| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686 |
- //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- /// \file
- /// This transformation implements the well known scalar replacement of
- /// aggregates transformation. It tries to identify promotable elements of an
- /// aggregate alloca, and promote them to registers. It will also try to
- /// convert uses of an element (or set of elements) of an alloca into a vector
- /// or bitfield-style integer scalar if appropriate.
- ///
- /// It works to do this with minimal slicing of the alloca so that regions
- /// which are merely transferred in and out of external memory remain unchanged
- /// and are not decomposed to scalar code.
- ///
- /// Because this also performs alloca promotion, it can be thought of as also
- /// serving the purpose of SSA formation. The algorithm iterates on the
- /// function until all opportunities for promotion have been realized.
- ///
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/Loads.h"
- #include "llvm/Analysis/PtrUseVisitor.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DIBuilder.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstVisitor.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/TimeValue.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/PromoteMemToReg.h"
- #include "llvm/Transforms/Utils/SSAUpdater.h"
- #include "dxc/DXIL/DxilUtil.h" // HLSL Change - don't sroa resource type.
- #include "dxc/DXIL/DxilMetadataHelper.h" // HLSL Change - support strided debug variables
- #include "dxc/HLSL/HLMatrixType.h" // HLSL Change - don't sroa matrix types.
- #if __cplusplus >= 201103L && !defined(NDEBUG)
- // We only use this for a debug check in C++11
- #include <random>
- #endif
- using namespace llvm;
- #define DEBUG_TYPE "sroa"
- STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
- STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
- STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
- STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
- STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
- STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
- STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
- STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
- STATISTIC(NumDeleted, "Number of instructions deleted");
- STATISTIC(NumVectorized, "Number of vectorized aggregates");
- #if 0 // HLSL Change Starts - option pending
- /// Hidden option to force the pass to not use DomTree and mem2reg, instead
- /// forming SSA values through the SSAUpdater infrastructure.
- static cl::opt<bool> ForceSSAUpdater("force-ssa-updater", cl::init(false),
- cl::Hidden);
- /// Hidden option to enable randomly shuffling the slices to help uncover
- /// instability in their order.
- static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices",
- cl::init(false), cl::Hidden);
- /// Hidden option to experiment with completely strict handling of inbounds
- /// GEPs.
- static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
- cl::Hidden);
- #else
- static const bool ForceSSAUpdater = false;
- static const bool SROAStrictInbounds = false;
- #endif // HLSL Change Ends
- namespace {
- /// \brief A custom IRBuilder inserter which prefixes all names if they are
- /// preserved.
- template <bool preserveNames = true>
- class IRBuilderPrefixedInserter
- : public IRBuilderDefaultInserter<preserveNames> {
- std::string Prefix;
- public:
- void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
- protected:
- void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
- BasicBlock::iterator InsertPt) const {
- IRBuilderDefaultInserter<preserveNames>::InsertHelper(
- I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt);
- }
- };
- // Specialization for not preserving the name is trivial.
- template <>
- class IRBuilderPrefixedInserter<false>
- : public IRBuilderDefaultInserter<false> {
- public:
- void SetNamePrefix(const Twine &P) {}
- };
- /// \brief Provide a typedef for IRBuilder that drops names in release builds.
- #ifndef NDEBUG
- typedef llvm::IRBuilder<true, ConstantFolder, IRBuilderPrefixedInserter<true>>
- IRBuilderTy;
- #else
- typedef llvm::IRBuilder<false, ConstantFolder, IRBuilderPrefixedInserter<false>>
- IRBuilderTy;
- #endif
- }
- namespace {
- /// \brief A used slice of an alloca.
- ///
- /// This structure represents a slice of an alloca used by some instruction. It
- /// stores both the begin and end offsets of this use, a pointer to the use
- /// itself, and a flag indicating whether we can classify the use as splittable
- /// or not when forming partitions of the alloca.
- class Slice {
- /// \brief The beginning offset of the range.
- uint64_t BeginOffset;
- /// \brief The ending offset, not included in the range.
- uint64_t EndOffset;
- /// \brief Storage for both the use of this slice and whether it can be
- /// split.
- PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
- public:
- Slice() : BeginOffset(), EndOffset() {}
- Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
- : BeginOffset(BeginOffset), EndOffset(EndOffset),
- UseAndIsSplittable(U, IsSplittable) {}
- uint64_t beginOffset() const { return BeginOffset; }
- uint64_t endOffset() const { return EndOffset; }
- bool isSplittable() const { return UseAndIsSplittable.getInt(); }
- void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
- Use *getUse() const { return UseAndIsSplittable.getPointer(); }
- bool isDead() const { return getUse() == nullptr; }
- void kill() { UseAndIsSplittable.setPointer(nullptr); }
- /// \brief Support for ordering ranges.
- ///
- /// This provides an ordering over ranges such that start offsets are
- /// always increasing, and within equal start offsets, the end offsets are
- /// decreasing. Thus the spanning range comes first in a cluster with the
- /// same start position.
- bool operator<(const Slice &RHS) const {
- if (beginOffset() < RHS.beginOffset())
- return true;
- if (beginOffset() > RHS.beginOffset())
- return false;
- if (isSplittable() != RHS.isSplittable())
- return !isSplittable();
- if (endOffset() > RHS.endOffset())
- return true;
- return false;
- }
- /// \brief Support comparison with a single offset to allow binary searches.
- friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
- uint64_t RHSOffset) {
- return LHS.beginOffset() < RHSOffset;
- }
- friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
- const Slice &RHS) {
- return LHSOffset < RHS.beginOffset();
- }
- bool operator==(const Slice &RHS) const {
- return isSplittable() == RHS.isSplittable() &&
- beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
- }
- bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
- };
- } // end anonymous namespace
- namespace llvm {
- template <typename T> struct isPodLike;
- template <> struct isPodLike<Slice> { static const bool value = true; };
- }
- namespace {
- /// \brief Representation of the alloca slices.
- ///
- /// This class represents the slices of an alloca which are formed by its
- /// various uses. If a pointer escapes, we can't fully build a representation
- /// for the slices used and we reflect that in this structure. The uses are
- /// stored, sorted by increasing beginning offset and with unsplittable slices
- /// starting at a particular offset before splittable slices.
- class AllocaSlices {
- public:
- /// \brief Construct the slices of a particular alloca.
- AllocaSlices(const DataLayout &DL, AllocaInst &AI,
- const bool SkipHLSLMat); // HLSL Change - not sroa matrix type.
- /// \brief Test whether a pointer to the allocation escapes our analysis.
- ///
- /// If this is true, the slices are never fully built and should be
- /// ignored.
- bool isEscaped() const { return PointerEscapingInstr; }
- /// \brief Support for iterating over the slices.
- /// @{
- typedef SmallVectorImpl<Slice>::iterator iterator;
- typedef iterator_range<iterator> range;
- iterator begin() { return Slices.begin(); }
- iterator end() { return Slices.end(); }
- typedef SmallVectorImpl<Slice>::const_iterator const_iterator;
- typedef iterator_range<const_iterator> const_range;
- const_iterator begin() const { return Slices.begin(); }
- const_iterator end() const { return Slices.end(); }
- /// @}
- /// \brief Erase a range of slices.
- void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
- /// \brief Insert new slices for this alloca.
- ///
- /// This moves the slices into the alloca's slices collection, and re-sorts
- /// everything so that the usual ordering properties of the alloca's slices
- /// hold.
- void insert(ArrayRef<Slice> NewSlices) {
- int OldSize = Slices.size();
- Slices.append(NewSlices.begin(), NewSlices.end());
- auto SliceI = Slices.begin() + OldSize;
- std::sort(SliceI, Slices.end());
- std::inplace_merge(Slices.begin(), SliceI, Slices.end());
- }
- // Forward declare an iterator to befriend it.
- class partition_iterator;
- /// \brief A partition of the slices.
- ///
- /// An ephemeral representation for a range of slices which can be viewed as
- /// a partition of the alloca. This range represents a span of the alloca's
- /// memory which cannot be split, and provides access to all of the slices
- /// overlapping some part of the partition.
- ///
- /// Objects of this type are produced by traversing the alloca's slices, but
- /// are only ephemeral and not persistent.
- class Partition {
- private:
- friend class AllocaSlices;
- friend class AllocaSlices::partition_iterator;
- /// \brief The begining and ending offsets of the alloca for this partition.
- uint64_t BeginOffset, EndOffset;
- /// \brief The start end end iterators of this partition.
- iterator SI, SJ;
- /// \brief A collection of split slice tails overlapping the partition.
- SmallVector<Slice *, 4> SplitTails;
- /// \brief Raw constructor builds an empty partition starting and ending at
- /// the given iterator.
- Partition(iterator SI) : SI(SI), SJ(SI) {}
- public:
- /// \brief The start offset of this partition.
- ///
- /// All of the contained slices start at or after this offset.
- uint64_t beginOffset() const { return BeginOffset; }
- /// \brief The end offset of this partition.
- ///
- /// All of the contained slices end at or before this offset.
- uint64_t endOffset() const { return EndOffset; }
- /// \brief The size of the partition.
- ///
- /// Note that this can never be zero.
- uint64_t size() const {
- assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
- return EndOffset - BeginOffset;
- }
- /// \brief Test whether this partition contains no slices, and merely spans
- /// a region occupied by split slices.
- bool empty() const { return SI == SJ; }
- /// \name Iterate slices that start within the partition.
- /// These may be splittable or unsplittable. They have a begin offset >= the
- /// partition begin offset.
- /// @{
- // FIXME: We should probably define a "concat_iterator" helper and use that
- // to stitch together pointee_iterators over the split tails and the
- // contiguous iterators of the partition. That would give a much nicer
- // interface here. We could then additionally expose filtered iterators for
- // split, unsplit, and unsplittable splices based on the usage patterns.
- iterator begin() const { return SI; }
- iterator end() const { return SJ; }
- /// @}
- /// \brief Get the sequence of split slice tails.
- ///
- /// These tails are of slices which start before this partition but are
- /// split and overlap into the partition. We accumulate these while forming
- /// partitions.
- ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
- };
- /// \brief An iterator over partitions of the alloca's slices.
- ///
- /// This iterator implements the core algorithm for partitioning the alloca's
- /// slices. It is a forward iterator as we don't support backtracking for
- /// efficiency reasons, and re-use a single storage area to maintain the
- /// current set of split slices.
- ///
- /// It is templated on the slice iterator type to use so that it can operate
- /// with either const or non-const slice iterators.
- class partition_iterator
- : public iterator_facade_base<partition_iterator,
- std::forward_iterator_tag, Partition> {
- friend class AllocaSlices;
- /// \brief Most of the state for walking the partitions is held in a class
- /// with a nice interface for examining them.
- Partition P;
- /// \brief We need to keep the end of the slices to know when to stop.
- AllocaSlices::iterator SE;
- /// \brief We also need to keep track of the maximum split end offset seen.
- /// FIXME: Do we really?
- uint64_t MaxSplitSliceEndOffset;
- /// \brief Sets the partition to be empty at given iterator, and sets the
- /// end iterator.
- partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
- : P(SI), SE(SE), MaxSplitSliceEndOffset(0) {
- // If not already at the end, advance our state to form the initial
- // partition.
- if (SI != SE)
- advance();
- }
- /// \brief Advance the iterator to the next partition.
- ///
- /// Requires that the iterator not be at the end of the slices.
- void advance() {
- assert((P.SI != SE || !P.SplitTails.empty()) &&
- "Cannot advance past the end of the slices!");
- // Clear out any split uses which have ended.
- if (!P.SplitTails.empty()) {
- if (P.EndOffset >= MaxSplitSliceEndOffset) {
- // If we've finished all splits, this is easy.
- P.SplitTails.clear();
- MaxSplitSliceEndOffset = 0;
- } else {
- // Remove the uses which have ended in the prior partition. This
- // cannot change the max split slice end because we just checked that
- // the prior partition ended prior to that max.
- P.SplitTails.erase(
- std::remove_if(
- P.SplitTails.begin(), P.SplitTails.end(),
- [&](Slice *S) { return S->endOffset() <= P.EndOffset; }),
- P.SplitTails.end());
- assert(std::any_of(P.SplitTails.begin(), P.SplitTails.end(),
- [&](Slice *S) {
- return S->endOffset() == MaxSplitSliceEndOffset;
- }) &&
- "Could not find the current max split slice offset!");
- assert(std::all_of(P.SplitTails.begin(), P.SplitTails.end(),
- [&](Slice *S) {
- return S->endOffset() <= MaxSplitSliceEndOffset;
- }) &&
- "Max split slice end offset is not actually the max!");
- }
- }
- // If P.SI is already at the end, then we've cleared the split tail and
- // now have an end iterator.
- if (P.SI == SE) {
- assert(P.SplitTails.empty() && "Failed to clear the split slices!");
- return;
- }
- // If we had a non-empty partition previously, set up the state for
- // subsequent partitions.
- if (P.SI != P.SJ) {
- // Accumulate all the splittable slices which started in the old
- // partition into the split list.
- for (Slice &S : P)
- if (S.isSplittable() && S.endOffset() > P.EndOffset) {
- P.SplitTails.push_back(&S);
- MaxSplitSliceEndOffset =
- std::max(S.endOffset(), MaxSplitSliceEndOffset);
- }
- // Start from the end of the previous partition.
- P.SI = P.SJ;
- // If P.SI is now at the end, we at most have a tail of split slices.
- if (P.SI == SE) {
- P.BeginOffset = P.EndOffset;
- P.EndOffset = MaxSplitSliceEndOffset;
- return;
- }
- // If the we have split slices and the next slice is after a gap and is
- // not splittable immediately form an empty partition for the split
- // slices up until the next slice begins.
- if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
- !P.SI->isSplittable()) {
- P.BeginOffset = P.EndOffset;
- P.EndOffset = P.SI->beginOffset();
- return;
- }
- }
- // OK, we need to consume new slices. Set the end offset based on the
- // current slice, and step SJ past it. The beginning offset of the
- // parttion is the beginning offset of the next slice unless we have
- // pre-existing split slices that are continuing, in which case we begin
- // at the prior end offset.
- P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
- P.EndOffset = P.SI->endOffset();
- ++P.SJ;
- // There are two strategies to form a partition based on whether the
- // partition starts with an unsplittable slice or a splittable slice.
- if (!P.SI->isSplittable()) {
- // When we're forming an unsplittable region, it must always start at
- // the first slice and will extend through its end.
- assert(P.BeginOffset == P.SI->beginOffset());
- // Form a partition including all of the overlapping slices with this
- // unsplittable slice.
- while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
- if (!P.SJ->isSplittable())
- P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
- ++P.SJ;
- }
- // We have a partition across a set of overlapping unsplittable
- // partitions.
- return;
- }
- // If we're starting with a splittable slice, then we need to form
- // a synthetic partition spanning it and any other overlapping splittable
- // splices.
- assert(P.SI->isSplittable() && "Forming a splittable partition!");
- // Collect all of the overlapping splittable slices.
- while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
- P.SJ->isSplittable()) {
- P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
- ++P.SJ;
- }
- // Back upiP.EndOffset if we ended the span early when encountering an
- // unsplittable slice. This synthesizes the early end offset of
- // a partition spanning only splittable slices.
- if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
- assert(!P.SJ->isSplittable());
- P.EndOffset = P.SJ->beginOffset();
- }
- }
- public:
- bool operator==(const partition_iterator &RHS) const {
- assert(SE == RHS.SE &&
- "End iterators don't match between compared partition iterators!");
- // The observed positions of partitions is marked by the P.SI iterator and
- // the emptyness of the split slices. The latter is only relevant when
- // P.SI == SE, as the end iterator will additionally have an empty split
- // slices list, but the prior may have the same P.SI and a tail of split
- // slices.
- if (P.SI == RHS.P.SI &&
- P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
- assert(P.SJ == RHS.P.SJ &&
- "Same set of slices formed two different sized partitions!");
- assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
- "Same slice position with differently sized non-empty split "
- "slice tails!");
- return true;
- }
- return false;
- }
- partition_iterator &operator++() {
- advance();
- return *this;
- }
- Partition &operator*() { return P; }
- };
- /// \brief A forward range over the partitions of the alloca's slices.
- ///
- /// This accesses an iterator range over the partitions of the alloca's
- /// slices. It computes these partitions on the fly based on the overlapping
- /// offsets of the slices and the ability to split them. It will visit "empty"
- /// partitions to cover regions of the alloca only accessed via split
- /// slices.
- iterator_range<partition_iterator> partitions() {
- return make_range(partition_iterator(begin(), end()),
- partition_iterator(end(), end()));
- }
- /// \brief Access the dead users for this alloca.
- ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
- /// \brief Access the dead operands referring to this alloca.
- ///
- /// These are operands which have cannot actually be used to refer to the
- /// alloca as they are outside its range and the user doesn't correct for
- /// that. These mostly consist of PHI node inputs and the like which we just
- /// need to replace with undef.
- ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
- void printSlice(raw_ostream &OS, const_iterator I,
- StringRef Indent = " ") const;
- void printUse(raw_ostream &OS, const_iterator I,
- StringRef Indent = " ") const;
- void print(raw_ostream &OS) const;
- void dump(const_iterator I) const;
- void dump() const;
- #endif
- private:
- template <typename DerivedT, typename RetT = void> class BuilderBase;
- class SliceBuilder;
- friend class AllocaSlices::SliceBuilder;
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- /// \brief Handle to alloca instruction to simplify method interfaces.
- AllocaInst &AI;
- #endif
- /// \brief The instruction responsible for this alloca not having a known set
- /// of slices.
- ///
- /// When an instruction (potentially) escapes the pointer to the alloca, we
- /// store a pointer to that here and abort trying to form slices of the
- /// alloca. This will be null if the alloca slices are analyzed successfully.
- Instruction *PointerEscapingInstr;
- /// \brief The slices of the alloca.
- ///
- /// We store a vector of the slices formed by uses of the alloca here. This
- /// vector is sorted by increasing begin offset, and then the unsplittable
- /// slices before the splittable ones. See the Slice inner class for more
- /// details.
- SmallVector<Slice, 8> Slices;
- /// \brief Instructions which will become dead if we rewrite the alloca.
- ///
- /// Note that these are not separated by slice. This is because we expect an
- /// alloca to be completely rewritten or not rewritten at all. If rewritten,
- /// all these instructions can simply be removed and replaced with undef as
- /// they come from outside of the allocated space.
- SmallVector<Instruction *, 8> DeadUsers;
- /// \brief Operands which will become dead if we rewrite the alloca.
- ///
- /// These are operands that in their particular use can be replaced with
- /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
- /// to PHI nodes and the like. They aren't entirely dead (there might be
- /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
- /// want to swap this particular input for undef to simplify the use lists of
- /// the alloca.
- SmallVector<Use *, 8> DeadOperands;
- };
- }
- static Value *foldSelectInst(SelectInst &SI) {
- // If the condition being selected on is a constant or the same value is
- // being selected between, fold the select. Yes this does (rarely) happen
- // early on.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
- return SI.getOperand(1 + CI->isZero());
- if (SI.getOperand(1) == SI.getOperand(2))
- return SI.getOperand(1);
- return nullptr;
- }
- /// \brief A helper that folds a PHI node or a select.
- static Value *foldPHINodeOrSelectInst(Instruction &I) {
- if (PHINode *PN = dyn_cast<PHINode>(&I)) {
- // If PN merges together the same value, return that value.
- return PN->hasConstantValue();
- }
- return foldSelectInst(cast<SelectInst>(I));
- }
- /// \brief Builder for the alloca slices.
- ///
- /// This class builds a set of alloca slices by recursively visiting the uses
- /// of an alloca and making a slice for each load and store at each offset.
- class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
- friend class PtrUseVisitor<SliceBuilder>;
- friend class InstVisitor<SliceBuilder>;
- typedef PtrUseVisitor<SliceBuilder> Base;
- const bool SkipHLSLMat; // HLSL Change - not sroa matrix type.
- const uint64_t AllocSize;
- AllocaSlices &AS;
- SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
- SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
- /// \brief Set to de-duplicate dead instructions found in the use walk.
- SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
- public:
- SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS,
- const bool SkipHLSLMat)
- : PtrUseVisitor<SliceBuilder>(DL),
- SkipHLSLMat(SkipHLSLMat), // HLSL Change - not sroa matrix type.
- AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), AS(AS) {}
- private:
- void markAsDead(Instruction &I) {
- if (VisitedDeadInsts.insert(&I).second)
- AS.DeadUsers.push_back(&I);
- }
- void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
- bool IsSplittable = false) {
- // Completely skip uses which have a zero size or start either before or
- // past the end of the allocation.
- if (Size == 0 || Offset.uge(AllocSize)) {
- DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
- << " which has zero size or starts outside of the "
- << AllocSize << " byte alloca:\n"
- << " alloca: " << AS.AI << "\n"
- << " use: " << I << "\n");
- return markAsDead(I);
- }
- uint64_t BeginOffset = Offset.getZExtValue();
- uint64_t EndOffset = BeginOffset + Size;
- // Clamp the end offset to the end of the allocation. Note that this is
- // formulated to handle even the case where "BeginOffset + Size" overflows.
- // This may appear superficially to be something we could ignore entirely,
- // but that is not so! There may be widened loads or PHI-node uses where
- // some instructions are dead but not others. We can't completely ignore
- // them, and so have to record at least the information here.
- assert(AllocSize >= BeginOffset); // Established above.
- if (Size > AllocSize - BeginOffset) {
- DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
- << " to remain within the " << AllocSize << " byte alloca:\n"
- << " alloca: " << AS.AI << "\n"
- << " use: " << I << "\n");
- EndOffset = AllocSize;
- }
- AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
- }
- void visitBitCastInst(BitCastInst &BC) {
- if (BC.use_empty())
- return markAsDead(BC);
- // HLSL Change Begin - not sroa matrix type.
- if (PointerType *PT = dyn_cast<PointerType>(BC.getType())) {
- Type *EltTy = PT->getElementType();
- if ((SkipHLSLMat && hlsl::HLMatrixType::isa(EltTy)) ||
- hlsl::dxilutil::IsHLSLObjectType(EltTy)) {
- AS.PointerEscapingInstr = &BC;
- return;
- }
- if (PointerType *SrcPT = dyn_cast<PointerType>(BC.getSrcTy())) {
- Type *SrcEltTy = SrcPT->getElementType();
- if ((SkipHLSLMat && hlsl::HLMatrixType::isa(SrcEltTy)) ||
- hlsl::dxilutil::IsHLSLObjectType(SrcEltTy)) {
- AS.PointerEscapingInstr = &BC;
- return;
- }
- }
- }
- // HLSL Change End.
- return Base::visitBitCastInst(BC);
- }
- void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
- if (GEPI.use_empty())
- return markAsDead(GEPI);
- if (SROAStrictInbounds && GEPI.isInBounds()) {
- // FIXME: This is a manually un-factored variant of the basic code inside
- // of GEPs with checking of the inbounds invariant specified in the
- // langref in a very strict sense. If we ever want to enable
- // SROAStrictInbounds, this code should be factored cleanly into
- // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
- // by writing out the code here where we have tho underlying allocation
- // size readily available.
- APInt GEPOffset = Offset;
- const DataLayout &DL = GEPI.getModule()->getDataLayout();
- for (gep_type_iterator GTI = gep_type_begin(GEPI),
- GTE = gep_type_end(GEPI);
- GTI != GTE; ++GTI) {
- ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
- if (!OpC)
- break;
- // Handle a struct index, which adds its field offset to the pointer.
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- unsigned ElementIdx = OpC->getZExtValue();
- const StructLayout *SL = DL.getStructLayout(STy);
- GEPOffset +=
- APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
- } else {
- // For array or vector indices, scale the index by the size of the
- // type.
- APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
- GEPOffset += Index * APInt(Offset.getBitWidth(),
- DL.getTypeAllocSize(GTI.getIndexedType()));
- }
- // If this index has computed an intermediate pointer which is not
- // inbounds, then the result of the GEP is a poison value and we can
- // delete it and all uses.
- if (GEPOffset.ugt(AllocSize))
- return markAsDead(GEPI);
- }
- }
- return Base::visitGetElementPtrInst(GEPI);
- }
- void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
- uint64_t Size, bool IsVolatile) {
- // We allow splitting of non-volatile loads and stores where the type is an
- // integer type. These may be used to implement 'memcpy' or other "transfer
- // of bits" patterns.
- bool IsSplittable = Ty->isIntegerTy() && !IsVolatile;
- insertUse(I, Offset, Size, IsSplittable);
- }
- void visitLoadInst(LoadInst &LI) {
- // HLSL Change Begin - not sroa matrix type.
- if ((SkipHLSLMat && hlsl::HLMatrixType::isa(LI.getType())) ||
- hlsl::dxilutil::IsHLSLObjectType(LI.getType()))
- return PI.setEscapedAndAborted(&LI);
- // HLSL Change End.
- assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
- "All simple FCA loads should have been pre-split");
- if (!IsOffsetKnown)
- return PI.setAborted(&LI);
- const DataLayout &DL = LI.getModule()->getDataLayout();
- uint64_t Size = DL.getTypeStoreSize(LI.getType());
- return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
- }
- void visitStoreInst(StoreInst &SI) {
- Value *ValOp = SI.getValueOperand();
- if (ValOp == *U)
- return PI.setEscapedAndAborted(&SI);
- // HLSL Change Begin - not sroa matrix type.
- if ((SkipHLSLMat && hlsl::HLMatrixType::isa(ValOp->getType())) ||
- hlsl::dxilutil::IsHLSLObjectType(ValOp->getType()))
- return PI.setEscapedAndAborted(&SI);
- // HLSL Change End.
- if (!IsOffsetKnown)
- return PI.setAborted(&SI);
- const DataLayout &DL = SI.getModule()->getDataLayout();
- uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
- // If this memory access can be shown to *statically* extend outside the
- // bounds of of the allocation, it's behavior is undefined, so simply
- // ignore it. Note that this is more strict than the generic clamping
- // behavior of insertUse. We also try to handle cases which might run the
- // risk of overflow.
- // FIXME: We should instead consider the pointer to have escaped if this
- // function is being instrumented for addressing bugs or race conditions.
- if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
- DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset
- << " which extends past the end of the " << AllocSize
- << " byte alloca:\n"
- << " alloca: " << AS.AI << "\n"
- << " use: " << SI << "\n");
- return markAsDead(SI);
- }
- assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
- "All simple FCA stores should have been pre-split");
- handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
- }
- void visitMemSetInst(MemSetInst &II) {
- assert(II.getRawDest() == *U && "Pointer use is not the destination?");
- ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
- if ((Length && Length->getValue() == 0) ||
- (IsOffsetKnown && Offset.uge(AllocSize)))
- // Zero-length mem transfer intrinsics can be ignored entirely.
- return markAsDead(II);
- if (!IsOffsetKnown)
- return PI.setAborted(&II);
- insertUse(II, Offset, Length ? Length->getLimitedValue()
- : AllocSize - Offset.getLimitedValue(),
- (bool)Length);
- }
- void visitMemTransferInst(MemTransferInst &II) {
- ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
- if (Length && Length->getValue() == 0)
- // Zero-length mem transfer intrinsics can be ignored entirely.
- return markAsDead(II);
- // Because we can visit these intrinsics twice, also check to see if the
- // first time marked this instruction as dead. If so, skip it.
- if (VisitedDeadInsts.count(&II))
- return;
- if (!IsOffsetKnown)
- return PI.setAborted(&II);
- // This side of the transfer is completely out-of-bounds, and so we can
- // nuke the entire transfer. However, we also need to nuke the other side
- // if already added to our partitions.
- // FIXME: Yet another place we really should bypass this when
- // instrumenting for ASan.
- if (Offset.uge(AllocSize)) {
- SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
- MemTransferSliceMap.find(&II);
- if (MTPI != MemTransferSliceMap.end())
- AS.Slices[MTPI->second].kill();
- return markAsDead(II);
- }
- uint64_t RawOffset = Offset.getLimitedValue();
- uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
- // Check for the special case where the same exact value is used for both
- // source and dest.
- if (*U == II.getRawDest() && *U == II.getRawSource()) {
- // For non-volatile transfers this is a no-op.
- if (!II.isVolatile())
- return markAsDead(II);
- return insertUse(II, Offset, Size, /*IsSplittable=*/false);
- }
- // If we have seen both source and destination for a mem transfer, then
- // they both point to the same alloca.
- bool Inserted;
- SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
- std::tie(MTPI, Inserted) =
- MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
- unsigned PrevIdx = MTPI->second;
- if (!Inserted) {
- Slice &PrevP = AS.Slices[PrevIdx];
- // Check if the begin offsets match and this is a non-volatile transfer.
- // In that case, we can completely elide the transfer.
- if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
- PrevP.kill();
- return markAsDead(II);
- }
- // Otherwise we have an offset transfer within the same alloca. We can't
- // split those.
- PrevP.makeUnsplittable();
- }
- // Insert the use now that we've fixed up the splittable nature.
- insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
- // Check that we ended up with a valid index in the map.
- assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
- "Map index doesn't point back to a slice with this user.");
- }
- // Disable SRoA for any intrinsics except for lifetime invariants.
- // FIXME: What about debug intrinsics? This matches old behavior, but
- // doesn't make sense.
- void visitIntrinsicInst(IntrinsicInst &II) {
- if (!IsOffsetKnown)
- return PI.setAborted(&II);
- if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
- II.getIntrinsicID() == Intrinsic::lifetime_end) {
- ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
- uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
- Length->getLimitedValue());
- insertUse(II, Offset, Size, true);
- return;
- }
- Base::visitIntrinsicInst(II);
- }
- Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
- // We consider any PHI or select that results in a direct load or store of
- // the same offset to be a viable use for slicing purposes. These uses
- // are considered unsplittable and the size is the maximum loaded or stored
- // size.
- SmallPtrSet<Instruction *, 4> Visited;
- SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
- Visited.insert(Root);
- Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
- const DataLayout &DL = Root->getModule()->getDataLayout();
- // If there are no loads or stores, the access is dead. We mark that as
- // a size zero access.
- Size = 0;
- do {
- Instruction *I, *UsedI;
- std::tie(UsedI, I) = Uses.pop_back_val();
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
- continue;
- }
- if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- Value *Op = SI->getOperand(0);
- if (Op == UsedI)
- return SI;
- Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
- continue;
- }
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
- if (!GEP->hasAllZeroIndices())
- return GEP;
- } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
- !isa<SelectInst>(I)) {
- return I;
- }
- for (User *U : I->users())
- if (Visited.insert(cast<Instruction>(U)).second)
- Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
- } while (!Uses.empty());
- return nullptr;
- }
- void visitPHINodeOrSelectInst(Instruction &I) {
- assert(isa<PHINode>(I) || isa<SelectInst>(I));
- if (I.use_empty())
- return markAsDead(I);
- // TODO: We could use SimplifyInstruction here to fold PHINodes and
- // SelectInsts. However, doing so requires to change the current
- // dead-operand-tracking mechanism. For instance, suppose neither loading
- // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
- // trap either. However, if we simply replace %U with undef using the
- // current dead-operand-tracking mechanism, "load (select undef, undef,
- // %other)" may trap because the select may return the first operand
- // "undef".
- if (Value *Result = foldPHINodeOrSelectInst(I)) {
- if (Result == *U)
- // If the result of the constant fold will be the pointer, recurse
- // through the PHI/select as if we had RAUW'ed it.
- enqueueUsers(I);
- else
- // Otherwise the operand to the PHI/select is dead, and we can replace
- // it with undef.
- AS.DeadOperands.push_back(U);
- return;
- }
- if (!IsOffsetKnown)
- return PI.setAborted(&I);
- // See if we already have computed info on this node.
- uint64_t &Size = PHIOrSelectSizes[&I];
- if (!Size) {
- // This is a new PHI/Select, check for an unsafe use of it.
- if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
- return PI.setAborted(UnsafeI);
- }
- // For PHI and select operands outside the alloca, we can't nuke the entire
- // phi or select -- the other side might still be relevant, so we special
- // case them here and use a separate structure to track the operands
- // themselves which should be replaced with undef.
- // FIXME: This should instead be escaped in the event we're instrumenting
- // for address sanitization.
- if (Offset.uge(AllocSize)) {
- AS.DeadOperands.push_back(U);
- return;
- }
- insertUse(I, Offset, Size);
- }
- void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
- void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
- /// \brief Disable SROA entirely if there are unhandled users of the alloca.
- void visitInstruction(Instruction &I) { PI.setAborted(&I); }
- };
- AllocaSlices::AllocaSlices(
- const DataLayout &DL, AllocaInst &AI,
- const bool SkipHLSLMat) // HLSL Change - not sroa matrix type.
- :
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- AI(AI),
- #endif
- PointerEscapingInstr(nullptr) {
- SliceBuilder PB(DL, AI, *this, SkipHLSLMat);
- SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
- if (PtrI.isEscaped() || PtrI.isAborted()) {
- // FIXME: We should sink the escape vs. abort info into the caller nicely,
- // possibly by just storing the PtrInfo in the AllocaSlices.
- PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
- : PtrI.getAbortingInst();
- assert(PointerEscapingInstr && "Did not track a bad instruction");
- return;
- }
- Slices.erase(std::remove_if(Slices.begin(), Slices.end(),
- [](const Slice &S) {
- return S.isDead();
- }),
- Slices.end());
- #if 0 // HLSL Change Starts - option pending
- #if __cplusplus >= 201103L && !defined(NDEBUG)
- if (SROARandomShuffleSlices) {
- std::mt19937 MT(static_cast<unsigned>(sys::TimeValue::now().msec()));
- std::shuffle(Slices.begin(), Slices.end(), MT);
- }
- #endif
- #endif // HLSL Change Ends - option pending
- // Sort the uses. This arranges for the offsets to be in ascending order,
- // and the sizes to be in descending order.
- std::sort(Slices.begin(), Slices.end());
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- void AllocaSlices::print(raw_ostream &OS, const_iterator I,
- StringRef Indent) const {
- printSlice(OS, I, Indent);
- OS << "\n";
- printUse(OS, I, Indent);
- }
- void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
- StringRef Indent) const {
- OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
- << " slice #" << (I - begin())
- << (I->isSplittable() ? " (splittable)" : "");
- }
- void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
- StringRef Indent) const {
- OS << Indent << " used by: " << *I->getUse()->getUser() << "\n";
- }
- void AllocaSlices::print(raw_ostream &OS) const {
- if (PointerEscapingInstr) {
- OS << "Can't analyze slices for alloca: " << AI << "\n"
- << " A pointer to this alloca escaped by:\n"
- << " " << *PointerEscapingInstr << "\n";
- return;
- }
- OS << "Slices of alloca: " << AI << "\n";
- for (const_iterator I = begin(), E = end(); I != E; ++I)
- print(OS, I);
- }
- LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
- print(dbgs(), I);
- }
- LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
- #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- namespace {
- /// \brief Implementation of LoadAndStorePromoter for promoting allocas.
- ///
- /// This subclass of LoadAndStorePromoter adds overrides to handle promoting
- /// the loads and stores of an alloca instruction, as well as updating its
- /// debug information. This is used when a domtree is unavailable and thus
- /// mem2reg in its full form can't be used to handle promotion of allocas to
- /// scalar values.
- class AllocaPromoter : public LoadAndStorePromoter {
- AllocaInst &AI;
- DIBuilder &DIB;
- SmallVector<DbgDeclareInst *, 4> DDIs;
- SmallVector<DbgValueInst *, 4> DVIs;
- public:
- AllocaPromoter(ArrayRef<const Instruction *> Insts,
- SSAUpdater &S,
- AllocaInst &AI, DIBuilder &DIB)
- : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
- void run(const SmallVectorImpl<Instruction *> &Insts) {
- // Retain the debug information attached to the alloca for use when
- // rewriting loads and stores.
- if (auto *L = LocalAsMetadata::getIfExists(&AI)) {
- if (auto *DINode = MetadataAsValue::getIfExists(AI.getContext(), L)) {
- for (User *U : DINode->users())
- if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
- DDIs.push_back(DDI);
- else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
- DVIs.push_back(DVI);
- }
- }
- LoadAndStorePromoter::run(Insts);
- // While we have the debug information, clear it off of the alloca. The
- // caller takes care of deleting the alloca.
- while (!DDIs.empty())
- DDIs.pop_back_val()->eraseFromParent();
- while (!DVIs.empty())
- DVIs.pop_back_val()->eraseFromParent();
- }
- bool
- isInstInList(Instruction *I,
- const SmallVectorImpl<Instruction *> &Insts) const override {
- Value *Ptr;
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- Ptr = LI->getOperand(0);
- else
- Ptr = cast<StoreInst>(I)->getPointerOperand();
- // Only used to detect cycles, which will be rare and quickly found as
- // we're walking up a chain of defs rather than down through uses.
- SmallPtrSet<Value *, 4> Visited;
- do {
- if (Ptr == &AI)
- return true;
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr))
- Ptr = BCI->getOperand(0);
- else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
- Ptr = GEPI->getPointerOperand();
- else
- return false;
- } while (Visited.insert(Ptr).second);
- return false;
- }
- void updateDebugInfo(Instruction *Inst) const override {
- for (DbgDeclareInst *DDI : DDIs)
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
- ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
- else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
- ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
- for (DbgValueInst *DVI : DVIs) {
- Value *Arg = nullptr;
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- // If an argument is zero extended then use argument directly. The ZExt
- // may be zapped by an optimization pass in future.
- if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
- Arg = dyn_cast<Argument>(ZExt->getOperand(0));
- else if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
- Arg = dyn_cast<Argument>(SExt->getOperand(0));
- if (!Arg)
- Arg = SI->getValueOperand();
- } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- Arg = LI->getPointerOperand();
- } else {
- continue;
- }
- DIB.insertDbgValueIntrinsic(Arg, 0, DVI->getVariable(),
- DVI->getExpression(), DVI->getDebugLoc(),
- Inst);
- }
- }
- };
- } // end anon namespace
- namespace {
- /// \brief An optimization pass providing Scalar Replacement of Aggregates.
- ///
- /// This pass takes allocations which can be completely analyzed (that is, they
- /// don't escape) and tries to turn them into scalar SSA values. There are
- /// a few steps to this process.
- ///
- /// 1) It takes allocations of aggregates and analyzes the ways in which they
- /// are used to try to split them into smaller allocations, ideally of
- /// a single scalar data type. It will split up memcpy and memset accesses
- /// as necessary and try to isolate individual scalar accesses.
- /// 2) It will transform accesses into forms which are suitable for SSA value
- /// promotion. This can be replacing a memset with a scalar store of an
- /// integer value, or it can involve speculating operations on a PHI or
- /// select to be a PHI or select of the results.
- /// 3) Finally, this will try to detect a pattern of accesses which map cleanly
- /// onto insert and extract operations on a vector value, and convert them to
- /// this form. By doing so, it will enable promotion of vector aggregates to
- /// SSA vector values.
- class SROA : public FunctionPass {
- const bool RequiresDomTree;
- const bool SkipHLSLMat; // HLSL Change - not sroa matrix type.
- LLVMContext *C;
- DominatorTree *DT;
- AssumptionCache *AC;
- /// \brief Worklist of alloca instructions to simplify.
- ///
- /// Each alloca in the function is added to this. Each new alloca formed gets
- /// added to it as well to recursively simplify unless that alloca can be
- /// directly promoted. Finally, each time we rewrite a use of an alloca other
- /// the one being actively rewritten, we add it back onto the list if not
- /// already present to ensure it is re-visited.
- SetVector<AllocaInst *, SmallVector<AllocaInst *, 16>> Worklist;
- /// \brief A collection of instructions to delete.
- /// We try to batch deletions to simplify code and make things a bit more
- /// efficient.
- SetVector<Instruction *, SmallVector<Instruction *, 8>> DeadInsts;
- /// \brief Post-promotion worklist.
- ///
- /// Sometimes we discover an alloca which has a high probability of becoming
- /// viable for SROA after a round of promotion takes place. In those cases,
- /// the alloca is enqueued here for re-processing.
- ///
- /// Note that we have to be very careful to clear allocas out of this list in
- /// the event they are deleted.
- SetVector<AllocaInst *, SmallVector<AllocaInst *, 16>> PostPromotionWorklist;
- /// \brief A collection of alloca instructions we can directly promote.
- std::vector<AllocaInst *> PromotableAllocas;
- /// \brief A worklist of PHIs to speculate prior to promoting allocas.
- ///
- /// All of these PHIs have been checked for the safety of speculation and by
- /// being speculated will allow promoting allocas currently in the promotable
- /// queue.
- SetVector<PHINode *, SmallVector<PHINode *, 2>> SpeculatablePHIs;
- /// \brief A worklist of select instructions to speculate prior to promoting
- /// allocas.
- ///
- /// All of these select instructions have been checked for the safety of
- /// speculation and by being speculated will allow promoting allocas
- /// currently in the promotable queue.
- SetVector<SelectInst *, SmallVector<SelectInst *, 2>> SpeculatableSelects;
- public:
- SROA(bool RequiresDomTree = true, bool SkipHLSLMat = true)
- : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
- SkipHLSLMat(SkipHLSLMat), // HLSL Change - not sroa matrix type.
- C(nullptr), DT(nullptr) {
- initializeSROAPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override;
- const char *getPassName() const override { return "SROA"; }
- static char ID;
- private:
- friend class PHIOrSelectSpeculator;
- friend class AllocaSliceRewriter;
- bool runOnFunctionImp(Function &F);
- bool presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS);
- AllocaInst *rewritePartition(AllocaInst &AI, AllocaSlices &AS,
- AllocaSlices::Partition &P);
- bool splitAlloca(AllocaInst &AI, AllocaSlices &AS);
- bool runOnAlloca(AllocaInst &AI);
- void clobberUse(Use &U);
- void deleteDeadInstructions(SmallPtrSetImpl<AllocaInst *> &DeletedAllocas);
- bool promoteAllocas(Function &F);
- };
- }
- char SROA::ID = 0;
- FunctionPass *llvm::createSROAPass(bool RequiresDomTree, bool SkipHLSLMat) {
- return new SROA(RequiresDomTree, SkipHLSLMat);
- }
- INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates", false,
- false)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates", false,
- false)
- /// Walk the range of a partitioning looking for a common type to cover this
- /// sequence of slices.
- static Type *findCommonType(AllocaSlices::const_iterator B,
- AllocaSlices::const_iterator E,
- uint64_t EndOffset) {
- Type *Ty = nullptr;
- bool TyIsCommon = true;
- IntegerType *ITy = nullptr;
- // Note that we need to look at *every* alloca slice's Use to ensure we
- // always get consistent results regardless of the order of slices.
- for (AllocaSlices::const_iterator I = B; I != E; ++I) {
- Use *U = I->getUse();
- if (isa<IntrinsicInst>(*U->getUser()))
- continue;
- if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
- continue;
- Type *UserTy = nullptr;
- if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
- UserTy = LI->getType();
- } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
- UserTy = SI->getValueOperand()->getType();
- }
- if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
- // If the type is larger than the partition, skip it. We only encounter
- // this for split integer operations where we want to use the type of the
- // entity causing the split. Also skip if the type is not a byte width
- // multiple.
- if (UserITy->getBitWidth() % 8 != 0 ||
- UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
- continue;
- // Track the largest bitwidth integer type used in this way in case there
- // is no common type.
- if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
- ITy = UserITy;
- }
- // To avoid depending on the order of slices, Ty and TyIsCommon must not
- // depend on types skipped above.
- if (!UserTy || (Ty && Ty != UserTy))
- TyIsCommon = false; // Give up on anything but an iN type.
- else
- Ty = UserTy;
- }
- return TyIsCommon ? Ty : ITy;
- }
- /// PHI instructions that use an alloca and are subsequently loaded can be
- /// rewritten to load both input pointers in the pred blocks and then PHI the
- /// results, allowing the load of the alloca to be promoted.
- /// From this:
- /// %P2 = phi [i32* %Alloca, i32* %Other]
- /// %V = load i32* %P2
- /// to:
- /// %V1 = load i32* %Alloca -> will be mem2reg'd
- /// ...
- /// %V2 = load i32* %Other
- /// ...
- /// %V = phi [i32 %V1, i32 %V2]
- ///
- /// We can do this to a select if its only uses are loads and if the operands
- /// to the select can be loaded unconditionally.
- ///
- /// FIXME: This should be hoisted into a generic utility, likely in
- /// Transforms/Util/Local.h
- static bool isSafePHIToSpeculate(PHINode &PN) {
- // For now, we can only do this promotion if the load is in the same block
- // as the PHI, and if there are no stores between the phi and load.
- // TODO: Allow recursive phi users.
- // TODO: Allow stores.
- BasicBlock *BB = PN.getParent();
- unsigned MaxAlign = 0;
- bool HaveLoad = false;
- for (User *U : PN.users()) {
- LoadInst *LI = dyn_cast<LoadInst>(U);
- if (!LI || !LI->isSimple())
- return false;
- // For now we only allow loads in the same block as the PHI. This is
- // a common case that happens when instcombine merges two loads through
- // a PHI.
- if (LI->getParent() != BB)
- return false;
- // Ensure that there are no instructions between the PHI and the load that
- // could store.
- for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
- if (BBI->mayWriteToMemory())
- return false;
- MaxAlign = std::max(MaxAlign, LI->getAlignment());
- HaveLoad = true;
- }
- if (!HaveLoad)
- return false;
- const DataLayout &DL = PN.getModule()->getDataLayout();
- // We can only transform this if it is safe to push the loads into the
- // predecessor blocks. The only thing to watch out for is that we can't put
- // a possibly trapping load in the predecessor if it is a critical edge.
- for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
- TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
- Value *InVal = PN.getIncomingValue(Idx);
- // If the value is produced by the terminator of the predecessor (an
- // invoke) or it has side-effects, there is no valid place to put a load
- // in the predecessor.
- if (TI == InVal || TI->mayHaveSideEffects())
- return false;
- // If the predecessor has a single successor, then the edge isn't
- // critical.
- if (TI->getNumSuccessors() == 1)
- continue;
- // If this pointer is always safe to load, or if we can prove that there
- // is already a load in the block, then we can move the load to the pred
- // block.
- if (isDereferenceablePointer(InVal, DL) ||
- isSafeToLoadUnconditionally(InVal, TI, MaxAlign))
- continue;
- return false;
- }
- return true;
- }
- static void speculatePHINodeLoads(PHINode &PN) {
- DEBUG(dbgs() << " original: " << PN << "\n");
- Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
- IRBuilderTy PHIBuilder(&PN);
- PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
- PN.getName() + ".sroa.speculated");
- // Get the AA tags and alignment to use from one of the loads. It doesn't
- // matter which one we get and if any differ.
- LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
- AAMDNodes AATags;
- SomeLoad->getAAMetadata(AATags);
- unsigned Align = SomeLoad->getAlignment();
- // Rewrite all loads of the PN to use the new PHI.
- while (!PN.use_empty()) {
- LoadInst *LI = cast<LoadInst>(PN.user_back());
- LI->replaceAllUsesWith(NewPN);
- LI->eraseFromParent();
- }
- // Inject loads into all of the pred blocks.
- for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
- BasicBlock *Pred = PN.getIncomingBlock(Idx);
- TerminatorInst *TI = Pred->getTerminator();
- Value *InVal = PN.getIncomingValue(Idx);
- IRBuilderTy PredBuilder(TI);
- LoadInst *Load = PredBuilder.CreateLoad(
- InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
- ++NumLoadsSpeculated;
- Load->setAlignment(Align);
- if (AATags)
- Load->setAAMetadata(AATags);
- NewPN->addIncoming(Load, Pred);
- }
- DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
- PN.eraseFromParent();
- }
- /// Select instructions that use an alloca and are subsequently loaded can be
- /// rewritten to load both input pointers and then select between the result,
- /// allowing the load of the alloca to be promoted.
- /// From this:
- /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
- /// %V = load i32* %P2
- /// to:
- /// %V1 = load i32* %Alloca -> will be mem2reg'd
- /// %V2 = load i32* %Other
- /// %V = select i1 %cond, i32 %V1, i32 %V2
- ///
- /// We can do this to a select if its only uses are loads and if the operand
- /// to the select can be loaded unconditionally.
- static bool isSafeSelectToSpeculate(SelectInst &SI) {
- Value *TValue = SI.getTrueValue();
- Value *FValue = SI.getFalseValue();
- const DataLayout &DL = SI.getModule()->getDataLayout();
- bool TDerefable = isDereferenceablePointer(TValue, DL);
- bool FDerefable = isDereferenceablePointer(FValue, DL);
- for (User *U : SI.users()) {
- LoadInst *LI = dyn_cast<LoadInst>(U);
- if (!LI || !LI->isSimple())
- return false;
- // Both operands to the select need to be dereferencable, either
- // absolutely (e.g. allocas) or at this point because we can see other
- // accesses to it.
- if (!TDerefable &&
- !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment()))
- return false;
- if (!FDerefable &&
- !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment()))
- return false;
- }
- return true;
- }
- static void speculateSelectInstLoads(SelectInst &SI) {
- DEBUG(dbgs() << " original: " << SI << "\n");
- IRBuilderTy IRB(&SI);
- Value *TV = SI.getTrueValue();
- Value *FV = SI.getFalseValue();
- // Replace the loads of the select with a select of two loads.
- while (!SI.use_empty()) {
- LoadInst *LI = cast<LoadInst>(SI.user_back());
- assert(LI->isSimple() && "We only speculate simple loads");
- IRB.SetInsertPoint(LI);
- LoadInst *TL =
- IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
- LoadInst *FL =
- IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
- NumLoadsSpeculated += 2;
- // Transfer alignment and AA info if present.
- TL->setAlignment(LI->getAlignment());
- FL->setAlignment(LI->getAlignment());
- AAMDNodes Tags;
- LI->getAAMetadata(Tags);
- if (Tags) {
- TL->setAAMetadata(Tags);
- FL->setAAMetadata(Tags);
- }
- Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
- LI->getName() + ".sroa.speculated");
- DEBUG(dbgs() << " speculated to: " << *V << "\n");
- LI->replaceAllUsesWith(V);
- LI->eraseFromParent();
- }
- SI.eraseFromParent();
- }
- /// \brief Build a GEP out of a base pointer and indices.
- ///
- /// This will return the BasePtr if that is valid, or build a new GEP
- /// instruction using the IRBuilder if GEP-ing is needed.
- static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
- SmallVectorImpl<Value *> &Indices, Twine NamePrefix) {
- if (Indices.empty())
- return BasePtr;
- // A single zero index is a no-op, so check for this and avoid building a GEP
- // in that case.
- if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
- return BasePtr;
- return IRB.CreateInBoundsGEP(nullptr, BasePtr, Indices,
- NamePrefix + "sroa_idx");
- }
- /// \brief Get a natural GEP off of the BasePtr walking through Ty toward
- /// TargetTy without changing the offset of the pointer.
- ///
- /// This routine assumes we've already established a properly offset GEP with
- /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
- /// zero-indices down through type layers until we find one the same as
- /// TargetTy. If we can't find one with the same type, we at least try to use
- /// one with the same size. If none of that works, we just produce the GEP as
- /// indicated by Indices to have the correct offset.
- static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
- Value *BasePtr, Type *Ty, Type *TargetTy,
- SmallVectorImpl<Value *> &Indices,
- Twine NamePrefix) {
- if (Ty == TargetTy)
- return buildGEP(IRB, BasePtr, Indices, NamePrefix);
- // Pointer size to use for the indices.
- unsigned PtrSize = DL.getPointerTypeSizeInBits(BasePtr->getType());
- // See if we can descend into a struct and locate a field with the correct
- // type.
- unsigned NumLayers = 0;
- Type *ElementTy = Ty;
- do {
- if (ElementTy->isPointerTy())
- break;
- if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
- ElementTy = ArrayTy->getElementType();
- Indices.push_back(IRB.getIntN(PtrSize, 0));
- } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
- ElementTy = VectorTy->getElementType();
- Indices.push_back(IRB.getInt32(0));
- } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
- if (STy->element_begin() == STy->element_end())
- break; // Nothing left to descend into.
- ElementTy = *STy->element_begin();
- Indices.push_back(IRB.getInt32(0));
- } else {
- break;
- }
- ++NumLayers;
- } while (ElementTy != TargetTy);
- if (ElementTy != TargetTy)
- Indices.erase(Indices.end() - NumLayers, Indices.end());
- return buildGEP(IRB, BasePtr, Indices, NamePrefix);
- }
- /// \brief Recursively compute indices for a natural GEP.
- ///
- /// This is the recursive step for getNaturalGEPWithOffset that walks down the
- /// element types adding appropriate indices for the GEP.
- static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
- Value *Ptr, Type *Ty, APInt &Offset,
- Type *TargetTy,
- SmallVectorImpl<Value *> &Indices,
- Twine NamePrefix) {
- if (Offset == 0)
- return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices,
- NamePrefix);
- // We can't recurse through pointer types.
- if (Ty->isPointerTy())
- return nullptr;
- // We try to analyze GEPs over vectors here, but note that these GEPs are
- // extremely poorly defined currently. The long-term goal is to remove GEPing
- // over a vector from the IR completely.
- if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
- unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
- if (ElementSizeInBits % 8 != 0) {
- // GEPs over non-multiple of 8 size vector elements are invalid.
- return nullptr;
- }
- APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
- APInt NumSkippedElements = Offset.sdiv(ElementSize);
- if (NumSkippedElements.ugt(VecTy->getNumElements()))
- return nullptr;
- Offset -= NumSkippedElements * ElementSize;
- Indices.push_back(IRB.getInt(NumSkippedElements));
- return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
- Offset, TargetTy, Indices, NamePrefix);
- }
- if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
- Type *ElementTy = ArrTy->getElementType();
- APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
- APInt NumSkippedElements = Offset.sdiv(ElementSize);
- if (NumSkippedElements.ugt(ArrTy->getNumElements()))
- return nullptr;
- Offset -= NumSkippedElements * ElementSize;
- Indices.push_back(IRB.getInt(NumSkippedElements));
- return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
- Indices, NamePrefix);
- }
- StructType *STy = dyn_cast<StructType>(Ty);
- if (!STy)
- return nullptr;
- const StructLayout *SL = DL.getStructLayout(STy);
- uint64_t StructOffset = Offset.getZExtValue();
- if (StructOffset >= SL->getSizeInBytes())
- return nullptr;
- unsigned Index = SL->getElementContainingOffset(StructOffset);
- Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
- Type *ElementTy = STy->getElementType(Index);
- if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
- return nullptr; // The offset points into alignment padding.
- Indices.push_back(IRB.getInt32(Index));
- return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
- Indices, NamePrefix);
- }
- /// \brief Get a natural GEP from a base pointer to a particular offset and
- /// resulting in a particular type.
- ///
- /// The goal is to produce a "natural" looking GEP that works with the existing
- /// composite types to arrive at the appropriate offset and element type for
- /// a pointer. TargetTy is the element type the returned GEP should point-to if
- /// possible. We recurse by decreasing Offset, adding the appropriate index to
- /// Indices, and setting Ty to the result subtype.
- ///
- /// If no natural GEP can be constructed, this function returns null.
- static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
- Value *Ptr, APInt Offset, Type *TargetTy,
- SmallVectorImpl<Value *> &Indices,
- Twine NamePrefix) {
- PointerType *Ty = cast<PointerType>(Ptr->getType());
- // Don't consider any GEPs through an i8* as natural unless the TargetTy is
- // an i8.
- if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
- return nullptr;
- Type *ElementTy = Ty->getElementType();
- if (!ElementTy->isSized())
- return nullptr; // We can't GEP through an unsized element.
- APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
- if (ElementSize == 0)
- return nullptr; // Zero-length arrays can't help us build a natural GEP.
- APInt NumSkippedElements = Offset.sdiv(ElementSize);
- Offset -= NumSkippedElements * ElementSize;
- Indices.push_back(IRB.getInt(NumSkippedElements));
- return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
- Indices, NamePrefix);
- }
- /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
- /// resulting pointer has PointerTy.
- ///
- /// This tries very hard to compute a "natural" GEP which arrives at the offset
- /// and produces the pointer type desired. Where it cannot, it will try to use
- /// the natural GEP to arrive at the offset and bitcast to the type. Where that
- /// fails, it will try to use an existing i8* and GEP to the byte offset and
- /// bitcast to the type.
- ///
- /// The strategy for finding the more natural GEPs is to peel off layers of the
- /// pointer, walking back through bit casts and GEPs, searching for a base
- /// pointer from which we can compute a natural GEP with the desired
- /// properties. The algorithm tries to fold as many constant indices into
- /// a single GEP as possible, thus making each GEP more independent of the
- /// surrounding code.
- static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
- APInt Offset, Type *PointerTy, Twine NamePrefix) {
- // Even though we don't look through PHI nodes, we could be called on an
- // instruction in an unreachable block, which may be on a cycle.
- SmallPtrSet<Value *, 4> Visited;
- Visited.insert(Ptr);
- SmallVector<Value *, 4> Indices;
- // We may end up computing an offset pointer that has the wrong type. If we
- // never are able to compute one directly that has the correct type, we'll
- // fall back to it, so keep it and the base it was computed from around here.
- Value *OffsetPtr = nullptr;
- Value *OffsetBasePtr;
- // Remember any i8 pointer we come across to re-use if we need to do a raw
- // byte offset.
- Value *Int8Ptr = nullptr;
- APInt Int8PtrOffset(Offset.getBitWidth(), 0);
- Type *TargetTy = PointerTy->getPointerElementType();
- do {
- // First fold any existing GEPs into the offset.
- while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
- APInt GEPOffset(Offset.getBitWidth(), 0);
- if (!GEP->accumulateConstantOffset(DL, GEPOffset))
- break;
- Offset += GEPOffset;
- Ptr = GEP->getPointerOperand();
- if (!Visited.insert(Ptr).second)
- break;
- }
- // See if we can perform a natural GEP here.
- Indices.clear();
- if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
- Indices, NamePrefix)) {
- // If we have a new natural pointer at the offset, clear out any old
- // offset pointer we computed. Unless it is the base pointer or
- // a non-instruction, we built a GEP we don't need. Zap it.
- if (OffsetPtr && OffsetPtr != OffsetBasePtr)
- if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
- assert(I->use_empty() && "Built a GEP with uses some how!");
- I->eraseFromParent();
- }
- OffsetPtr = P;
- OffsetBasePtr = Ptr;
- // If we also found a pointer of the right type, we're done.
- if (P->getType() == PointerTy)
- return P;
- }
- // Stash this pointer if we've found an i8*.
- if (Ptr->getType()->isIntegerTy(8)) {
- Int8Ptr = Ptr;
- Int8PtrOffset = Offset;
- }
- // Peel off a layer of the pointer and update the offset appropriately.
- if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
- Ptr = cast<Operator>(Ptr)->getOperand(0);
- } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
- if (GA->mayBeOverridden())
- break;
- Ptr = GA->getAliasee();
- } else {
- break;
- }
- assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
- } while (Visited.insert(Ptr).second);
- if (!OffsetPtr) {
- if (!Int8Ptr) {
- Int8Ptr = IRB.CreateBitCast(
- Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
- NamePrefix + "sroa_raw_cast");
- Int8PtrOffset = Offset;
- }
- OffsetPtr = Int8PtrOffset == 0
- ? Int8Ptr
- : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
- IRB.getInt(Int8PtrOffset),
- NamePrefix + "sroa_raw_idx");
- }
- Ptr = OffsetPtr;
- // On the off chance we were targeting i8*, guard the bitcast here.
- if (Ptr->getType() != PointerTy)
- Ptr = IRB.CreateBitCast(Ptr, PointerTy, NamePrefix + "sroa_cast");
- return Ptr;
- }
- /// \brief Compute the adjusted alignment for a load or store from an offset.
- static unsigned getAdjustedAlignment(Instruction *I, uint64_t Offset,
- const DataLayout &DL) {
- unsigned Alignment;
- Type *Ty;
- if (auto *LI = dyn_cast<LoadInst>(I)) {
- Alignment = LI->getAlignment();
- Ty = LI->getType();
- } else if (auto *SI = dyn_cast<StoreInst>(I)) {
- Alignment = SI->getAlignment();
- Ty = SI->getValueOperand()->getType();
- } else {
- llvm_unreachable("Only loads and stores are allowed!");
- }
- if (!Alignment)
- Alignment = DL.getABITypeAlignment(Ty);
- return MinAlign(Alignment, Offset);
- }
- /// \brief Test whether we can convert a value from the old to the new type.
- ///
- /// This predicate should be used to guard calls to convertValue in order to
- /// ensure that we only try to convert viable values. The strategy is that we
- /// will peel off single element struct and array wrappings to get to an
- /// underlying value, and convert that value.
- static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
- if (OldTy == NewTy)
- return true;
- // For integer types, we can't handle any bit-width differences. This would
- // break both vector conversions with extension and introduce endianness
- // issues when in conjunction with loads and stores.
- if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
- assert(cast<IntegerType>(OldTy)->getBitWidth() !=
- cast<IntegerType>(NewTy)->getBitWidth() &&
- "We can't have the same bitwidth for different int types");
- return false;
- }
- if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
- return false;
- if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
- return false;
- // We can convert pointers to integers and vice-versa. Same for vectors
- // of pointers and integers.
- OldTy = OldTy->getScalarType();
- NewTy = NewTy->getScalarType();
- if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
- if (NewTy->isPointerTy() && OldTy->isPointerTy())
- return true;
- if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
- return true;
- return false;
- }
- return true;
- }
- /// \brief Generic routine to convert an SSA value to a value of a different
- /// type.
- ///
- /// This will try various different casting techniques, such as bitcasts,
- /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
- /// two types for viability with this routine.
- static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
- Type *NewTy) {
- Type *OldTy = V->getType();
- assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
- if (OldTy == NewTy)
- return V;
- assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
- "Integer types must be the exact same to convert.");
- // See if we need inttoptr for this type pair. A cast involving both scalars
- // and vectors requires and additional bitcast.
- if (OldTy->getScalarType()->isIntegerTy() &&
- NewTy->getScalarType()->isPointerTy()) {
- // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
- if (OldTy->isVectorTy() && !NewTy->isVectorTy())
- return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
- NewTy);
- // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
- if (!OldTy->isVectorTy() && NewTy->isVectorTy())
- return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
- NewTy);
- return IRB.CreateIntToPtr(V, NewTy);
- }
- // See if we need ptrtoint for this type pair. A cast involving both scalars
- // and vectors requires and additional bitcast.
- if (OldTy->getScalarType()->isPointerTy() &&
- NewTy->getScalarType()->isIntegerTy()) {
- // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
- if (OldTy->isVectorTy() && !NewTy->isVectorTy())
- return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
- NewTy);
- // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
- if (!OldTy->isVectorTy() && NewTy->isVectorTy())
- return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
- NewTy);
- return IRB.CreatePtrToInt(V, NewTy);
- }
- return IRB.CreateBitCast(V, NewTy);
- }
- /// \brief Test whether the given slice use can be promoted to a vector.
- ///
- /// This function is called to test each entry in a partioning which is slated
- /// for a single slice.
- static bool isVectorPromotionViableForSlice(AllocaSlices::Partition &P,
- const Slice &S, VectorType *Ty,
- uint64_t ElementSize,
- const DataLayout &DL) {
- // First validate the slice offsets.
- uint64_t BeginOffset =
- std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
- uint64_t BeginIndex = BeginOffset / ElementSize;
- if (BeginIndex * ElementSize != BeginOffset ||
- BeginIndex >= Ty->getNumElements())
- return false;
- uint64_t EndOffset =
- std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
- uint64_t EndIndex = EndOffset / ElementSize;
- if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
- return false;
- assert(EndIndex > BeginIndex && "Empty vector!");
- uint64_t NumElements = EndIndex - BeginIndex;
- Type *SliceTy = (NumElements == 1)
- ? Ty->getElementType()
- : VectorType::get(Ty->getElementType(), NumElements);
- Type *SplitIntTy =
- Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
- Use *U = S.getUse();
- if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
- if (MI->isVolatile())
- return false;
- if (!S.isSplittable())
- return false; // Skip any unsplittable intrinsics.
- } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
- if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
- II->getIntrinsicID() != Intrinsic::lifetime_end)
- return false;
- } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
- // Disable vector promotion when there are loads or stores of an FCA.
- return false;
- } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
- if (LI->isVolatile())
- return false;
- Type *LTy = LI->getType();
- if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
- assert(LTy->isIntegerTy());
- LTy = SplitIntTy;
- }
- if (!canConvertValue(DL, SliceTy, LTy))
- return false;
- } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
- if (SI->isVolatile())
- return false;
- Type *STy = SI->getValueOperand()->getType();
- if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
- assert(STy->isIntegerTy());
- STy = SplitIntTy;
- }
- if (!canConvertValue(DL, STy, SliceTy))
- return false;
- } else {
- return false;
- }
- return true;
- }
- /// \brief Test whether the given alloca partitioning and range of slices can be
- /// promoted to a vector.
- ///
- /// This is a quick test to check whether we can rewrite a particular alloca
- /// partition (and its newly formed alloca) into a vector alloca with only
- /// whole-vector loads and stores such that it could be promoted to a vector
- /// SSA value. We only can ensure this for a limited set of operations, and we
- /// don't want to do the rewrites unless we are confident that the result will
- /// be promotable, so we have an early test here.
- static VectorType *isVectorPromotionViable(AllocaSlices::Partition &P,
- const DataLayout &DL) {
- // Collect the candidate types for vector-based promotion. Also track whether
- // we have different element types.
- SmallVector<VectorType *, 4> CandidateTys;
- Type *CommonEltTy = nullptr;
- bool HaveCommonEltTy = true;
- auto CheckCandidateType = [&](Type *Ty) {
- if (auto *VTy = dyn_cast<VectorType>(Ty)) {
- CandidateTys.push_back(VTy);
- if (!CommonEltTy)
- CommonEltTy = VTy->getElementType();
- else if (CommonEltTy != VTy->getElementType())
- HaveCommonEltTy = false;
- }
- };
- // Consider any loads or stores that are the exact size of the slice.
- for (const Slice &S : P)
- if (S.beginOffset() == P.beginOffset() &&
- S.endOffset() == P.endOffset()) {
- if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
- CheckCandidateType(LI->getType());
- else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
- CheckCandidateType(SI->getValueOperand()->getType());
- }
- // If we didn't find a vector type, nothing to do here.
- if (CandidateTys.empty())
- return nullptr;
- // Remove non-integer vector types if we had multiple common element types.
- // FIXME: It'd be nice to replace them with integer vector types, but we can't
- // do that until all the backends are known to produce good code for all
- // integer vector types.
- if (!HaveCommonEltTy) {
- CandidateTys.erase(std::remove_if(CandidateTys.begin(), CandidateTys.end(),
- [](VectorType *VTy) {
- return !VTy->getElementType()->isIntegerTy();
- }),
- CandidateTys.end());
- // If there were no integer vector types, give up.
- if (CandidateTys.empty())
- return nullptr;
- // Rank the remaining candidate vector types. This is easy because we know
- // they're all integer vectors. We sort by ascending number of elements.
- auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
- assert(DL.getTypeSizeInBits(RHSTy) == DL.getTypeSizeInBits(LHSTy) &&
- "Cannot have vector types of different sizes!");
- assert(RHSTy->getElementType()->isIntegerTy() &&
- "All non-integer types eliminated!");
- assert(LHSTy->getElementType()->isIntegerTy() &&
- "All non-integer types eliminated!");
- (void)DL;// HLSL Change - unused var
- return RHSTy->getNumElements() < LHSTy->getNumElements();
- };
- std::sort(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes);
- CandidateTys.erase(
- std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
- CandidateTys.end());
- } else {
- // The only way to have the same element type in every vector type is to
- // have the same vector type. Check that and remove all but one.
- #ifndef NDEBUG
- for (VectorType *VTy : CandidateTys) {
- assert(VTy->getElementType() == CommonEltTy &&
- "Unaccounted for element type!");
- assert(VTy == CandidateTys[0] &&
- "Different vector types with the same element type!");
- }
- #endif
- CandidateTys.resize(1);
- }
- // Try each vector type, and return the one which works.
- auto CheckVectorTypeForPromotion = [&](VectorType *VTy) {
- uint64_t ElementSize = DL.getTypeSizeInBits(VTy->getElementType());
- // While the definition of LLVM vectors is bitpacked, we don't support sizes
- // that aren't byte sized.
- if (ElementSize % 8)
- return false;
- assert((DL.getTypeSizeInBits(VTy) % 8) == 0 &&
- "vector size not a multiple of element size?");
- ElementSize /= 8;
- for (const Slice &S : P)
- if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
- return false;
- for (const Slice *S : P.splitSliceTails())
- if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
- return false;
- return true;
- };
- for (VectorType *VTy : CandidateTys)
- if (CheckVectorTypeForPromotion(VTy))
- return VTy;
- return nullptr;
- }
- /// \brief Test whether a slice of an alloca is valid for integer widening.
- ///
- /// This implements the necessary checking for the \c isIntegerWideningViable
- /// test below on a single slice of the alloca.
- static bool isIntegerWideningViableForSlice(const Slice &S,
- uint64_t AllocBeginOffset,
- Type *AllocaTy,
- const DataLayout &DL,
- bool &WholeAllocaOp) {
- uint64_t Size = DL.getTypeStoreSize(AllocaTy);
- uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
- uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
- // We can't reasonably handle cases where the load or store extends past
- // the end of the aloca's type and into its padding.
- if (RelEnd > Size)
- return false;
- Use *U = S.getUse();
- if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
- if (LI->isVolatile())
- return false;
- // We can't handle loads that extend past the allocated memory.
- if (DL.getTypeStoreSize(LI->getType()) > Size)
- return false;
- // Note that we don't count vector loads or stores as whole-alloca
- // operations which enable integer widening because we would prefer to use
- // vector widening instead.
- if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
- WholeAllocaOp = true;
- if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
- if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
- return false;
- } else if (RelBegin != 0 || RelEnd != Size ||
- !canConvertValue(DL, AllocaTy, LI->getType())) {
- // Non-integer loads need to be convertible from the alloca type so that
- // they are promotable.
- return false;
- }
- } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
- Type *ValueTy = SI->getValueOperand()->getType();
- if (SI->isVolatile())
- return false;
- // We can't handle stores that extend past the allocated memory.
- if (DL.getTypeStoreSize(ValueTy) > Size)
- return false;
- // Note that we don't count vector loads or stores as whole-alloca
- // operations which enable integer widening because we would prefer to use
- // vector widening instead.
- if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
- WholeAllocaOp = true;
- if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
- if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
- return false;
- } else if (RelBegin != 0 || RelEnd != Size ||
- !canConvertValue(DL, ValueTy, AllocaTy)) {
- // Non-integer stores need to be convertible to the alloca type so that
- // they are promotable.
- return false;
- }
- } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
- if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
- return false;
- if (!S.isSplittable())
- return false; // Skip any unsplittable intrinsics.
- } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
- if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
- II->getIntrinsicID() != Intrinsic::lifetime_end)
- return false;
- } else {
- return false;
- }
- return true;
- }
- /// \brief Test whether the given alloca partition's integer operations can be
- /// widened to promotable ones.
- ///
- /// This is a quick test to check whether we can rewrite the integer loads and
- /// stores to a particular alloca into wider loads and stores and be able to
- /// promote the resulting alloca.
- static bool isIntegerWideningViable(AllocaSlices::Partition &P, Type *AllocaTy,
- const DataLayout &DL) {
- uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
- // Don't create integer types larger than the maximum bitwidth.
- if (SizeInBits > IntegerType::MAX_INT_BITS)
- return false;
- // Don't try to handle allocas with bit-padding.
- if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
- return false;
- // We need to ensure that an integer type with the appropriate bitwidth can
- // be converted to the alloca type, whatever that is. We don't want to force
- // the alloca itself to have an integer type if there is a more suitable one.
- Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
- if (!canConvertValue(DL, AllocaTy, IntTy) ||
- !canConvertValue(DL, IntTy, AllocaTy))
- return false;
- // While examining uses, we ensure that the alloca has a covering load or
- // store. We don't want to widen the integer operations only to fail to
- // promote due to some other unsplittable entry (which we may make splittable
- // later). However, if there are only splittable uses, go ahead and assume
- // that we cover the alloca.
- // FIXME: We shouldn't consider split slices that happen to start in the
- // partition here...
- bool WholeAllocaOp =
- P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits);
- for (const Slice &S : P)
- if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
- WholeAllocaOp))
- return false;
- for (const Slice *S : P.splitSliceTails())
- if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
- WholeAllocaOp))
- return false;
- return WholeAllocaOp;
- }
- static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
- IntegerType *Ty, uint64_t Offset,
- const Twine &Name) {
- DEBUG(dbgs() << " start: " << *V << "\n");
- IntegerType *IntTy = cast<IntegerType>(V->getType());
- assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
- "Element extends past full value");
- uint64_t ShAmt = 8 * Offset;
- if (DL.isBigEndian())
- ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
- if (ShAmt) {
- V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
- DEBUG(dbgs() << " shifted: " << *V << "\n");
- }
- assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
- "Cannot extract to a larger integer!");
- if (Ty != IntTy) {
- V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
- DEBUG(dbgs() << " trunced: " << *V << "\n");
- }
- return V;
- }
- static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
- Value *V, uint64_t Offset, const Twine &Name) {
- IntegerType *IntTy = cast<IntegerType>(Old->getType());
- IntegerType *Ty = cast<IntegerType>(V->getType());
- assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
- "Cannot insert a larger integer!");
- DEBUG(dbgs() << " start: " << *V << "\n");
- if (Ty != IntTy) {
- V = IRB.CreateZExt(V, IntTy, Name + ".ext");
- DEBUG(dbgs() << " extended: " << *V << "\n");
- }
- assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
- "Element store outside of alloca store");
- uint64_t ShAmt = 8 * Offset;
- if (DL.isBigEndian())
- ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
- if (ShAmt) {
- V = IRB.CreateShl(V, ShAmt, Name + ".shift");
- DEBUG(dbgs() << " shifted: " << *V << "\n");
- }
- if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
- APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
- Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
- DEBUG(dbgs() << " masked: " << *Old << "\n");
- V = IRB.CreateOr(Old, V, Name + ".insert");
- DEBUG(dbgs() << " inserted: " << *V << "\n");
- }
- return V;
- }
- static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
- unsigned EndIndex, const Twine &Name) {
- VectorType *VecTy = cast<VectorType>(V->getType());
- unsigned NumElements = EndIndex - BeginIndex;
- assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
- if (NumElements == VecTy->getNumElements())
- return V;
- if (NumElements == 1) {
- V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
- Name + ".extract");
- DEBUG(dbgs() << " extract: " << *V << "\n");
- return V;
- }
- SmallVector<Constant *, 8> Mask;
- Mask.reserve(NumElements);
- for (unsigned i = BeginIndex; i != EndIndex; ++i)
- Mask.push_back(IRB.getInt32(i));
- V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
- ConstantVector::get(Mask), Name + ".extract");
- DEBUG(dbgs() << " shuffle: " << *V << "\n");
- return V;
- }
- static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
- unsigned BeginIndex, const Twine &Name) {
- VectorType *VecTy = cast<VectorType>(Old->getType());
- assert(VecTy && "Can only insert a vector into a vector");
- VectorType *Ty = dyn_cast<VectorType>(V->getType());
- if (!Ty) {
- // Single element to insert.
- V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
- Name + ".insert");
- DEBUG(dbgs() << " insert: " << *V << "\n");
- return V;
- }
- assert(Ty->getNumElements() <= VecTy->getNumElements() &&
- "Too many elements!");
- if (Ty->getNumElements() == VecTy->getNumElements()) {
- assert(V->getType() == VecTy && "Vector type mismatch");
- return V;
- }
- unsigned EndIndex = BeginIndex + Ty->getNumElements();
- // When inserting a smaller vector into the larger to store, we first
- // use a shuffle vector to widen it with undef elements, and then
- // a second shuffle vector to select between the loaded vector and the
- // incoming vector.
- SmallVector<Constant *, 8> Mask;
- Mask.reserve(VecTy->getNumElements());
- for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
- if (i >= BeginIndex && i < EndIndex)
- Mask.push_back(IRB.getInt32(i - BeginIndex));
- else
- Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
- V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
- ConstantVector::get(Mask), Name + ".expand");
- DEBUG(dbgs() << " shuffle: " << *V << "\n");
- Mask.clear();
- for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
- Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
- V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
- DEBUG(dbgs() << " blend: " << *V << "\n");
- return V;
- }
- namespace {
- /// \brief Visitor to rewrite instructions using p particular slice of an alloca
- /// to use a new alloca.
- ///
- /// Also implements the rewriting to vector-based accesses when the partition
- /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
- /// lives here.
- class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> {
- // Befriend the base class so it can delegate to private visit methods.
- friend class llvm::InstVisitor<AllocaSliceRewriter, bool>;
- typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base;
- const DataLayout &DL;
- AllocaSlices &AS;
- SROA &Pass;
- AllocaInst &OldAI, &NewAI;
- const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
- Type *NewAllocaTy;
- // This is a convenience and flag variable that will be null unless the new
- // alloca's integer operations should be widened to this integer type due to
- // passing isIntegerWideningViable above. If it is non-null, the desired
- // integer type will be stored here for easy access during rewriting.
- IntegerType *IntTy;
- // If we are rewriting an alloca partition which can be written as pure
- // vector operations, we stash extra information here. When VecTy is
- // non-null, we have some strict guarantees about the rewritten alloca:
- // - The new alloca is exactly the size of the vector type here.
- // - The accesses all either map to the entire vector or to a single
- // element.
- // - The set of accessing instructions is only one of those handled above
- // in isVectorPromotionViable. Generally these are the same access kinds
- // which are promotable via mem2reg.
- VectorType *VecTy;
- Type *ElementTy;
- uint64_t ElementSize;
- // The original offset of the slice currently being rewritten relative to
- // the original alloca.
- uint64_t BeginOffset, EndOffset;
- // The new offsets of the slice currently being rewritten relative to the
- // original alloca.
- uint64_t NewBeginOffset, NewEndOffset;
- uint64_t SliceSize;
- bool IsSplittable;
- bool IsSplit;
- Use *OldUse;
- Instruction *OldPtr;
- // Track post-rewrite users which are PHI nodes and Selects.
- SmallPtrSetImpl<PHINode *> &PHIUsers;
- SmallPtrSetImpl<SelectInst *> &SelectUsers;
- // Utility IR builder, whose name prefix is setup for each visited use, and
- // the insertion point is set to point to the user.
- IRBuilderTy IRB;
- public:
- AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass,
- AllocaInst &OldAI, AllocaInst &NewAI,
- uint64_t NewAllocaBeginOffset,
- uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
- VectorType *PromotableVecTy,
- SmallPtrSetImpl<PHINode *> &PHIUsers,
- SmallPtrSetImpl<SelectInst *> &SelectUsers)
- : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
- NewAllocaBeginOffset(NewAllocaBeginOffset),
- NewAllocaEndOffset(NewAllocaEndOffset),
- NewAllocaTy(NewAI.getAllocatedType()),
- IntTy(IsIntegerPromotable
- ? Type::getIntNTy(
- NewAI.getContext(),
- DL.getTypeSizeInBits(NewAI.getAllocatedType()))
- : nullptr),
- VecTy(PromotableVecTy),
- ElementTy(VecTy ? VecTy->getElementType() : nullptr),
- ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
- BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(),
- OldPtr(), PHIUsers(PHIUsers), SelectUsers(SelectUsers),
- IRB(NewAI.getContext(), ConstantFolder()) {
- if (VecTy) {
- assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
- "Only multiple-of-8 sized vector elements are viable");
- ++NumVectorized;
- }
- assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
- }
- bool visit(AllocaSlices::const_iterator I) {
- bool CanSROA = true;
- BeginOffset = I->beginOffset();
- EndOffset = I->endOffset();
- IsSplittable = I->isSplittable();
- IsSplit =
- BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
- DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : ""));
- DEBUG(AS.printSlice(dbgs(), I, ""));
- DEBUG(dbgs() << "\n");
- // Compute the intersecting offset range.
- assert(BeginOffset < NewAllocaEndOffset);
- assert(EndOffset > NewAllocaBeginOffset);
- NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
- NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
- SliceSize = NewEndOffset - NewBeginOffset;
- OldUse = I->getUse();
- OldPtr = cast<Instruction>(OldUse->get());
- Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
- IRB.SetInsertPoint(OldUserI);
- IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
- IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
- CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
- if (VecTy || IntTy)
- assert(CanSROA);
- return CanSROA;
- }
- private:
- // Make sure the other visit overloads are visible.
- using Base::visit;
- // Every instruction which can end up as a user must have a rewrite rule.
- bool visitInstruction(Instruction &I) {
- DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n");
- llvm_unreachable("No rewrite rule for this instruction!");
- }
- Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
- // Note that the offset computation can use BeginOffset or NewBeginOffset
- // interchangeably for unsplit slices.
- assert(IsSplit || BeginOffset == NewBeginOffset);
- uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
- #ifndef NDEBUG
- StringRef OldName = OldPtr->getName();
- // Skip through the last '.sroa.' component of the name.
- size_t LastSROAPrefix = OldName.rfind(".sroa.");
- if (LastSROAPrefix != StringRef::npos) {
- OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
- // Look for an SROA slice index.
- size_t IndexEnd = OldName.find_first_not_of("0123456789");
- if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
- // Strip the index and look for the offset.
- OldName = OldName.substr(IndexEnd + 1);
- size_t OffsetEnd = OldName.find_first_not_of("0123456789");
- if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
- // Strip the offset.
- OldName = OldName.substr(OffsetEnd + 1);
- }
- }
- // Strip any SROA suffixes as well.
- OldName = OldName.substr(0, OldName.find(".sroa_"));
- #endif
- return getAdjustedPtr(IRB, DL, &NewAI,
- APInt(DL.getPointerSizeInBits(), Offset), PointerTy,
- #ifndef NDEBUG
- Twine(OldName) + "."
- #else
- Twine()
- #endif
- );
- }
- /// \brief Compute suitable alignment to access this slice of the *new*
- /// alloca.
- ///
- /// You can optionally pass a type to this routine and if that type's ABI
- /// alignment is itself suitable, this will return zero.
- unsigned getSliceAlign(Type *Ty = nullptr) {
- unsigned NewAIAlign = NewAI.getAlignment();
- if (!NewAIAlign)
- NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
- unsigned Align =
- MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset);
- return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align;
- }
- unsigned getIndex(uint64_t Offset) {
- assert(VecTy && "Can only call getIndex when rewriting a vector");
- uint64_t RelOffset = Offset - NewAllocaBeginOffset;
- assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
- uint32_t Index = RelOffset / ElementSize;
- assert(Index * ElementSize == RelOffset);
- return Index;
- }
- void deleteIfTriviallyDead(Value *V) {
- Instruction *I = cast<Instruction>(V);
- if (isInstructionTriviallyDead(I))
- Pass.DeadInsts.insert(I);
- }
- Value *rewriteVectorizedLoadInst() {
- unsigned BeginIndex = getIndex(NewBeginOffset);
- unsigned EndIndex = getIndex(NewEndOffset);
- assert(EndIndex > BeginIndex && "Empty vector!");
- Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
- return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
- }
- Value *rewriteIntegerLoad(LoadInst &LI) {
- assert(IntTy && "We cannot insert an integer to the alloca");
- assert(!LI.isVolatile());
- Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
- V = convertValue(DL, IRB, V, IntTy);
- assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
- uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
- if (Offset > 0 || NewEndOffset < NewAllocaEndOffset)
- V = extractInteger(DL, IRB, V, cast<IntegerType>(LI.getType()), Offset,
- "extract");
- return V;
- }
- bool visitLoadInst(LoadInst &LI) {
- DEBUG(dbgs() << " original: " << LI << "\n");
- Value *OldOp = LI.getOperand(0);
- assert(OldOp == OldPtr);
- Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
- : LI.getType();
- const bool IsLoadPastEnd = DL.getTypeStoreSize(TargetTy) > SliceSize;
- bool IsPtrAdjusted = false;
- Value *V;
- if (VecTy) {
- V = rewriteVectorizedLoadInst();
- } else if (IntTy && LI.getType()->isIntegerTy()) {
- V = rewriteIntegerLoad(LI);
- } else if (NewBeginOffset == NewAllocaBeginOffset &&
- NewEndOffset == NewAllocaEndOffset &&
- (canConvertValue(DL, NewAllocaTy, TargetTy) ||
- (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
- TargetTy->isIntegerTy()))) {
- LoadInst *NewLI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
- LI.isVolatile(), LI.getName());
- if (LI.isVolatile())
- NewLI->setAtomic(LI.getOrdering(), LI.getSynchScope());
- V = NewLI;
- // If this is an integer load past the end of the slice (which means the
- // bytes outside the slice are undef or this load is dead) just forcibly
- // fix the integer size with correct handling of endianness.
- if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
- if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
- if (AITy->getBitWidth() < TITy->getBitWidth()) {
- V = IRB.CreateZExt(V, TITy, "load.ext");
- if (DL.isBigEndian())
- V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
- "endian_shift");
- }
- } else {
- Type *LTy = TargetTy->getPointerTo();
- LoadInst *NewLI = IRB.CreateAlignedLoad(getNewAllocaSlicePtr(IRB, LTy),
- getSliceAlign(TargetTy),
- LI.isVolatile(), LI.getName());
- if (LI.isVolatile())
- NewLI->setAtomic(LI.getOrdering(), LI.getSynchScope());
- V = NewLI;
- IsPtrAdjusted = true;
- }
- V = convertValue(DL, IRB, V, TargetTy);
- if (IsSplit) {
- assert(!LI.isVolatile());
- assert(LI.getType()->isIntegerTy() &&
- "Only integer type loads and stores are split");
- assert(SliceSize < DL.getTypeStoreSize(LI.getType()) &&
- "Split load isn't smaller than original load");
- assert(LI.getType()->getIntegerBitWidth() ==
- DL.getTypeStoreSizeInBits(LI.getType()) &&
- "Non-byte-multiple bit width");
- // Move the insertion point just past the load so that we can refer to it.
- IRB.SetInsertPoint(std::next(BasicBlock::iterator(&LI)));
- // Create a placeholder value with the same type as LI to use as the
- // basis for the new value. This allows us to replace the uses of LI with
- // the computed value, and then replace the placeholder with LI, leaving
- // LI only used for this computation.
- Value *Placeholder =
- new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
- V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
- "insert");
- LI.replaceAllUsesWith(V);
- Placeholder->replaceAllUsesWith(&LI);
- delete Placeholder;
- } else {
- LI.replaceAllUsesWith(V);
- }
- Pass.DeadInsts.insert(&LI);
- deleteIfTriviallyDead(OldOp);
- DEBUG(dbgs() << " to: " << *V << "\n");
- return !LI.isVolatile() && !IsPtrAdjusted;
- }
- bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp) {
- if (V->getType() != VecTy) {
- unsigned BeginIndex = getIndex(NewBeginOffset);
- unsigned EndIndex = getIndex(NewEndOffset);
- assert(EndIndex > BeginIndex && "Empty vector!");
- unsigned NumElements = EndIndex - BeginIndex;
- assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
- Type *SliceTy = (NumElements == 1)
- ? ElementTy
- : VectorType::get(ElementTy, NumElements);
- if (V->getType() != SliceTy)
- V = convertValue(DL, IRB, V, SliceTy);
- // Mix in the existing elements.
- Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
- V = insertVector(IRB, Old, V, BeginIndex, "vec");
- }
- StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
- Pass.DeadInsts.insert(&SI);
- (void)Store;
- DEBUG(dbgs() << " to: " << *Store << "\n");
- return true;
- }
- bool rewriteIntegerStore(Value *V, StoreInst &SI) {
- assert(IntTy && "We cannot extract an integer from the alloca");
- assert(!SI.isVolatile());
- if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
- Value *Old =
- IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
- Old = convertValue(DL, IRB, Old, IntTy);
- assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
- uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
- V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
- }
- V = convertValue(DL, IRB, V, NewAllocaTy);
- StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
- Pass.DeadInsts.insert(&SI);
- (void)Store;
- DEBUG(dbgs() << " to: " << *Store << "\n");
- return true;
- }
- bool visitStoreInst(StoreInst &SI) {
- DEBUG(dbgs() << " original: " << SI << "\n");
- Value *OldOp = SI.getOperand(1);
- assert(OldOp == OldPtr);
- Value *V = SI.getValueOperand();
- // Strip all inbounds GEPs and pointer casts to try to dig out any root
- // alloca that should be re-examined after promoting this alloca.
- if (V->getType()->isPointerTy())
- if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
- Pass.PostPromotionWorklist.insert(AI);
- if (SliceSize < DL.getTypeStoreSize(V->getType())) {
- assert(!SI.isVolatile());
- assert(V->getType()->isIntegerTy() &&
- "Only integer type loads and stores are split");
- assert(V->getType()->getIntegerBitWidth() ==
- DL.getTypeStoreSizeInBits(V->getType()) &&
- "Non-byte-multiple bit width");
- IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
- V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
- "extract");
- }
- if (VecTy)
- return rewriteVectorizedStoreInst(V, SI, OldOp);
- if (IntTy && V->getType()->isIntegerTy())
- return rewriteIntegerStore(V, SI);
- const bool IsStorePastEnd = DL.getTypeStoreSize(V->getType()) > SliceSize;
- StoreInst *NewSI;
- if (NewBeginOffset == NewAllocaBeginOffset &&
- NewEndOffset == NewAllocaEndOffset &&
- (canConvertValue(DL, V->getType(), NewAllocaTy) ||
- (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
- V->getType()->isIntegerTy()))) {
- // If this is an integer store past the end of slice (and thus the bytes
- // past that point are irrelevant or this is unreachable), truncate the
- // value prior to storing.
- if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
- if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
- if (VITy->getBitWidth() > AITy->getBitWidth()) {
- if (DL.isBigEndian())
- V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
- "endian_shift");
- V = IRB.CreateTrunc(V, AITy, "load.trunc");
- }
- V = convertValue(DL, IRB, V, NewAllocaTy);
- NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
- SI.isVolatile());
- } else {
- Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo());
- NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()),
- SI.isVolatile());
- }
- if (SI.isVolatile())
- NewSI->setAtomic(SI.getOrdering(), SI.getSynchScope());
- Pass.DeadInsts.insert(&SI);
- deleteIfTriviallyDead(OldOp);
- DEBUG(dbgs() << " to: " << *NewSI << "\n");
- return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
- }
- /// \brief Compute an integer value from splatting an i8 across the given
- /// number of bytes.
- ///
- /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
- /// call this routine.
- /// FIXME: Heed the advice above.
- ///
- /// \param V The i8 value to splat.
- /// \param Size The number of bytes in the output (assuming i8 is one byte)
- Value *getIntegerSplat(Value *V, unsigned Size) {
- assert(Size > 0 && "Expected a positive number of bytes.");
- IntegerType *VTy = cast<IntegerType>(V->getType());
- assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
- if (Size == 1)
- return V;
- Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
- V = IRB.CreateMul(
- IRB.CreateZExt(V, SplatIntTy, "zext"),
- ConstantExpr::getUDiv(
- Constant::getAllOnesValue(SplatIntTy),
- ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()),
- SplatIntTy)),
- "isplat");
- return V;
- }
- /// \brief Compute a vector splat for a given element value.
- Value *getVectorSplat(Value *V, unsigned NumElements) {
- V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
- DEBUG(dbgs() << " splat: " << *V << "\n");
- return V;
- }
- bool visitMemSetInst(MemSetInst &II) {
- DEBUG(dbgs() << " original: " << II << "\n");
- assert(II.getRawDest() == OldPtr);
- // If the memset has a variable size, it cannot be split, just adjust the
- // pointer to the new alloca.
- if (!isa<Constant>(II.getLength())) {
- assert(!IsSplit);
- assert(NewBeginOffset == BeginOffset);
- II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
- Type *CstTy = II.getAlignmentCst()->getType();
- II.setAlignment(ConstantInt::get(CstTy, getSliceAlign()));
- deleteIfTriviallyDead(OldPtr);
- return false;
- }
- // Record this instruction for deletion.
- Pass.DeadInsts.insert(&II);
- Type *AllocaTy = NewAI.getAllocatedType();
- Type *ScalarTy = AllocaTy->getScalarType();
- // If this doesn't map cleanly onto the alloca type, and that type isn't
- // a single value type, just emit a memset.
- if (!VecTy && !IntTy &&
- (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
- SliceSize != DL.getTypeStoreSize(AllocaTy) ||
- !AllocaTy->isSingleValueType() ||
- !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) ||
- DL.getTypeSizeInBits(ScalarTy) % 8 != 0)) {
- Type *SizeTy = II.getLength()->getType();
- Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
- CallInst *New = IRB.CreateMemSet(
- getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
- getSliceAlign(), II.isVolatile());
- (void)New;
- DEBUG(dbgs() << " to: " << *New << "\n");
- return false;
- }
- // If we can represent this as a simple value, we have to build the actual
- // value to store, which requires expanding the byte present in memset to
- // a sensible representation for the alloca type. This is essentially
- // splatting the byte to a sufficiently wide integer, splatting it across
- // any desired vector width, and bitcasting to the final type.
- Value *V;
- if (VecTy) {
- // If this is a memset of a vectorized alloca, insert it.
- assert(ElementTy == ScalarTy);
- unsigned BeginIndex = getIndex(NewBeginOffset);
- unsigned EndIndex = getIndex(NewEndOffset);
- assert(EndIndex > BeginIndex && "Empty vector!");
- unsigned NumElements = EndIndex - BeginIndex;
- assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
- Value *Splat =
- getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
- Splat = convertValue(DL, IRB, Splat, ElementTy);
- if (NumElements > 1)
- Splat = getVectorSplat(Splat, NumElements);
- Value *Old =
- IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
- V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
- } else if (IntTy) {
- // If this is a memset on an alloca where we can widen stores, insert the
- // set integer.
- assert(!II.isVolatile());
- uint64_t Size = NewEndOffset - NewBeginOffset;
- V = getIntegerSplat(II.getValue(), Size);
- if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
- EndOffset != NewAllocaBeginOffset)) {
- Value *Old =
- IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
- Old = convertValue(DL, IRB, Old, IntTy);
- uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
- V = insertInteger(DL, IRB, Old, V, Offset, "insert");
- } else {
- assert(V->getType() == IntTy &&
- "Wrong type for an alloca wide integer!");
- }
- V = convertValue(DL, IRB, V, AllocaTy);
- } else {
- // Established these invariants above.
- assert(NewBeginOffset == NewAllocaBeginOffset);
- assert(NewEndOffset == NewAllocaEndOffset);
- V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
- if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
- V = getVectorSplat(V, AllocaVecTy->getNumElements());
- V = convertValue(DL, IRB, V, AllocaTy);
- }
- Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
- II.isVolatile());
- (void)New;
- DEBUG(dbgs() << " to: " << *New << "\n");
- return !II.isVolatile();
- }
- bool visitMemTransferInst(MemTransferInst &II) {
- // Rewriting of memory transfer instructions can be a bit tricky. We break
- // them into two categories: split intrinsics and unsplit intrinsics.
- DEBUG(dbgs() << " original: " << II << "\n");
- bool IsDest = &II.getRawDestUse() == OldUse;
- assert((IsDest && II.getRawDest() == OldPtr) ||
- (!IsDest && II.getRawSource() == OldPtr));
- unsigned SliceAlign = getSliceAlign();
- // For unsplit intrinsics, we simply modify the source and destination
- // pointers in place. This isn't just an optimization, it is a matter of
- // correctness. With unsplit intrinsics we may be dealing with transfers
- // within a single alloca before SROA ran, or with transfers that have
- // a variable length. We may also be dealing with memmove instead of
- // memcpy, and so simply updating the pointers is the necessary for us to
- // update both source and dest of a single call.
- if (!IsSplittable) {
- Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
- if (IsDest)
- II.setDest(AdjustedPtr);
- else
- II.setSource(AdjustedPtr);
- if (II.getAlignment() > SliceAlign) {
- Type *CstTy = II.getAlignmentCst()->getType();
- II.setAlignment(
- ConstantInt::get(CstTy, MinAlign(II.getAlignment(), SliceAlign)));
- }
- DEBUG(dbgs() << " to: " << II << "\n");
- deleteIfTriviallyDead(OldPtr);
- return false;
- }
- // For split transfer intrinsics we have an incredibly useful assurance:
- // the source and destination do not reside within the same alloca, and at
- // least one of them does not escape. This means that we can replace
- // memmove with memcpy, and we don't need to worry about all manner of
- // downsides to splitting and transforming the operations.
- // If this doesn't map cleanly onto the alloca type, and that type isn't
- // a single value type, just emit a memcpy.
- bool EmitMemCpy =
- !VecTy && !IntTy &&
- (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
- SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()) ||
- !NewAI.getAllocatedType()->isSingleValueType());
- // If we're just going to emit a memcpy, the alloca hasn't changed, and the
- // size hasn't been shrunk based on analysis of the viable range, this is
- // a no-op.
- if (EmitMemCpy && &OldAI == &NewAI) {
- // Ensure the start lines up.
- assert(NewBeginOffset == BeginOffset);
- // Rewrite the size as needed.
- if (NewEndOffset != EndOffset)
- II.setLength(ConstantInt::get(II.getLength()->getType(),
- NewEndOffset - NewBeginOffset));
- return false;
- }
- // Record this instruction for deletion.
- Pass.DeadInsts.insert(&II);
- // Strip all inbounds GEPs and pointer casts to try to dig out any root
- // alloca that should be re-examined after rewriting this instruction.
- Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
- if (AllocaInst *AI =
- dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
- assert(AI != &OldAI && AI != &NewAI &&
- "Splittable transfers cannot reach the same alloca on both ends.");
- Pass.Worklist.insert(AI);
- }
- Type *OtherPtrTy = OtherPtr->getType();
- unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
- // Compute the relative offset for the other pointer within the transfer.
- unsigned IntPtrWidth = DL.getPointerSizeInBits(OtherAS);
- APInt OtherOffset(IntPtrWidth, NewBeginOffset - BeginOffset);
- unsigned OtherAlign = MinAlign(II.getAlignment() ? II.getAlignment() : 1,
- OtherOffset.zextOrTrunc(64).getZExtValue());
- if (EmitMemCpy) {
- // Compute the other pointer, folding as much as possible to produce
- // a single, simple GEP in most cases.
- OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
- OtherPtr->getName() + ".");
- Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
- Type *SizeTy = II.getLength()->getType();
- Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
- CallInst *New = IRB.CreateMemCpy(
- IsDest ? OurPtr : OtherPtr, IsDest ? OtherPtr : OurPtr, Size,
- MinAlign(SliceAlign, OtherAlign), II.isVolatile());
- (void)New;
- DEBUG(dbgs() << " to: " << *New << "\n");
- return false;
- }
- bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
- NewEndOffset == NewAllocaEndOffset;
- uint64_t Size = NewEndOffset - NewBeginOffset;
- unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
- unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
- unsigned NumElements = EndIndex - BeginIndex;
- IntegerType *SubIntTy =
- IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
- // Reset the other pointer type to match the register type we're going to
- // use, but using the address space of the original other pointer.
- if (VecTy && !IsWholeAlloca) {
- if (NumElements == 1)
- OtherPtrTy = VecTy->getElementType();
- else
- OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
- OtherPtrTy = OtherPtrTy->getPointerTo(OtherAS);
- } else if (IntTy && !IsWholeAlloca) {
- OtherPtrTy = SubIntTy->getPointerTo(OtherAS);
- } else {
- OtherPtrTy = NewAllocaTy->getPointerTo(OtherAS);
- }
- Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
- OtherPtr->getName() + ".");
- unsigned SrcAlign = OtherAlign;
- Value *DstPtr = &NewAI;
- unsigned DstAlign = SliceAlign;
- if (!IsDest) {
- std::swap(SrcPtr, DstPtr);
- std::swap(SrcAlign, DstAlign);
- }
- Value *Src;
- if (VecTy && !IsWholeAlloca && !IsDest) {
- Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
- Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
- } else if (IntTy && !IsWholeAlloca && !IsDest) {
- Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
- Src = convertValue(DL, IRB, Src, IntTy);
- uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
- Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
- } else {
- Src =
- IRB.CreateAlignedLoad(SrcPtr, SrcAlign, II.isVolatile(), "copyload");
- }
- if (VecTy && !IsWholeAlloca && IsDest) {
- Value *Old =
- IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
- Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
- } else if (IntTy && !IsWholeAlloca && IsDest) {
- Value *Old =
- IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
- Old = convertValue(DL, IRB, Old, IntTy);
- uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
- Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
- Src = convertValue(DL, IRB, Src, NewAllocaTy);
- }
- StoreInst *Store = cast<StoreInst>(
- IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
- (void)Store;
- DEBUG(dbgs() << " to: " << *Store << "\n");
- return !II.isVolatile();
- }
- bool visitIntrinsicInst(IntrinsicInst &II) {
- assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
- II.getIntrinsicID() == Intrinsic::lifetime_end);
- DEBUG(dbgs() << " original: " << II << "\n");
- assert(II.getArgOperand(1) == OldPtr);
- // Record this instruction for deletion.
- Pass.DeadInsts.insert(&II);
- ConstantInt *Size =
- ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
- NewEndOffset - NewBeginOffset);
- Value *Ptr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
- Value *New;
- if (II.getIntrinsicID() == Intrinsic::lifetime_start)
- New = IRB.CreateLifetimeStart(Ptr, Size);
- else
- New = IRB.CreateLifetimeEnd(Ptr, Size);
- (void)New;
- DEBUG(dbgs() << " to: " << *New << "\n");
- return true;
- }
- bool visitPHINode(PHINode &PN) {
- DEBUG(dbgs() << " original: " << PN << "\n");
- assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
- assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
- // We would like to compute a new pointer in only one place, but have it be
- // as local as possible to the PHI. To do that, we re-use the location of
- // the old pointer, which necessarily must be in the right position to
- // dominate the PHI.
- IRBuilderTy PtrBuilder(IRB);
- if (isa<PHINode>(OldPtr))
- PtrBuilder.SetInsertPoint(OldPtr->getParent()->getFirstInsertionPt());
- else
- PtrBuilder.SetInsertPoint(OldPtr);
- PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc());
- Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType());
- // Replace the operands which were using the old pointer.
- std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
- DEBUG(dbgs() << " to: " << PN << "\n");
- deleteIfTriviallyDead(OldPtr);
- // PHIs can't be promoted on their own, but often can be speculated. We
- // check the speculation outside of the rewriter so that we see the
- // fully-rewritten alloca.
- PHIUsers.insert(&PN);
- return true;
- }
- bool visitSelectInst(SelectInst &SI) {
- DEBUG(dbgs() << " original: " << SI << "\n");
- assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
- "Pointer isn't an operand!");
- assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
- assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
- Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
- // Replace the operands which were using the old pointer.
- if (SI.getOperand(1) == OldPtr)
- SI.setOperand(1, NewPtr);
- if (SI.getOperand(2) == OldPtr)
- SI.setOperand(2, NewPtr);
- DEBUG(dbgs() << " to: " << SI << "\n");
- deleteIfTriviallyDead(OldPtr);
- // Selects can't be promoted on their own, but often can be speculated. We
- // check the speculation outside of the rewriter so that we see the
- // fully-rewritten alloca.
- SelectUsers.insert(&SI);
- return true;
- }
- };
- }
- namespace {
- /// \brief Visitor to rewrite aggregate loads and stores as scalar.
- ///
- /// This pass aggressively rewrites all aggregate loads and stores on
- /// a particular pointer (or any pointer derived from it which we can identify)
- /// with scalar loads and stores.
- class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
- // Befriend the base class so it can delegate to private visit methods.
- friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
- const DataLayout &DL;
- const bool SkipHLSLMat; // HLSL Change - not sroa matrix type.
- /// Queue of pointer uses to analyze and potentially rewrite.
- SmallVector<Use *, 8> Queue;
- /// Set to prevent us from cycling with phi nodes and loops.
- SmallPtrSet<User *, 8> Visited;
- /// The current pointer use being rewritten. This is used to dig up the used
- /// value (as opposed to the user).
- Use *U;
- public:
- AggLoadStoreRewriter(const DataLayout &DL, const bool SkipHLSLMat)
- // HLSL Change - not sroa matrix type.
- : DL(DL), SkipHLSLMat(SkipHLSLMat) {}
- /// Rewrite loads and stores through a pointer and all pointers derived from
- /// it.
- bool rewrite(Instruction &I) {
- DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
- enqueueUsers(I);
- bool Changed = false;
- while (!Queue.empty()) {
- U = Queue.pop_back_val();
- Changed |= visit(cast<Instruction>(U->getUser()));
- }
- return Changed;
- }
- private:
- /// Enqueue all the users of the given instruction for further processing.
- /// This uses a set to de-duplicate users.
- void enqueueUsers(Instruction &I) {
- for (Use &U : I.uses())
- if (Visited.insert(U.getUser()).second)
- Queue.push_back(&U);
- }
- // Conservative default is to not rewrite anything.
- bool visitInstruction(Instruction &I) { return false; }
- /// \brief Generic recursive split emission class.
- template <typename Derived> class OpSplitter {
- protected:
- /// The builder used to form new instructions.
- IRBuilderTy IRB;
- /// The indices which to be used with insert- or extractvalue to select the
- /// appropriate value within the aggregate.
- SmallVector<unsigned, 4> Indices;
- /// The indices to a GEP instruction which will move Ptr to the correct slot
- /// within the aggregate.
- SmallVector<Value *, 4> GEPIndices;
- /// The base pointer of the original op, used as a base for GEPing the
- /// split operations.
- Value *Ptr;
- /// Initialize the splitter with an insertion point, Ptr and start with a
- /// single zero GEP index.
- OpSplitter(Instruction *InsertionPoint, Value *Ptr)
- : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
- public:
- /// \brief Generic recursive split emission routine.
- ///
- /// This method recursively splits an aggregate op (load or store) into
- /// scalar or vector ops. It splits recursively until it hits a single value
- /// and emits that single value operation via the template argument.
- ///
- /// The logic of this routine relies on GEPs and insertvalue and
- /// extractvalue all operating with the same fundamental index list, merely
- /// formatted differently (GEPs need actual values).
- ///
- /// \param Ty The type being split recursively into smaller ops.
- /// \param Agg The aggregate value being built up or stored, depending on
- /// whether this is splitting a load or a store respectively.
- void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
- if (Ty->isSingleValueType())
- return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
- if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
- unsigned OldSize = Indices.size();
- (void)OldSize;
- for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
- ++Idx) {
- assert(Indices.size() == OldSize && "Did not return to the old size");
- Indices.push_back(Idx);
- GEPIndices.push_back(IRB.getInt32(Idx));
- emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
- GEPIndices.pop_back();
- Indices.pop_back();
- }
- return;
- }
- if (StructType *STy = dyn_cast<StructType>(Ty)) {
- unsigned OldSize = Indices.size();
- (void)OldSize;
- for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
- ++Idx) {
- assert(Indices.size() == OldSize && "Did not return to the old size");
- Indices.push_back(Idx);
- GEPIndices.push_back(IRB.getInt32(Idx));
- emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
- GEPIndices.pop_back();
- Indices.pop_back();
- }
- return;
- }
- llvm_unreachable("Only arrays and structs are aggregate loadable types");
- }
- };
- struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
- LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
- : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
- /// Emit a leaf load of a single value. This is called at the leaves of the
- /// recursive emission to actually load values.
- void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
- assert(Ty->isSingleValueType());
- // Load the single value and insert it using the indices.
- Value *GEP =
- IRB.CreateInBoundsGEP(nullptr, Ptr, GEPIndices, Name + ".gep");
- Value *Load = IRB.CreateLoad(GEP, Name + ".load");
- Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
- DEBUG(dbgs() << " to: " << *Load << "\n");
- }
- };
- bool visitLoadInst(LoadInst &LI) {
- assert(LI.getPointerOperand() == *U);
- if (!LI.isSimple() || LI.getType()->isSingleValueType())
- return false;
- // HLSL Change Begin - not sroa matrix type.
- if ((SkipHLSLMat && hlsl::HLMatrixType::isa(LI.getType())) ||
- hlsl::dxilutil::IsHLSLObjectType(LI.getType()))
- return false;
- // HLSL Change End.
- // We have an aggregate being loaded, split it apart.
- DEBUG(dbgs() << " original: " << LI << "\n");
- LoadOpSplitter Splitter(&LI, *U);
- Value *V = UndefValue::get(LI.getType());
- Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
- LI.replaceAllUsesWith(V);
- LI.eraseFromParent();
- return true;
- }
- struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
- StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
- : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
- /// Emit a leaf store of a single value. This is called at the leaves of the
- /// recursive emission to actually produce stores.
- void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
- assert(Ty->isSingleValueType());
- // Extract the single value and store it using the indices.
- Value *Store = IRB.CreateStore(
- IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
- IRB.CreateInBoundsGEP(nullptr, Ptr, GEPIndices, Name + ".gep"));
- (void)Store;
- DEBUG(dbgs() << " to: " << *Store << "\n");
- }
- };
- bool visitStoreInst(StoreInst &SI) {
- if (!SI.isSimple() || SI.getPointerOperand() != *U)
- return false;
- Value *V = SI.getValueOperand();
- if (V->getType()->isSingleValueType())
- return false;
- // HLSL Change Begin - not sroa matrix type.
- if ((SkipHLSLMat && hlsl::HLMatrixType::isa(V->getType())) ||
- hlsl::dxilutil::IsHLSLObjectType(V->getType()))
- return false;
- // HLSL Change End.
- // We have an aggregate being stored, split it apart.
- DEBUG(dbgs() << " original: " << SI << "\n");
- StoreOpSplitter Splitter(&SI, *U);
- Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
- SI.eraseFromParent();
- return true;
- }
- bool visitBitCastInst(BitCastInst &BC) {
- // HLSL Change Begin - not sroa matrix type.
- if (PointerType *PT = dyn_cast<PointerType>(BC.getType())) {
- Type *EltTy = PT->getElementType();
- if ((SkipHLSLMat && hlsl::HLMatrixType::isa(EltTy)) ||
- hlsl::dxilutil::IsHLSLObjectType(EltTy))
- return false;
- if (PointerType *SrcPT = dyn_cast<PointerType>(BC.getSrcTy())) {
- Type *SrcEltTy = SrcPT->getElementType();
- if ((SkipHLSLMat && hlsl::HLMatrixType::isa(SrcEltTy)) ||
- hlsl::dxilutil::IsHLSLObjectType(SrcEltTy))
- return false;
- }
- }
- // HLSL Change End.
- enqueueUsers(BC);
- return false;
- }
- bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
- enqueueUsers(GEPI);
- return false;
- }
- bool visitPHINode(PHINode &PN) {
- enqueueUsers(PN);
- return false;
- }
- bool visitSelectInst(SelectInst &SI) {
- enqueueUsers(SI);
- return false;
- }
- };
- }
- /// \brief Strip aggregate type wrapping.
- ///
- /// This removes no-op aggregate types wrapping an underlying type. It will
- /// strip as many layers of types as it can without changing either the type
- /// size or the allocated size.
- static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
- if (Ty->isSingleValueType())
- return Ty;
- uint64_t AllocSize = DL.getTypeAllocSize(Ty);
- uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
- Type *InnerTy;
- if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
- InnerTy = ArrTy->getElementType();
- } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
- const StructLayout *SL = DL.getStructLayout(STy);
- unsigned Index = SL->getElementContainingOffset(0);
- InnerTy = STy->getElementType(Index);
- } else {
- return Ty;
- }
- if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
- TypeSize > DL.getTypeSizeInBits(InnerTy))
- return Ty;
- return stripAggregateTypeWrapping(DL, InnerTy);
- }
- /// \brief Try to find a partition of the aggregate type passed in for a given
- /// offset and size.
- ///
- /// This recurses through the aggregate type and tries to compute a subtype
- /// based on the offset and size. When the offset and size span a sub-section
- /// of an array, it will even compute a new array type for that sub-section,
- /// and the same for structs.
- ///
- /// Note that this routine is very strict and tries to find a partition of the
- /// type which produces the *exact* right offset and size. It is not forgiving
- /// when the size or offset cause either end of type-based partition to be off.
- /// Also, this is a best-effort routine. It is reasonable to give up and not
- /// return a type if necessary.
- static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
- uint64_t Size) {
- if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
- return stripAggregateTypeWrapping(DL, Ty);
- if (Offset > DL.getTypeAllocSize(Ty) ||
- (DL.getTypeAllocSize(Ty) - Offset) < Size)
- return nullptr;
- if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
- // We can't partition pointers...
- if (SeqTy->isPointerTy())
- return nullptr;
- Type *ElementTy = SeqTy->getElementType();
- uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
- uint64_t NumSkippedElements = Offset / ElementSize;
- if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) {
- if (NumSkippedElements >= ArrTy->getNumElements())
- return nullptr;
- } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) {
- if (NumSkippedElements >= VecTy->getNumElements())
- return nullptr;
- }
- Offset -= NumSkippedElements * ElementSize;
- // First check if we need to recurse.
- if (Offset > 0 || Size < ElementSize) {
- // Bail if the partition ends in a different array element.
- if ((Offset + Size) > ElementSize)
- return nullptr;
- // Recurse through the element type trying to peel off offset bytes.
- return getTypePartition(DL, ElementTy, Offset, Size);
- }
- assert(Offset == 0);
- if (Size == ElementSize)
- return stripAggregateTypeWrapping(DL, ElementTy);
- assert(Size > ElementSize);
- uint64_t NumElements = Size / ElementSize;
- if (NumElements * ElementSize != Size)
- return nullptr;
- return ArrayType::get(ElementTy, NumElements);
- }
- StructType *STy = dyn_cast<StructType>(Ty);
- if (!STy)
- return nullptr;
- const StructLayout *SL = DL.getStructLayout(STy);
- if (Offset >= SL->getSizeInBytes())
- return nullptr;
- uint64_t EndOffset = Offset + Size;
- if (EndOffset > SL->getSizeInBytes())
- return nullptr;
- unsigned Index = SL->getElementContainingOffset(Offset);
- Offset -= SL->getElementOffset(Index);
- Type *ElementTy = STy->getElementType(Index);
- uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
- if (Offset >= ElementSize)
- return nullptr; // The offset points into alignment padding.
- // See if any partition must be contained by the element.
- if (Offset > 0 || Size < ElementSize) {
- if ((Offset + Size) > ElementSize)
- return nullptr;
- return getTypePartition(DL, ElementTy, Offset, Size);
- }
- assert(Offset == 0);
- if (Size == ElementSize)
- return stripAggregateTypeWrapping(DL, ElementTy);
- StructType::element_iterator EI = STy->element_begin() + Index,
- EE = STy->element_end();
- if (EndOffset < SL->getSizeInBytes()) {
- unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
- if (Index == EndIndex)
- return nullptr; // Within a single element and its padding.
- // Don't try to form "natural" types if the elements don't line up with the
- // expected size.
- // FIXME: We could potentially recurse down through the last element in the
- // sub-struct to find a natural end point.
- if (SL->getElementOffset(EndIndex) != EndOffset)
- return nullptr;
- assert(Index < EndIndex);
- EE = STy->element_begin() + EndIndex;
- }
- // Try to build up a sub-structure.
- StructType *SubTy =
- StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked());
- const StructLayout *SubSL = DL.getStructLayout(SubTy);
- if (Size != SubSL->getSizeInBytes())
- return nullptr; // The sub-struct doesn't have quite the size needed.
- return SubTy;
- }
- /// \brief Pre-split loads and stores to simplify rewriting.
- ///
- /// We want to break up the splittable load+store pairs as much as
- /// possible. This is important to do as a preprocessing step, as once we
- /// start rewriting the accesses to partitions of the alloca we lose the
- /// necessary information to correctly split apart paired loads and stores
- /// which both point into this alloca. The case to consider is something like
- /// the following:
- ///
- /// %a = alloca [12 x i8]
- /// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
- /// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
- /// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
- /// %iptr1 = bitcast i8* %gep1 to i64*
- /// %iptr2 = bitcast i8* %gep2 to i64*
- /// %fptr1 = bitcast i8* %gep1 to float*
- /// %fptr2 = bitcast i8* %gep2 to float*
- /// %fptr3 = bitcast i8* %gep3 to float*
- /// store float 0.0, float* %fptr1
- /// store float 1.0, float* %fptr2
- /// %v = load i64* %iptr1
- /// store i64 %v, i64* %iptr2
- /// %f1 = load float* %fptr2
- /// %f2 = load float* %fptr3
- ///
- /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
- /// promote everything so we recover the 2 SSA values that should have been
- /// there all along.
- ///
- /// \returns true if any changes are made.
- bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
- DEBUG(dbgs() << "Pre-splitting loads and stores\n");
- // Track the loads and stores which are candidates for pre-splitting here, in
- // the order they first appear during the partition scan. These give stable
- // iteration order and a basis for tracking which loads and stores we
- // actually split.
- SmallVector<LoadInst *, 4> Loads;
- SmallVector<StoreInst *, 4> Stores;
- // We need to accumulate the splits required of each load or store where we
- // can find them via a direct lookup. This is important to cross-check loads
- // and stores against each other. We also track the slice so that we can kill
- // all the slices that end up split.
- struct SplitOffsets {
- Slice *S;
- std::vector<uint64_t> Splits;
- };
- SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
- // Track loads out of this alloca which cannot, for any reason, be pre-split.
- // This is important as we also cannot pre-split stores of those loads!
- // FIXME: This is all pretty gross. It means that we can be more aggressive
- // in pre-splitting when the load feeding the store happens to come from
- // a separate alloca. Put another way, the effectiveness of SROA would be
- // decreased by a frontend which just concatenated all of its local allocas
- // into one big flat alloca. But defeating such patterns is exactly the job
- // SROA is tasked with! Sadly, to not have this discrepancy we would have
- // change store pre-splitting to actually force pre-splitting of the load
- // that feeds it *and all stores*. That makes pre-splitting much harder, but
- // maybe it would make it more principled?
- SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
- DEBUG(dbgs() << " Searching for candidate loads and stores\n");
- for (auto &P : AS.partitions()) {
- for (Slice &S : P) {
- Instruction *I = cast<Instruction>(S.getUse()->getUser());
- if (!S.isSplittable() ||S.endOffset() <= P.endOffset()) {
- // If this was a load we have to track that it can't participate in any
- // pre-splitting!
- if (auto *LI = dyn_cast<LoadInst>(I))
- UnsplittableLoads.insert(LI);
- continue;
- }
- assert(P.endOffset() > S.beginOffset() &&
- "Empty or backwards partition!");
- // Determine if this is a pre-splittable slice.
- if (auto *LI = dyn_cast<LoadInst>(I)) {
- assert(!LI->isVolatile() && "Cannot split volatile loads!");
- // The load must be used exclusively to store into other pointers for
- // us to be able to arbitrarily pre-split it. The stores must also be
- // simple to avoid changing semantics.
- auto IsLoadSimplyStored = [](LoadInst *LI) {
- for (User *LU : LI->users()) {
- auto *SI = dyn_cast<StoreInst>(LU);
- if (!SI || !SI->isSimple())
- return false;
- }
- return true;
- };
- if (!IsLoadSimplyStored(LI)) {
- UnsplittableLoads.insert(LI);
- continue;
- }
- Loads.push_back(LI);
- } else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) {
- if (!SI ||
- S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
- continue;
- auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
- if (!StoredLoad || !StoredLoad->isSimple())
- continue;
- assert(!SI->isVolatile() && "Cannot split volatile stores!");
- Stores.push_back(SI);
- } else {
- // Other uses cannot be pre-split.
- continue;
- }
- // Record the initial split.
- DEBUG(dbgs() << " Candidate: " << *I << "\n");
- auto &Offsets = SplitOffsetsMap[I];
- assert(Offsets.Splits.empty() &&
- "Should not have splits the first time we see an instruction!");
- Offsets.S = &S;
- Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
- }
- // Now scan the already split slices, and add a split for any of them which
- // we're going to pre-split.
- for (Slice *S : P.splitSliceTails()) {
- auto SplitOffsetsMapI =
- SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
- if (SplitOffsetsMapI == SplitOffsetsMap.end())
- continue;
- auto &Offsets = SplitOffsetsMapI->second;
- assert(Offsets.S == S && "Found a mismatched slice!");
- assert(!Offsets.Splits.empty() &&
- "Cannot have an empty set of splits on the second partition!");
- assert(Offsets.Splits.back() ==
- P.beginOffset() - Offsets.S->beginOffset() &&
- "Previous split does not end where this one begins!");
- // Record each split. The last partition's end isn't needed as the size
- // of the slice dictates that.
- if (S->endOffset() > P.endOffset())
- Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
- }
- }
- // We may have split loads where some of their stores are split stores. For
- // such loads and stores, we can only pre-split them if their splits exactly
- // match relative to their starting offset. We have to verify this prior to
- // any rewriting.
- Stores.erase(
- std::remove_if(Stores.begin(), Stores.end(),
- [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
- // Lookup the load we are storing in our map of split
- // offsets.
- auto *LI = cast<LoadInst>(SI->getValueOperand());
- // If it was completely unsplittable, then we're done,
- // and this store can't be pre-split.
- if (UnsplittableLoads.count(LI))
- return true;
- auto LoadOffsetsI = SplitOffsetsMap.find(LI);
- if (LoadOffsetsI == SplitOffsetsMap.end())
- return false; // Unrelated loads are definitely safe.
- auto &LoadOffsets = LoadOffsetsI->second;
- // Now lookup the store's offsets.
- auto &StoreOffsets = SplitOffsetsMap[SI];
- // If the relative offsets of each split in the load and
- // store match exactly, then we can split them and we
- // don't need to remove them here.
- if (LoadOffsets.Splits == StoreOffsets.Splits)
- return false;
- DEBUG(dbgs()
- << " Mismatched splits for load and store:\n"
- << " " << *LI << "\n"
- << " " << *SI << "\n");
- // We've found a store and load that we need to split
- // with mismatched relative splits. Just give up on them
- // and remove both instructions from our list of
- // candidates.
- UnsplittableLoads.insert(LI);
- return true;
- }),
- Stores.end());
- // Now we have to go *back* through all te stores, because a later store may
- // have caused an earlier store's load to become unsplittable and if it is
- // unsplittable for the later store, then we can't rely on it being split in
- // the earlier store either.
- Stores.erase(std::remove_if(Stores.begin(), Stores.end(),
- [&UnsplittableLoads](StoreInst *SI) {
- auto *LI =
- cast<LoadInst>(SI->getValueOperand());
- return UnsplittableLoads.count(LI);
- }),
- Stores.end());
- // Once we've established all the loads that can't be split for some reason,
- // filter any that made it into our list out.
- Loads.erase(std::remove_if(Loads.begin(), Loads.end(),
- [&UnsplittableLoads](LoadInst *LI) {
- return UnsplittableLoads.count(LI);
- }),
- Loads.end());
- // If no loads or stores are left, there is no pre-splitting to be done for
- // this alloca.
- if (Loads.empty() && Stores.empty())
- return false;
- // From here on, we can't fail and will be building new accesses, so rig up
- // an IR builder.
- IRBuilderTy IRB(&AI);
- // Collect the new slices which we will merge into the alloca slices.
- SmallVector<Slice, 4> NewSlices;
- // Track any allocas we end up splitting loads and stores for so we iterate
- // on them.
- SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
- // At this point, we have collected all of the loads and stores we can
- // pre-split, and the specific splits needed for them. We actually do the
- // splitting in a specific order in order to handle when one of the loads in
- // the value operand to one of the stores.
- //
- // First, we rewrite all of the split loads, and just accumulate each split
- // load in a parallel structure. We also build the slices for them and append
- // them to the alloca slices.
- SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
- std::vector<LoadInst *> SplitLoads;
- const DataLayout &DL = AI.getModule()->getDataLayout();
- for (LoadInst *LI : Loads) {
- SplitLoads.clear();
- IntegerType *Ty = cast<IntegerType>(LI->getType());
- uint64_t LoadSize = Ty->getBitWidth() / 8;
- assert(LoadSize > 0 && "Cannot have a zero-sized integer load!");
- auto &Offsets = SplitOffsetsMap[LI];
- assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
- "Slice size should always match load size exactly!");
- uint64_t BaseOffset = Offsets.S->beginOffset();
- assert(BaseOffset + LoadSize > BaseOffset &&
- "Cannot represent alloca access size using 64-bit integers!");
- Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
- IRB.SetInsertPoint(BasicBlock::iterator(LI));
- DEBUG(dbgs() << " Splitting load: " << *LI << "\n");
- uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
- int Idx = 0, Size = Offsets.Splits.size();
- for (;;) {
- auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
- auto *PartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
- LoadInst *PLoad = IRB.CreateAlignedLoad(
- getAdjustedPtr(IRB, DL, BasePtr,
- APInt(DL.getPointerSizeInBits(), PartOffset),
- PartPtrTy, BasePtr->getName() + "."),
- getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
- LI->getName());
- // Append this load onto the list of split loads so we can find it later
- // to rewrite the stores.
- SplitLoads.push_back(PLoad);
- // Now build a new slice for the alloca.
- NewSlices.push_back(
- Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
- &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
- /*IsSplittable*/ false));
- DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset()
- << ", " << NewSlices.back().endOffset() << "): " << *PLoad
- << "\n");
- // See if we've handled all the splits.
- if (Idx >= Size)
- break;
- // Setup the next partition.
- PartOffset = Offsets.Splits[Idx];
- ++Idx;
- PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset;
- }
- // Now that we have the split loads, do the slow walk over all uses of the
- // load and rewrite them as split stores, or save the split loads to use
- // below if the store is going to be split there anyways.
- bool DeferredStores = false;
- for (User *LU : LI->users()) {
- StoreInst *SI = cast<StoreInst>(LU);
- if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
- DeferredStores = true;
- DEBUG(dbgs() << " Deferred splitting of store: " << *SI << "\n");
- continue;
- }
- Value *StoreBasePtr = SI->getPointerOperand();
- IRB.SetInsertPoint(BasicBlock::iterator(SI));
- DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n");
- for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
- LoadInst *PLoad = SplitLoads[Idx];
- uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
- auto *PartPtrTy =
- PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
- StoreInst *PStore = IRB.CreateAlignedStore(
- PLoad, getAdjustedPtr(IRB, DL, StoreBasePtr,
- APInt(DL.getPointerSizeInBits(), PartOffset),
- PartPtrTy, StoreBasePtr->getName() + "."),
- getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
- (void)PStore;
- DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n");
- }
- // We want to immediately iterate on any allocas impacted by splitting
- // this store, and we have to track any promotable alloca (indicated by
- // a direct store) as needing to be resplit because it is no longer
- // promotable.
- if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
- ResplitPromotableAllocas.insert(OtherAI);
- Worklist.insert(OtherAI);
- } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
- StoreBasePtr->stripInBoundsOffsets())) {
- Worklist.insert(OtherAI);
- }
- // Mark the original store as dead.
- DeadInsts.insert(SI);
- }
- // Save the split loads if there are deferred stores among the users.
- if (DeferredStores)
- SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
- // Mark the original load as dead and kill the original slice.
- DeadInsts.insert(LI);
- Offsets.S->kill();
- }
- // Second, we rewrite all of the split stores. At this point, we know that
- // all loads from this alloca have been split already. For stores of such
- // loads, we can simply look up the pre-existing split loads. For stores of
- // other loads, we split those loads first and then write split stores of
- // them.
- for (StoreInst *SI : Stores) {
- auto *LI = cast<LoadInst>(SI->getValueOperand());
- IntegerType *Ty = cast<IntegerType>(LI->getType());
- uint64_t StoreSize = Ty->getBitWidth() / 8;
- assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
- auto &Offsets = SplitOffsetsMap[SI];
- assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
- "Slice size should always match load size exactly!");
- uint64_t BaseOffset = Offsets.S->beginOffset();
- assert(BaseOffset + StoreSize > BaseOffset &&
- "Cannot represent alloca access size using 64-bit integers!");
- Value *LoadBasePtr = LI->getPointerOperand();
- Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
- DEBUG(dbgs() << " Splitting store: " << *SI << "\n");
- // Check whether we have an already split load.
- auto SplitLoadsMapI = SplitLoadsMap.find(LI);
- std::vector<LoadInst *> *SplitLoads = nullptr;
- if (SplitLoadsMapI != SplitLoadsMap.end()) {
- SplitLoads = &SplitLoadsMapI->second;
- assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
- "Too few split loads for the number of splits in the store!");
- } else {
- DEBUG(dbgs() << " of load: " << *LI << "\n");
- }
- uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
- int Idx = 0, Size = Offsets.Splits.size();
- for (;;) {
- auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
- auto *PartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
- // Either lookup a split load or create one.
- LoadInst *PLoad;
- if (SplitLoads) {
- PLoad = (*SplitLoads)[Idx];
- } else {
- IRB.SetInsertPoint(BasicBlock::iterator(LI));
- PLoad = IRB.CreateAlignedLoad(
- getAdjustedPtr(IRB, DL, LoadBasePtr,
- APInt(DL.getPointerSizeInBits(), PartOffset),
- PartPtrTy, LoadBasePtr->getName() + "."),
- getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
- LI->getName());
- }
- // And store this partition.
- IRB.SetInsertPoint(BasicBlock::iterator(SI));
- StoreInst *PStore = IRB.CreateAlignedStore(
- PLoad, getAdjustedPtr(IRB, DL, StoreBasePtr,
- APInt(DL.getPointerSizeInBits(), PartOffset),
- PartPtrTy, StoreBasePtr->getName() + "."),
- getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
- // Now build a new slice for the alloca.
- NewSlices.push_back(
- Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
- &PStore->getOperandUse(PStore->getPointerOperandIndex()),
- /*IsSplittable*/ false));
- DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset()
- << ", " << NewSlices.back().endOffset() << "): " << *PStore
- << "\n");
- if (!SplitLoads) {
- DEBUG(dbgs() << " of split load: " << *PLoad << "\n");
- }
- // See if we've finished all the splits.
- if (Idx >= Size)
- break;
- // Setup the next partition.
- PartOffset = Offsets.Splits[Idx];
- ++Idx;
- PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
- }
- // We want to immediately iterate on any allocas impacted by splitting
- // this load, which is only relevant if it isn't a load of this alloca and
- // thus we didn't already split the loads above. We also have to keep track
- // of any promotable allocas we split loads on as they can no longer be
- // promoted.
- if (!SplitLoads) {
- if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
- assert(OtherAI != &AI && "We can't re-split our own alloca!");
- ResplitPromotableAllocas.insert(OtherAI);
- Worklist.insert(OtherAI);
- } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
- LoadBasePtr->stripInBoundsOffsets())) {
- assert(OtherAI != &AI && "We can't re-split our own alloca!");
- Worklist.insert(OtherAI);
- }
- }
- // Mark the original store as dead now that we've split it up and kill its
- // slice. Note that we leave the original load in place unless this store
- // was its ownly use. It may in turn be split up if it is an alloca load
- // for some other alloca, but it may be a normal load. This may introduce
- // redundant loads, but where those can be merged the rest of the optimizer
- // should handle the merging, and this uncovers SSA splits which is more
- // important. In practice, the original loads will almost always be fully
- // split and removed eventually, and the splits will be merged by any
- // trivial CSE, including instcombine.
- if (LI->hasOneUse()) {
- assert(*LI->user_begin() == SI && "Single use isn't this store!");
- DeadInsts.insert(LI);
- }
- DeadInsts.insert(SI);
- Offsets.S->kill();
- }
- // Remove the killed slices that have ben pre-split.
- AS.erase(std::remove_if(AS.begin(), AS.end(), [](const Slice &S) {
- return S.isDead();
- }), AS.end());
- // Insert our new slices. This will sort and merge them into the sorted
- // sequence.
- AS.insert(NewSlices);
- DEBUG(dbgs() << " Pre-split slices:\n");
- #ifndef NDEBUG
- for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
- DEBUG(AS.print(dbgs(), I, " "));
- #endif
- // Finally, don't try to promote any allocas that new require re-splitting.
- // They have already been added to the worklist above.
- PromotableAllocas.erase(
- std::remove_if(
- PromotableAllocas.begin(), PromotableAllocas.end(),
- [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }),
- PromotableAllocas.end());
- return true;
- }
- /// \brief Rewrite an alloca partition's users.
- ///
- /// This routine drives both of the rewriting goals of the SROA pass. It tries
- /// to rewrite uses of an alloca partition to be conducive for SSA value
- /// promotion. If the partition needs a new, more refined alloca, this will
- /// build that new alloca, preserving as much type information as possible, and
- /// rewrite the uses of the old alloca to point at the new one and have the
- /// appropriate new offsets. It also evaluates how successful the rewrite was
- /// at enabling promotion and if it was successful queues the alloca to be
- /// promoted.
- AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
- AllocaSlices::Partition &P) {
- // Try to compute a friendly type for this partition of the alloca. This
- // won't always succeed, in which case we fall back to a legal integer type
- // or an i8 array of an appropriate size.
- Type *SliceTy = nullptr;
- const DataLayout &DL = AI.getModule()->getDataLayout();
- if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset()))
- if (DL.getTypeAllocSize(CommonUseTy) >= P.size())
- SliceTy = CommonUseTy;
- if (!SliceTy)
- if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
- P.beginOffset(), P.size()))
- SliceTy = TypePartitionTy;
- if ((!SliceTy || (SliceTy->isArrayTy() &&
- SliceTy->getArrayElementType()->isIntegerTy())) &&
- DL.isLegalInteger(P.size() * 8))
- SliceTy = Type::getIntNTy(*C, P.size() * 8);
- if (!SliceTy)
- SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
- assert(DL.getTypeAllocSize(SliceTy) >= P.size());
- bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
- VectorType *VecTy =
- IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
- if (VecTy)
- SliceTy = VecTy;
- // Check for the case where we're going to rewrite to a new alloca of the
- // exact same type as the original, and with the same access offsets. In that
- // case, re-use the existing alloca, but still run through the rewriter to
- // perform phi and select speculation.
- AllocaInst *NewAI;
- if (SliceTy == AI.getAllocatedType()) {
- assert(P.beginOffset() == 0 &&
- "Non-zero begin offset but same alloca type");
- NewAI = &AI;
- // FIXME: We should be able to bail at this point with "nothing changed".
- // FIXME: We might want to defer PHI speculation until after here.
- // FIXME: return nullptr;
- } else {
- unsigned Alignment = AI.getAlignment();
- if (!Alignment) {
- // The minimum alignment which users can rely on when the explicit
- // alignment is omitted or zero is that required by the ABI for this
- // type.
- Alignment = DL.getABITypeAlignment(AI.getAllocatedType());
- }
- Alignment = MinAlign(Alignment, P.beginOffset());
- // If we will get at least this much alignment from the type alone, leave
- // the alloca's alignment unconstrained.
- if (Alignment <= DL.getABITypeAlignment(SliceTy))
- Alignment = 0;
- NewAI = new AllocaInst(
- SliceTy, nullptr, Alignment,
- AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
- ++NumNewAllocas;
- }
- DEBUG(dbgs() << "Rewriting alloca partition "
- << "[" << P.beginOffset() << "," << P.endOffset()
- << ") to: " << *NewAI << "\n");
- // Track the high watermark on the worklist as it is only relevant for
- // promoted allocas. We will reset it to this point if the alloca is not in
- // fact scheduled for promotion.
- unsigned PPWOldSize = PostPromotionWorklist.size();
- unsigned NumUses = 0;
- SmallPtrSet<PHINode *, 8> PHIUsers;
- SmallPtrSet<SelectInst *, 8> SelectUsers;
- AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
- P.endOffset(), IsIntegerPromotable, VecTy,
- PHIUsers, SelectUsers);
- bool Promotable = true;
- for (Slice *S : P.splitSliceTails()) {
- Promotable &= Rewriter.visit(S);
- ++NumUses;
- }
- for (Slice &S : P) {
- Promotable &= Rewriter.visit(&S);
- ++NumUses;
- }
- NumAllocaPartitionUses += NumUses;
- MaxUsesPerAllocaPartition =
- std::max<unsigned>(NumUses, MaxUsesPerAllocaPartition);
- // Now that we've processed all the slices in the new partition, check if any
- // PHIs or Selects would block promotion.
- for (SmallPtrSetImpl<PHINode *>::iterator I = PHIUsers.begin(),
- E = PHIUsers.end();
- I != E; ++I)
- if (!isSafePHIToSpeculate(**I)) {
- Promotable = false;
- PHIUsers.clear();
- SelectUsers.clear();
- break;
- }
- for (SmallPtrSetImpl<SelectInst *>::iterator I = SelectUsers.begin(),
- E = SelectUsers.end();
- I != E; ++I)
- if (!isSafeSelectToSpeculate(**I)) {
- Promotable = false;
- PHIUsers.clear();
- SelectUsers.clear();
- break;
- }
- if (Promotable) {
- if (PHIUsers.empty() && SelectUsers.empty()) {
- // Promote the alloca.
- PromotableAllocas.push_back(NewAI);
- } else {
- // If we have either PHIs or Selects to speculate, add them to those
- // worklists and re-queue the new alloca so that we promote in on the
- // next iteration.
- for (PHINode *PHIUser : PHIUsers)
- SpeculatablePHIs.insert(PHIUser);
- for (SelectInst *SelectUser : SelectUsers)
- SpeculatableSelects.insert(SelectUser);
- Worklist.insert(NewAI);
- }
- } else {
- // If we can't promote the alloca, iterate on it to check for new
- // refinements exposed by splitting the current alloca. Don't iterate on an
- // alloca which didn't actually change and didn't get promoted.
- if (NewAI != &AI)
- Worklist.insert(NewAI);
- // Drop any post-promotion work items if promotion didn't happen.
- while (PostPromotionWorklist.size() > PPWOldSize)
- PostPromotionWorklist.pop_back();
- }
- return NewAI;
- }
- /// \brief Walks the slices of an alloca and form partitions based on them,
- /// rewriting each of their uses.
- bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
- if (AS.begin() == AS.end())
- return false;
- unsigned NumPartitions = 0;
- bool Changed = false;
- const DataLayout &DL = AI.getModule()->getDataLayout();
- // First try to pre-split loads and stores.
- Changed |= presplitLoadsAndStores(AI, AS);
- // Now that we have identified any pre-splitting opportunities, mark any
- // splittable (non-whole-alloca) loads and stores as unsplittable. If we fail
- // to split these during pre-splitting, we want to force them to be
- // rewritten into a partition.
- bool IsSorted = true;
- for (Slice &S : AS) {
- if (!S.isSplittable())
- continue;
- // FIXME: We currently leave whole-alloca splittable loads and stores. This
- // used to be the only splittable loads and stores and we need to be
- // confident that the above handling of splittable loads and stores is
- // completely sufficient before we forcibly disable the remaining handling.
- if (S.beginOffset() == 0 &&
- S.endOffset() >= DL.getTypeAllocSize(AI.getAllocatedType()))
- continue;
- if (isa<LoadInst>(S.getUse()->getUser()) ||
- isa<StoreInst>(S.getUse()->getUser())) {
- S.makeUnsplittable();
- IsSorted = false;
- }
- }
- if (!IsSorted)
- std::sort(AS.begin(), AS.end());
- /// \brief Describes the allocas introduced by rewritePartition
- /// in order to migrate the debug info.
- struct Piece {
- AllocaInst *Alloca;
- uint64_t Offset;
- uint64_t Size;
- Piece(AllocaInst *AI, uint64_t O, uint64_t S)
- : Alloca(AI), Offset(O), Size(S) {}
- };
- SmallVector<Piece, 4> Pieces;
- // Rewrite each partition.
- for (auto &P : AS.partitions()) {
- if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
- Changed = true;
- if (NewAI != &AI) {
- uint64_t SizeOfByte = 8;
- uint64_t AllocaSize = DL.getTypeSizeInBits(NewAI->getAllocatedType());
- // Don't include any padding.
- uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
- Pieces.push_back(Piece(NewAI, P.beginOffset() * SizeOfByte, Size));
- }
- }
- ++NumPartitions;
- }
- NumAllocaPartitions += NumPartitions;
- MaxPartitionsPerAlloca =
- std::max<unsigned>(NumPartitions, MaxPartitionsPerAlloca);
- // Migrate debug information from the old alloca to the new alloca(s)
- // and the individial partitions.
- if (DbgDeclareInst *DbgDecl = FindAllocaDbgDeclare(&AI)) {
- auto *Var = DbgDecl->getVariable();
- auto *Expr = DbgDecl->getExpression();
- DIBuilder DIB(*AI.getParent()->getParent()->getParent(),
- /*AllowUnresolved*/ false);
- bool IsSplit = Pieces.size() > 1;
- // HLSL Change Begins
- // Take into account debug stride in extra metadata
- std::vector<hlsl::DxilDIArrayDim> ArrayDims;
- unsigned FirstFragmentOffsetInBits = 0;
- if (!hlsl::DxilMDHelper::GetVariableDebugLayout(DbgDecl, FirstFragmentOffsetInBits, ArrayDims)
- && Expr->isBitPiece()) {
- FirstFragmentOffsetInBits = Expr->getBitPieceOffset();
- }
- unsigned FragmentSizeInBits = DL.getTypeAllocSizeInBits(AI.getAllocatedType());
- for (const hlsl::DxilDIArrayDim& ArrayDim : ArrayDims) {
- assert(FragmentSizeInBits % ArrayDim.NumElements == 0);
- FragmentSizeInBits /= ArrayDim.NumElements;
- }
- // HLSL Change Ends
- for (auto Piece : Pieces) {
- // Create a piece expression describing the new partition or reuse AI's
- // expression if there is only one partition.
- auto *PieceExpr = Expr;
- if (IsSplit || Expr->isBitPiece()) {
- #if 0 // HLSL Change - Handle Strides
- // If this alloca is already a scalar replacement of a larger aggregate,
- // Piece.Offset describes the offset inside the scalar.
- uint64_t Offset = Expr->isBitPiece() ? Expr->getBitPieceOffset() : 0;
- uint64_t Start = Offset + Piece.Offset;
- uint64_t Size = Piece.Size;
- if (Expr->isBitPiece()) {
- uint64_t AbsEnd = Expr->getBitPieceOffset() + Expr->getBitPieceSize();
- if (Start >= AbsEnd)
- // No need to describe a SROAed padding.
- continue;
- Size = std::min(Size, AbsEnd - Start);
- }
- // HLSL Change Begins
- #else
- // Find the fragment from the original user variable in which this piece falls
- uint64_t PieceFragmentIndex = Piece.Offset / FragmentSizeInBits;
- // Compute the offset in the original user variable
- uint64_t StartInFragment = Piece.Offset % FragmentSizeInBits;
- uint64_t Start = FirstFragmentOffsetInBits + Piece.Offset % FragmentSizeInBits;
- for (auto ArrayDimIter = ArrayDims.rbegin(); ArrayDimIter != ArrayDims.rend(); ++ArrayDimIter) {
- Start += ArrayDimIter->StrideInBits * (PieceFragmentIndex % ArrayDimIter->NumElements);
- PieceFragmentIndex /= ArrayDimIter->NumElements;
- }
- uint64_t Size = std::min<uint64_t>(Piece.Size, FragmentSizeInBits - StartInFragment);
- #endif
- // HLSL Change Ends
- PieceExpr = DIB.createBitPieceExpression(Start, Size);
- }
- // Remove any existing dbg.declare intrinsic describing the same alloca.
- if (DbgDeclareInst *OldDDI = FindAllocaDbgDeclare(Piece.Alloca))
- OldDDI->eraseFromParent();
- DIB.insertDeclare(Piece.Alloca, Var, PieceExpr, DbgDecl->getDebugLoc(),
- &AI);
- }
- }
- return Changed;
- }
- /// \brief Clobber a use with undef, deleting the used value if it becomes dead.
- void SROA::clobberUse(Use &U) {
- Value *OldV = U;
- // Replace the use with an undef value.
- U = UndefValue::get(OldV->getType());
- // Check for this making an instruction dead. We have to garbage collect
- // all the dead instructions to ensure the uses of any alloca end up being
- // minimal.
- if (Instruction *OldI = dyn_cast<Instruction>(OldV))
- if (isInstructionTriviallyDead(OldI)) {
- DeadInsts.insert(OldI);
- }
- }
- /// \brief Analyze an alloca for SROA.
- ///
- /// This analyzes the alloca to ensure we can reason about it, builds
- /// the slices of the alloca, and then hands it off to be split and
- /// rewritten as needed.
- bool SROA::runOnAlloca(AllocaInst &AI) {
- DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
- ++NumAllocasAnalyzed;
- // Special case dead allocas, as they're trivial.
- if (AI.use_empty()) {
- AI.eraseFromParent();
- return true;
- }
- const DataLayout &DL = AI.getModule()->getDataLayout();
- // HLSL Change Begin
- // This passes only deals with byte-sized types.
- // We can have i1 allocas for a bool return value when compiling without optimizations
- // If we let this run, it'll get turned into an i8, which is invalid dxil.
- if (AI.getAllocatedType()->isIntegerTy(1))
- return false;
- // HLSL Change End
- // Skip alloca forms that this analysis can't handle.
- if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
- hlsl::dxilutil::IsHLSLObjectType(
- AI.getAllocatedType()) || // HLSL Change - not sroa resource type.
- // HLSL Change Begin - not sroa matrix type.
- (SkipHLSLMat &&
- hlsl::HLMatrixType::isa(AI.getAllocatedType())) ||
- // HLSL Change End.
- DL.getTypeAllocSize(AI.getAllocatedType()) == 0)
- return false;
- bool Changed = false;
- // First, split any FCA loads and stores touching this alloca to promote
- // better splitting and promotion opportunities.
- AggLoadStoreRewriter AggRewriter(DL, SkipHLSLMat);
- Changed |= AggRewriter.rewrite(AI);
- // Build the slices using a recursive instruction-visiting builder.
- AllocaSlices AS(DL, AI, SkipHLSLMat);
- DEBUG(AS.print(dbgs()));
- if (AS.isEscaped())
- return Changed;
- // Delete all the dead users of this alloca before splitting and rewriting it.
- for (Instruction *DeadUser : AS.getDeadUsers()) {
- // Free up everything used by this instruction.
- for (Use &DeadOp : DeadUser->operands())
- clobberUse(DeadOp);
- // Now replace the uses of this instruction.
- DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType()));
- // And mark it for deletion.
- DeadInsts.insert(DeadUser);
- Changed = true;
- }
- for (Use *DeadOp : AS.getDeadOperands()) {
- clobberUse(*DeadOp);
- Changed = true;
- }
- // No slices to split. Leave the dead alloca for a later pass to clean up.
- if (AS.begin() == AS.end())
- return Changed;
- Changed |= splitAlloca(AI, AS);
- DEBUG(dbgs() << " Speculating PHIs\n");
- while (!SpeculatablePHIs.empty())
- speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
- DEBUG(dbgs() << " Speculating Selects\n");
- while (!SpeculatableSelects.empty())
- speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
- return Changed;
- }
- /// \brief Delete the dead instructions accumulated in this run.
- ///
- /// Recursively deletes the dead instructions we've accumulated. This is done
- /// at the very end to maximize locality of the recursive delete and to
- /// minimize the problems of invalidated instruction pointers as such pointers
- /// are used heavily in the intermediate stages of the algorithm.
- ///
- /// We also record the alloca instructions deleted here so that they aren't
- /// subsequently handed to mem2reg to promote.
- void SROA::deleteDeadInstructions(
- SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
- while (!DeadInsts.empty()) {
- Instruction *I = DeadInsts.pop_back_val();
- DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
- // HLSL Change Begins
- // If the instruction is an alloca, find the possible dbg.declare connected
- // to it, and remove it too. We must do this before calling RAUW or we will
- // not be able to find it.
- if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
- DeletedAllocas.insert(AI);
- if (DbgDeclareInst *DbgDecl = FindAllocaDbgDeclare(AI))
- DbgDecl->eraseFromParent();
- }
- // HLSL Change Ends
- I->replaceAllUsesWith(UndefValue::get(I->getType()));
- for (Use &Operand : I->operands())
- if (Instruction *U = dyn_cast<Instruction>(Operand)) {
- // Zero out the operand and see if it becomes trivially dead.
- Operand = nullptr;
- if (isInstructionTriviallyDead(U))
- DeadInsts.insert(U);
- }
- #if 0 // HLSL Change - blocked moved before replaceAllUsesWith
- if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
- DeletedAllocas.insert(AI);
- if (DbgDeclareInst *DbgDecl = FindAllocaDbgDeclare(AI))
- DbgDecl->eraseFromParent();
- }
- #endif // HLSL Change
- ++NumDeleted;
- I->eraseFromParent();
- }
- }
- static void enqueueUsersInWorklist(Instruction &I,
- SmallVectorImpl<Instruction *> &Worklist,
- SmallPtrSetImpl<Instruction *> &Visited) {
- for (User *U : I.users())
- if (Visited.insert(cast<Instruction>(U)).second)
- Worklist.push_back(cast<Instruction>(U));
- }
- /// \brief Promote the allocas, using the best available technique.
- ///
- /// This attempts to promote whatever allocas have been identified as viable in
- /// the PromotableAllocas list. If that list is empty, there is nothing to do.
- /// If there is a domtree available, we attempt to promote using the full power
- /// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
- /// based on the SSAUpdater utilities. This function returns whether any
- /// promotion occurred.
- bool SROA::promoteAllocas(Function &F) {
- if (PromotableAllocas.empty())
- return false;
- NumPromoted += PromotableAllocas.size();
- if (DT && !ForceSSAUpdater) {
- DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
- PromoteMemToReg(PromotableAllocas, *DT, nullptr, AC);
- PromotableAllocas.clear();
- return true;
- }
- DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
- SSAUpdater SSA;
- DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
- SmallVector<Instruction *, 64> Insts;
- // We need a worklist to walk the uses of each alloca.
- SmallVector<Instruction *, 8> Worklist;
- SmallPtrSet<Instruction *, 8> Visited;
- SmallVector<Instruction *, 32> DeadInsts;
- for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
- AllocaInst *AI = PromotableAllocas[Idx];
- Insts.clear();
- Worklist.clear();
- Visited.clear();
- enqueueUsersInWorklist(*AI, Worklist, Visited);
- while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
- // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
- // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
- // leading to them) here. Eventually it should use them to optimize the
- // scalar values produced.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
- II->getIntrinsicID() == Intrinsic::lifetime_end);
- II->eraseFromParent();
- continue;
- }
- // Push the loads and stores we find onto the list. SROA will already
- // have validated that all loads and stores are viable candidates for
- // promotion.
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- assert(LI->getType() == AI->getAllocatedType());
- Insts.push_back(LI);
- continue;
- }
- if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- assert(SI->getValueOperand()->getType() == AI->getAllocatedType());
- Insts.push_back(SI);
- continue;
- }
- // For everything else, we know that only no-op bitcasts and GEPs will
- // make it this far, just recurse through them and recall them for later
- // removal.
- DeadInsts.push_back(I);
- enqueueUsersInWorklist(*I, Worklist, Visited);
- }
- AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
- while (!DeadInsts.empty())
- DeadInsts.pop_back_val()->eraseFromParent();
- AI->eraseFromParent();
- }
- PromotableAllocas.clear();
- return true;
- }
- // HLSL Change - run SROA more than once if updated.
- bool SROA::runOnFunctionImp(Function &F) {
- if (skipOptnoneFunction(F))
- return false;
- DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
- C = &F.getContext();
- DominatorTreeWrapperPass *DTWP =
- getAnalysisIfAvailable<DominatorTreeWrapperPass>();
- DT = DTWP ? &DTWP->getDomTree() : nullptr;
- AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- BasicBlock &EntryBB = F.getEntryBlock();
- for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
- I != E; ++I) {
- if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
- Worklist.insert(AI);
- }
- bool Changed = false;
- // A set of deleted alloca instruction pointers which should be removed from
- // the list of promotable allocas.
- SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
- do {
- while (!Worklist.empty()) {
- Changed |= runOnAlloca(*Worklist.pop_back_val());
- deleteDeadInstructions(DeletedAllocas);
- // Remove the deleted allocas from various lists so that we don't try to
- // continue processing them.
- if (!DeletedAllocas.empty()) {
- auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
- Worklist.remove_if(IsInSet);
- PostPromotionWorklist.remove_if(IsInSet);
- PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
- PromotableAllocas.end(),
- IsInSet),
- PromotableAllocas.end());
- DeletedAllocas.clear();
- }
- }
- Changed |= promoteAllocas(F);
- Worklist = PostPromotionWorklist;
- PostPromotionWorklist.clear();
- } while (!Worklist.empty());
- return Changed;
- }
- // HLSL Change Begin.
- // In some case, alloca fail to optimized early will be ready to optimize after
- // other alloca is optimized.
- bool SROA::runOnFunction(Function &F) {
- unsigned count = 0;
- const unsigned kMaxCount = 3;
- while ((count++) < kMaxCount) {
- if (!runOnFunctionImp(F))
- break;
- }
- return count > 1;
- }
- // HLSL Change End.
- void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<AssumptionCacheTracker>();
- if (RequiresDomTree)
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.setPreservesCFG();
- }
|