { // Constant but not forcedconstant.
- assert(getConstant() == V && "Marking constant with different value");
- return false;
- }
- if (isUndefined()) {
- Val.setInt(constant);
- assert(V && "Marking constant with NULL");
- Val.setPointer(V);
- } else {
- assert(getLatticeValue() == forcedconstant &&
- "Cannot move from overdefined to constant!");
- // Stay at forcedconstant if the constant is the same.
- if (V == getConstant()) return false;
- // Otherwise, we go to overdefined. Assumptions made based on the
- // forced value are possibly wrong. Assuming this is another constant
- // could expose a contradiction.
- Val.setInt(overdefined);
- }
- return true;
- }
- /// getConstantInt - If this is a constant with a ConstantInt value, return it
- /// otherwise return null.
- ConstantInt *getConstantInt() const {
- if (isConstant())
- return dyn_cast<ConstantInt>(getConstant());
- return nullptr;
- }
- void markForcedConstant(Constant *V) {
- assert(isUndefined() && "Can't force a defined value!");
- Val.setInt(forcedconstant);
- Val.setPointer(V);
- }
- };
- } // end anonymous namespace.
- namespace {
- //===----------------------------------------------------------------------===//
- //
- /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
- /// Constant Propagation.
- ///
- class SCCPSolver : public InstVisitor<SCCPSolver> {
- const DataLayout &DL;
- const TargetLibraryInfo *TLI;
- SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
- DenseMap<Value*, LatticeVal> ValueState; // The state each value is in.
- /// StructValueState - This maintains ValueState for values that have
- /// StructType, for example for formal arguments, calls, insertelement, etc.
- ///
- DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
- /// GlobalValue - If we are tracking any values for the contents of a global
- /// variable, we keep a mapping from the constant accessor to the element of
- /// the global, to the currently known value. If the value becomes
- /// overdefined, it's entry is simply removed from this map.
- DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
- /// TrackedRetVals - If we are tracking arguments into and the return
- /// value out of a function, it will have an entry in this map, indicating
- /// what the known return value for the function is.
- DenseMap<Function*, LatticeVal> TrackedRetVals;
- /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
- /// that return multiple values.
- DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
- /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
- /// represented here for efficient lookup.
- SmallPtrSet<Function*, 16> MRVFunctionsTracked;
- /// TrackingIncomingArguments - This is the set of functions for whose
- /// arguments we make optimistic assumptions about and try to prove as
- /// constants.
- SmallPtrSet<Function*, 16> TrackingIncomingArguments;
- /// The reason for two worklists is that overdefined is the lowest state
- /// on the lattice, and moving things to overdefined as fast as possible
- /// makes SCCP converge much faster.
- ///
- /// By having a separate worklist, we accomplish this because everything
- /// possibly overdefined will become overdefined at the soonest possible
- /// point.
- SmallVector<Value*, 64> OverdefinedInstWorkList;
- SmallVector<Value*, 64> InstWorkList;
- SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list
- /// KnownFeasibleEdges - Entries in this set are edges which have already had
- /// PHI nodes retriggered.
- typedef std::pair<BasicBlock*, BasicBlock*> Edge;
- DenseSet<Edge> KnownFeasibleEdges;
- public:
- SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli)
- : DL(DL), TLI(tli) {}
- /// MarkBlockExecutable - This method can be used by clients to mark all of
- /// the blocks that are known to be intrinsically live in the processed unit.
- ///
- /// This returns true if the block was not considered live before.
- bool MarkBlockExecutable(BasicBlock *BB) {
- if (!BBExecutable.insert(BB).second)
- return false;
- DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
- BBWorkList.push_back(BB); // Add the block to the work list!
- return true;
- }
- /// TrackValueOfGlobalVariable - Clients can use this method to
- /// inform the SCCPSolver that it should track loads and stores to the
- /// specified global variable if it can. This is only legal to call if
- /// performing Interprocedural SCCP.
- void TrackValueOfGlobalVariable(GlobalVariable *GV) {
- // We only track the contents of scalar globals.
- if (GV->getType()->getElementType()->isSingleValueType()) {
- LatticeVal &IV = TrackedGlobals[GV];
- if (!isa<UndefValue>(GV->getInitializer()))
- IV.markConstant(GV->getInitializer());
- }
- }
- /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
- /// and out of the specified function (which cannot have its address taken),
- /// this method must be called.
- void AddTrackedFunction(Function *F) {
- // Add an entry, F -> undef.
- if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
- MRVFunctionsTracked.insert(F);
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
- TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
- LatticeVal()));
- } else
- TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
- }
- void AddArgumentTrackedFunction(Function *F) {
- TrackingIncomingArguments.insert(F);
- }
- /// Solve - Solve for constants and executable blocks.
- ///
- void Solve();
- /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
- /// that branches on undef values cannot reach any of their successors.
- /// However, this is not a safe assumption. After we solve dataflow, this
- /// method should be use to handle this. If this returns true, the solver
- /// should be rerun.
- bool ResolvedUndefsIn(Function &F);
- bool isBlockExecutable(BasicBlock *BB) const {
- return BBExecutable.count(BB);
- }
- LatticeVal getLatticeValueFor(Value *V) const {
- DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
- assert(I != ValueState.end() && "V is not in valuemap!");
- return I->second;
- }
- /// getTrackedRetVals - Get the inferred return value map.
- ///
- const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
- return TrackedRetVals;
- }
- /// getTrackedGlobals - Get and return the set of inferred initializers for
- /// global variables.
- const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
- return TrackedGlobals;
- }
- void markOverdefined(Value *V) {
- assert(!V->getType()->isStructTy() && "Should use other method");
- markOverdefined(ValueState[V], V);
- }
- /// markAnythingOverdefined - Mark the specified value overdefined. This
- /// works with both scalars and structs.
- void markAnythingOverdefined(Value *V) {
- if (StructType *STy = dyn_cast<StructType>(V->getType()))
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
- markOverdefined(getStructValueState(V, i), V);
- else
- markOverdefined(V);
- }
- private:
- // markConstant - Make a value be marked as "constant". If the value
- // is not already a constant, add it to the instruction work list so that
- // the users of the instruction are updated later.
- //
- void markConstant(LatticeVal &IV, Value *V, Constant *C) {
- if (!IV.markConstant(C)) return;
- DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
- if (IV.isOverdefined())
- OverdefinedInstWorkList.push_back(V);
- else
- InstWorkList.push_back(V);
- }
- void markConstant(Value *V, Constant *C) {
- assert(!V->getType()->isStructTy() && "Should use other method");
- markConstant(ValueState[V], V, C);
- }
- void markForcedConstant(Value *V, Constant *C) {
- assert(!V->getType()->isStructTy() && "Should use other method");
- LatticeVal &IV = ValueState[V];
- IV.markForcedConstant(C);
- DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
- if (IV.isOverdefined())
- OverdefinedInstWorkList.push_back(V);
- else
- InstWorkList.push_back(V);
- }
- // markOverdefined - Make a value be marked as "overdefined". If the
- // value is not already overdefined, add it to the overdefined instruction
- // work list so that the users of the instruction are updated later.
- void markOverdefined(LatticeVal &IV, Value *V) {
- if (!IV.markOverdefined()) return;
- DEBUG(dbgs() << "markOverdefined: ";
- if (Function *F = dyn_cast<Function>(V))
- dbgs() << "Function '" << F->getName() << "'\n";
- else
- dbgs() << *V << '\n');
- // Only instructions go on the work list
- OverdefinedInstWorkList.push_back(V);
- }
- void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
- if (IV.isOverdefined() || MergeWithV.isUndefined())
- return; // Noop.
- if (MergeWithV.isOverdefined())
- markOverdefined(IV, V);
- else if (IV.isUndefined())
- markConstant(IV, V, MergeWithV.getConstant());
- else if (IV.getConstant() != MergeWithV.getConstant())
- markOverdefined(IV, V);
- }
- void mergeInValue(Value *V, LatticeVal MergeWithV) {
- assert(!V->getType()->isStructTy() && "Should use other method");
- mergeInValue(ValueState[V], V, MergeWithV);
- }
- /// getValueState - Return the LatticeVal object that corresponds to the
- /// value. This function handles the case when the value hasn't been seen yet
- /// by properly seeding constants etc.
- LatticeVal &getValueState(Value *V) {
- assert(!V->getType()->isStructTy() && "Should use getStructValueState");
- std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
- ValueState.insert(std::make_pair(V, LatticeVal()));
- LatticeVal &LV = I.first->second;
- if (!I.second)
- return LV; // Common case, already in the map.
- if (Constant *C = dyn_cast<Constant>(V)) {
- // Undef values remain undefined.
- if (!isa<UndefValue>(V))
- LV.markConstant(C); // Constants are constant
- }
- // All others are underdefined by default.
- return LV;
- }
- /// getStructValueState - Return the LatticeVal object that corresponds to the
- /// value/field pair. This function handles the case when the value hasn't
- /// been seen yet by properly seeding constants etc.
- LatticeVal &getStructValueState(Value *V, unsigned i) {
- assert(V->getType()->isStructTy() && "Should use getValueState");
- assert(i < cast<StructType>(V->getType())->getNumElements() &&
- "Invalid element #");
- std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
- bool> I = StructValueState.insert(
- std::make_pair(std::make_pair(V, i), LatticeVal()));
- LatticeVal &LV = I.first->second;
- if (!I.second)
- return LV; // Common case, already in the map.
- if (Constant *C = dyn_cast<Constant>(V)) {
- Constant *Elt = C->getAggregateElement(i);
- if (!Elt)
- LV.markOverdefined(); // Unknown sort of constant.
- else if (isa<UndefValue>(Elt))
- ; // Undef values remain undefined.
- else
- LV.markConstant(Elt); // Constants are constant.
- }
- // All others are underdefined by default.
- return LV;
- }
- /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
- /// work list if it is not already executable.
- void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
- if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
- return; // This edge is already known to be executable!
- if (!MarkBlockExecutable(Dest)) {
- // If the destination is already executable, we just made an *edge*
- // feasible that wasn't before. Revisit the PHI nodes in the block
- // because they have potentially new operands.
- DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
- << " -> " << Dest->getName() << '\n');
- PHINode *PN;
- for (BasicBlock::iterator I = Dest->begin();
- (PN = dyn_cast<PHINode>(I)); ++I)
- visitPHINode(*PN);
- }
- }
- // getFeasibleSuccessors - Return a vector of booleans to indicate which
- // successors are reachable from a given terminator instruction.
- //
- void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs);
- // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
- // block to the 'To' basic block is currently feasible.
- //
- bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
- // OperandChangedState - This method is invoked on all of the users of an
- // instruction that was just changed state somehow. Based on this
- // information, we need to update the specified user of this instruction.
- //
- void OperandChangedState(Instruction *I) {
- if (BBExecutable.count(I->getParent())) // Inst is executable?
- visit(*I);
- }
- private:
- friend class InstVisitor<SCCPSolver>;
- // visit implementations - Something changed in this instruction. Either an
- // operand made a transition, or the instruction is newly executable. Change
- // the value type of I to reflect these changes if appropriate.
- void visitPHINode(PHINode &I);
- // Terminators
- void visitReturnInst(ReturnInst &I);
- void visitTerminatorInst(TerminatorInst &TI);
- void visitCastInst(CastInst &I);
- void visitSelectInst(SelectInst &I);
- void visitBinaryOperator(Instruction &I);
- void visitCmpInst(CmpInst &I);
- void visitExtractElementInst(ExtractElementInst &I);
- void visitInsertElementInst(InsertElementInst &I);
- void visitShuffleVectorInst(ShuffleVectorInst &I);
- void visitExtractValueInst(ExtractValueInst &EVI);
- void visitInsertValueInst(InsertValueInst &IVI);
- void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
- // Instructions that cannot be folded away.
- void visitStoreInst (StoreInst &I);
- void visitLoadInst (LoadInst &I);
- void visitGetElementPtrInst(GetElementPtrInst &I);
- void visitCallInst (CallInst &I) {
- visitCallSite(&I);
- }
- void visitInvokeInst (InvokeInst &II) {
- visitCallSite(&II);
- visitTerminatorInst(II);
- }
- void visitCallSite (CallSite CS);
- void visitResumeInst (TerminatorInst &I) { /*returns void*/ }
- void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
- void visitFenceInst (FenceInst &I) { /*returns void*/ }
- void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
- markAnythingOverdefined(&I);
- }
- void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
- void visitAllocaInst (Instruction &I) { markOverdefined(&I); }
- void visitVAArgInst (Instruction &I) { markAnythingOverdefined(&I); }
- void visitInstruction(Instruction &I) {
- // If a new instruction is added to LLVM that we don't handle.
- dbgs() << "SCCP: Don't know how to handle: " << I << '\n';
- markAnythingOverdefined(&I); // Just in case
- }
- };
- } // end anonymous namespace
- // getFeasibleSuccessors - Return a vector of booleans to indicate which
- // successors are reachable from a given terminator instruction.
- //
- void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
- SmallVectorImpl<bool> &Succs) {
- Succs.resize(TI.getNumSuccessors());
- if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
- if (BI->isUnconditional()) {
- Succs[0] = true;
- return;
- }
- LatticeVal BCValue = getValueState(BI->getCondition());
- ConstantInt *CI = BCValue.getConstantInt();
- if (!CI) {
- // Overdefined condition variables, and branches on unfoldable constant
- // conditions, mean the branch could go either way.
- if (!BCValue.isUndefined())
- Succs[0] = Succs[1] = true;
- return;
- }
- // Constant condition variables mean the branch can only go a single way.
- Succs[CI->isZero()] = true;
- return;
- }
- if (isa<InvokeInst>(TI)) {
- // Invoke instructions successors are always executable.
- Succs[0] = Succs[1] = true;
- return;
- }
- if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
- if (!SI->getNumCases()) {
- Succs[0] = true;
- return;
- }
- LatticeVal SCValue = getValueState(SI->getCondition());
- ConstantInt *CI = SCValue.getConstantInt();
- if (!CI) { // Overdefined or undefined condition?
- // All destinations are executable!
- if (!SCValue.isUndefined())
- Succs.assign(TI.getNumSuccessors(), true);
- return;
- }
- Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
- return;
- }
- // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
- if (isa<IndirectBrInst>(&TI)) {
- // Just mark all destinations executable!
- Succs.assign(TI.getNumSuccessors(), true);
- return;
- }
- #ifndef NDEBUG
- dbgs() << "Unknown terminator instruction: " << TI << '\n';
- #endif
- llvm_unreachable("SCCP: Don't know how to handle this terminator!");
- }
- // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
- // block to the 'To' basic block is currently feasible.
- //
- bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
- assert(BBExecutable.count(To) && "Dest should always be alive!");
- // Make sure the source basic block is executable!!
- if (!BBExecutable.count(From)) return false;
- // Check to make sure this edge itself is actually feasible now.
- TerminatorInst *TI = From->getTerminator();
- if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
- if (BI->isUnconditional())
- return true;
- LatticeVal BCValue = getValueState(BI->getCondition());
- // Overdefined condition variables mean the branch could go either way,
- // undef conditions mean that neither edge is feasible yet.
- ConstantInt *CI = BCValue.getConstantInt();
- if (!CI)
- return !BCValue.isUndefined();
- // Constant condition variables mean the branch can only go a single way.
- return BI->getSuccessor(CI->isZero()) == To;
- }
- // Invoke instructions successors are always executable.
- if (isa<InvokeInst>(TI))
- return true;
- if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
- if (SI->getNumCases() < 1)
- return true;
- LatticeVal SCValue = getValueState(SI->getCondition());
- ConstantInt *CI = SCValue.getConstantInt();
- if (!CI)
- return !SCValue.isUndefined();
- return SI->findCaseValue(CI).getCaseSuccessor() == To;
- }
- // Just mark all destinations executable!
- // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
- if (isa<IndirectBrInst>(TI))
- return true;
- #ifndef NDEBUG
- dbgs() << "Unknown terminator instruction: " << *TI << '\n';
- #endif
- llvm_unreachable(nullptr);
- }
- // visit Implementations - Something changed in this instruction, either an
- // operand made a transition, or the instruction is newly executable. Change
- // the value type of I to reflect these changes if appropriate. This method
- // makes sure to do the following actions:
- //
- // 1. If a phi node merges two constants in, and has conflicting value coming
- // from different branches, or if the PHI node merges in an overdefined
- // value, then the PHI node becomes overdefined.
- // 2. If a phi node merges only constants in, and they all agree on value, the
- // PHI node becomes a constant value equal to that.
- // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
- // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
- // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
- // 6. If a conditional branch has a value that is constant, make the selected
- // destination executable
- // 7. If a conditional branch has a value that is overdefined, make all
- // successors executable.
- //
- void SCCPSolver::visitPHINode(PHINode &PN) {
- // If this PN returns a struct, just mark the result overdefined.
- // TODO: We could do a lot better than this if code actually uses this.
- if (PN.getType()->isStructTy())
- return markAnythingOverdefined(&PN);
- if (getValueState(&PN).isOverdefined())
- return; // Quick exit
- // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
- // and slow us down a lot. Just mark them overdefined.
- if (PN.getNumIncomingValues() > 64)
- return markOverdefined(&PN);
- // Look at all of the executable operands of the PHI node. If any of them
- // are overdefined, the PHI becomes overdefined as well. If they are all
- // constant, and they agree with each other, the PHI becomes the identical
- // constant. If they are constant and don't agree, the PHI is overdefined.
- // If there are no executable operands, the PHI remains undefined.
- //
- Constant *OperandVal = nullptr;
- for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
- LatticeVal IV = getValueState(PN.getIncomingValue(i));
- if (IV.isUndefined()) continue; // Doesn't influence PHI node.
- if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
- continue;
- if (IV.isOverdefined()) // PHI node becomes overdefined!
- return markOverdefined(&PN);
- if (!OperandVal) { // Grab the first value.
- OperandVal = IV.getConstant();
- continue;
- }
- // There is already a reachable operand. If we conflict with it,
- // then the PHI node becomes overdefined. If we agree with it, we
- // can continue on.
- // Check to see if there are two different constants merging, if so, the PHI
- // node is overdefined.
- if (IV.getConstant() != OperandVal)
- return markOverdefined(&PN);
- }
- // If we exited the loop, this means that the PHI node only has constant
- // arguments that agree with each other(and OperandVal is the constant) or
- // OperandVal is null because there are no defined incoming arguments. If
- // this is the case, the PHI remains undefined.
- //
- if (OperandVal)
- markConstant(&PN, OperandVal); // Acquire operand value
- }
- void SCCPSolver::visitReturnInst(ReturnInst &I) {
- if (I.getNumOperands() == 0) return; // ret void
- Function *F = I.getParent()->getParent();
- Value *ResultOp = I.getOperand(0);
- // If we are tracking the return value of this function, merge it in.
- if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
- DenseMap<Function*, LatticeVal>::iterator TFRVI =
- TrackedRetVals.find(F);
- if (TFRVI != TrackedRetVals.end()) {
- mergeInValue(TFRVI->second, F, getValueState(ResultOp));
- return;
- }
- }
- // Handle functions that return multiple values.
- if (!TrackedMultipleRetVals.empty()) {
- if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
- if (MRVFunctionsTracked.count(F))
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
- mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
- getStructValueState(ResultOp, i));
- }
- }
- void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
- SmallVector<bool, 16> SuccFeasible;
- getFeasibleSuccessors(TI, SuccFeasible);
- BasicBlock *BB = TI.getParent();
- // Mark all feasible successors executable.
- for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
- if (SuccFeasible[i])
- markEdgeExecutable(BB, TI.getSuccessor(i));
- }
- void SCCPSolver::visitCastInst(CastInst &I) {
- LatticeVal OpSt = getValueState(I.getOperand(0));
- if (OpSt.isOverdefined()) // Inherit overdefinedness of operand
- markOverdefined(&I);
- else if (OpSt.isConstant()) // Propagate constant value
- markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
- OpSt.getConstant(), I.getType()));
- }
- void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
- // If this returns a struct, mark all elements over defined, we don't track
- // structs in structs.
- if (EVI.getType()->isStructTy())
- return markAnythingOverdefined(&EVI);
- // If this is extracting from more than one level of struct, we don't know.
- if (EVI.getNumIndices() != 1)
- return markOverdefined(&EVI);
- Value *AggVal = EVI.getAggregateOperand();
- if (AggVal->getType()->isStructTy()) {
- unsigned i = *EVI.idx_begin();
- LatticeVal EltVal = getStructValueState(AggVal, i);
- mergeInValue(getValueState(&EVI), &EVI, EltVal);
- } else {
- // Otherwise, must be extracting from an array.
- return markOverdefined(&EVI);
- }
- }
- void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
- StructType *STy = dyn_cast<StructType>(IVI.getType());
- if (!STy)
- return markOverdefined(&IVI);
- // If this has more than one index, we can't handle it, drive all results to
- // undef.
- if (IVI.getNumIndices() != 1)
- return markAnythingOverdefined(&IVI);
- Value *Aggr = IVI.getAggregateOperand();
- unsigned Idx = *IVI.idx_begin();
- // Compute the result based on what we're inserting.
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- // This passes through all values that aren't the inserted element.
- if (i != Idx) {
- LatticeVal EltVal = getStructValueState(Aggr, i);
- mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
- continue;
- }
- Value *Val = IVI.getInsertedValueOperand();
- if (Val->getType()->isStructTy())
- // We don't track structs in structs.
- markOverdefined(getStructValueState(&IVI, i), &IVI);
- else {
- LatticeVal InVal = getValueState(Val);
- mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
- }
- }
- }
- void SCCPSolver::visitSelectInst(SelectInst &I) {
- // If this select returns a struct, just mark the result overdefined.
- // TODO: We could do a lot better than this if code actually uses this.
- if (I.getType()->isStructTy())
- return markAnythingOverdefined(&I);
- LatticeVal CondValue = getValueState(I.getCondition());
- if (CondValue.isUndefined())
- return;
- if (ConstantInt *CondCB = CondValue.getConstantInt()) {
- Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
- mergeInValue(&I, getValueState(OpVal));
- return;
- }
- // Otherwise, the condition is overdefined or a constant we can't evaluate.
- // See if we can produce something better than overdefined based on the T/F
- // value.
- LatticeVal TVal = getValueState(I.getTrueValue());
- LatticeVal FVal = getValueState(I.getFalseValue());
- // select ?, C, C -> C.
- if (TVal.isConstant() && FVal.isConstant() &&
- TVal.getConstant() == FVal.getConstant())
- return markConstant(&I, FVal.getConstant());
- if (TVal.isUndefined()) // select ?, undef, X -> X.
- return mergeInValue(&I, FVal);
- if (FVal.isUndefined()) // select ?, X, undef -> X.
- return mergeInValue(&I, TVal);
- markOverdefined(&I);
- }
- // Handle Binary Operators.
- void SCCPSolver::visitBinaryOperator(Instruction &I) {
- LatticeVal V1State = getValueState(I.getOperand(0));
- LatticeVal V2State = getValueState(I.getOperand(1));
- LatticeVal &IV = ValueState[&I];
- if (IV.isOverdefined()) return;
- if (V1State.isConstant() && V2State.isConstant())
- return markConstant(IV, &I,
- ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
- V2State.getConstant()));
- // If something is undef, wait for it to resolve.
- if (!V1State.isOverdefined() && !V2State.isOverdefined())
- return;
- // Otherwise, one of our operands is overdefined. Try to produce something
- // better than overdefined with some tricks.
- // If this is an AND or OR with 0 or -1, it doesn't matter that the other
- // operand is overdefined.
- if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
- LatticeVal *NonOverdefVal = nullptr;
- if (!V1State.isOverdefined())
- NonOverdefVal = &V1State;
- else if (!V2State.isOverdefined())
- NonOverdefVal = &V2State;
- if (NonOverdefVal) {
- if (NonOverdefVal->isUndefined()) {
- // Could annihilate value.
- if (I.getOpcode() == Instruction::And)
- markConstant(IV, &I, Constant::getNullValue(I.getType()));
- else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
- markConstant(IV, &I, Constant::getAllOnesValue(PT));
- else
- markConstant(IV, &I,
- Constant::getAllOnesValue(I.getType()));
- return;
- }
- if (I.getOpcode() == Instruction::And) {
- // X and 0 = 0
- if (NonOverdefVal->getConstant()->isNullValue())
- return markConstant(IV, &I, NonOverdefVal->getConstant());
- } else {
- if (ConstantInt *CI = NonOverdefVal->getConstantInt())
- if (CI->isAllOnesValue()) // X or -1 = -1
- return markConstant(IV, &I, NonOverdefVal->getConstant());
- }
- }
- }
- markOverdefined(&I);
- }
- // Handle ICmpInst instruction.
- void SCCPSolver::visitCmpInst(CmpInst &I) {
- LatticeVal V1State = getValueState(I.getOperand(0));
- LatticeVal V2State = getValueState(I.getOperand(1));
- LatticeVal &IV = ValueState[&I];
- if (IV.isOverdefined()) return;
- if (V1State.isConstant() && V2State.isConstant())
- return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
- V1State.getConstant(),
- V2State.getConstant()));
- // If operands are still undefined, wait for it to resolve.
- if (!V1State.isOverdefined() && !V2State.isOverdefined())
- return;
- markOverdefined(&I);
- }
- void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
- // TODO : SCCP does not handle vectors properly.
- return markOverdefined(&I);
- #if 0
- LatticeVal &ValState = getValueState(I.getOperand(0));
- LatticeVal &IdxState = getValueState(I.getOperand(1));
- if (ValState.isOverdefined() || IdxState.isOverdefined())
- markOverdefined(&I);
- else if(ValState.isConstant() && IdxState.isConstant())
- markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
- IdxState.getConstant()));
- #endif
- }
- void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
- // TODO : SCCP does not handle vectors properly.
- return markOverdefined(&I);
- #if 0
- LatticeVal &ValState = getValueState(I.getOperand(0));
- LatticeVal &EltState = getValueState(I.getOperand(1));
- LatticeVal &IdxState = getValueState(I.getOperand(2));
- if (ValState.isOverdefined() || EltState.isOverdefined() ||
- IdxState.isOverdefined())
- markOverdefined(&I);
- else if(ValState.isConstant() && EltState.isConstant() &&
- IdxState.isConstant())
- markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
- EltState.getConstant(),
- IdxState.getConstant()));
- else if (ValState.isUndefined() && EltState.isConstant() &&
- IdxState.isConstant())
- markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
- EltState.getConstant(),
- IdxState.getConstant()));
- #endif
- }
- void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
- // TODO : SCCP does not handle vectors properly.
- return markOverdefined(&I);
- #if 0
- LatticeVal &V1State = getValueState(I.getOperand(0));
- LatticeVal &V2State = getValueState(I.getOperand(1));
- LatticeVal &MaskState = getValueState(I.getOperand(2));
- if (MaskState.isUndefined() ||
- (V1State.isUndefined() && V2State.isUndefined()))
- return; // Undefined output if mask or both inputs undefined.
- if (V1State.isOverdefined() || V2State.isOverdefined() ||
- MaskState.isOverdefined()) {
- markOverdefined(&I);
- } else {
- // A mix of constant/undef inputs.
- Constant *V1 = V1State.isConstant() ?
- V1State.getConstant() : UndefValue::get(I.getType());
- Constant *V2 = V2State.isConstant() ?
- V2State.getConstant() : UndefValue::get(I.getType());
- Constant *Mask = MaskState.isConstant() ?
- MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
- markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
- }
- #endif
- }
- // Handle getelementptr instructions. If all operands are constants then we
- // can turn this into a getelementptr ConstantExpr.
- //
- void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
- if (ValueState[&I].isOverdefined()) return;
- SmallVector<Constant*, 8> Operands;
- Operands.reserve(I.getNumOperands());
- for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
- LatticeVal State = getValueState(I.getOperand(i));
- if (State.isUndefined())
- return; // Operands are not resolved yet.
- if (State.isOverdefined())
- return markOverdefined(&I);
- assert(State.isConstant() && "Unknown state!");
- Operands.push_back(State.getConstant());
- }
- Constant *Ptr = Operands[0];
- auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
- markConstant(&I, ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr,
- Indices));
- }
- void SCCPSolver::visitStoreInst(StoreInst &SI) {
- // If this store is of a struct, ignore it.
- if (SI.getOperand(0)->getType()->isStructTy())
- return;
- if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
- return;
- GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
- DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
- if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
- // Get the value we are storing into the global, then merge it.
- mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
- if (I->second.isOverdefined())
- TrackedGlobals.erase(I); // No need to keep tracking this!
- }
- // Handle load instructions. If the operand is a constant pointer to a constant
- // global, we can replace the load with the loaded constant value!
- void SCCPSolver::visitLoadInst(LoadInst &I) {
- // If this load is of a struct, just mark the result overdefined.
- if (I.getType()->isStructTy())
- return markAnythingOverdefined(&I);
- LatticeVal PtrVal = getValueState(I.getOperand(0));
- if (PtrVal.isUndefined()) return; // The pointer is not resolved yet!
- LatticeVal &IV = ValueState[&I];
- if (IV.isOverdefined()) return;
- if (!PtrVal.isConstant() || I.isVolatile())
- return markOverdefined(IV, &I);
- Constant *Ptr = PtrVal.getConstant();
- // load null -> null
- if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
- return markConstant(IV, &I, UndefValue::get(I.getType()));
- // Transform load (constant global) into the value loaded.
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
- if (!TrackedGlobals.empty()) {
- // If we are tracking this global, merge in the known value for it.
- DenseMap<GlobalVariable*, LatticeVal>::iterator It =
- TrackedGlobals.find(GV);
- if (It != TrackedGlobals.end()) {
- mergeInValue(IV, &I, It->second);
- return;
- }
- }
- }
- // Transform load from a constant into a constant if possible.
- if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, DL))
- return markConstant(IV, &I, C);
- // Otherwise we cannot say for certain what value this load will produce.
- // Bail out.
- markOverdefined(IV, &I);
- }
- void SCCPSolver::visitCallSite(CallSite CS) {
- Function *F = CS.getCalledFunction();
- Instruction *I = CS.getInstruction();
- // The common case is that we aren't tracking the callee, either because we
- // are not doing interprocedural analysis or the callee is indirect, or is
- // external. Handle these cases first.
- if (!F || F->isDeclaration()) {
- CallOverdefined:
- // Void return and not tracking callee, just bail.
- if (I->getType()->isVoidTy()) return;
- // Otherwise, if we have a single return value case, and if the function is
- // a declaration, maybe we can constant fold it.
- if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
- canConstantFoldCallTo(F)) {
- SmallVector<Constant*, 8> Operands;
- for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
- AI != E; ++AI) {
- LatticeVal State = getValueState(*AI);
- if (State.isUndefined())
- return; // Operands are not resolved yet.
- if (State.isOverdefined())
- return markOverdefined(I);
- assert(State.isConstant() && "Unknown state!");
- Operands.push_back(State.getConstant());
- }
- if (getValueState(I).isOverdefined())
- return;
- // If we can constant fold this, mark the result of the call as a
- // constant.
- if (Constant *C = ConstantFoldCall(F, Operands, TLI))
- return markConstant(I, C);
- }
- // Otherwise, we don't know anything about this call, mark it overdefined.
- return markAnythingOverdefined(I);
- }
- // If this is a local function that doesn't have its address taken, mark its
- // entry block executable and merge in the actual arguments to the call into
- // the formal arguments of the function.
- if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
- MarkBlockExecutable(F->begin());
- // Propagate information from this call site into the callee.
- CallSite::arg_iterator CAI = CS.arg_begin();
- for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
- AI != E; ++AI, ++CAI) {
- // If this argument is byval, and if the function is not readonly, there
- // will be an implicit copy formed of the input aggregate.
- if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
- markOverdefined(AI);
- continue;
- }
- if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- LatticeVal CallArg = getStructValueState(*CAI, i);
- mergeInValue(getStructValueState(AI, i), AI, CallArg);
- }
- } else {
- mergeInValue(AI, getValueState(*CAI));
- }
- }
- }
- // If this is a single/zero retval case, see if we're tracking the function.
- if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
- if (!MRVFunctionsTracked.count(F))
- goto CallOverdefined; // Not tracking this callee.
- // If we are tracking this callee, propagate the result of the function
- // into this call site.
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
- mergeInValue(getStructValueState(I, i), I,
- TrackedMultipleRetVals[std::make_pair(F, i)]);
- } else {
- DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
- if (TFRVI == TrackedRetVals.end())
- goto CallOverdefined; // Not tracking this callee.
- // If so, propagate the return value of the callee into this call result.
- mergeInValue(I, TFRVI->second);
- }
- }
- void SCCPSolver::Solve() {
- // Process the work lists until they are empty!
- while (!BBWorkList.empty() || !InstWorkList.empty() ||
- !OverdefinedInstWorkList.empty()) {
- // Process the overdefined instruction's work list first, which drives other
- // things to overdefined more quickly.
- while (!OverdefinedInstWorkList.empty()) {
- Value *I = OverdefinedInstWorkList.pop_back_val();
- DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
- // "I" got into the work list because it either made the transition from
- // bottom to constant, or to overdefined.
- //
- // Anything on this worklist that is overdefined need not be visited
- // since all of its users will have already been marked as overdefined
- // Update all of the users of this instruction's value.
- //
- for (User *U : I->users())
- if (Instruction *UI = dyn_cast<Instruction>(U))
- OperandChangedState(UI);
- }
- // Process the instruction work list.
- while (!InstWorkList.empty()) {
- Value *I = InstWorkList.pop_back_val();
- DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
- // "I" got into the work list because it made the transition from undef to
- // constant.
- //
- // Anything on this worklist that is overdefined need not be visited
- // since all of its users will have already been marked as overdefined.
- // Update all of the users of this instruction's value.
- //
- if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
- for (User *U : I->users())
- if (Instruction *UI = dyn_cast<Instruction>(U))
- OperandChangedState(UI);
- }
- // Process the basic block work list.
- while (!BBWorkList.empty()) {
- BasicBlock *BB = BBWorkList.back();
- BBWorkList.pop_back();
- DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
- // Notify all instructions in this basic block that they are newly
- // executable.
- visit(BB);
- }
- }
- }
- /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
- /// that branches on undef values cannot reach any of their successors.
- /// However, this is not a safe assumption. After we solve dataflow, this
- /// method should be use to handle this. If this returns true, the solver
- /// should be rerun.
- ///
- /// This method handles this by finding an unresolved branch and marking it one
- /// of the edges from the block as being feasible, even though the condition
- /// doesn't say it would otherwise be. This allows SCCP to find the rest of the
- /// CFG and only slightly pessimizes the analysis results (by marking one,
- /// potentially infeasible, edge feasible). This cannot usefully modify the
- /// constraints on the condition of the branch, as that would impact other users
- /// of the value.
- ///
- /// This scan also checks for values that use undefs, whose results are actually
- /// defined. For example, 'zext i8 undef to i32' should produce all zeros
- /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
- /// even if X isn't defined.
- bool SCCPSolver::ResolvedUndefsIn(Function &F) {
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
- if (!BBExecutable.count(BB))
- continue;
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
- // Look for instructions which produce undef values.
- if (I->getType()->isVoidTy()) continue;
- if (StructType *STy = dyn_cast<StructType>(I->getType())) {
- // Only a few things that can be structs matter for undef.
- // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
- if (CallSite CS = CallSite(I))
- if (Function *F = CS.getCalledFunction())
- if (MRVFunctionsTracked.count(F))
- continue;
- // extractvalue and insertvalue don't need to be marked; they are
- // tracked as precisely as their operands.
- if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
- continue;
- // Send the results of everything else to overdefined. We could be
- // more precise than this but it isn't worth bothering.
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- LatticeVal &LV = getStructValueState(I, i);
- if (LV.isUndefined())
- markOverdefined(LV, I);
- }
- continue;
- }
- LatticeVal &LV = getValueState(I);
- if (!LV.isUndefined()) continue;
- // extractvalue is safe; check here because the argument is a struct.
- if (isa<ExtractValueInst>(I))
- continue;
- // Compute the operand LatticeVals, for convenience below.
- // Anything taking a struct is conservatively assumed to require
- // overdefined markings.
- if (I->getOperand(0)->getType()->isStructTy()) {
- markOverdefined(I);
- return true;
- }
- LatticeVal Op0LV = getValueState(I->getOperand(0));
- LatticeVal Op1LV;
- if (I->getNumOperands() == 2) {
- if (I->getOperand(1)->getType()->isStructTy()) {
- markOverdefined(I);
- return true;
- }
- Op1LV = getValueState(I->getOperand(1));
- }
- // If this is an instructions whose result is defined even if the input is
- // not fully defined, propagate the information.
- Type *ITy = I->getType();
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast:
- break; // Any undef -> undef
- case Instruction::FSub:
- case Instruction::FAdd:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FRem:
- // Floating-point binary operation: be conservative.
- if (Op0LV.isUndefined() && Op1LV.isUndefined())
- markForcedConstant(I, Constant::getNullValue(ITy));
- else
- markOverdefined(I);
- return true;
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- // undef -> 0; some outputs are impossible
- markForcedConstant(I, Constant::getNullValue(ITy));
- return true;
- case Instruction::Mul:
- case Instruction::And:
- // Both operands undef -> undef
- if (Op0LV.isUndefined() && Op1LV.isUndefined())
- break;
- // undef * X -> 0. X could be zero.
- // undef & X -> 0. X could be zero.
- markForcedConstant(I, Constant::getNullValue(ITy));
- return true;
- case Instruction::Or:
- // Both operands undef -> undef
- if (Op0LV.isUndefined() && Op1LV.isUndefined())
- break;
- // undef | X -> -1. X could be -1.
- markForcedConstant(I, Constant::getAllOnesValue(ITy));
- return true;
- case Instruction::Xor:
- // undef ^ undef -> 0; strictly speaking, this is not strictly
- // necessary, but we try to be nice to people who expect this
- // behavior in simple cases
- if (Op0LV.isUndefined() && Op1LV.isUndefined()) {
- markForcedConstant(I, Constant::getNullValue(ITy));
- return true;
- }
- // undef ^ X -> undef
- break;
- case Instruction::SDiv:
- case Instruction::UDiv:
- case Instruction::SRem:
- case Instruction::URem:
- // X / undef -> undef. No change.
- // X % undef -> undef. No change.
- if (Op1LV.isUndefined()) break;
- // undef / X -> 0. X could be maxint.
- // undef % X -> 0. X could be 1.
- markForcedConstant(I, Constant::getNullValue(ITy));
- return true;
- case Instruction::AShr:
- // X >>a undef -> undef.
- if (Op1LV.isUndefined()) break;
- // undef >>a X -> all ones
- markForcedConstant(I, Constant::getAllOnesValue(ITy));
- return true;
- case Instruction::LShr:
- case Instruction::Shl:
- // X << undef -> undef.
- // X >> undef -> undef.
- if (Op1LV.isUndefined()) break;
- // undef << X -> 0
- // undef >> X -> 0
- markForcedConstant(I, Constant::getNullValue(ITy));
- return true;
- case Instruction::Select:
- Op1LV = getValueState(I->getOperand(1));
- // undef ? X : Y -> X or Y. There could be commonality between X/Y.
- if (Op0LV.isUndefined()) {
- if (!Op1LV.isConstant()) // Pick the constant one if there is any.
- Op1LV = getValueState(I->getOperand(2));
- } else if (Op1LV.isUndefined()) {
- // c ? undef : undef -> undef. No change.
- Op1LV = getValueState(I->getOperand(2));
- if (Op1LV.isUndefined())
- break;
- // Otherwise, c ? undef : x -> x.
- } else {
- // Leave Op1LV as Operand(1)'s LatticeValue.
- }
- if (Op1LV.isConstant())
- markForcedConstant(I, Op1LV.getConstant());
- else
- markOverdefined(I);
- return true;
- case Instruction::Load:
- // A load here means one of two things: a load of undef from a global,
- // a load from an unknown pointer. Either way, having it return undef
- // is okay.
- break;
- case Instruction::ICmp:
- // X == undef -> undef. Other comparisons get more complicated.
- if (cast<ICmpInst>(I)->isEquality())
- break;
- markOverdefined(I);
- return true;
- case Instruction::Call:
- case Instruction::Invoke: {
- // There are two reasons a call can have an undef result
- // 1. It could be tracked.
- // 2. It could be constant-foldable.
- // Because of the way we solve return values, tracked calls must
- // never be marked overdefined in ResolvedUndefsIn.
- if (Function *F = CallSite(I).getCalledFunction())
- if (TrackedRetVals.count(F))
- break;
- // If the call is constant-foldable, we mark it overdefined because
- // we do not know what return values are valid.
- markOverdefined(I);
- return true;
- }
- default:
- // If we don't know what should happen here, conservatively mark it
- // overdefined.
- markOverdefined(I);
- return true;
- }
- }
- // Check to see if we have a branch or switch on an undefined value. If so
- // we force the branch to go one way or the other to make the successor
- // values live. It doesn't really matter which way we force it.
- TerminatorInst *TI = BB->getTerminator();
- if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
- if (!BI->isConditional()) continue;
- if (!getValueState(BI->getCondition()).isUndefined())
- continue;
- // If the input to SCCP is actually branch on undef, fix the undef to
- // false.
- if (isa<UndefValue>(BI->getCondition())) {
- BI->setCondition(ConstantInt::getFalse(BI->getContext()));
- markEdgeExecutable(BB, TI->getSuccessor(1));
- return true;
- }
- // Otherwise, it is a branch on a symbolic value which is currently
- // considered to be undef. Handle this by forcing the input value to the
- // branch to false.
- markForcedConstant(BI->getCondition(),
- ConstantInt::getFalse(TI->getContext()));
- return true;
- }
- if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
- if (!SI->getNumCases())
- continue;
- if (!getValueState(SI->getCondition()).isUndefined())
- continue;
- // If the input to SCCP is actually switch on undef, fix the undef to
- // the first constant.
- if (isa<UndefValue>(SI->getCondition())) {
- SI->setCondition(SI->case_begin().getCaseValue());
- markEdgeExecutable(BB, SI->case_begin().getCaseSuccessor());
- return true;
- }
- markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
- return true;
- }
- }
- return false;
- }
- namespace {
- //===--------------------------------------------------------------------===//
- //
- /// SCCP Class - This class uses the SCCPSolver to implement a per-function
- /// Sparse Conditional Constant Propagator.
- ///
- struct SCCP : public FunctionPass {
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- }
- static char ID; // Pass identification, replacement for typeid
- SCCP() : FunctionPass(ID) {
- initializeSCCPPass(*PassRegistry::getPassRegistry());
- }
- // runOnFunction - Run the Sparse Conditional Constant Propagation
- // algorithm, and return true if the function was modified.
- //
- bool runOnFunction(Function &F) override;
- };
- } // end anonymous namespace
- char SCCP::ID = 0;
- INITIALIZE_PASS(SCCP, "sccp",
- "Sparse Conditional Constant Propagation", false, false)
- // createSCCPPass - This is the public interface to this file.
- FunctionPass *llvm::createSCCPPass() {
- return new SCCP();
- }
- static void DeleteInstructionInBlock(BasicBlock *BB) {
- DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
- ++NumDeadBlocks;
- // Check to see if there are non-terminating instructions to delete.
- if (isa<TerminatorInst>(BB->begin()))
- return;
- // Delete the instructions backwards, as it has a reduced likelihood of having
- // to update as many def-use and use-def chains.
- Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
- while (EndInst != BB->begin()) {
- // Delete the next to last instruction.
- BasicBlock::iterator I = EndInst;
- Instruction *Inst = --I;
- if (!Inst->use_empty())
- Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
- if (isa<LandingPadInst>(Inst)) {
- EndInst = Inst;
- continue;
- }
- BB->getInstList().erase(Inst);
- ++NumInstRemoved;
- }
- }
- // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
- // and return true if the function was modified.
- //
- bool SCCP::runOnFunction(Function &F) {
- if (skipOptnoneFunction(F))
- return false;
- DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
- const DataLayout &DL = F.getParent()->getDataLayout();
- const TargetLibraryInfo *TLI =
- &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- SCCPSolver Solver(DL, TLI);
- // Mark the first block of the function as being executable.
- Solver.MarkBlockExecutable(F.begin());
- // Mark all arguments to the function as being overdefined.
- for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
- Solver.markAnythingOverdefined(AI);
- // Solve for constants.
- bool ResolvedUndefs = true;
- while (ResolvedUndefs) {
- Solver.Solve();
- DEBUG(dbgs() << "RESOLVING UNDEFs\n");
- ResolvedUndefs = Solver.ResolvedUndefsIn(F);
- }
- bool MadeChanges = false;
- // If we decided that there are basic blocks that are dead in this function,
- // delete their contents now. Note that we cannot actually delete the blocks,
- // as we cannot modify the CFG of the function.
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
- if (!Solver.isBlockExecutable(BB)) {
- DeleteInstructionInBlock(BB);
- MadeChanges = true;
- continue;
- }
- // Iterate over all of the instructions in a function, replacing them with
- // constants if we have found them to be of constant values.
- //
- for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
- Instruction *Inst = BI++;
- if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
- continue;
- // TODO: Reconstruct structs from their elements.
- if (Inst->getType()->isStructTy())
- continue;
- LatticeVal IV = Solver.getLatticeValueFor(Inst);
- if (IV.isOverdefined())
- continue;
- Constant *Const = IV.isConstant()
- ? IV.getConstant() : UndefValue::get(Inst->getType());
- DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst << '\n');
- // Replaces all of the uses of a variable with uses of the constant.
- Inst->replaceAllUsesWith(Const);
- // Delete the instruction.
- Inst->eraseFromParent();
- // Hey, we just changed something!
- MadeChanges = true;
- ++NumInstRemoved;
- }
- }
- return MadeChanges;
- }
- namespace {
- //===--------------------------------------------------------------------===//
- //
- /// IPSCCP Class - This class implements interprocedural Sparse Conditional
- /// Constant Propagation.
- ///
- struct IPSCCP : public ModulePass {
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- }
- static char ID;
- IPSCCP() : ModulePass(ID) {
- initializeIPSCCPPass(*PassRegistry::getPassRegistry());
- }
- bool runOnModule(Module &M) override;
- };
- } // end anonymous namespace
- char IPSCCP::ID = 0;
- INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp",
- "Interprocedural Sparse Conditional Constant Propagation",
- false, false)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_END(IPSCCP, "ipsccp",
- "Interprocedural Sparse Conditional Constant Propagation",
- false, false)
- // createIPSCCPPass - This is the public interface to this file.
- ModulePass *llvm::createIPSCCPPass() {
- return new IPSCCP();
- }
- static bool AddressIsTaken(const GlobalValue *GV) {
- // Delete any dead constantexpr klingons.
- GV->removeDeadConstantUsers();
- for (const Use &U : GV->uses()) {
- const User *UR = U.getUser();
- if (const StoreInst *SI = dyn_cast<StoreInst>(UR)) {
- if (SI->getOperand(0) == GV || SI->isVolatile())
- return true; // Storing addr of GV.
- } else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) {
- // Make sure we are calling the function, not passing the address.
- ImmutableCallSite CS(cast<Instruction>(UR));
- if (!CS.isCallee(&U))
- return true;
- } else if (const LoadInst *LI = dyn_cast<LoadInst>(UR)) {
- if (LI->isVolatile())
- return true;
- } else if (isa<BlockAddress>(UR)) {
- // blockaddress doesn't take the address of the function, it takes addr
- // of label.
- } else {
- return true;
- }
- }
- return false;
- }
- bool IPSCCP::runOnModule(Module &M) {
- const DataLayout &DL = M.getDataLayout();
- const TargetLibraryInfo *TLI =
- &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- SCCPSolver Solver(DL, TLI);
- // AddressTakenFunctions - This set keeps track of the address-taken functions
- // that are in the input. As IPSCCP runs through and simplifies code,
- // functions that were address taken can end up losing their
- // address-taken-ness. Because of this, we keep track of their addresses from
- // the first pass so we can use them for the later simplification pass.
- SmallPtrSet<Function*, 32> AddressTakenFunctions;
- // Loop over all functions, marking arguments to those with their addresses
- // taken or that are external as overdefined.
- //
- for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
- if (F->isDeclaration())
- continue;
- // If this is a strong or ODR definition of this function, then we can
- // propagate information about its result into callsites of it.
- if (!F->mayBeOverridden())
- Solver.AddTrackedFunction(F);
- // If this function only has direct calls that we can see, we can track its
- // arguments and return value aggressively, and can assume it is not called
- // unless we see evidence to the contrary.
- if (F->hasLocalLinkage()) {
- if (AddressIsTaken(F))
- AddressTakenFunctions.insert(F);
- else {
- Solver.AddArgumentTrackedFunction(F);
- continue;
- }
- }
- // Assume the function is called.
- Solver.MarkBlockExecutable(F->begin());
- // Assume nothing about the incoming arguments.
- for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
- AI != E; ++AI)
- Solver.markAnythingOverdefined(AI);
- }
- // Loop over global variables. We inform the solver about any internal global
- // variables that do not have their 'addresses taken'. If they don't have
- // their addresses taken, we can propagate constants through them.
- for (Module::global_iterator G = M.global_begin(), E = M.global_end();
- G != E; ++G)
- if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
- Solver.TrackValueOfGlobalVariable(G);
- // Solve for constants.
- bool ResolvedUndefs = true;
- while (ResolvedUndefs) {
- Solver.Solve();
- DEBUG(dbgs() << "RESOLVING UNDEFS\n");
- ResolvedUndefs = false;
- for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
- ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
- }
- bool MadeChanges = false;
- // Iterate over all of the instructions in the module, replacing them with
- // constants if we have found them to be of constant values.
- //
- SmallVector<BasicBlock*, 512> BlocksToErase;
- for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
- if (Solver.isBlockExecutable(F->begin())) {
- for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
- AI != E; ++AI) {
- if (AI->use_empty() || AI->getType()->isStructTy()) continue;
- // TODO: Could use getStructLatticeValueFor to find out if the entire
- // result is a constant and replace it entirely if so.
- LatticeVal IV = Solver.getLatticeValueFor(AI);
- if (IV.isOverdefined()) continue;
- Constant *CST = IV.isConstant() ?
- IV.getConstant() : UndefValue::get(AI->getType());
- DEBUG(dbgs() << "*** Arg " << *AI << " = " << *CST <<"\n");
- // Replaces all of the uses of a variable with uses of the
- // constant.
- AI->replaceAllUsesWith(CST);
- ++IPNumArgsElimed;
- }
- }
- for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
- if (!Solver.isBlockExecutable(BB)) {
- DeleteInstructionInBlock(BB);
- MadeChanges = true;
- TerminatorInst *TI = BB->getTerminator();
- for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
- BasicBlock *Succ = TI->getSuccessor(i);
- if (!Succ->empty() && isa<PHINode>(Succ->begin()))
- TI->getSuccessor(i)->removePredecessor(BB);
- }
- if (!TI->use_empty())
- TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
- TI->eraseFromParent();
- new UnreachableInst(M.getContext(), BB);
- if (&*BB != &F->front())
- BlocksToErase.push_back(BB);
- continue;
- }
- for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
- Instruction *Inst = BI++;
- if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
- continue;
- // TODO: Could use getStructLatticeValueFor to find out if the entire
- // result is a constant and replace it entirely if so.
- LatticeVal IV = Solver.getLatticeValueFor(Inst);
- if (IV.isOverdefined())
- continue;
- Constant *Const = IV.isConstant()
- ? IV.getConstant() : UndefValue::get(Inst->getType());
- DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst << '\n');
- // Replaces all of the uses of a variable with uses of the
- // constant.
- Inst->replaceAllUsesWith(Const);
- // Delete the instruction.
- if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
- Inst->eraseFromParent();
- // Hey, we just changed something!
- MadeChanges = true;
- ++IPNumInstRemoved;
- }
- }
- // Now that all instructions in the function are constant folded, erase dead
- // blocks, because we can now use ConstantFoldTerminator to get rid of
- // in-edges.
- for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
- // If there are any PHI nodes in this successor, drop entries for BB now.
- BasicBlock *DeadBB = BlocksToErase[i];
- for (Value::user_iterator UI = DeadBB->user_begin(),
- UE = DeadBB->user_end();
- UI != UE;) {
- // Grab the user and then increment the iterator early, as the user
- // will be deleted. Step past all adjacent uses from the same user.
- Instruction *I = dyn_cast<Instruction>(*UI);
- do { ++UI; } while (UI != UE && *UI == I);
- // Ignore blockaddress users; BasicBlock's dtor will handle them.
- if (!I) continue;
- bool Folded = ConstantFoldTerminator(I->getParent());
- if (!Folded) {
- // The constant folder may not have been able to fold the terminator
- // if this is a branch or switch on undef. Fold it manually as a
- // branch to the first successor.
- #ifndef NDEBUG
- if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
- assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
- "Branch should be foldable!");
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
- assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
- } else {
- llvm_unreachable("Didn't fold away reference to block!");
- }
- #endif
- // Make this an uncond branch to the first successor.
- TerminatorInst *TI = I->getParent()->getTerminator();
- BranchInst::Create(TI->getSuccessor(0), TI);
- // Remove entries in successor phi nodes to remove edges.
- for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
- TI->getSuccessor(i)->removePredecessor(TI->getParent());
- // Remove the old terminator.
- TI->eraseFromParent();
- }
- }
- // Finally, delete the basic block.
- F->getBasicBlockList().erase(DeadBB);
- }
- BlocksToErase.clear();
- }
- // If we inferred constant or undef return values for a function, we replaced
- // all call uses with the inferred value. This means we don't need to bother
- // actually returning anything from the function. Replace all return
- // instructions with return undef.
- //
- // Do this in two stages: first identify the functions we should process, then
- // actually zap their returns. This is important because we can only do this
- // if the address of the function isn't taken. In cases where a return is the
- // last use of a function, the order of processing functions would affect
- // whether other functions are optimizable.
- SmallVector<ReturnInst*, 8> ReturnsToZap;
- // TODO: Process multiple value ret instructions also.
- const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
- for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
- E = RV.end(); I != E; ++I) {
- Function *F = I->first;
- if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
- continue;
- // We can only do this if we know that nothing else can call the function.
- if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
- continue;
- for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
- if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
- if (!isa<UndefValue>(RI->getOperand(0)))
- ReturnsToZap.push_back(RI);
- }
- // Zap all returns which we've identified as zap to change.
- for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
- Function *F = ReturnsToZap[i]->getParent()->getParent();
- ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
- }
- // If we inferred constant or undef values for globals variables, we can
- // delete the global and any stores that remain to it.
- const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
- for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
- E = TG.end(); I != E; ++I) {
- GlobalVariable *GV = I->first;
- assert(!I->second.isOverdefined() &&
- "Overdefined values should have been taken out of the map!");
- DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
- while (!GV->use_empty()) {
- StoreInst *SI = cast<StoreInst>(GV->user_back());
- SI->eraseFromParent();
- }
- M.getGlobalList().erase(GV);
- ++IPNumGlobalConst;
- }
- return MadeChanges;
- }
|