CGExprScalar.cpp 151 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995
  1. //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "CodeGenFunction.h"
  14. #include "CGCXXABI.h"
  15. #include "CGDebugInfo.h"
  16. #include "CGObjCRuntime.h"
  17. #include "CGHLSLRuntime.h" // HLSL Change
  18. #include "CodeGenModule.h"
  19. #include "TargetInfo.h"
  20. #include "clang/AST/ASTContext.h"
  21. #include "clang/AST/DeclObjC.h"
  22. #include "clang/AST/RecordLayout.h"
  23. #include "clang/AST/StmtVisitor.h"
  24. #include "clang/Basic/TargetInfo.h"
  25. #include "clang/Frontend/CodeGenOptions.h"
  26. #include "llvm/IR/CFG.h"
  27. #include "llvm/IR/Constants.h"
  28. #include "llvm/IR/DataLayout.h"
  29. #include "llvm/IR/Function.h"
  30. #include "llvm/IR/GlobalVariable.h"
  31. #include "llvm/IR/Intrinsics.h"
  32. #include "llvm/IR/Module.h"
  33. #include <cstdarg>
  34. using namespace clang;
  35. using namespace CodeGen;
  36. using llvm::Value;
  37. //===----------------------------------------------------------------------===//
  38. // Scalar Expression Emitter
  39. //===----------------------------------------------------------------------===//
  40. namespace {
  41. struct BinOpInfo {
  42. Value *LHS;
  43. Value *RHS;
  44. QualType Ty; // Computation Type.
  45. BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
  46. bool FPContractable;
  47. const Expr *E; // Entire expr, for error unsupported. May not be binop.
  48. };
  49. static bool MustVisitNullValue(const Expr *E) {
  50. // If a null pointer expression's type is the C++0x nullptr_t, then
  51. // it's not necessarily a simple constant and it must be evaluated
  52. // for its potential side effects.
  53. return E->getType()->isNullPtrType();
  54. }
  55. class ScalarExprEmitter
  56. : public StmtVisitor<ScalarExprEmitter, Value*> {
  57. CodeGenFunction &CGF;
  58. CGBuilderTy &Builder;
  59. bool IgnoreResultAssign;
  60. llvm::LLVMContext &VMContext;
  61. public:
  62. ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
  63. : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
  64. VMContext(cgf.getLLVMContext()) {
  65. }
  66. //===--------------------------------------------------------------------===//
  67. // Utilities
  68. //===--------------------------------------------------------------------===//
  69. bool TestAndClearIgnoreResultAssign() {
  70. bool I = IgnoreResultAssign;
  71. IgnoreResultAssign = false;
  72. return I;
  73. }
  74. llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
  75. LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
  76. LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
  77. return CGF.EmitCheckedLValue(E, TCK);
  78. }
  79. void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
  80. const BinOpInfo &Info);
  81. Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
  82. return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
  83. }
  84. void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
  85. const AlignValueAttr *AVAttr = nullptr;
  86. if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
  87. const ValueDecl *VD = DRE->getDecl();
  88. if (VD->getType()->isReferenceType()) {
  89. if (const auto *TTy =
  90. dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
  91. AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
  92. } else {
  93. // Assumptions for function parameters are emitted at the start of the
  94. // function, so there is no need to repeat that here.
  95. if (isa<ParmVarDecl>(VD))
  96. return;
  97. AVAttr = VD->getAttr<AlignValueAttr>();
  98. }
  99. }
  100. if (!AVAttr)
  101. if (const auto *TTy =
  102. dyn_cast<TypedefType>(E->getType()))
  103. AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
  104. if (!AVAttr)
  105. return;
  106. Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
  107. llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
  108. CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
  109. }
  110. /// EmitLoadOfLValue - Given an expression with complex type that represents a
  111. /// value l-value, this method emits the address of the l-value, then loads
  112. /// and returns the result.
  113. Value *EmitLoadOfLValue(const Expr *E) {
  114. Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
  115. E->getExprLoc());
  116. EmitLValueAlignmentAssumption(E, V);
  117. return V;
  118. }
  119. /// EmitConversionToBool - Convert the specified expression value to a
  120. /// boolean (i1) truth value. This is equivalent to "Val != 0".
  121. Value *EmitConversionToBool(Value *Src, QualType DstTy);
  122. /// \brief Emit a check that a conversion to or from a floating-point type
  123. /// does not overflow.
  124. void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
  125. Value *Src, QualType SrcType,
  126. QualType DstType, llvm::Type *DstTy);
  127. /// EmitScalarConversion - Emit a conversion from the specified type to the
  128. /// specified destination type, both of which are LLVM scalar types.
  129. Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
  130. /// EmitComplexToScalarConversion - Emit a conversion from the specified
  131. /// complex type to the specified destination type, where the destination type
  132. /// is an LLVM scalar type.
  133. Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
  134. QualType SrcTy, QualType DstTy);
  135. /// EmitNullValue - Emit a value that corresponds to null for the given type.
  136. Value *EmitNullValue(QualType Ty);
  137. /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
  138. Value *EmitFloatToBoolConversion(Value *V) {
  139. // Compare against 0.0 for fp scalars.
  140. llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
  141. return Builder.CreateFCmpUNE(V, Zero, "tobool");
  142. }
  143. /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
  144. Value *EmitPointerToBoolConversion(Value *V) {
  145. Value *Zero = llvm::ConstantPointerNull::get(
  146. cast<llvm::PointerType>(V->getType()));
  147. return Builder.CreateICmpNE(V, Zero, "tobool");
  148. }
  149. Value *EmitIntToBoolConversion(Value *V) {
  150. // Because of the type rules of C, we often end up computing a
  151. // logical value, then zero extending it to int, then wanting it
  152. // as a logical value again. Optimize this common case.
  153. if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
  154. if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
  155. Value *Result = ZI->getOperand(0);
  156. // If there aren't any more uses, zap the instruction to save space.
  157. // Note that there can be more uses, for example if this
  158. // is the result of an assignment.
  159. if (ZI->use_empty())
  160. ZI->eraseFromParent();
  161. return Result;
  162. }
  163. }
  164. return Builder.CreateIsNotNull(V, "tobool");
  165. }
  166. //===--------------------------------------------------------------------===//
  167. // Visitor Methods
  168. //===--------------------------------------------------------------------===//
  169. Value *Visit(Expr *E) {
  170. ApplyDebugLocation DL(CGF, E);
  171. // HLSL Change Begins
  172. // generate matrix operations
  173. if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
  174. if (hlsl::IsHLSLMatType(E->getType()) ||
  175. hlsl::IsHLSLMatType(BinOp->getLHS()->getType())) {
  176. if (BinOp->getOpcode() != BO_Assign) {
  177. llvm::Value *LHS = CGF.EmitScalarExpr(BinOp->getLHS());
  178. llvm::Value *RHS = CGF.EmitScalarExpr(BinOp->getRHS());
  179. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
  180. CGF, E, ConvertType(E->getType()), { LHS, RHS });
  181. }
  182. else {
  183. LValue LHS = CGF.EmitLValue(BinOp->getLHS());
  184. llvm::Value *RHS = CGF.EmitScalarExpr(BinOp->getRHS());
  185. CGF.CGM.getHLSLRuntime().EmitHLSLMatrixStore(CGF, RHS, LHS.getAddress(), BinOp->getLHS()->getType());
  186. return RHS;
  187. }
  188. }
  189. } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
  190. // ++/-- operators are handled in EmitScalarPrePostIncDec
  191. if (hlsl::IsHLSLMatType(E->getType()) && !UnOp->isIncrementDecrementOp()) {
  192. llvm::Value *Operand = CGF.EmitScalarExpr(UnOp->getSubExpr());
  193. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
  194. CGF, E, Operand->getType(), { Operand });
  195. }
  196. }
  197. // HLSL Change Ends
  198. return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
  199. }
  200. Value *VisitStmt(Stmt *S) {
  201. S->dump(CGF.getContext().getSourceManager());
  202. llvm_unreachable("Stmt can't have complex result type!");
  203. }
  204. Value *VisitExpr(Expr *S);
  205. Value *VisitParenExpr(ParenExpr *PE) {
  206. return Visit(PE->getSubExpr());
  207. }
  208. Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
  209. return Visit(E->getReplacement());
  210. }
  211. Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
  212. return Visit(GE->getResultExpr());
  213. }
  214. // Leaves.
  215. Value *VisitIntegerLiteral(const IntegerLiteral *E) {
  216. return Builder.getInt(E->getValue());
  217. }
  218. Value *VisitFloatingLiteral(const FloatingLiteral *E) {
  219. return llvm::ConstantFP::get(VMContext, E->getValue());
  220. }
  221. Value *VisitCharacterLiteral(const CharacterLiteral *E) {
  222. return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  223. }
  224. // HLSL Change Start
  225. Value *VisitStringLiteral(const StringLiteral *E) {
  226. return CGF.CGM.GetConstantArrayFromStringLiteral(E);
  227. }
  228. // HLSL Change End
  229. Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
  230. return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  231. }
  232. Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
  233. return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  234. }
  235. Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
  236. return EmitNullValue(E->getType());
  237. }
  238. Value *VisitGNUNullExpr(const GNUNullExpr *E) {
  239. return EmitNullValue(E->getType());
  240. }
  241. Value *VisitOffsetOfExpr(OffsetOfExpr *E);
  242. Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
  243. Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
  244. llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
  245. return Builder.CreateBitCast(V, ConvertType(E->getType()));
  246. }
  247. Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
  248. return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
  249. }
  250. Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
  251. return CGF.EmitPseudoObjectRValue(E).getScalarVal();
  252. }
  253. Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
  254. if (E->isGLValue())
  255. return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
  256. // Otherwise, assume the mapping is the scalar directly.
  257. return CGF.getOpaqueRValueMapping(E).getScalarVal();
  258. }
  259. // l-values.
  260. Value *VisitDeclRefExpr(DeclRefExpr *E) {
  261. if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
  262. if (result.isReference())
  263. return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
  264. E->getExprLoc());
  265. return result.getValue();
  266. }
  267. return EmitLoadOfLValue(E);
  268. }
  269. Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
  270. return CGF.EmitObjCSelectorExpr(E);
  271. }
  272. Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
  273. return CGF.EmitObjCProtocolExpr(E);
  274. }
  275. Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
  276. return EmitLoadOfLValue(E);
  277. }
  278. Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
  279. if (E->getMethodDecl() &&
  280. E->getMethodDecl()->getReturnType()->isReferenceType())
  281. return EmitLoadOfLValue(E);
  282. return CGF.EmitObjCMessageExpr(E).getScalarVal();
  283. }
  284. Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
  285. LValue LV = CGF.EmitObjCIsaExpr(E);
  286. Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
  287. return V;
  288. }
  289. Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
  290. Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
  291. Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
  292. Value *VisitMemberExpr(MemberExpr *E);
  293. Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
  294. Value *VisitExtMatrixElementExpr(Expr *E) { return EmitLoadOfLValue(E); } // HLSL Change
  295. Value *VisitHLSLVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } // HLSL Change
  296. Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
  297. return EmitLoadOfLValue(E);
  298. }
  299. Value *VisitInitListExpr(InitListExpr *E);
  300. Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
  301. return EmitNullValue(E->getType());
  302. }
  303. Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
  304. if (E->getType()->isVariablyModifiedType())
  305. CGF.EmitVariablyModifiedType(E->getType());
  306. if (CGDebugInfo *DI = CGF.getDebugInfo())
  307. DI->EmitExplicitCastType(E->getType());
  308. return VisitCastExpr(E);
  309. }
  310. Value *VisitCastExpr(CastExpr *E);
  311. Value *VisitCallExpr(const CallExpr *E) {
  312. if (E->getCallReturnType(CGF.getContext())->isReferenceType())
  313. return EmitLoadOfLValue(E);
  314. // HLSL Change Starts
  315. if (CGF.getContext().getLangOpts().HLSL) {
  316. RValue RV = CGF.EmitCallExpr(E);
  317. Value *V = nullptr;
  318. if (RV.isScalar())
  319. V = RV.getScalarVal();
  320. else
  321. V = RV.getAggregateAddr();
  322. EmitLValueAlignmentAssumption(E, V);
  323. return V;
  324. }
  325. // HLSL Change Ends
  326. Value *V = CGF.EmitCallExpr(E).getScalarVal();
  327. EmitLValueAlignmentAssumption(E, V);
  328. return V;
  329. }
  330. Value *VisitStmtExpr(const StmtExpr *E);
  331. // Unary Operators.
  332. Value *VisitUnaryPostDec(const UnaryOperator *E) {
  333. LValue LV = EmitLValue(E->getSubExpr());
  334. return EmitScalarPrePostIncDec(E, LV, false, false);
  335. }
  336. Value *VisitUnaryPostInc(const UnaryOperator *E) {
  337. LValue LV = EmitLValue(E->getSubExpr());
  338. return EmitScalarPrePostIncDec(E, LV, true, false);
  339. }
  340. Value *VisitUnaryPreDec(const UnaryOperator *E) {
  341. LValue LV = EmitLValue(E->getSubExpr());
  342. return EmitScalarPrePostIncDec(E, LV, false, true);
  343. }
  344. Value *VisitUnaryPreInc(const UnaryOperator *E) {
  345. LValue LV = EmitLValue(E->getSubExpr());
  346. return EmitScalarPrePostIncDec(E, LV, true, true);
  347. }
  348. llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
  349. llvm::Value *InVal,
  350. bool IsInc);
  351. llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
  352. bool isInc, bool isPre);
  353. Value *VisitUnaryAddrOf(const UnaryOperator *E) {
  354. if (isa<MemberPointerType>(E->getType())) // never sugared
  355. return CGF.CGM.getMemberPointerConstant(E);
  356. return EmitLValue(E->getSubExpr()).getAddress();
  357. }
  358. Value *VisitUnaryDeref(const UnaryOperator *E) {
  359. if (E->getType()->isVoidType())
  360. return Visit(E->getSubExpr()); // the actual value should be unused
  361. return EmitLoadOfLValue(E);
  362. }
  363. Value *VisitUnaryPlus(const UnaryOperator *E) {
  364. // This differs from gcc, though, most likely due to a bug in gcc.
  365. TestAndClearIgnoreResultAssign();
  366. return Visit(E->getSubExpr());
  367. }
  368. Value *VisitUnaryMinus (const UnaryOperator *E);
  369. Value *VisitUnaryNot (const UnaryOperator *E);
  370. Value *VisitUnaryLNot (const UnaryOperator *E);
  371. Value *VisitUnaryReal (const UnaryOperator *E);
  372. Value *VisitUnaryImag (const UnaryOperator *E);
  373. Value *VisitUnaryExtension(const UnaryOperator *E) {
  374. return Visit(E->getSubExpr());
  375. }
  376. // C++
  377. Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
  378. return EmitLoadOfLValue(E);
  379. }
  380. Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
  381. return Visit(DAE->getExpr());
  382. }
  383. Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
  384. CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
  385. return Visit(DIE->getExpr());
  386. }
  387. Value *VisitCXXThisExpr(CXXThisExpr *TE) {
  388. return CGF.LoadCXXThis();
  389. }
  390. Value *VisitExprWithCleanups(ExprWithCleanups *E) {
  391. CGF.enterFullExpression(E);
  392. CodeGenFunction::RunCleanupsScope Scope(CGF);
  393. return Visit(E->getSubExpr());
  394. }
  395. Value *VisitCXXNewExpr(const CXXNewExpr *E) {
  396. return CGF.EmitCXXNewExpr(E);
  397. }
  398. Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
  399. CGF.EmitCXXDeleteExpr(E);
  400. return nullptr;
  401. }
  402. Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
  403. return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  404. }
  405. Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
  406. return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
  407. }
  408. Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
  409. return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
  410. }
  411. Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
  412. // C++ [expr.pseudo]p1:
  413. // The result shall only be used as the operand for the function call
  414. // operator (), and the result of such a call has type void. The only
  415. // effect is the evaluation of the postfix-expression before the dot or
  416. // arrow.
  417. CGF.EmitScalarExpr(E->getBase());
  418. return nullptr;
  419. }
  420. Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
  421. return EmitNullValue(E->getType());
  422. }
  423. Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
  424. CGF.EmitCXXThrowExpr(E);
  425. return nullptr;
  426. }
  427. Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
  428. return Builder.getInt1(E->getValue());
  429. }
  430. // Binary Operators.
  431. Value *EmitMul(const BinOpInfo &Ops) {
  432. if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
  433. switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
  434. case LangOptions::SOB_Defined:
  435. return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
  436. case LangOptions::SOB_Undefined:
  437. if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
  438. return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
  439. // Fall through.
  440. case LangOptions::SOB_Trapping:
  441. return EmitOverflowCheckedBinOp(Ops);
  442. }
  443. }
  444. if (Ops.Ty->isUnsignedIntegerType() &&
  445. CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
  446. return EmitOverflowCheckedBinOp(Ops);
  447. if (Ops.LHS->getType()->isFPOrFPVectorTy())
  448. return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
  449. return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
  450. }
  451. /// Create a binary op that checks for overflow.
  452. /// Currently only supports +, - and *.
  453. Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
  454. // Check for undefined division and modulus behaviors.
  455. void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
  456. llvm::Value *Zero,bool isDiv);
  457. // Common helper for getting how wide LHS of shift is.
  458. static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
  459. Value *EmitDiv(const BinOpInfo &Ops);
  460. Value *EmitRem(const BinOpInfo &Ops);
  461. Value *EmitAdd(const BinOpInfo &Ops);
  462. Value *EmitSub(const BinOpInfo &Ops);
  463. Value *EmitShl(const BinOpInfo &Ops);
  464. Value *EmitShr(const BinOpInfo &Ops);
  465. Value *EmitAnd(const BinOpInfo &Ops) {
  466. return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
  467. }
  468. Value *EmitXor(const BinOpInfo &Ops) {
  469. return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
  470. }
  471. Value *EmitOr (const BinOpInfo &Ops) {
  472. return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
  473. }
  474. BinOpInfo EmitBinOps(const BinaryOperator *E);
  475. LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
  476. Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
  477. Value *&Result);
  478. Value *EmitCompoundAssign(const CompoundAssignOperator *E,
  479. Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
  480. // Binary operators and binary compound assignment operators.
  481. #define HANDLEBINOP(OP) \
  482. Value *VisitBin ## OP(const BinaryOperator *E) { \
  483. return Emit ## OP(EmitBinOps(E)); \
  484. } \
  485. Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
  486. return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
  487. }
  488. HANDLEBINOP(Mul)
  489. HANDLEBINOP(Div)
  490. HANDLEBINOP(Rem)
  491. HANDLEBINOP(Add)
  492. HANDLEBINOP(Sub)
  493. HANDLEBINOP(Shl)
  494. HANDLEBINOP(Shr)
  495. HANDLEBINOP(And)
  496. HANDLEBINOP(Xor)
  497. HANDLEBINOP(Or)
  498. #undef HANDLEBINOP
  499. // Comparisons.
  500. Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
  501. unsigned SICmpOpc, unsigned FCmpOpc);
  502. #define VISITCOMP(CODE, UI, SI, FP) \
  503. Value *VisitBin##CODE(const BinaryOperator *E) { \
  504. return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
  505. llvm::FCmpInst::FP); }
  506. VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
  507. VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
  508. VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
  509. VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
  510. VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
  511. VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
  512. #undef VISITCOMP
  513. Value *VisitBinAssign (const BinaryOperator *E);
  514. Value *VisitBinLAnd (const BinaryOperator *E);
  515. Value *VisitBinLOr (const BinaryOperator *E);
  516. Value *VisitBinComma (const BinaryOperator *E);
  517. Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
  518. Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
  519. // Other Operators.
  520. Value *VisitBlockExpr(const BlockExpr *BE);
  521. Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
  522. Value *VisitChooseExpr(ChooseExpr *CE);
  523. Value *VisitVAArgExpr(VAArgExpr *VE);
  524. Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
  525. return CGF.EmitObjCStringLiteral(E);
  526. }
  527. Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
  528. return CGF.EmitObjCBoxedExpr(E);
  529. }
  530. Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
  531. return CGF.EmitObjCArrayLiteral(E);
  532. }
  533. Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
  534. return CGF.EmitObjCDictionaryLiteral(E);
  535. }
  536. Value *VisitAsTypeExpr(AsTypeExpr *CE);
  537. Value *VisitAtomicExpr(AtomicExpr *AE);
  538. };
  539. } // end anonymous namespace.
  540. //===----------------------------------------------------------------------===//
  541. // Utilities
  542. //===----------------------------------------------------------------------===//
  543. /// EmitConversionToBool - Convert the specified expression value to a
  544. /// boolean (i1) truth value. This is equivalent to "Val != 0".
  545. Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
  546. assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
  547. if (SrcType->isRealFloatingType())
  548. return EmitFloatToBoolConversion(Src);
  549. if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
  550. return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
  551. assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
  552. "Unknown scalar type to convert");
  553. if (isa<llvm::IntegerType>(Src->getType()))
  554. return EmitIntToBoolConversion(Src);
  555. assert(isa<llvm::PointerType>(Src->getType()));
  556. return EmitPointerToBoolConversion(Src);
  557. }
  558. void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
  559. QualType OrigSrcType,
  560. Value *Src, QualType SrcType,
  561. QualType DstType,
  562. llvm::Type *DstTy) {
  563. CodeGenFunction::SanitizerScope SanScope(&CGF);
  564. using llvm::APFloat;
  565. using llvm::APSInt;
  566. llvm::Type *SrcTy = Src->getType();
  567. llvm::Value *Check = nullptr;
  568. if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
  569. // Integer to floating-point. This can fail for unsigned short -> __half
  570. // or unsigned __int128 -> float.
  571. assert(DstType->isFloatingType());
  572. bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
  573. APFloat LargestFloat =
  574. APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
  575. APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
  576. bool IsExact;
  577. if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
  578. &IsExact) != APFloat::opOK)
  579. // The range of representable values of this floating point type includes
  580. // all values of this integer type. Don't need an overflow check.
  581. return;
  582. llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
  583. if (SrcIsUnsigned)
  584. Check = Builder.CreateICmpULE(Src, Max);
  585. else {
  586. llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
  587. llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
  588. llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
  589. Check = Builder.CreateAnd(GE, LE);
  590. }
  591. } else {
  592. const llvm::fltSemantics &SrcSema =
  593. CGF.getContext().getFloatTypeSemantics(OrigSrcType);
  594. if (isa<llvm::IntegerType>(DstTy)) {
  595. // Floating-point to integer. This has undefined behavior if the source is
  596. // +-Inf, NaN, or doesn't fit into the destination type (after truncation
  597. // to an integer).
  598. unsigned Width = CGF.getContext().getIntWidth(DstType);
  599. bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
  600. APSInt Min = APSInt::getMinValue(Width, Unsigned);
  601. APFloat MinSrc(SrcSema, APFloat::uninitialized);
  602. if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
  603. APFloat::opOverflow)
  604. // Don't need an overflow check for lower bound. Just check for
  605. // -Inf/NaN.
  606. MinSrc = APFloat::getInf(SrcSema, true);
  607. else
  608. // Find the largest value which is too small to represent (before
  609. // truncation toward zero).
  610. MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
  611. APSInt Max = APSInt::getMaxValue(Width, Unsigned);
  612. APFloat MaxSrc(SrcSema, APFloat::uninitialized);
  613. if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
  614. APFloat::opOverflow)
  615. // Don't need an overflow check for upper bound. Just check for
  616. // +Inf/NaN.
  617. MaxSrc = APFloat::getInf(SrcSema, false);
  618. else
  619. // Find the smallest value which is too large to represent (before
  620. // truncation toward zero).
  621. MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
  622. // If we're converting from __half, convert the range to float to match
  623. // the type of src.
  624. if (OrigSrcType->isHalfType()) {
  625. const llvm::fltSemantics &Sema =
  626. CGF.getContext().getFloatTypeSemantics(SrcType);
  627. bool IsInexact;
  628. MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
  629. MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
  630. }
  631. llvm::Value *GE =
  632. Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
  633. llvm::Value *LE =
  634. Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
  635. Check = Builder.CreateAnd(GE, LE);
  636. } else {
  637. // FIXME: Maybe split this sanitizer out from float-cast-overflow.
  638. //
  639. // Floating-point to floating-point. This has undefined behavior if the
  640. // source is not in the range of representable values of the destination
  641. // type. The C and C++ standards are spectacularly unclear here. We
  642. // diagnose finite out-of-range conversions, but allow infinities and NaNs
  643. // to convert to the corresponding value in the smaller type.
  644. //
  645. // C11 Annex F gives all such conversions defined behavior for IEC 60559
  646. // conforming implementations. Unfortunately, LLVM's fptrunc instruction
  647. // does not.
  648. // Converting from a lower rank to a higher rank can never have
  649. // undefined behavior, since higher-rank types must have a superset
  650. // of values of lower-rank types.
  651. if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
  652. return;
  653. assert(!OrigSrcType->isHalfType() &&
  654. "should not check conversion from __half, it has the lowest rank");
  655. const llvm::fltSemantics &DstSema =
  656. CGF.getContext().getFloatTypeSemantics(DstType);
  657. APFloat MinBad = APFloat::getLargest(DstSema, false);
  658. APFloat MaxBad = APFloat::getInf(DstSema, false);
  659. bool IsInexact;
  660. MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
  661. MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
  662. Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
  663. CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
  664. llvm::Value *GE =
  665. Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
  666. llvm::Value *LE =
  667. Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
  668. Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
  669. }
  670. }
  671. // FIXME: Provide a SourceLocation.
  672. llvm::Constant *StaticArgs[] = {
  673. CGF.EmitCheckTypeDescriptor(OrigSrcType),
  674. CGF.EmitCheckTypeDescriptor(DstType)
  675. };
  676. CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
  677. "float_cast_overflow", StaticArgs, OrigSrc);
  678. }
  679. /// EmitScalarConversion - Emit a conversion from the specified type to the
  680. /// specified destination type, both of which are LLVM scalar types.
  681. Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
  682. QualType DstType) {
  683. SrcType = CGF.getContext().getCanonicalType(SrcType);
  684. DstType = CGF.getContext().getCanonicalType(DstType);
  685. if (SrcType == DstType) return Src;
  686. if (DstType->isVoidType()) return nullptr;
  687. llvm::Value *OrigSrc = Src;
  688. QualType OrigSrcType = SrcType;
  689. llvm::Type *SrcTy = Src->getType();
  690. // Handle conversions to bool first, they are special: comparisons against 0.
  691. if (DstType->isBooleanType())
  692. return EmitConversionToBool(Src, SrcType);
  693. llvm::Type *DstTy = ConvertType(DstType);
  694. // Cast from half through float if half isn't a native type.
  695. if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
  696. // Cast to FP using the intrinsic if the half type itself isn't supported.
  697. if (DstTy->isFloatingPointTy()) {
  698. if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
  699. return Builder.CreateCall(
  700. CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
  701. Src);
  702. } else {
  703. // Cast to other types through float, using either the intrinsic or FPExt,
  704. // depending on whether the half type itself is supported
  705. // (as opposed to operations on half, available with NativeHalfType).
  706. if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
  707. Src = Builder.CreateCall(
  708. CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
  709. CGF.CGM.FloatTy),
  710. Src);
  711. } else {
  712. Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
  713. }
  714. SrcType = CGF.getContext().FloatTy;
  715. SrcTy = CGF.FloatTy;
  716. }
  717. }
  718. // Ignore conversions like int -> uint.
  719. if (SrcTy == DstTy)
  720. return Src;
  721. // Handle pointer conversions next: pointers can only be converted to/from
  722. // other pointers and integers. Check for pointer types in terms of LLVM, as
  723. // some native types (like Obj-C id) may map to a pointer type.
  724. if (isa<llvm::PointerType>(DstTy)) {
  725. // The source value may be an integer, or a pointer.
  726. if (isa<llvm::PointerType>(SrcTy))
  727. return Builder.CreateBitCast(Src, DstTy, "conv");
  728. assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
  729. // First, convert to the correct width so that we control the kind of
  730. // extension.
  731. llvm::Type *MiddleTy = CGF.IntPtrTy;
  732. bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
  733. llvm::Value* IntResult =
  734. Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
  735. // Then, cast to pointer.
  736. return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
  737. }
  738. if (isa<llvm::PointerType>(SrcTy)) {
  739. // Must be an ptr to int cast.
  740. assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
  741. return Builder.CreatePtrToInt(Src, DstTy, "conv");
  742. }
  743. // A scalar can be splatted to an extended vector of the same element type
  744. if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
  745. // Cast the scalar to element type
  746. QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
  747. llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
  748. // Splat the element across to all elements
  749. unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
  750. return Builder.CreateVectorSplat(NumElements, Elt, "splat");
  751. }
  752. // HLSL Change Starts
  753. if (CGF.getContext().getLangOpts().HLSL) {
  754. // A scalar can be splatted to an extended vector of the same element type
  755. if (DstTy->isVectorTy() && !SrcTy->isVectorTy()) {
  756. // Cast the scalar to element type
  757. const ExtVectorType *DstVecType =
  758. hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(), DstType);
  759. QualType EltTy = DstVecType->getElementType();
  760. llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
  761. // Splat the element across to all elements
  762. unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
  763. return Builder.CreateVectorSplat(NumElements, Elt, "splat");
  764. }
  765. if (SrcTy->isVectorTy() && DstTy->isVectorTy()) {
  766. Value *Res = nullptr;
  767. const ExtVectorType *SrcVecType =
  768. hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(), SrcType);
  769. const ExtVectorType *DstVecType =
  770. hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(), DstType);
  771. const llvm::VectorType *SrcVecTy = cast<llvm::VectorType>(SrcTy);
  772. const llvm::VectorType *DstVecTy = cast<llvm::VectorType>(DstTy);
  773. if (SrcVecTy->getNumElements() != DstVecTy->getNumElements()) {
  774. if (SrcVecTy->getNumElements() == 1) {
  775. // Cast the scalar to element type
  776. const ExtVectorType *DstVecType =
  777. hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(),
  778. DstType);
  779. QualType EltTy = DstVecType->getElementType();
  780. llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
  781. // Splat the element across to all elements
  782. unsigned NumElements =
  783. cast<llvm::VectorType>(DstTy)->getNumElements();
  784. return Builder.CreateVectorSplat(NumElements, Elt, "splat");
  785. }
  786. }
  787. if (isa<llvm::IntegerType>(SrcVecTy->getElementType())) {
  788. bool InputSigned =
  789. SrcVecType->getElementType()->isSignedIntegerOrEnumerationType();
  790. if (isa<llvm::IntegerType>(DstVecTy->getElementType()))
  791. Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
  792. else if (InputSigned)
  793. Res = Builder.CreateSIToFP(Src, DstTy, "conv");
  794. else
  795. Res = Builder.CreateUIToFP(Src, DstTy, "conv");
  796. } else if (isa<llvm::IntegerType>(DstVecTy->getElementType())) {
  797. assert(SrcVecTy->getElementType()->isFloatingPointTy() &&
  798. "Unknown real conversion");
  799. if (DstVecType->getElementType()->isSignedIntegerOrEnumerationType())
  800. Res = Builder.CreateFPToSI(Src, DstTy, "conv");
  801. else
  802. Res = Builder.CreateFPToUI(Src, DstTy, "conv");
  803. } else {
  804. assert(SrcVecTy->getElementType()->isFloatingPointTy() &&
  805. DstVecTy->getElementType()->isFloatingPointTy() &&
  806. "Unknown real conversion");
  807. if (DstVecTy->getElementType()->getTypeID() <
  808. SrcVecTy->getElementType()->getTypeID())
  809. Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
  810. else
  811. Res = Builder.CreateFPExt(Src, DstTy, "conv");
  812. }
  813. return Res;
  814. }
  815. if (SrcTy->isVectorTy() && !DstTy->isVectorTy()) {
  816. return Builder.CreateExtractElement(Src, (uint64_t)0);
  817. }
  818. }
  819. // HLSL Change Ends
  820. // Allow bitcast from vector to integer/fp of the same size.
  821. if (isa<llvm::VectorType>(SrcTy) ||
  822. isa<llvm::VectorType>(DstTy))
  823. return Builder.CreateBitCast(Src, DstTy, "conv");
  824. // Finally, we have the arithmetic types: real int/float.
  825. Value *Res = nullptr;
  826. llvm::Type *ResTy = DstTy;
  827. // An overflowing conversion has undefined behavior if either the source type
  828. // or the destination type is a floating-point type.
  829. if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
  830. (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
  831. EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
  832. DstTy);
  833. // Cast to half through float if half isn't a native type.
  834. if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
  835. // Make sure we cast in a single step if from another FP type.
  836. if (SrcTy->isFloatingPointTy()) {
  837. // Use the intrinsic if the half type itself isn't supported
  838. // (as opposed to operations on half, available with NativeHalfType).
  839. if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
  840. return Builder.CreateCall(
  841. CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
  842. // If the half type is supported, just use an fptrunc.
  843. return Builder.CreateFPTrunc(Src, DstTy);
  844. }
  845. DstTy = CGF.FloatTy;
  846. }
  847. // HLSL Change Begins.
  848. if (const BuiltinType *BT = SrcType->getAs<BuiltinType>()) {
  849. if (BT->getKind() == BuiltinType::Kind::LitInt || BT->getKind() == BuiltinType::Kind::LitFloat) {
  850. Res = CGF.CGM.getHLSLRuntime().EmitHLSLLiteralCast(CGF, Src, SrcType, DstType);
  851. if (Res)
  852. return Res;
  853. }
  854. }
  855. // HLSL Change Ends.
  856. if (isa<llvm::IntegerType>(SrcTy)) {
  857. bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
  858. if (isa<llvm::IntegerType>(DstTy))
  859. Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
  860. else if (InputSigned)
  861. Res = Builder.CreateSIToFP(Src, DstTy, "conv");
  862. else
  863. Res = Builder.CreateUIToFP(Src, DstTy, "conv");
  864. } else if (isa<llvm::IntegerType>(DstTy)) {
  865. assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
  866. if (DstType->isSignedIntegerOrEnumerationType())
  867. Res = Builder.CreateFPToSI(Src, DstTy, "conv");
  868. else
  869. Res = Builder.CreateFPToUI(Src, DstTy, "conv");
  870. } else {
  871. assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
  872. "Unknown real conversion");
  873. if (DstTy->getTypeID() < SrcTy->getTypeID())
  874. Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
  875. else
  876. Res = Builder.CreateFPExt(Src, DstTy, "conv");
  877. }
  878. if (DstTy != ResTy) {
  879. if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
  880. assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
  881. Res = Builder.CreateCall(
  882. CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
  883. Res);
  884. } else {
  885. Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
  886. }
  887. }
  888. return Res;
  889. }
  890. /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
  891. /// type to the specified destination type, where the destination type is an
  892. /// LLVM scalar type.
  893. Value *ScalarExprEmitter::
  894. EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
  895. QualType SrcTy, QualType DstTy) {
  896. // Get the source element type.
  897. SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
  898. // Handle conversions to bool first, they are special: comparisons against 0.
  899. if (DstTy->isBooleanType()) {
  900. // Complex != 0 -> (Real != 0) | (Imag != 0)
  901. Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
  902. Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
  903. return Builder.CreateOr(Src.first, Src.second, "tobool");
  904. }
  905. // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
  906. // the imaginary part of the complex value is discarded and the value of the
  907. // real part is converted according to the conversion rules for the
  908. // corresponding real type.
  909. return EmitScalarConversion(Src.first, SrcTy, DstTy);
  910. }
  911. Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
  912. return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
  913. }
  914. /// \brief Emit a sanitization check for the given "binary" operation (which
  915. /// might actually be a unary increment which has been lowered to a binary
  916. /// operation). The check passes if all values in \p Checks (which are \c i1),
  917. /// are \c true.
  918. void ScalarExprEmitter::EmitBinOpCheck(
  919. ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
  920. assert(CGF.IsSanitizerScope);
  921. StringRef CheckName;
  922. SmallVector<llvm::Constant *, 4> StaticData;
  923. SmallVector<llvm::Value *, 2> DynamicData;
  924. BinaryOperatorKind Opcode = Info.Opcode;
  925. if (BinaryOperator::isCompoundAssignmentOp(Opcode))
  926. Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
  927. StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
  928. const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
  929. if (UO && UO->getOpcode() == UO_Minus) {
  930. CheckName = "negate_overflow";
  931. StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
  932. DynamicData.push_back(Info.RHS);
  933. } else {
  934. if (BinaryOperator::isShiftOp(Opcode)) {
  935. // Shift LHS negative or too large, or RHS out of bounds.
  936. CheckName = "shift_out_of_bounds";
  937. const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
  938. StaticData.push_back(
  939. CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
  940. StaticData.push_back(
  941. CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
  942. } else if (Opcode == BO_Div || Opcode == BO_Rem) {
  943. // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
  944. CheckName = "divrem_overflow";
  945. StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
  946. } else {
  947. // Arithmetic overflow (+, -, *).
  948. switch (Opcode) {
  949. case BO_Add: CheckName = "add_overflow"; break;
  950. case BO_Sub: CheckName = "sub_overflow"; break;
  951. case BO_Mul: CheckName = "mul_overflow"; break;
  952. default: llvm_unreachable("unexpected opcode for bin op check");
  953. }
  954. StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
  955. }
  956. DynamicData.push_back(Info.LHS);
  957. DynamicData.push_back(Info.RHS);
  958. }
  959. CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
  960. }
  961. //===----------------------------------------------------------------------===//
  962. // Visitor Methods
  963. //===----------------------------------------------------------------------===//
  964. Value *ScalarExprEmitter::VisitExpr(Expr *E) {
  965. CGF.ErrorUnsupported(E, "scalar expression");
  966. if (E->getType()->isVoidType())
  967. return nullptr;
  968. return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
  969. }
  970. Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
  971. // Vector Mask Case
  972. if (E->getNumSubExprs() == 2 ||
  973. (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
  974. Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
  975. Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
  976. Value *Mask;
  977. llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
  978. unsigned LHSElts = LTy->getNumElements();
  979. if (E->getNumSubExprs() == 3) {
  980. Mask = CGF.EmitScalarExpr(E->getExpr(2));
  981. // Shuffle LHS & RHS into one input vector.
  982. SmallVector<llvm::Constant*, 32> concat;
  983. for (unsigned i = 0; i != LHSElts; ++i) {
  984. concat.push_back(Builder.getInt32(2*i));
  985. concat.push_back(Builder.getInt32(2*i+1));
  986. }
  987. Value* CV = llvm::ConstantVector::get(concat);
  988. LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
  989. LHSElts *= 2;
  990. } else {
  991. Mask = RHS;
  992. }
  993. llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
  994. llvm::Constant* EltMask;
  995. EltMask = llvm::ConstantInt::get(MTy->getElementType(),
  996. llvm::NextPowerOf2(LHSElts-1)-1);
  997. // Mask off the high bits of each shuffle index.
  998. Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
  999. EltMask);
  1000. Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
  1001. // newv = undef
  1002. // mask = mask & maskbits
  1003. // for each elt
  1004. // n = extract mask i
  1005. // x = extract val n
  1006. // newv = insert newv, x, i
  1007. llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
  1008. MTy->getNumElements());
  1009. Value* NewV = llvm::UndefValue::get(RTy);
  1010. for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
  1011. Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
  1012. Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
  1013. Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
  1014. NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
  1015. }
  1016. return NewV;
  1017. }
  1018. Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
  1019. Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
  1020. SmallVector<llvm::Constant*, 32> indices;
  1021. for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
  1022. llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
  1023. // Check for -1 and output it as undef in the IR.
  1024. if (Idx.isSigned() && Idx.isAllOnesValue())
  1025. indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
  1026. else
  1027. indices.push_back(Builder.getInt32(Idx.getZExtValue()));
  1028. }
  1029. Value *SV = llvm::ConstantVector::get(indices);
  1030. return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
  1031. }
  1032. Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
  1033. QualType SrcType = E->getSrcExpr()->getType(),
  1034. DstType = E->getType();
  1035. Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
  1036. SrcType = CGF.getContext().getCanonicalType(SrcType);
  1037. DstType = CGF.getContext().getCanonicalType(DstType);
  1038. if (SrcType == DstType) return Src;
  1039. assert(SrcType->isVectorType() &&
  1040. "ConvertVector source type must be a vector");
  1041. assert(DstType->isVectorType() &&
  1042. "ConvertVector destination type must be a vector");
  1043. llvm::Type *SrcTy = Src->getType();
  1044. llvm::Type *DstTy = ConvertType(DstType);
  1045. // Ignore conversions like int -> uint.
  1046. if (SrcTy == DstTy)
  1047. return Src;
  1048. QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
  1049. DstEltType = DstType->getAs<VectorType>()->getElementType();
  1050. assert(SrcTy->isVectorTy() &&
  1051. "ConvertVector source IR type must be a vector");
  1052. assert(DstTy->isVectorTy() &&
  1053. "ConvertVector destination IR type must be a vector");
  1054. llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
  1055. *DstEltTy = DstTy->getVectorElementType();
  1056. if (DstEltType->isBooleanType()) {
  1057. assert((SrcEltTy->isFloatingPointTy() ||
  1058. isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
  1059. llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
  1060. if (SrcEltTy->isFloatingPointTy()) {
  1061. return Builder.CreateFCmpUNE(Src, Zero, "tobool");
  1062. } else {
  1063. return Builder.CreateICmpNE(Src, Zero, "tobool");
  1064. }
  1065. }
  1066. // We have the arithmetic types: real int/float.
  1067. Value *Res = nullptr;
  1068. if (isa<llvm::IntegerType>(SrcEltTy)) {
  1069. bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
  1070. if (isa<llvm::IntegerType>(DstEltTy))
  1071. Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
  1072. else if (InputSigned)
  1073. Res = Builder.CreateSIToFP(Src, DstTy, "conv");
  1074. else
  1075. Res = Builder.CreateUIToFP(Src, DstTy, "conv");
  1076. } else if (isa<llvm::IntegerType>(DstEltTy)) {
  1077. assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
  1078. if (DstEltType->isSignedIntegerOrEnumerationType())
  1079. Res = Builder.CreateFPToSI(Src, DstTy, "conv");
  1080. else
  1081. Res = Builder.CreateFPToUI(Src, DstTy, "conv");
  1082. } else {
  1083. assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
  1084. "Unknown real conversion");
  1085. if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
  1086. Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
  1087. else
  1088. Res = Builder.CreateFPExt(Src, DstTy, "conv");
  1089. }
  1090. return Res;
  1091. }
  1092. Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
  1093. llvm::APSInt Value;
  1094. if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
  1095. if (E->isArrow())
  1096. CGF.EmitScalarExpr(E->getBase());
  1097. else
  1098. EmitLValue(E->getBase());
  1099. return Builder.getInt(Value);
  1100. }
  1101. return EmitLoadOfLValue(E);
  1102. }
  1103. Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
  1104. TestAndClearIgnoreResultAssign();
  1105. // Emit subscript expressions in rvalue context's. For most cases, this just
  1106. // loads the lvalue formed by the subscript expr. However, we have to be
  1107. // careful, because the base of a vector subscript is occasionally an rvalue,
  1108. // so we can't get it as an lvalue.
  1109. if (!E->getBase()->getType()->isVectorType())
  1110. return EmitLoadOfLValue(E);
  1111. // Handle the vector case. The base must be a vector, the index must be an
  1112. // integer value.
  1113. Value *Base = Visit(E->getBase());
  1114. Value *Idx = Visit(E->getIdx());
  1115. QualType IdxTy = E->getIdx()->getType();
  1116. if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
  1117. CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
  1118. return Builder.CreateExtractElement(Base, Idx, "vecext");
  1119. }
  1120. static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
  1121. unsigned Off, llvm::Type *I32Ty) {
  1122. int MV = SVI->getMaskValue(Idx);
  1123. if (MV == -1)
  1124. return llvm::UndefValue::get(I32Ty);
  1125. return llvm::ConstantInt::get(I32Ty, Off+MV);
  1126. }
  1127. static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
  1128. if (C->getBitWidth() != 32) {
  1129. assert(llvm::ConstantInt::isValueValidForType(I32Ty,
  1130. C->getZExtValue()) &&
  1131. "Index operand too large for shufflevector mask!");
  1132. return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
  1133. }
  1134. return C;
  1135. }
  1136. Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
  1137. bool Ignore = TestAndClearIgnoreResultAssign();
  1138. (void)Ignore;
  1139. assert (Ignore == false && "init list ignored");
  1140. unsigned NumInitElements = E->getNumInits();
  1141. if (E->hadArrayRangeDesignator())
  1142. CGF.ErrorUnsupported(E, "GNU array range designator extension");
  1143. llvm::VectorType *VType =
  1144. dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
  1145. if (!VType) {
  1146. // HLSL Change Begins
  1147. if (hlsl::IsHLSLMatType(E->getType())) {
  1148. // init function for matrix
  1149. return CGF.CGM.getHLSLRuntime().EmitHLSLInitListExpr(CGF, E, /*DestPtr*/nullptr);
  1150. }
  1151. // HLSL Change Ends
  1152. if (NumInitElements == 0) {
  1153. // C++11 value-initialization for the scalar.
  1154. return EmitNullValue(E->getType());
  1155. }
  1156. // We have a scalar in braces. Just use the first element.
  1157. return Visit(E->getInit(0));
  1158. }
  1159. else {
  1160. if (hlsl::IsHLSLVecType(E->getType())) {
  1161. return CGF.CGM.getHLSLRuntime().EmitHLSLInitListExpr(CGF, E, /*DestPtr*/nullptr);
  1162. }
  1163. }
  1164. unsigned ResElts = VType->getNumElements();
  1165. // HLSL Note - Matrix swizzle members emit - Consider handling matrix swizzles here
  1166. // Loop over initializers collecting the Value for each, and remembering
  1167. // whether the source was swizzle (ExtVectorElementExpr). This will allow
  1168. // us to fold the shuffle for the swizzle into the shuffle for the vector
  1169. // initializer, since LLVM optimizers generally do not want to touch
  1170. // shuffles.
  1171. unsigned CurIdx = 0;
  1172. bool VIsUndefShuffle = false;
  1173. llvm::Value *V = llvm::UndefValue::get(VType);
  1174. for (unsigned i = 0; i != NumInitElements; ++i) {
  1175. Expr *IE = E->getInit(i);
  1176. Value *Init = Visit(IE);
  1177. SmallVector<llvm::Constant*, 16> Args;
  1178. llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
  1179. // Handle scalar elements. If the scalar initializer is actually one
  1180. // element of a different vector of the same width, use shuffle instead of
  1181. // extract+insert.
  1182. if (!VVT) {
  1183. if (isa<ExtVectorElementExpr>(IE)) {
  1184. llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
  1185. if (EI->getVectorOperandType()->getNumElements() == ResElts) {
  1186. llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
  1187. Value *LHS = nullptr, *RHS = nullptr;
  1188. if (CurIdx == 0) {
  1189. // insert into undef -> shuffle (src, undef)
  1190. // shufflemask must use an i32
  1191. Args.push_back(getAsInt32(C, CGF.Int32Ty));
  1192. Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
  1193. LHS = EI->getVectorOperand();
  1194. RHS = V;
  1195. VIsUndefShuffle = true;
  1196. } else if (VIsUndefShuffle) {
  1197. // insert into undefshuffle && size match -> shuffle (v, src)
  1198. llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
  1199. for (unsigned j = 0; j != CurIdx; ++j)
  1200. Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
  1201. Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
  1202. Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
  1203. LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
  1204. RHS = EI->getVectorOperand();
  1205. VIsUndefShuffle = false;
  1206. }
  1207. if (!Args.empty()) {
  1208. llvm::Constant *Mask = llvm::ConstantVector::get(Args);
  1209. V = Builder.CreateShuffleVector(LHS, RHS, Mask);
  1210. ++CurIdx;
  1211. continue;
  1212. }
  1213. }
  1214. }
  1215. V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
  1216. "vecinit");
  1217. VIsUndefShuffle = false;
  1218. ++CurIdx;
  1219. continue;
  1220. }
  1221. unsigned InitElts = VVT->getNumElements();
  1222. // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
  1223. // input is the same width as the vector being constructed, generate an
  1224. // optimized shuffle of the swizzle input into the result.
  1225. unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
  1226. if (isa<ExtVectorElementExpr>(IE)) {
  1227. llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
  1228. Value *SVOp = SVI->getOperand(0);
  1229. llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
  1230. if (OpTy->getNumElements() == ResElts) {
  1231. for (unsigned j = 0; j != CurIdx; ++j) {
  1232. // If the current vector initializer is a shuffle with undef, merge
  1233. // this shuffle directly into it.
  1234. if (VIsUndefShuffle) {
  1235. Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
  1236. CGF.Int32Ty));
  1237. } else {
  1238. Args.push_back(Builder.getInt32(j));
  1239. }
  1240. }
  1241. for (unsigned j = 0, je = InitElts; j != je; ++j)
  1242. Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
  1243. Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
  1244. if (VIsUndefShuffle)
  1245. V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
  1246. Init = SVOp;
  1247. }
  1248. }
  1249. // Extend init to result vector length, and then shuffle its contribution
  1250. // to the vector initializer into V.
  1251. if (Args.empty()) {
  1252. for (unsigned j = 0; j != InitElts; ++j)
  1253. Args.push_back(Builder.getInt32(j));
  1254. Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
  1255. llvm::Constant *Mask = llvm::ConstantVector::get(Args);
  1256. Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
  1257. Mask, "vext");
  1258. Args.clear();
  1259. for (unsigned j = 0; j != CurIdx; ++j)
  1260. Args.push_back(Builder.getInt32(j));
  1261. for (unsigned j = 0; j != InitElts; ++j)
  1262. Args.push_back(Builder.getInt32(j+Offset));
  1263. Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
  1264. }
  1265. // If V is undef, make sure it ends up on the RHS of the shuffle to aid
  1266. // merging subsequent shuffles into this one.
  1267. if (CurIdx == 0)
  1268. std::swap(V, Init);
  1269. llvm::Constant *Mask = llvm::ConstantVector::get(Args);
  1270. V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
  1271. VIsUndefShuffle = isa<llvm::UndefValue>(Init);
  1272. CurIdx += InitElts;
  1273. }
  1274. // FIXME: evaluate codegen vs. shuffling against constant null vector.
  1275. // Emit remaining default initializers.
  1276. llvm::Type *EltTy = VType->getElementType();
  1277. // Emit remaining default initializers
  1278. for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
  1279. Value *Idx = Builder.getInt32(CurIdx);
  1280. llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
  1281. V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
  1282. }
  1283. return V;
  1284. }
  1285. static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
  1286. const Expr *E = CE->getSubExpr();
  1287. if (CE->getCastKind() == CK_UncheckedDerivedToBase)
  1288. return false;
  1289. if (isa<CXXThisExpr>(E)) {
  1290. // We always assume that 'this' is never null.
  1291. return false;
  1292. }
  1293. if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
  1294. // And that glvalue casts are never null.
  1295. if (ICE->getValueKind() != VK_RValue)
  1296. return false;
  1297. }
  1298. return true;
  1299. }
  1300. // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
  1301. // have to handle a more broad range of conversions than explicit casts, as they
  1302. // handle things like function to ptr-to-function decay etc.
  1303. Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
  1304. Expr *E = CE->getSubExpr();
  1305. QualType DestTy = CE->getType();
  1306. CastKind Kind = CE->getCastKind();
  1307. // HLSL Change Begins
  1308. if ((hlsl::IsHLSLMatType(E->getType()) || hlsl::IsHLSLMatType(CE->getType()))
  1309. && Kind != CastKind::CK_FlatConversion) {
  1310. llvm::Value *V = CGF.EmitScalarExpr(E);
  1311. llvm::Type *RetTy = CGF.ConvertType(DestTy);
  1312. if (V->getType() == RetTy)
  1313. return V;
  1314. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(CGF, CE, RetTy, { V });
  1315. }
  1316. // HLSL Change Ends
  1317. if (!DestTy->isVoidType())
  1318. TestAndClearIgnoreResultAssign();
  1319. // Since almost all cast kinds apply to scalars, this switch doesn't have
  1320. // a default case, so the compiler will warn on a missing case. The cases
  1321. // are in the same order as in the CastKind enum.
  1322. switch (Kind) {
  1323. case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
  1324. case CK_BuiltinFnToFnPtr:
  1325. llvm_unreachable("builtin functions are handled elsewhere");
  1326. case CK_LValueBitCast:
  1327. case CK_ObjCObjectLValueCast: {
  1328. Value *V = EmitLValue(E).getAddress();
  1329. V = Builder.CreateBitCast(V,
  1330. ConvertType(CGF.getContext().getPointerType(DestTy)));
  1331. return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy),
  1332. CE->getExprLoc());
  1333. }
  1334. case CK_CPointerToObjCPointerCast:
  1335. case CK_BlockPointerToObjCPointerCast:
  1336. case CK_AnyPointerToBlockPointerCast:
  1337. case CK_BitCast: {
  1338. Value *Src = Visit(const_cast<Expr*>(E));
  1339. llvm::Type *SrcTy = Src->getType();
  1340. llvm::Type *DstTy = ConvertType(DestTy);
  1341. if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
  1342. SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
  1343. llvm_unreachable("wrong cast for pointers in different address spaces"
  1344. "(must be an address space cast)!");
  1345. }
  1346. if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
  1347. if (auto PT = DestTy->getAs<PointerType>())
  1348. CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
  1349. /*MayBeNull=*/true,
  1350. CodeGenFunction::CFITCK_UnrelatedCast,
  1351. CE->getLocStart());
  1352. }
  1353. return Builder.CreateBitCast(Src, DstTy);
  1354. }
  1355. case CK_AddressSpaceConversion: {
  1356. Value *Src = Visit(const_cast<Expr*>(E));
  1357. return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
  1358. }
  1359. case CK_AtomicToNonAtomic:
  1360. case CK_NonAtomicToAtomic:
  1361. case CK_NoOp:
  1362. case CK_UserDefinedConversion:
  1363. return Visit(const_cast<Expr*>(E));
  1364. case CK_BaseToDerived: {
  1365. const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
  1366. assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
  1367. llvm::Value *V = Visit(E);
  1368. llvm::Value *Derived =
  1369. CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
  1370. CE->path_begin(), CE->path_end(),
  1371. ShouldNullCheckClassCastValue(CE));
  1372. // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
  1373. // performed and the object is not of the derived type.
  1374. if (CGF.sanitizePerformTypeCheck())
  1375. CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
  1376. Derived, DestTy->getPointeeType());
  1377. if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
  1378. CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
  1379. /*MayBeNull=*/true,
  1380. CodeGenFunction::CFITCK_DerivedCast,
  1381. CE->getLocStart());
  1382. return Derived;
  1383. }
  1384. case CK_UncheckedDerivedToBase:
  1385. case CK_DerivedToBase: {
  1386. const CXXRecordDecl *DerivedClassDecl =
  1387. E->getType()->getPointeeCXXRecordDecl();
  1388. assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
  1389. return CGF.GetAddressOfBaseClass(
  1390. Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(),
  1391. ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
  1392. }
  1393. case CK_Dynamic: {
  1394. Value *V = Visit(const_cast<Expr*>(E));
  1395. const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
  1396. return CGF.EmitDynamicCast(V, DCE);
  1397. }
  1398. case CK_ArrayToPointerDecay: {
  1399. assert(E->getType()->isArrayType() &&
  1400. "Array to pointer decay must have array source type!");
  1401. Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
  1402. // Note that VLA pointers are always decayed, so we don't need to do
  1403. // anything here.
  1404. if (!E->getType()->isVariableArrayType()) {
  1405. assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
  1406. llvm::Type *NewTy = ConvertType(E->getType());
  1407. V = CGF.Builder.CreatePointerCast(
  1408. V, NewTy->getPointerTo(V->getType()->getPointerAddressSpace()));
  1409. assert(isa<llvm::ArrayType>(V->getType()->getPointerElementType()) &&
  1410. "Expected pointer to array");
  1411. V = Builder.CreateStructGEP(NewTy, V, 0, "arraydecay");
  1412. }
  1413. // Make sure the array decay ends up being the right type. This matters if
  1414. // the array type was of an incomplete type.
  1415. return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType()));
  1416. }
  1417. case CK_FunctionToPointerDecay:
  1418. return EmitLValue(E).getAddress();
  1419. case CK_NullToPointer:
  1420. if (MustVisitNullValue(E))
  1421. (void) Visit(E);
  1422. return llvm::ConstantPointerNull::get(
  1423. cast<llvm::PointerType>(ConvertType(DestTy)));
  1424. case CK_NullToMemberPointer: {
  1425. if (MustVisitNullValue(E))
  1426. (void) Visit(E);
  1427. const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
  1428. return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
  1429. }
  1430. case CK_ReinterpretMemberPointer:
  1431. case CK_BaseToDerivedMemberPointer:
  1432. case CK_DerivedToBaseMemberPointer: {
  1433. Value *Src = Visit(E);
  1434. // Note that the AST doesn't distinguish between checked and
  1435. // unchecked member pointer conversions, so we always have to
  1436. // implement checked conversions here. This is inefficient when
  1437. // actual control flow may be required in order to perform the
  1438. // check, which it is for data member pointers (but not member
  1439. // function pointers on Itanium and ARM).
  1440. return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
  1441. }
  1442. case CK_ARCProduceObject:
  1443. return CGF.EmitARCRetainScalarExpr(E);
  1444. case CK_ARCConsumeObject:
  1445. return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
  1446. case CK_ARCReclaimReturnedObject: {
  1447. llvm::Value *value = Visit(E);
  1448. value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
  1449. return CGF.EmitObjCConsumeObject(E->getType(), value);
  1450. }
  1451. case CK_ARCExtendBlockObject:
  1452. return CGF.EmitARCExtendBlockObject(E);
  1453. case CK_CopyAndAutoreleaseBlockObject:
  1454. return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
  1455. case CK_FloatingRealToComplex:
  1456. case CK_FloatingComplexCast:
  1457. case CK_IntegralRealToComplex:
  1458. case CK_IntegralComplexCast:
  1459. case CK_IntegralComplexToFloatingComplex:
  1460. case CK_FloatingComplexToIntegralComplex:
  1461. case CK_ConstructorConversion:
  1462. case CK_ToUnion:
  1463. llvm_unreachable("scalar cast to non-scalar value");
  1464. case CK_LValueToRValue:
  1465. assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
  1466. assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
  1467. return Visit(const_cast<Expr*>(E));
  1468. case CK_IntegralToPointer: {
  1469. Value *Src = Visit(const_cast<Expr*>(E));
  1470. // First, convert to the correct width so that we control the kind of
  1471. // extension.
  1472. llvm::Type *MiddleTy = CGF.IntPtrTy;
  1473. bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
  1474. llvm::Value* IntResult =
  1475. Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
  1476. return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
  1477. }
  1478. case CK_PointerToIntegral:
  1479. assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
  1480. return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
  1481. case CK_ToVoid: {
  1482. CGF.EmitIgnoredExpr(E);
  1483. return nullptr;
  1484. }
  1485. case CK_VectorSplat: {
  1486. llvm::Type *DstTy = ConvertType(DestTy);
  1487. Value *Elt = Visit(const_cast<Expr*>(E));
  1488. Elt = EmitScalarConversion(Elt, E->getType(),
  1489. DestTy->getAs<VectorType>()->getElementType());
  1490. // Splat the element across to all elements
  1491. unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
  1492. return Builder.CreateVectorSplat(NumElements, Elt, "splat");
  1493. }
  1494. case CK_IntegralCast:
  1495. case CK_IntegralToFloating:
  1496. case CK_FloatingToIntegral:
  1497. case CK_FloatingCast:
  1498. return EmitScalarConversion(Visit(E), E->getType(), DestTy);
  1499. case CK_IntegralToBoolean:
  1500. return EmitIntToBoolConversion(Visit(E));
  1501. case CK_PointerToBoolean:
  1502. return EmitPointerToBoolConversion(Visit(E));
  1503. case CK_FloatingToBoolean:
  1504. return EmitFloatToBoolConversion(Visit(E));
  1505. case CK_MemberPointerToBoolean: {
  1506. llvm::Value *MemPtr = Visit(E);
  1507. const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
  1508. return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
  1509. }
  1510. case CK_FloatingComplexToReal:
  1511. case CK_IntegralComplexToReal:
  1512. return CGF.EmitComplexExpr(E, false, true).first;
  1513. case CK_FloatingComplexToBoolean:
  1514. case CK_IntegralComplexToBoolean: {
  1515. CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
  1516. // TODO: kill this function off, inline appropriate case here
  1517. return EmitComplexToScalarConversion(V, E->getType(), DestTy);
  1518. }
  1519. case CK_ZeroToOCLEvent: {
  1520. assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
  1521. return llvm::Constant::getNullValue(ConvertType(DestTy));
  1522. }
  1523. // HLSL Change Starts
  1524. case CK_HLSLMatrixTruncationCast:
  1525. case CK_HLSLVectorTruncationCast: {
  1526. // must be vector
  1527. llvm::Value *val = Visit(E);
  1528. if (const ExtVectorType *extVecTy =
  1529. hlsl::ConvertHLSLVecMatTypeToExtVectorType(CGF.getContext(),
  1530. CE->getType())) {
  1531. uint32_t vecSize = extVecTy->getNumElements();
  1532. SmallVector<llvm::Constant *, 4> Mask;
  1533. for (unsigned i = 0; i != vecSize; ++i)
  1534. Mask.push_back(Builder.getInt32(i));
  1535. llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
  1536. return Builder.CreateShuffleVector(
  1537. val, llvm::UndefValue::get(val->getType()), MaskV);
  1538. } else if (E->getType()->isScalarType()) {
  1539. return Builder.CreateExtractElement(val, (uint64_t)0);
  1540. }
  1541. }
  1542. case CK_HLSLCC_FloatingToIntegral:
  1543. case CK_HLSLCC_FloatingCast: {
  1544. return EmitScalarConversion(Visit(E), E->getType(), DestTy);
  1545. }
  1546. case CK_HLSLVectorToMatrixCast:
  1547. case CK_HLSLMatrixToVectorCast: {
  1548. llvm::Value *val = Visit(E);
  1549. llvm::Type *RetTy = CGF.ConvertType(DestTy);
  1550. val = CGF.CGM.getHLSLRuntime().EmitHLSLMatrixLoad(CGF, val, E->getType());
  1551. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(CGF, CE, RetTy, { val });
  1552. }
  1553. case CK_HLSLCC_IntegralCast:
  1554. case CK_HLSLCC_IntegralToFloating: {
  1555. return EmitScalarConversion(Visit(E), E->getType(), DestTy);
  1556. }
  1557. case CK_HLSLMatrixSplat: {
  1558. llvm::Type *DstTy = ConvertType(DestTy);
  1559. Value *Elt = Visit(const_cast<Expr *>(E));
  1560. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(CGF, CE, DstTy, { Elt });
  1561. }
  1562. case CK_HLSLVectorSplat: {
  1563. llvm::Type *DstTy = ConvertType(DestTy);
  1564. Value *Elt = Visit(const_cast<Expr *>(E));
  1565. const ExtVectorType *extVecTy = hlsl::ConvertHLSLVecMatTypeToExtVectorType(
  1566. CGF.getContext(), CE->getType());
  1567. Elt = EmitScalarConversion(Elt, E->getType(), extVecTy->getElementType());
  1568. // Splat the element across to all elements
  1569. unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
  1570. return Builder.CreateVectorSplat(NumElements, Elt, "splat");
  1571. }
  1572. case CK_HLSLVectorToScalarCast:
  1573. case CK_HLSLMatrixToScalarCast: {
  1574. return Builder.CreateExtractElement(Visit(E), (uint64_t)0);
  1575. }
  1576. case CK_FlatConversion: {
  1577. llvm::Value *Src = Visit(E);
  1578. // We should have an aggregate type (struct or array) on one side,
  1579. // and a numeric type (scalar, vector or matrix) on the other.
  1580. // If the aggregate type is the cast source, it should be a pointer.
  1581. // Aggregate to aggregate casts are handled in CGExprAgg.cpp
  1582. auto areCompoundAndNumeric = [this](QualType lhs, QualType rhs) {
  1583. return hlsl::IsHLSLAggregateType(lhs)
  1584. && (rhs->isBuiltinType() || hlsl::IsHLSLVecMatType(rhs));
  1585. };
  1586. assert(Src->getType()->isPointerTy()
  1587. ? areCompoundAndNumeric(E->getType(), DestTy)
  1588. : areCompoundAndNumeric(DestTy, E->getType()));
  1589. (void)areCompoundAndNumeric;
  1590. llvm::Value *DstPtr = CGF.CreateMemTemp(DestTy, "flatconv");
  1591. CGF.CGM.getHLSLRuntime().EmitHLSLFlatConversion(
  1592. CGF, Src, DstPtr, DestTy, E->getType());
  1593. // Return an rvalue
  1594. // Matrices must be loaded with the special function
  1595. if (hlsl::IsHLSLMatType(DestTy))
  1596. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixLoad(CGF, DstPtr, DestTy);
  1597. // Structs/arrays are pointers to temporaries
  1598. if (hlsl::IsHLSLAggregateType(DestTy))
  1599. return DstPtr;
  1600. // Scalars/vectors are loaded regularly
  1601. llvm::Value *Result = Builder.CreateLoad(DstPtr);
  1602. return Result = CGF.EmitFromMemory(Result, DestTy);
  1603. }
  1604. case CK_HLSLCC_IntegralToBoolean:
  1605. return EmitIntToBoolConversion(Visit(E));
  1606. case CK_HLSLCC_FloatingToBoolean:
  1607. return EmitFloatToBoolConversion(Visit(E));
  1608. // HLSL Change Ends
  1609. }
  1610. llvm_unreachable("unknown scalar cast");
  1611. }
  1612. Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
  1613. CodeGenFunction::StmtExprEvaluation eval(CGF);
  1614. llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
  1615. !E->getType()->isVoidType());
  1616. if (!RetAlloca)
  1617. return nullptr;
  1618. return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
  1619. E->getExprLoc());
  1620. }
  1621. //===----------------------------------------------------------------------===//
  1622. // Unary Operators
  1623. //===----------------------------------------------------------------------===//
  1624. static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
  1625. llvm::Value *InVal, bool IsInc) {
  1626. BinOpInfo BinOp;
  1627. BinOp.LHS = InVal;
  1628. BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
  1629. BinOp.Ty = E->getType();
  1630. BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
  1631. BinOp.FPContractable = false;
  1632. BinOp.E = E;
  1633. return BinOp;
  1634. }
  1635. llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
  1636. const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
  1637. llvm::Value *Amount =
  1638. llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
  1639. StringRef Name = IsInc ? "inc" : "dec";
  1640. switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
  1641. case LangOptions::SOB_Defined:
  1642. return Builder.CreateAdd(InVal, Amount, Name);
  1643. case LangOptions::SOB_Undefined:
  1644. if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
  1645. return Builder.CreateNSWAdd(InVal, Amount, Name);
  1646. // Fall through.
  1647. case LangOptions::SOB_Trapping:
  1648. return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
  1649. }
  1650. llvm_unreachable("Unknown SignedOverflowBehaviorTy");
  1651. }
  1652. llvm::Value *
  1653. ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
  1654. bool isInc, bool isPre) {
  1655. QualType type = E->getSubExpr()->getType();
  1656. llvm::PHINode *atomicPHI = nullptr;
  1657. llvm::Value *value;
  1658. llvm::Value *input;
  1659. int amount = (isInc ? 1 : -1);
  1660. if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
  1661. type = atomicTy->getValueType();
  1662. if (isInc && type->isBooleanType()) {
  1663. llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
  1664. if (isPre) {
  1665. Builder.Insert(new llvm::StoreInst(True,
  1666. LV.getAddress(), LV.isVolatileQualified(),
  1667. LV.getAlignment().getQuantity(),
  1668. llvm::SequentiallyConsistent));
  1669. return Builder.getTrue();
  1670. }
  1671. // For atomic bool increment, we just store true and return it for
  1672. // preincrement, do an atomic swap with true for postincrement
  1673. return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
  1674. LV.getAddress(), True, llvm::SequentiallyConsistent);
  1675. }
  1676. // Special case for atomic increment / decrement on integers, emit
  1677. // atomicrmw instructions. We skip this if we want to be doing overflow
  1678. // checking, and fall into the slow path with the atomic cmpxchg loop.
  1679. if (!type->isBooleanType() && type->isIntegerType() &&
  1680. !(type->isUnsignedIntegerType() &&
  1681. CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
  1682. CGF.getLangOpts().getSignedOverflowBehavior() !=
  1683. LangOptions::SOB_Trapping) {
  1684. llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
  1685. llvm::AtomicRMWInst::Sub;
  1686. llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
  1687. llvm::Instruction::Sub;
  1688. llvm::Value *amt = CGF.EmitToMemory(
  1689. llvm::ConstantInt::get(ConvertType(type), 1, true), type);
  1690. llvm::Value *old = Builder.CreateAtomicRMW(aop,
  1691. LV.getAddress(), amt, llvm::SequentiallyConsistent);
  1692. return isPre ? Builder.CreateBinOp(op, old, amt) : old;
  1693. }
  1694. value = EmitLoadOfLValue(LV, E->getExprLoc());
  1695. input = value;
  1696. // For every other atomic operation, we need to emit a load-op-cmpxchg loop
  1697. llvm::BasicBlock *startBB = Builder.GetInsertBlock();
  1698. llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
  1699. value = CGF.EmitToMemory(value, type);
  1700. Builder.CreateBr(opBB);
  1701. Builder.SetInsertPoint(opBB);
  1702. atomicPHI = Builder.CreatePHI(value->getType(), 2);
  1703. atomicPHI->addIncoming(value, startBB);
  1704. value = atomicPHI;
  1705. } else {
  1706. value = EmitLoadOfLValue(LV, E->getExprLoc());
  1707. input = value;
  1708. }
  1709. // Special case of integer increment that we have to check first: bool++.
  1710. // Due to promotion rules, we get:
  1711. // bool++ -> bool = bool + 1
  1712. // -> bool = (int)bool + 1
  1713. // -> bool = ((int)bool + 1 != 0)
  1714. // An interesting aspect of this is that increment is always true.
  1715. // Decrement does not have this property.
  1716. if (isInc && type->isBooleanType()) {
  1717. value = Builder.getTrue();
  1718. // Most common case by far: integer increment.
  1719. } else if (type->isIntegerType()) {
  1720. // Note that signed integer inc/dec with width less than int can't
  1721. // overflow because of promotion rules; we're just eliding a few steps here.
  1722. bool CanOverflow = value->getType()->getIntegerBitWidth() >=
  1723. CGF.IntTy->getIntegerBitWidth();
  1724. if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
  1725. value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
  1726. } else if (CanOverflow && type->isUnsignedIntegerType() &&
  1727. CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
  1728. value =
  1729. EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
  1730. } else {
  1731. llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
  1732. value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
  1733. }
  1734. // Next most common: pointer increment.
  1735. } else if (const PointerType *ptr = type->getAs<PointerType>()) {
  1736. QualType type = ptr->getPointeeType();
  1737. // VLA types don't have constant size.
  1738. if (const VariableArrayType *vla
  1739. = CGF.getContext().getAsVariableArrayType(type)) {
  1740. llvm::Value *numElts = CGF.getVLASize(vla).first;
  1741. if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
  1742. if (CGF.getLangOpts().isSignedOverflowDefined())
  1743. value = Builder.CreateGEP(value, numElts, "vla.inc");
  1744. else
  1745. value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
  1746. // Arithmetic on function pointers (!) is just +-1.
  1747. } else if (type->isFunctionType()) {
  1748. llvm::Value *amt = Builder.getInt32(amount);
  1749. value = CGF.EmitCastToVoidPtr(value);
  1750. if (CGF.getLangOpts().isSignedOverflowDefined())
  1751. value = Builder.CreateGEP(value, amt, "incdec.funcptr");
  1752. else
  1753. value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
  1754. value = Builder.CreateBitCast(value, input->getType());
  1755. // For everything else, we can just do a simple increment.
  1756. } else {
  1757. llvm::Value *amt = Builder.getInt32(amount);
  1758. if (CGF.getLangOpts().isSignedOverflowDefined())
  1759. value = Builder.CreateGEP(value, amt, "incdec.ptr");
  1760. else
  1761. value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
  1762. }
  1763. // Vector increment/decrement.
  1764. } else if (type->isVectorType() ||
  1765. hlsl::IsHLSLVecType(type)) { // HLSL Change
  1766. if (type->hasIntegerRepresentation()) {
  1767. llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
  1768. value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
  1769. } else {
  1770. value = Builder.CreateFAdd(
  1771. value,
  1772. llvm::ConstantFP::get(value->getType(), amount),
  1773. isInc ? "inc" : "dec");
  1774. }
  1775. // HLSL Change Begins
  1776. // HLSL matrix
  1777. } else if (hlsl::IsHLSLMatType(type)) {
  1778. // generate operator call
  1779. value = CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
  1780. CGF, E, value->getType(), {value});
  1781. // store updated value
  1782. CGF.CGM.getHLSLRuntime().EmitHLSLMatrixStore(CGF, value, LV.getAddress(), E->getType());
  1783. // If this is a postinc, return the value read from memory, otherwise use
  1784. // the
  1785. // updated value.
  1786. return isPre ? value : input;
  1787. // HLSL Change Ends
  1788. // Floating point.
  1789. } else if (type->isRealFloatingType()) {
  1790. // Add the inc/dec to the real part.
  1791. llvm::Value *amt;
  1792. if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
  1793. // Another special case: half FP increment should be done via float
  1794. if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
  1795. value = Builder.CreateCall(
  1796. CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
  1797. CGF.CGM.FloatTy),
  1798. input, "incdec.conv");
  1799. } else {
  1800. value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
  1801. }
  1802. }
  1803. if (value->getType()->isFloatTy())
  1804. amt = llvm::ConstantFP::get(VMContext,
  1805. llvm::APFloat(static_cast<float>(amount)));
  1806. else if (value->getType()->isDoubleTy())
  1807. amt = llvm::ConstantFP::get(VMContext,
  1808. llvm::APFloat(static_cast<double>(amount)));
  1809. else {
  1810. // Remaining types are either Half or LongDouble. Convert from float.
  1811. llvm::APFloat F(static_cast<float>(amount));
  1812. bool ignored;
  1813. // Don't use getFloatTypeSemantics because Half isn't
  1814. // necessarily represented using the "half" LLVM type.
  1815. F.convert(value->getType()->isHalfTy()
  1816. ? CGF.getTarget().getHalfFormat()
  1817. : CGF.getTarget().getLongDoubleFormat(),
  1818. llvm::APFloat::rmTowardZero, &ignored);
  1819. amt = llvm::ConstantFP::get(VMContext, F);
  1820. }
  1821. value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
  1822. if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
  1823. if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
  1824. value = Builder.CreateCall(
  1825. CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
  1826. CGF.CGM.FloatTy),
  1827. value, "incdec.conv");
  1828. } else {
  1829. value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
  1830. }
  1831. }
  1832. // Objective-C pointer types.
  1833. } else {
  1834. const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
  1835. value = CGF.EmitCastToVoidPtr(value);
  1836. CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
  1837. if (!isInc) size = -size;
  1838. llvm::Value *sizeValue =
  1839. llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
  1840. if (CGF.getLangOpts().isSignedOverflowDefined())
  1841. value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
  1842. else
  1843. value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
  1844. value = Builder.CreateBitCast(value, input->getType());
  1845. }
  1846. if (atomicPHI) {
  1847. llvm::BasicBlock *opBB = Builder.GetInsertBlock();
  1848. llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
  1849. auto Pair = CGF.EmitAtomicCompareExchange(
  1850. LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
  1851. llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
  1852. llvm::Value *success = Pair.second;
  1853. atomicPHI->addIncoming(old, opBB);
  1854. Builder.CreateCondBr(success, contBB, opBB);
  1855. Builder.SetInsertPoint(contBB);
  1856. return isPre ? value : input;
  1857. }
  1858. // Store the updated result through the lvalue.
  1859. if (LV.isBitField())
  1860. CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
  1861. else
  1862. CGF.EmitStoreThroughLValue(RValue::get(value), LV);
  1863. // If this is a postinc, return the value read from memory, otherwise use the
  1864. // updated value.
  1865. return isPre ? value : input;
  1866. }
  1867. Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
  1868. TestAndClearIgnoreResultAssign();
  1869. // Emit unary minus with EmitSub so we handle overflow cases etc.
  1870. BinOpInfo BinOp;
  1871. BinOp.RHS = Visit(E->getSubExpr());
  1872. if (BinOp.RHS->getType()->isFPOrFPVectorTy())
  1873. BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
  1874. else
  1875. BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
  1876. BinOp.Ty = E->getType();
  1877. BinOp.Opcode = BO_Sub;
  1878. BinOp.FPContractable = false;
  1879. BinOp.E = E;
  1880. return EmitSub(BinOp);
  1881. }
  1882. Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
  1883. TestAndClearIgnoreResultAssign();
  1884. Value *Op = Visit(E->getSubExpr());
  1885. return Builder.CreateNot(Op, "neg");
  1886. }
  1887. Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
  1888. // Perform vector logical not on comparison with zero vector.
  1889. if (E->getType()->isExtVectorType() ||
  1890. hlsl::IsHLSLVecType(E->getType())) { // HLSL Change
  1891. Value *Oper = Visit(E->getSubExpr());
  1892. Value *Zero = llvm::Constant::getNullValue(Oper->getType());
  1893. Value *Result;
  1894. if (Oper->getType()->isFPOrFPVectorTy())
  1895. Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
  1896. else
  1897. Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
  1898. return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
  1899. }
  1900. // Compare operand to zero.
  1901. Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
  1902. // Invert value.
  1903. // TODO: Could dynamically modify easy computations here. For example, if
  1904. // the operand is an icmp ne, turn into icmp eq.
  1905. BoolVal = Builder.CreateNot(BoolVal, "lnot");
  1906. // ZExt result to the expr type.
  1907. return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
  1908. }
  1909. Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
  1910. // Try folding the offsetof to a constant.
  1911. llvm::APSInt Value;
  1912. if (E->EvaluateAsInt(Value, CGF.getContext()))
  1913. return Builder.getInt(Value);
  1914. // Loop over the components of the offsetof to compute the value.
  1915. unsigned n = E->getNumComponents();
  1916. llvm::Type* ResultType = ConvertType(E->getType());
  1917. llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
  1918. QualType CurrentType = E->getTypeSourceInfo()->getType();
  1919. for (unsigned i = 0; i != n; ++i) {
  1920. OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
  1921. llvm::Value *Offset = nullptr;
  1922. switch (ON.getKind()) {
  1923. case OffsetOfExpr::OffsetOfNode::Array: {
  1924. // Compute the index
  1925. Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
  1926. llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
  1927. bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
  1928. Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
  1929. // Save the element type
  1930. CurrentType =
  1931. CGF.getContext().getAsArrayType(CurrentType)->getElementType();
  1932. // Compute the element size
  1933. llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
  1934. CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
  1935. // Multiply out to compute the result
  1936. Offset = Builder.CreateMul(Idx, ElemSize);
  1937. break;
  1938. }
  1939. case OffsetOfExpr::OffsetOfNode::Field: {
  1940. FieldDecl *MemberDecl = ON.getField();
  1941. RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
  1942. const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
  1943. // Compute the index of the field in its parent.
  1944. unsigned i = 0;
  1945. // FIXME: It would be nice if we didn't have to loop here!
  1946. for (RecordDecl::field_iterator Field = RD->field_begin(),
  1947. FieldEnd = RD->field_end();
  1948. Field != FieldEnd; ++Field, ++i) {
  1949. if (*Field == MemberDecl)
  1950. break;
  1951. }
  1952. assert(i < RL.getFieldCount() && "offsetof field in wrong type");
  1953. // Compute the offset to the field
  1954. int64_t OffsetInt = RL.getFieldOffset(i) /
  1955. CGF.getContext().getCharWidth();
  1956. Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
  1957. // Save the element type.
  1958. CurrentType = MemberDecl->getType();
  1959. break;
  1960. }
  1961. case OffsetOfExpr::OffsetOfNode::Identifier:
  1962. llvm_unreachable("dependent __builtin_offsetof");
  1963. case OffsetOfExpr::OffsetOfNode::Base: {
  1964. if (ON.getBase()->isVirtual()) {
  1965. CGF.ErrorUnsupported(E, "virtual base in offsetof");
  1966. continue;
  1967. }
  1968. RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
  1969. const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
  1970. // Save the element type.
  1971. CurrentType = ON.getBase()->getType();
  1972. // Compute the offset to the base.
  1973. const RecordType *BaseRT = CurrentType->getAs<RecordType>();
  1974. CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
  1975. CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
  1976. Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
  1977. break;
  1978. }
  1979. }
  1980. Result = Builder.CreateAdd(Result, Offset);
  1981. }
  1982. return Result;
  1983. }
  1984. /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
  1985. /// argument of the sizeof expression as an integer.
  1986. Value *
  1987. ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
  1988. const UnaryExprOrTypeTraitExpr *E) {
  1989. QualType TypeToSize = E->getTypeOfArgument();
  1990. if (E->getKind() == UETT_SizeOf) {
  1991. if (const VariableArrayType *VAT =
  1992. CGF.getContext().getAsVariableArrayType(TypeToSize)) {
  1993. if (E->isArgumentType()) {
  1994. // sizeof(type) - make sure to emit the VLA size.
  1995. CGF.EmitVariablyModifiedType(TypeToSize);
  1996. } else {
  1997. // C99 6.5.3.4p2: If the argument is an expression of type
  1998. // VLA, it is evaluated.
  1999. CGF.EmitIgnoredExpr(E->getArgumentExpr());
  2000. }
  2001. QualType eltType;
  2002. llvm::Value *numElts;
  2003. std::tie(numElts, eltType) = CGF.getVLASize(VAT);
  2004. llvm::Value *size = numElts;
  2005. // Scale the number of non-VLA elements by the non-VLA element size.
  2006. CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
  2007. if (!eltSize.isOne())
  2008. size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
  2009. return size;
  2010. }
  2011. } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
  2012. auto Alignment =
  2013. CGF.getContext()
  2014. .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
  2015. E->getTypeOfArgument()->getPointeeType()))
  2016. .getQuantity();
  2017. return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
  2018. }
  2019. // If this isn't sizeof(vla), the result must be constant; use the constant
  2020. // folding logic so we don't have to duplicate it here.
  2021. return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
  2022. }
  2023. Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
  2024. Expr *Op = E->getSubExpr();
  2025. if (Op->getType()->isAnyComplexType()) {
  2026. // If it's an l-value, load through the appropriate subobject l-value.
  2027. // Note that we have to ask E because Op might be an l-value that
  2028. // this won't work for, e.g. an Obj-C property.
  2029. if (E->isGLValue())
  2030. return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
  2031. E->getExprLoc()).getScalarVal();
  2032. // Otherwise, calculate and project.
  2033. return CGF.EmitComplexExpr(Op, false, true).first;
  2034. }
  2035. return Visit(Op);
  2036. }
  2037. Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
  2038. Expr *Op = E->getSubExpr();
  2039. if (Op->getType()->isAnyComplexType()) {
  2040. // If it's an l-value, load through the appropriate subobject l-value.
  2041. // Note that we have to ask E because Op might be an l-value that
  2042. // this won't work for, e.g. an Obj-C property.
  2043. if (Op->isGLValue())
  2044. return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
  2045. E->getExprLoc()).getScalarVal();
  2046. // Otherwise, calculate and project.
  2047. return CGF.EmitComplexExpr(Op, true, false).second;
  2048. }
  2049. // __imag on a scalar returns zero. Emit the subexpr to ensure side
  2050. // effects are evaluated, but not the actual value.
  2051. if (Op->isGLValue())
  2052. CGF.EmitLValue(Op);
  2053. else
  2054. CGF.EmitScalarExpr(Op, true);
  2055. return llvm::Constant::getNullValue(ConvertType(E->getType()));
  2056. }
  2057. //===----------------------------------------------------------------------===//
  2058. // Binary Operators
  2059. //===----------------------------------------------------------------------===//
  2060. BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
  2061. TestAndClearIgnoreResultAssign();
  2062. BinOpInfo Result;
  2063. Result.LHS = Visit(E->getLHS());
  2064. Result.RHS = Visit(E->getRHS());
  2065. Result.Ty = E->getType();
  2066. Result.Opcode = E->getOpcode();
  2067. Result.FPContractable = E->isFPContractable();
  2068. Result.E = E;
  2069. return Result;
  2070. }
  2071. LValue ScalarExprEmitter::EmitCompoundAssignLValue(
  2072. const CompoundAssignOperator *E,
  2073. Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
  2074. Value *&Result) {
  2075. // HLSL Change Begins
  2076. if (hlsl::IsHLSLMatType(E->getType())) {
  2077. const Expr *LHS = E->getLHS();
  2078. const Expr *RHS = E->getRHS();
  2079. LValue L = CGF.EmitLValue(LHS);
  2080. Value *LVal = L.getAddress();
  2081. Value *RVal = CGF.EmitScalarExpr(RHS);
  2082. SmallVector<Value *, 4> paramList;
  2083. Value *LdLVal =
  2084. CGF.CGM.getHLSLRuntime().EmitHLSLMatrixLoad(CGF, LVal, LHS->getType());
  2085. paramList.emplace_back(LdLVal);
  2086. paramList.emplace_back(RVal);
  2087. // Set return type to be none reference type for Result
  2088. llvm::Type *RetType = LVal->getType()->getPointerElementType();
  2089. Result = CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
  2090. CGF, E, RetType, paramList);
  2091. // store result to LVal
  2092. CGF.CGM.getHLSLRuntime().EmitHLSLMatrixStore(CGF, Result, LVal,
  2093. LHS->getType());
  2094. return L;
  2095. }
  2096. // HLSL Change Ends
  2097. QualType LHSTy = E->getLHS()->getType();
  2098. BinOpInfo OpInfo;
  2099. if (E->getComputationResultType()->isAnyComplexType())
  2100. return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
  2101. // Emit the RHS first. __block variables need to have the rhs evaluated
  2102. // first, plus this should improve codegen a little.
  2103. OpInfo.RHS = Visit(E->getRHS());
  2104. OpInfo.Ty = E->getComputationResultType();
  2105. OpInfo.Opcode = E->getOpcode();
  2106. OpInfo.FPContractable = false;
  2107. OpInfo.E = E;
  2108. // Load/convert the LHS.
  2109. LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
  2110. llvm::PHINode *atomicPHI = nullptr;
  2111. if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
  2112. QualType type = atomicTy->getValueType();
  2113. if (!type->isBooleanType() && type->isIntegerType() &&
  2114. !(type->isUnsignedIntegerType() &&
  2115. CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
  2116. CGF.getLangOpts().getSignedOverflowBehavior() !=
  2117. LangOptions::SOB_Trapping) {
  2118. llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
  2119. switch (OpInfo.Opcode) {
  2120. // We don't have atomicrmw operands for *, %, /, <<, >>
  2121. case BO_MulAssign: case BO_DivAssign:
  2122. case BO_RemAssign:
  2123. case BO_ShlAssign:
  2124. case BO_ShrAssign:
  2125. break;
  2126. case BO_AddAssign:
  2127. aop = llvm::AtomicRMWInst::Add;
  2128. break;
  2129. case BO_SubAssign:
  2130. aop = llvm::AtomicRMWInst::Sub;
  2131. break;
  2132. case BO_AndAssign:
  2133. aop = llvm::AtomicRMWInst::And;
  2134. break;
  2135. case BO_XorAssign:
  2136. aop = llvm::AtomicRMWInst::Xor;
  2137. break;
  2138. case BO_OrAssign:
  2139. aop = llvm::AtomicRMWInst::Or;
  2140. break;
  2141. default:
  2142. llvm_unreachable("Invalid compound assignment type");
  2143. }
  2144. if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
  2145. llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
  2146. E->getRHS()->getType(), LHSTy), LHSTy);
  2147. Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
  2148. llvm::SequentiallyConsistent);
  2149. return LHSLV;
  2150. }
  2151. }
  2152. // FIXME: For floating point types, we should be saving and restoring the
  2153. // floating point environment in the loop.
  2154. llvm::BasicBlock *startBB = Builder.GetInsertBlock();
  2155. llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
  2156. OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
  2157. OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
  2158. Builder.CreateBr(opBB);
  2159. Builder.SetInsertPoint(opBB);
  2160. atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
  2161. atomicPHI->addIncoming(OpInfo.LHS, startBB);
  2162. OpInfo.LHS = atomicPHI;
  2163. }
  2164. else
  2165. OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
  2166. OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
  2167. E->getComputationLHSType());
  2168. // Expand the binary operator.
  2169. Result = (this->*Func)(OpInfo);
  2170. // Convert the result back to the LHS type.
  2171. Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
  2172. if (atomicPHI) {
  2173. llvm::BasicBlock *opBB = Builder.GetInsertBlock();
  2174. llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
  2175. auto Pair = CGF.EmitAtomicCompareExchange(
  2176. LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
  2177. llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
  2178. llvm::Value *success = Pair.second;
  2179. atomicPHI->addIncoming(old, opBB);
  2180. Builder.CreateCondBr(success, contBB, opBB);
  2181. Builder.SetInsertPoint(contBB);
  2182. return LHSLV;
  2183. }
  2184. // Store the result value into the LHS lvalue. Bit-fields are handled
  2185. // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
  2186. // 'An assignment expression has the value of the left operand after the
  2187. // assignment...'.
  2188. if (LHSLV.isBitField())
  2189. CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
  2190. else
  2191. CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
  2192. return LHSLV;
  2193. }
  2194. Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
  2195. Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
  2196. bool Ignore = TestAndClearIgnoreResultAssign();
  2197. Value *RHS;
  2198. LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
  2199. // If the result is clearly ignored, return now.
  2200. if (Ignore)
  2201. return nullptr;
  2202. // The result of an assignment in C is the assigned r-value.
  2203. if (!CGF.getLangOpts().CPlusPlus)
  2204. return RHS;
  2205. // If the lvalue is non-volatile, return the computed value of the assignment.
  2206. if (!LHS.isVolatileQualified())
  2207. return RHS;
  2208. // Otherwise, reload the value.
  2209. return EmitLoadOfLValue(LHS, E->getExprLoc());
  2210. }
  2211. void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
  2212. const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
  2213. SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
  2214. if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
  2215. Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
  2216. SanitizerKind::IntegerDivideByZero));
  2217. }
  2218. if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
  2219. Ops.Ty->hasSignedIntegerRepresentation()) {
  2220. llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
  2221. llvm::Value *IntMin =
  2222. Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
  2223. llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
  2224. llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
  2225. llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
  2226. llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
  2227. Checks.push_back(
  2228. std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
  2229. }
  2230. if (Checks.size() > 0)
  2231. EmitBinOpCheck(Checks, Ops);
  2232. }
  2233. Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
  2234. {
  2235. CodeGenFunction::SanitizerScope SanScope(&CGF);
  2236. if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
  2237. CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
  2238. Ops.Ty->isIntegerType()) {
  2239. llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
  2240. EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
  2241. } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
  2242. Ops.Ty->isRealFloatingType()) {
  2243. llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
  2244. llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
  2245. EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
  2246. Ops);
  2247. }
  2248. }
  2249. if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
  2250. llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
  2251. if (CGF.getLangOpts().OpenCL) {
  2252. // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
  2253. llvm::Type *ValTy = Val->getType();
  2254. if (ValTy->isFloatTy() ||
  2255. (isa<llvm::VectorType>(ValTy) &&
  2256. cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
  2257. CGF.SetFPAccuracy(Val, 2.5);
  2258. }
  2259. return Val;
  2260. }
  2261. else if (Ops.Ty->hasUnsignedIntegerRepresentation())
  2262. return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
  2263. else
  2264. return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
  2265. }
  2266. Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
  2267. // Rem in C can't be a floating point type: C99 6.5.5p2.
  2268. if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
  2269. CodeGenFunction::SanitizerScope SanScope(&CGF);
  2270. llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
  2271. if (Ops.Ty->isIntegerType())
  2272. EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
  2273. }
  2274. // HLSL Change Begins.
  2275. if (CGF.getLangOpts().HLSL) {
  2276. if (Ops.LHS->getType()->getScalarType()->isFloatingPointTy()) {
  2277. return Builder.CreateFRem(Ops.LHS, Ops.RHS, "frem");
  2278. }
  2279. }
  2280. // HLSL Change Ends.
  2281. if (Ops.Ty->hasUnsignedIntegerRepresentation())
  2282. return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
  2283. else
  2284. return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
  2285. }
  2286. Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
  2287. unsigned IID;
  2288. unsigned OpID = 0;
  2289. bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
  2290. switch (Ops.Opcode) {
  2291. case BO_Add:
  2292. case BO_AddAssign:
  2293. OpID = 1;
  2294. IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
  2295. llvm::Intrinsic::uadd_with_overflow;
  2296. break;
  2297. case BO_Sub:
  2298. case BO_SubAssign:
  2299. OpID = 2;
  2300. IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
  2301. llvm::Intrinsic::usub_with_overflow;
  2302. break;
  2303. case BO_Mul:
  2304. case BO_MulAssign:
  2305. OpID = 3;
  2306. IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
  2307. llvm::Intrinsic::umul_with_overflow;
  2308. break;
  2309. default:
  2310. llvm_unreachable("Unsupported operation for overflow detection");
  2311. }
  2312. OpID <<= 1;
  2313. if (isSigned)
  2314. OpID |= 1;
  2315. llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
  2316. llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
  2317. Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
  2318. Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
  2319. Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
  2320. // Handle overflow with llvm.trap if no custom handler has been specified.
  2321. const std::string *handlerName =
  2322. &CGF.getLangOpts().OverflowHandler;
  2323. if (handlerName->empty()) {
  2324. // If the signed-integer-overflow sanitizer is enabled, emit a call to its
  2325. // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
  2326. if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
  2327. CodeGenFunction::SanitizerScope SanScope(&CGF);
  2328. llvm::Value *NotOverflow = Builder.CreateNot(overflow);
  2329. SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
  2330. : SanitizerKind::UnsignedIntegerOverflow;
  2331. EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
  2332. } else
  2333. CGF.EmitTrapCheck(Builder.CreateNot(overflow));
  2334. return result;
  2335. }
  2336. // Branch in case of overflow.
  2337. llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
  2338. llvm::Function::iterator insertPt = initialBB;
  2339. llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
  2340. std::next(insertPt));
  2341. llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
  2342. Builder.CreateCondBr(overflow, overflowBB, continueBB);
  2343. // If an overflow handler is set, then we want to call it and then use its
  2344. // result, if it returns.
  2345. Builder.SetInsertPoint(overflowBB);
  2346. // Get the overflow handler.
  2347. llvm::Type *Int8Ty = CGF.Int8Ty;
  2348. llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
  2349. llvm::FunctionType *handlerTy =
  2350. llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
  2351. llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
  2352. // Sign extend the args to 64-bit, so that we can use the same handler for
  2353. // all types of overflow.
  2354. llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
  2355. llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
  2356. // Call the handler with the two arguments, the operation, and the size of
  2357. // the result.
  2358. llvm::Value *handlerArgs[] = {
  2359. lhs,
  2360. rhs,
  2361. Builder.getInt8(OpID),
  2362. Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
  2363. };
  2364. llvm::Value *handlerResult =
  2365. CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
  2366. // Truncate the result back to the desired size.
  2367. handlerResult = Builder.CreateTrunc(handlerResult, opTy);
  2368. Builder.CreateBr(continueBB);
  2369. Builder.SetInsertPoint(continueBB);
  2370. llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
  2371. phi->addIncoming(result, initialBB);
  2372. phi->addIncoming(handlerResult, overflowBB);
  2373. return phi;
  2374. }
  2375. /// Emit pointer + index arithmetic.
  2376. static Value *emitPointerArithmetic(CodeGenFunction &CGF,
  2377. const BinOpInfo &op,
  2378. bool isSubtraction) {
  2379. // Must have binary (not unary) expr here. Unary pointer
  2380. // increment/decrement doesn't use this path.
  2381. const BinaryOperator *expr = cast<BinaryOperator>(op.E);
  2382. Value *pointer = op.LHS;
  2383. Expr *pointerOperand = expr->getLHS();
  2384. Value *index = op.RHS;
  2385. Expr *indexOperand = expr->getRHS();
  2386. // In a subtraction, the LHS is always the pointer.
  2387. if (!isSubtraction && !pointer->getType()->isPointerTy()) {
  2388. std::swap(pointer, index);
  2389. std::swap(pointerOperand, indexOperand);
  2390. }
  2391. unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
  2392. if (width != CGF.PointerWidthInBits) {
  2393. // Zero-extend or sign-extend the pointer value according to
  2394. // whether the index is signed or not.
  2395. bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
  2396. index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
  2397. "idx.ext");
  2398. }
  2399. // If this is subtraction, negate the index.
  2400. if (isSubtraction)
  2401. index = CGF.Builder.CreateNeg(index, "idx.neg");
  2402. if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
  2403. CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
  2404. /*Accessed*/ false);
  2405. const PointerType *pointerType
  2406. = pointerOperand->getType()->getAs<PointerType>();
  2407. if (!pointerType) {
  2408. QualType objectType = pointerOperand->getType()
  2409. ->castAs<ObjCObjectPointerType>()
  2410. ->getPointeeType();
  2411. llvm::Value *objectSize
  2412. = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
  2413. index = CGF.Builder.CreateMul(index, objectSize);
  2414. Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
  2415. result = CGF.Builder.CreateGEP(result, index, "add.ptr");
  2416. return CGF.Builder.CreateBitCast(result, pointer->getType());
  2417. }
  2418. QualType elementType = pointerType->getPointeeType();
  2419. if (const VariableArrayType *vla
  2420. = CGF.getContext().getAsVariableArrayType(elementType)) {
  2421. // The element count here is the total number of non-VLA elements.
  2422. llvm::Value *numElements = CGF.getVLASize(vla).first;
  2423. // Effectively, the multiply by the VLA size is part of the GEP.
  2424. // GEP indexes are signed, and scaling an index isn't permitted to
  2425. // signed-overflow, so we use the same semantics for our explicit
  2426. // multiply. We suppress this if overflow is not undefined behavior.
  2427. if (CGF.getLangOpts().isSignedOverflowDefined()) {
  2428. index = CGF.Builder.CreateMul(index, numElements, "vla.index");
  2429. pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
  2430. } else {
  2431. index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
  2432. pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
  2433. }
  2434. return pointer;
  2435. }
  2436. // Explicitly handle GNU void* and function pointer arithmetic extensions. The
  2437. // GNU void* casts amount to no-ops since our void* type is i8*, but this is
  2438. // future proof.
  2439. if (elementType->isVoidType() || elementType->isFunctionType()) {
  2440. Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
  2441. result = CGF.Builder.CreateGEP(result, index, "add.ptr");
  2442. return CGF.Builder.CreateBitCast(result, pointer->getType());
  2443. }
  2444. if (CGF.getLangOpts().isSignedOverflowDefined())
  2445. return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
  2446. return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
  2447. }
  2448. // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
  2449. // Addend. Use negMul and negAdd to negate the first operand of the Mul or
  2450. // the add operand respectively. This allows fmuladd to represent a*b-c, or
  2451. // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
  2452. // efficient operations.
  2453. static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
  2454. const CodeGenFunction &CGF, CGBuilderTy &Builder,
  2455. bool negMul, bool negAdd) {
  2456. assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
  2457. Value *MulOp0 = MulOp->getOperand(0);
  2458. Value *MulOp1 = MulOp->getOperand(1);
  2459. if (negMul) {
  2460. MulOp0 =
  2461. Builder.CreateFSub(
  2462. llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
  2463. "neg");
  2464. } else if (negAdd) {
  2465. Addend =
  2466. Builder.CreateFSub(
  2467. llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
  2468. "neg");
  2469. }
  2470. Value *FMulAdd = Builder.CreateCall(
  2471. CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
  2472. {MulOp0, MulOp1, Addend});
  2473. MulOp->eraseFromParent();
  2474. return FMulAdd;
  2475. }
  2476. // Check whether it would be legal to emit an fmuladd intrinsic call to
  2477. // represent op and if so, build the fmuladd.
  2478. //
  2479. // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
  2480. // Does NOT check the type of the operation - it's assumed that this function
  2481. // will be called from contexts where it's known that the type is contractable.
  2482. static Value* tryEmitFMulAdd(const BinOpInfo &op,
  2483. const CodeGenFunction &CGF, CGBuilderTy &Builder,
  2484. bool isSub=false) {
  2485. assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
  2486. op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
  2487. "Only fadd/fsub can be the root of an fmuladd.");
  2488. // Check whether this op is marked as fusable.
  2489. if (!op.FPContractable)
  2490. return nullptr;
  2491. // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
  2492. // either disabled, or handled entirely by the LLVM backend).
  2493. if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
  2494. return nullptr;
  2495. // We have a potentially fusable op. Look for a mul on one of the operands.
  2496. if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
  2497. if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
  2498. assert(LHSBinOp->getNumUses() == 0 &&
  2499. "Operations with multiple uses shouldn't be contracted.");
  2500. return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
  2501. }
  2502. } else if (llvm::BinaryOperator* RHSBinOp =
  2503. dyn_cast<llvm::BinaryOperator>(op.RHS)) {
  2504. if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
  2505. assert(RHSBinOp->getNumUses() == 0 &&
  2506. "Operations with multiple uses shouldn't be contracted.");
  2507. return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
  2508. }
  2509. }
  2510. return nullptr;
  2511. }
  2512. Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
  2513. if (op.LHS->getType()->isPointerTy() ||
  2514. op.RHS->getType()->isPointerTy())
  2515. return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
  2516. if (op.Ty->isSignedIntegerOrEnumerationType()) {
  2517. switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
  2518. case LangOptions::SOB_Defined:
  2519. return Builder.CreateAdd(op.LHS, op.RHS, "add");
  2520. case LangOptions::SOB_Undefined:
  2521. if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
  2522. return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
  2523. // Fall through.
  2524. case LangOptions::SOB_Trapping:
  2525. return EmitOverflowCheckedBinOp(op);
  2526. }
  2527. }
  2528. if (op.Ty->isUnsignedIntegerType() &&
  2529. CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
  2530. return EmitOverflowCheckedBinOp(op);
  2531. if (op.LHS->getType()->isFPOrFPVectorTy()) {
  2532. // Try to form an fmuladd.
  2533. if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
  2534. return FMulAdd;
  2535. return Builder.CreateFAdd(op.LHS, op.RHS, "add");
  2536. }
  2537. return Builder.CreateAdd(op.LHS, op.RHS, "add");
  2538. }
  2539. Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
  2540. // The LHS is always a pointer if either side is.
  2541. if (!op.LHS->getType()->isPointerTy()) {
  2542. if (op.Ty->isSignedIntegerOrEnumerationType()) {
  2543. switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
  2544. case LangOptions::SOB_Defined:
  2545. return Builder.CreateSub(op.LHS, op.RHS, "sub");
  2546. case LangOptions::SOB_Undefined:
  2547. if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
  2548. return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
  2549. // Fall through.
  2550. case LangOptions::SOB_Trapping:
  2551. return EmitOverflowCheckedBinOp(op);
  2552. }
  2553. }
  2554. if (op.Ty->isUnsignedIntegerType() &&
  2555. CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
  2556. return EmitOverflowCheckedBinOp(op);
  2557. if (op.LHS->getType()->isFPOrFPVectorTy()) {
  2558. // Try to form an fmuladd.
  2559. if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
  2560. return FMulAdd;
  2561. return Builder.CreateFSub(op.LHS, op.RHS, "sub");
  2562. }
  2563. return Builder.CreateSub(op.LHS, op.RHS, "sub");
  2564. }
  2565. // If the RHS is not a pointer, then we have normal pointer
  2566. // arithmetic.
  2567. if (!op.RHS->getType()->isPointerTy())
  2568. return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
  2569. // Otherwise, this is a pointer subtraction.
  2570. // Do the raw subtraction part.
  2571. llvm::Value *LHS
  2572. = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
  2573. llvm::Value *RHS
  2574. = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
  2575. Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
  2576. // Okay, figure out the element size.
  2577. const BinaryOperator *expr = cast<BinaryOperator>(op.E);
  2578. QualType elementType = expr->getLHS()->getType()->getPointeeType();
  2579. llvm::Value *divisor = nullptr;
  2580. // For a variable-length array, this is going to be non-constant.
  2581. if (const VariableArrayType *vla
  2582. = CGF.getContext().getAsVariableArrayType(elementType)) {
  2583. llvm::Value *numElements;
  2584. std::tie(numElements, elementType) = CGF.getVLASize(vla);
  2585. divisor = numElements;
  2586. // Scale the number of non-VLA elements by the non-VLA element size.
  2587. CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
  2588. if (!eltSize.isOne())
  2589. divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
  2590. // For everything elese, we can just compute it, safe in the
  2591. // assumption that Sema won't let anything through that we can't
  2592. // safely compute the size of.
  2593. } else {
  2594. CharUnits elementSize;
  2595. // Handle GCC extension for pointer arithmetic on void* and
  2596. // function pointer types.
  2597. if (elementType->isVoidType() || elementType->isFunctionType())
  2598. elementSize = CharUnits::One();
  2599. else
  2600. elementSize = CGF.getContext().getTypeSizeInChars(elementType);
  2601. // Don't even emit the divide for element size of 1.
  2602. if (elementSize.isOne())
  2603. return diffInChars;
  2604. divisor = CGF.CGM.getSize(elementSize);
  2605. }
  2606. // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
  2607. // pointer difference in C is only defined in the case where both operands
  2608. // are pointing to elements of an array.
  2609. return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
  2610. }
  2611. Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
  2612. llvm::IntegerType *Ty;
  2613. if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
  2614. Ty = cast<llvm::IntegerType>(VT->getElementType());
  2615. else
  2616. Ty = cast<llvm::IntegerType>(LHS->getType());
  2617. return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
  2618. }
  2619. Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
  2620. // LLVM requires the LHS and RHS to be the same type: promote or truncate the
  2621. // RHS to the same size as the LHS.
  2622. Value *RHS = Ops.RHS;
  2623. if (Ops.LHS->getType() != RHS->getType())
  2624. RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
  2625. bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
  2626. Ops.Ty->hasSignedIntegerRepresentation();
  2627. bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
  2628. // OpenCL 6.3j: shift values are effectively % word size of LHS.
  2629. if (CGF.getLangOpts().OpenCL)
  2630. RHS =
  2631. Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
  2632. else if ((SanitizeBase || SanitizeExponent) &&
  2633. isa<llvm::IntegerType>(Ops.LHS->getType())) {
  2634. CodeGenFunction::SanitizerScope SanScope(&CGF);
  2635. SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
  2636. llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
  2637. llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
  2638. if (SanitizeExponent) {
  2639. Checks.push_back(
  2640. std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
  2641. }
  2642. if (SanitizeBase) {
  2643. // Check whether we are shifting any non-zero bits off the top of the
  2644. // integer. We only emit this check if exponent is valid - otherwise
  2645. // instructions below will have undefined behavior themselves.
  2646. llvm::BasicBlock *Orig = Builder.GetInsertBlock();
  2647. llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
  2648. llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
  2649. Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
  2650. CGF.EmitBlock(CheckShiftBase);
  2651. llvm::Value *BitsShiftedOff =
  2652. Builder.CreateLShr(Ops.LHS,
  2653. Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
  2654. /*NUW*/true, /*NSW*/true),
  2655. "shl.check");
  2656. if (CGF.getLangOpts().CPlusPlus) {
  2657. // In C99, we are not permitted to shift a 1 bit into the sign bit.
  2658. // Under C++11's rules, shifting a 1 bit into the sign bit is
  2659. // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
  2660. // define signed left shifts, so we use the C99 and C++11 rules there).
  2661. llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
  2662. BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
  2663. }
  2664. llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
  2665. llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
  2666. CGF.EmitBlock(Cont);
  2667. llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
  2668. BaseCheck->addIncoming(Builder.getTrue(), Orig);
  2669. BaseCheck->addIncoming(ValidBase, CheckShiftBase);
  2670. Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
  2671. }
  2672. assert(!Checks.empty());
  2673. EmitBinOpCheck(Checks, Ops);
  2674. }
  2675. return Builder.CreateShl(Ops.LHS, RHS, "shl");
  2676. }
  2677. Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
  2678. // LLVM requires the LHS and RHS to be the same type: promote or truncate the
  2679. // RHS to the same size as the LHS.
  2680. Value *RHS = Ops.RHS;
  2681. if (Ops.LHS->getType() != RHS->getType())
  2682. RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
  2683. // OpenCL 6.3j: shift values are effectively % word size of LHS.
  2684. if (CGF.getLangOpts().OpenCL)
  2685. RHS =
  2686. Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
  2687. else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
  2688. isa<llvm::IntegerType>(Ops.LHS->getType())) {
  2689. CodeGenFunction::SanitizerScope SanScope(&CGF);
  2690. llvm::Value *Valid =
  2691. Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
  2692. EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
  2693. }
  2694. if (Ops.Ty->hasUnsignedIntegerRepresentation())
  2695. return Builder.CreateLShr(Ops.LHS, RHS, "shr");
  2696. // HLSL Change Begin - check unsigned for vector.
  2697. if (hlsl::IsHLSLVecType(Ops.Ty)) {
  2698. if (hlsl::GetHLSLVecElementType(Ops.Ty)->hasUnsignedIntegerRepresentation())
  2699. return Builder.CreateLShr(Ops.LHS, RHS, "shr");
  2700. }
  2701. // HLSL Change End.
  2702. return Builder.CreateAShr(Ops.LHS, RHS, "shr");
  2703. }
  2704. enum IntrinsicType { VCMPEQ, VCMPGT };
  2705. #if 0 // HLSL Change - remove platform intrinsics
  2706. // return corresponding comparison intrinsic for given vector type
  2707. static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
  2708. BuiltinType::Kind ElemKind) {
  2709. llvm_unreachable("HLSL Does not support altivec vectors");
  2710. return llvm::Intrinsic::not_intrinsic; // HLSL Change - remove platform intrinsics
  2711. switch (ElemKind) {
  2712. default: llvm_unreachable("unexpected element type");
  2713. case BuiltinType::Char_U:
  2714. case BuiltinType::UChar:
  2715. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
  2716. llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
  2717. case BuiltinType::Char_S:
  2718. case BuiltinType::SChar:
  2719. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
  2720. llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
  2721. case BuiltinType::UShort:
  2722. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
  2723. llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
  2724. case BuiltinType::Short:
  2725. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
  2726. llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
  2727. case BuiltinType::UInt:
  2728. case BuiltinType::ULong:
  2729. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
  2730. llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
  2731. case BuiltinType::Int:
  2732. case BuiltinType::Long:
  2733. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
  2734. llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
  2735. case BuiltinType::Float:
  2736. return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
  2737. llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
  2738. }
  2739. }
  2740. #endif // HLSL Change - remove platform intrinsics
  2741. Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
  2742. unsigned SICmpOpc, unsigned FCmpOpc) {
  2743. TestAndClearIgnoreResultAssign();
  2744. Value *Result;
  2745. QualType LHSTy = E->getLHS()->getType();
  2746. QualType RHSTy = E->getRHS()->getType();
  2747. if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
  2748. assert(E->getOpcode() == BO_EQ ||
  2749. E->getOpcode() == BO_NE);
  2750. Value *LHS = CGF.EmitScalarExpr(E->getLHS());
  2751. Value *RHS = CGF.EmitScalarExpr(E->getRHS());
  2752. Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
  2753. CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
  2754. } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
  2755. Value *LHS = Visit(E->getLHS());
  2756. Value *RHS = Visit(E->getRHS());
  2757. // HLSL Change Begins
  2758. if (hlsl::IsHLSLMatType(LHSTy) && hlsl::IsHLSLMatType(RHSTy)) {
  2759. llvm::Type *RetTy = CGF.ConvertType(E->getType());
  2760. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(CGF, E, RetTy,
  2761. {LHS, RHS});
  2762. }
  2763. // HLSL Change Ends
  2764. // If AltiVec, the comparison results in a numeric type, so we use
  2765. // intrinsics comparing vectors and giving 0 or 1 as a result
  2766. if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
  2767. llvm_unreachable("HLSL Does not support altivec vectors");
  2768. #if 0 // HLSL Change - remove platform intrinsics
  2769. // constants for mapping CR6 register bits to predicate result
  2770. enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
  2771. llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
  2772. // in several cases vector arguments order will be reversed
  2773. Value *FirstVecArg = LHS,
  2774. *SecondVecArg = RHS;
  2775. QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
  2776. const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
  2777. BuiltinType::Kind ElementKind = BTy->getKind();
  2778. switch(E->getOpcode()) {
  2779. default: llvm_unreachable("is not a comparison operation");
  2780. case BO_EQ:
  2781. CR6 = CR6_LT;
  2782. ID = GetIntrinsic(VCMPEQ, ElementKind);
  2783. break;
  2784. case BO_NE:
  2785. CR6 = CR6_EQ;
  2786. ID = GetIntrinsic(VCMPEQ, ElementKind);
  2787. break;
  2788. case BO_LT:
  2789. CR6 = CR6_LT;
  2790. ID = GetIntrinsic(VCMPGT, ElementKind);
  2791. std::swap(FirstVecArg, SecondVecArg);
  2792. break;
  2793. case BO_GT:
  2794. CR6 = CR6_LT;
  2795. ID = GetIntrinsic(VCMPGT, ElementKind);
  2796. break;
  2797. case BO_LE:
  2798. if (ElementKind == BuiltinType::Float) {
  2799. CR6 = CR6_LT;
  2800. ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
  2801. std::swap(FirstVecArg, SecondVecArg);
  2802. }
  2803. else {
  2804. CR6 = CR6_EQ;
  2805. ID = GetIntrinsic(VCMPGT, ElementKind);
  2806. }
  2807. break;
  2808. case BO_GE:
  2809. if (ElementKind == BuiltinType::Float) {
  2810. CR6 = CR6_LT;
  2811. ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
  2812. }
  2813. else {
  2814. CR6 = CR6_EQ;
  2815. ID = GetIntrinsic(VCMPGT, ElementKind);
  2816. std::swap(FirstVecArg, SecondVecArg);
  2817. }
  2818. break;
  2819. }
  2820. Value *CR6Param = Builder.getInt32(CR6);
  2821. llvm::Function *F = CGF.CGM.getIntrinsic(ID);
  2822. Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
  2823. return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
  2824. #endif // HLSL Change - remove platform intrinsics
  2825. }
  2826. if (LHS->getType()->isFPOrFPVectorTy()) {
  2827. Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
  2828. LHS, RHS, "cmp");
  2829. } else if (LHSTy->hasSignedIntegerRepresentation()) {
  2830. Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
  2831. LHS, RHS, "cmp");
  2832. } else {
  2833. // Unsigned integers and pointers.
  2834. Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
  2835. LHS, RHS, "cmp");
  2836. }
  2837. // If this is a vector comparison, sign extend the result to the appropriate
  2838. // vector integer type and return it (don't convert to bool).
  2839. if (LHSTy->isVectorType())
  2840. return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
  2841. // HLSL Change Starts
  2842. if (const ExtVectorType *vecTy = hlsl::ConvertHLSLVecMatTypeToExtVectorType(
  2843. CGF.getContext(), LHSTy)) {
  2844. // Return Result directly when E is already a vector.
  2845. if (hlsl::IsHLSLVecType(E->getType()))
  2846. return Result;
  2847. QualType bVecTy = CGF.getContext().getExtVectorType(
  2848. E->getType(), vecTy->getNumElements());
  2849. return Builder.CreateSExt(Result, ConvertType(bVecTy), "sext");
  2850. }
  2851. // HLSL Change Ends
  2852. } else {
  2853. // Complex Comparison: can only be an equality comparison.
  2854. CodeGenFunction::ComplexPairTy LHS, RHS;
  2855. QualType CETy;
  2856. if (auto *CTy = LHSTy->getAs<ComplexType>()) {
  2857. LHS = CGF.EmitComplexExpr(E->getLHS());
  2858. CETy = CTy->getElementType();
  2859. } else {
  2860. LHS.first = Visit(E->getLHS());
  2861. LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
  2862. CETy = LHSTy;
  2863. }
  2864. if (auto *CTy = RHSTy->getAs<ComplexType>()) {
  2865. RHS = CGF.EmitComplexExpr(E->getRHS());
  2866. assert(CGF.getContext().hasSameUnqualifiedType(CETy,
  2867. CTy->getElementType()) &&
  2868. "The element types must always match.");
  2869. (void)CTy;
  2870. } else {
  2871. RHS.first = Visit(E->getRHS());
  2872. RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
  2873. assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
  2874. "The element types must always match.");
  2875. }
  2876. Value *ResultR, *ResultI;
  2877. if (CETy->isRealFloatingType()) {
  2878. ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
  2879. LHS.first, RHS.first, "cmp.r");
  2880. ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
  2881. LHS.second, RHS.second, "cmp.i");
  2882. } else {
  2883. // Complex comparisons can only be equality comparisons. As such, signed
  2884. // and unsigned opcodes are the same.
  2885. ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
  2886. LHS.first, RHS.first, "cmp.r");
  2887. ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
  2888. LHS.second, RHS.second, "cmp.i");
  2889. }
  2890. if (E->getOpcode() == BO_EQ) {
  2891. Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
  2892. } else {
  2893. assert(E->getOpcode() == BO_NE &&
  2894. "Complex comparison other than == or != ?");
  2895. Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
  2896. }
  2897. }
  2898. return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
  2899. }
  2900. Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
  2901. bool Ignore = TestAndClearIgnoreResultAssign();
  2902. Value *RHS;
  2903. LValue LHS;
  2904. switch (E->getLHS()->getType().getObjCLifetime()) {
  2905. case Qualifiers::OCL_Strong:
  2906. std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
  2907. break;
  2908. case Qualifiers::OCL_Autoreleasing:
  2909. std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
  2910. break;
  2911. case Qualifiers::OCL_Weak:
  2912. RHS = Visit(E->getRHS());
  2913. LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
  2914. RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
  2915. break;
  2916. // No reason to do any of these differently.
  2917. case Qualifiers::OCL_None:
  2918. case Qualifiers::OCL_ExplicitNone:
  2919. // __block variables need to have the rhs evaluated first, plus
  2920. // this should improve codegen just a little.
  2921. RHS = Visit(E->getRHS());
  2922. LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
  2923. // Store the value into the LHS. Bit-fields are handled specially
  2924. // because the result is altered by the store, i.e., [C99 6.5.16p1]
  2925. // 'An assignment expression has the value of the left operand after
  2926. // the assignment...'.
  2927. if (LHS.isBitField())
  2928. CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
  2929. else
  2930. CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
  2931. }
  2932. // If the result is clearly ignored, return now.
  2933. if (Ignore)
  2934. return nullptr;
  2935. // The result of an assignment in C is the assigned r-value.
  2936. if (!CGF.getLangOpts().CPlusPlus)
  2937. return RHS;
  2938. // If the lvalue is non-volatile, return the computed value of the assignment.
  2939. if (!LHS.isVolatileQualified())
  2940. return RHS;
  2941. // Otherwise, reload the value.
  2942. return EmitLoadOfLValue(LHS, E->getExprLoc());
  2943. }
  2944. Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
  2945. // Perform vector logical and on comparisons with zero vectors.
  2946. if (E->getType()->isVectorType()) {
  2947. CGF.incrementProfileCounter(E);
  2948. Value *LHS = Visit(E->getLHS());
  2949. Value *RHS = Visit(E->getRHS());
  2950. Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
  2951. if (LHS->getType()->isFPOrFPVectorTy()) {
  2952. LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
  2953. RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
  2954. } else {
  2955. LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
  2956. RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
  2957. }
  2958. Value *And = Builder.CreateAnd(LHS, RHS);
  2959. return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
  2960. }
  2961. llvm::Type *ResTy = ConvertType(E->getType());
  2962. // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
  2963. // If we have 1 && X, just emit X without inserting the control flow.
  2964. bool LHSCondVal;
  2965. if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
  2966. if (LHSCondVal) { // If we have 1 && X, just emit X.
  2967. CGF.incrementProfileCounter(E);
  2968. Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
  2969. // ZExt result to int or bool.
  2970. return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
  2971. }
  2972. // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
  2973. if (!CGF.ContainsLabel(E->getRHS())) {
  2974. // HLSL Change Begins.
  2975. if (CGF.getLangOpts().HLSL) {
  2976. // HLSL does not short circuit.
  2977. Visit(E->getRHS());
  2978. }
  2979. // HLSL Change Ends.
  2980. return llvm::Constant::getNullValue(ResTy);
  2981. }
  2982. }
  2983. // HLSL Change Begins.
  2984. if (CGF.getLangOpts().HLSL) {
  2985. // HLSL does not short circuit.
  2986. Value *LHS = Visit(E->getLHS());
  2987. Value *RHS = Visit(E->getRHS());
  2988. if (ResTy->isVectorTy()) {
  2989. Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
  2990. if (LHS->getType()->isFPOrFPVectorTy()) {
  2991. LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
  2992. RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
  2993. } else {
  2994. LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
  2995. RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
  2996. }
  2997. }
  2998. Value *And = Builder.CreateAnd(LHS, RHS);
  2999. return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
  3000. }
  3001. // HLSL Change Ends.
  3002. llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
  3003. llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
  3004. CodeGenFunction::ConditionalEvaluation eval(CGF);
  3005. // Branch on the LHS first. If it is false, go to the failure (cont) block.
  3006. CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
  3007. CGF.getProfileCount(E->getRHS()));
  3008. // Any edges into the ContBlock are now from an (indeterminate number of)
  3009. // edges from this first condition. All of these values will be false. Start
  3010. // setting up the PHI node in the Cont Block for this.
  3011. llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
  3012. "", ContBlock);
  3013. for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
  3014. PI != PE; ++PI)
  3015. PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
  3016. eval.begin(CGF);
  3017. CGF.EmitBlock(RHSBlock);
  3018. CGF.incrementProfileCounter(E);
  3019. Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
  3020. eval.end(CGF);
  3021. // Reaquire the RHS block, as there may be subblocks inserted.
  3022. RHSBlock = Builder.GetInsertBlock();
  3023. // Emit an unconditional branch from this block to ContBlock.
  3024. {
  3025. // There is no need to emit line number for unconditional branch.
  3026. auto NL = ApplyDebugLocation::CreateEmpty(CGF);
  3027. CGF.EmitBlock(ContBlock);
  3028. }
  3029. // Insert an entry into the phi node for the edge with the value of RHSCond.
  3030. PN->addIncoming(RHSCond, RHSBlock);
  3031. // ZExt result to int.
  3032. return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
  3033. }
  3034. Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
  3035. // Perform vector logical or on comparisons with zero vectors.
  3036. if (E->getType()->isVectorType()) {
  3037. CGF.incrementProfileCounter(E);
  3038. Value *LHS = Visit(E->getLHS());
  3039. Value *RHS = Visit(E->getRHS());
  3040. Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
  3041. if (LHS->getType()->isFPOrFPVectorTy()) {
  3042. LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
  3043. RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
  3044. } else {
  3045. LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
  3046. RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
  3047. }
  3048. Value *Or = Builder.CreateOr(LHS, RHS);
  3049. return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
  3050. }
  3051. llvm::Type *ResTy = ConvertType(E->getType());
  3052. // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
  3053. // If we have 0 || X, just emit X without inserting the control flow.
  3054. bool LHSCondVal;
  3055. if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
  3056. if (!LHSCondVal) { // If we have 0 || X, just emit X.
  3057. CGF.incrementProfileCounter(E);
  3058. Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
  3059. // ZExt result to int or bool.
  3060. return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
  3061. }
  3062. // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
  3063. if (!CGF.ContainsLabel(E->getRHS())) {
  3064. // HLSL Change Begins.
  3065. if (CGF.getLangOpts().HLSL) {
  3066. // HLSL does not short circuit.
  3067. Visit(E->getRHS());
  3068. }
  3069. // HLSL Change Ends.
  3070. return llvm::ConstantInt::get(ResTy, 1);
  3071. }
  3072. }
  3073. // HLSL Change Begins.
  3074. if (CGF.getLangOpts().HLSL) {
  3075. // HLSL does not short circuit.
  3076. Value *LHS = Visit(E->getLHS());
  3077. Value *RHS = Visit(E->getRHS());
  3078. if (ResTy->isVectorTy()) {
  3079. Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
  3080. if (LHS->getType()->isFPOrFPVectorTy()) {
  3081. LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
  3082. RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
  3083. } else {
  3084. LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
  3085. RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
  3086. }
  3087. }
  3088. Value *Or = Builder.CreateOr(LHS, RHS);
  3089. return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
  3090. }
  3091. // HLSL Change Ends.
  3092. llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
  3093. llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
  3094. CodeGenFunction::ConditionalEvaluation eval(CGF);
  3095. // Branch on the LHS first. If it is true, go to the success (cont) block.
  3096. CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
  3097. CGF.getCurrentProfileCount() -
  3098. CGF.getProfileCount(E->getRHS()));
  3099. // Any edges into the ContBlock are now from an (indeterminate number of)
  3100. // edges from this first condition. All of these values will be true. Start
  3101. // setting up the PHI node in the Cont Block for this.
  3102. llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
  3103. "", ContBlock);
  3104. for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
  3105. PI != PE; ++PI)
  3106. PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
  3107. eval.begin(CGF);
  3108. // Emit the RHS condition as a bool value.
  3109. CGF.EmitBlock(RHSBlock);
  3110. CGF.incrementProfileCounter(E);
  3111. Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
  3112. eval.end(CGF);
  3113. // Reaquire the RHS block, as there may be subblocks inserted.
  3114. RHSBlock = Builder.GetInsertBlock();
  3115. // Emit an unconditional branch from this block to ContBlock. Insert an entry
  3116. // into the phi node for the edge with the value of RHSCond.
  3117. CGF.EmitBlock(ContBlock);
  3118. PN->addIncoming(RHSCond, RHSBlock);
  3119. // ZExt result to int.
  3120. return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
  3121. }
  3122. Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
  3123. CGF.EmitIgnoredExpr(E->getLHS());
  3124. CGF.EnsureInsertPoint();
  3125. return Visit(E->getRHS());
  3126. }
  3127. //===----------------------------------------------------------------------===//
  3128. // Other Operators
  3129. //===----------------------------------------------------------------------===//
  3130. /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
  3131. /// expression is cheap enough and side-effect-free enough to evaluate
  3132. /// unconditionally instead of conditionally. This is used to convert control
  3133. /// flow into selects in some cases.
  3134. static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
  3135. CodeGenFunction &CGF) {
  3136. // Anything that is an integer or floating point constant is fine.
  3137. return E->IgnoreParens()->isEvaluatable(CGF.getContext());
  3138. // Even non-volatile automatic variables can't be evaluated unconditionally.
  3139. // Referencing a thread_local may cause non-trivial initialization work to
  3140. // occur. If we're inside a lambda and one of the variables is from the scope
  3141. // outside the lambda, that function may have returned already. Reading its
  3142. // locals is a bad idea. Also, these reads may introduce races there didn't
  3143. // exist in the source-level program.
  3144. }
  3145. Value *ScalarExprEmitter::
  3146. VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
  3147. TestAndClearIgnoreResultAssign();
  3148. // Bind the common expression if necessary.
  3149. CodeGenFunction::OpaqueValueMapping binding(CGF, E);
  3150. Expr *condExpr = E->getCond();
  3151. Expr *lhsExpr = E->getTrueExpr();
  3152. Expr *rhsExpr = E->getFalseExpr();
  3153. // If the condition constant folds and can be elided, try to avoid emitting
  3154. // the condition and the dead arm.
  3155. bool CondExprBool;
  3156. if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
  3157. Expr *live = lhsExpr, *dead = rhsExpr;
  3158. if (!CondExprBool) std::swap(live, dead);
  3159. // If the dead side doesn't have labels we need, just emit the Live part.
  3160. if (!CGF.ContainsLabel(dead)) {
  3161. if (CondExprBool)
  3162. CGF.incrementProfileCounter(E);
  3163. Value *Result = Visit(live);
  3164. // If the live part is a throw expression, it acts like it has a void
  3165. // type, so evaluating it returns a null Value*. However, a conditional
  3166. // with non-void type must return a non-null Value*.
  3167. if (!Result && !E->getType()->isVoidType())
  3168. Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
  3169. return Result;
  3170. }
  3171. }
  3172. // OpenCL: If the condition is a vector, we can treat this condition like
  3173. // the select function.
  3174. if (CGF.getLangOpts().OpenCL
  3175. && condExpr->getType()->isVectorType()) {
  3176. CGF.incrementProfileCounter(E);
  3177. llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
  3178. llvm::Value *LHS = Visit(lhsExpr);
  3179. llvm::Value *RHS = Visit(rhsExpr);
  3180. llvm::Type *condType = ConvertType(condExpr->getType());
  3181. llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
  3182. unsigned numElem = vecTy->getNumElements();
  3183. llvm::Type *elemType = vecTy->getElementType();
  3184. llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
  3185. llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
  3186. llvm::Value *tmp = Builder.CreateSExt(TestMSB,
  3187. llvm::VectorType::get(elemType,
  3188. numElem),
  3189. "sext");
  3190. llvm::Value *tmp2 = Builder.CreateNot(tmp);
  3191. // Cast float to int to perform ANDs if necessary.
  3192. llvm::Value *RHSTmp = RHS;
  3193. llvm::Value *LHSTmp = LHS;
  3194. bool wasCast = false;
  3195. llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
  3196. if (rhsVTy->getElementType()->isFloatingPointTy()) {
  3197. RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
  3198. LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
  3199. wasCast = true;
  3200. }
  3201. llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
  3202. llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
  3203. llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
  3204. if (wasCast)
  3205. tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
  3206. return tmp5;
  3207. }
  3208. // HLSL Change Starts
  3209. if (CGF.getLangOpts().HLSL &&
  3210. (hlsl::IsHLSLVecType(E->getType()) || E->getType()->isArithmeticType())) {
  3211. llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
  3212. llvm::Value *LHS = Visit(lhsExpr);
  3213. llvm::Value *RHS = Visit(rhsExpr);
  3214. if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(CondV->getType())) {
  3215. llvm::VectorType *ResultVT = cast<llvm::VectorType>(LHS->getType());
  3216. llvm::Value *result = llvm::UndefValue::get(ResultVT);
  3217. for (unsigned i = 0; i < VT->getNumElements(); i++) {
  3218. llvm::Value *EltCond = Builder.CreateExtractElement(CondV, i);
  3219. llvm::Value *EltL = Builder.CreateExtractElement(LHS, i);
  3220. llvm::Value *EltR = Builder.CreateExtractElement(RHS, i);
  3221. llvm::Value *EltSelect = Builder.CreateSelect(EltCond, EltL, EltR);
  3222. result = Builder.CreateInsertElement(result, EltSelect, i);
  3223. }
  3224. return result;
  3225. } else {
  3226. return Builder.CreateSelect(CondV, LHS, RHS);
  3227. }
  3228. }
  3229. if (CGF.getLangOpts().HLSL && hlsl::IsHLSLMatType(E->getType())) {
  3230. llvm::Value *Cond = CGF.EmitScalarExpr(condExpr);
  3231. llvm::Value *LHS = Visit(lhsExpr);
  3232. llvm::Value *RHS = Visit(rhsExpr);
  3233. return CGF.CGM.getHLSLRuntime().EmitHLSLMatrixOperationCall(
  3234. CGF, E, LHS->getType(), {Cond, LHS, RHS});
  3235. }
  3236. // HLSL Change Ends
  3237. // If this is a really simple expression (like x ? 4 : 5), emit this as a
  3238. // select instead of as control flow. We can only do this if it is cheap and
  3239. // safe to evaluate the LHS and RHS unconditionally.
  3240. if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
  3241. isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
  3242. CGF.incrementProfileCounter(E);
  3243. llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
  3244. llvm::Value *LHS = Visit(lhsExpr);
  3245. llvm::Value *RHS = Visit(rhsExpr);
  3246. if (!LHS) {
  3247. // If the conditional has void type, make sure we return a null Value*.
  3248. assert(!RHS && "LHS and RHS types must match");
  3249. return nullptr;
  3250. }
  3251. return Builder.CreateSelect(CondV, LHS, RHS, "cond");
  3252. }
  3253. llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
  3254. llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
  3255. llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
  3256. CodeGenFunction::ConditionalEvaluation eval(CGF);
  3257. CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
  3258. CGF.getProfileCount(lhsExpr));
  3259. CGF.EmitBlock(LHSBlock);
  3260. CGF.incrementProfileCounter(E);
  3261. eval.begin(CGF);
  3262. Value *LHS = Visit(lhsExpr);
  3263. eval.end(CGF);
  3264. LHSBlock = Builder.GetInsertBlock();
  3265. Builder.CreateBr(ContBlock);
  3266. CGF.EmitBlock(RHSBlock);
  3267. eval.begin(CGF);
  3268. Value *RHS = Visit(rhsExpr);
  3269. eval.end(CGF);
  3270. RHSBlock = Builder.GetInsertBlock();
  3271. CGF.EmitBlock(ContBlock);
  3272. // If the LHS or RHS is a throw expression, it will be legitimately null.
  3273. if (!LHS)
  3274. return RHS;
  3275. if (!RHS)
  3276. return LHS;
  3277. // Create a PHI node for the real part.
  3278. llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
  3279. PN->addIncoming(LHS, LHSBlock);
  3280. PN->addIncoming(RHS, RHSBlock);
  3281. return PN;
  3282. }
  3283. Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
  3284. return Visit(E->getChosenSubExpr());
  3285. }
  3286. Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
  3287. QualType Ty = VE->getType();
  3288. if (Ty->isVariablyModifiedType())
  3289. CGF.EmitVariablyModifiedType(Ty);
  3290. llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
  3291. llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
  3292. llvm::Type *ArgTy = ConvertType(VE->getType());
  3293. // If EmitVAArg fails, we fall back to the LLVM instruction.
  3294. if (!ArgPtr)
  3295. return Builder.CreateVAArg(ArgValue, ArgTy);
  3296. // FIXME Volatility.
  3297. llvm::Value *Val = Builder.CreateLoad(ArgPtr);
  3298. // If EmitVAArg promoted the type, we must truncate it.
  3299. if (ArgTy != Val->getType()) {
  3300. if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
  3301. Val = Builder.CreateIntToPtr(Val, ArgTy);
  3302. else
  3303. Val = Builder.CreateTrunc(Val, ArgTy);
  3304. }
  3305. return Val;
  3306. }
  3307. Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
  3308. return CGF.EmitBlockLiteral(block);
  3309. }
  3310. Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
  3311. Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
  3312. llvm::Type *DstTy = ConvertType(E->getType());
  3313. // Going from vec4->vec3 or vec3->vec4 is a special case and requires
  3314. // a shuffle vector instead of a bitcast.
  3315. llvm::Type *SrcTy = Src->getType();
  3316. if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
  3317. unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
  3318. unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
  3319. if ((numElementsDst == 3 && numElementsSrc == 4)
  3320. || (numElementsDst == 4 && numElementsSrc == 3)) {
  3321. // In the case of going from int4->float3, a bitcast is needed before
  3322. // doing a shuffle.
  3323. llvm::Type *srcElemTy =
  3324. cast<llvm::VectorType>(SrcTy)->getElementType();
  3325. llvm::Type *dstElemTy =
  3326. cast<llvm::VectorType>(DstTy)->getElementType();
  3327. if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
  3328. || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
  3329. // Create a float type of the same size as the source or destination.
  3330. llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
  3331. numElementsSrc);
  3332. Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
  3333. }
  3334. llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
  3335. SmallVector<llvm::Constant*, 3> Args;
  3336. Args.push_back(Builder.getInt32(0));
  3337. Args.push_back(Builder.getInt32(1));
  3338. Args.push_back(Builder.getInt32(2));
  3339. if (numElementsDst == 4)
  3340. Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
  3341. llvm::Constant *Mask = llvm::ConstantVector::get(Args);
  3342. return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
  3343. }
  3344. }
  3345. return Builder.CreateBitCast(Src, DstTy, "astype");
  3346. }
  3347. Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
  3348. return CGF.EmitAtomicExpr(E).getScalarVal();
  3349. }
  3350. //===----------------------------------------------------------------------===//
  3351. // Entry Point into this File
  3352. //===----------------------------------------------------------------------===//
  3353. /// EmitScalarExpr - Emit the computation of the specified expression of scalar
  3354. /// type, ignoring the result.
  3355. Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
  3356. assert(E && hasScalarEvaluationKind(E->getType()) &&
  3357. "Invalid scalar expression to emit");
  3358. return ScalarExprEmitter(*this, IgnoreResultAssign)
  3359. .Visit(const_cast<Expr *>(E));
  3360. }
  3361. /// EmitScalarConversion - Emit a conversion from the specified type to the
  3362. /// specified destination type, both of which are LLVM scalar types.
  3363. Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
  3364. QualType DstTy) {
  3365. assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
  3366. "Invalid scalar expression to emit");
  3367. return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
  3368. }
  3369. /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
  3370. /// type to the specified destination type, where the destination type is an
  3371. /// LLVM scalar type.
  3372. Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
  3373. QualType SrcTy,
  3374. QualType DstTy) {
  3375. assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
  3376. "Invalid complex -> scalar conversion");
  3377. return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
  3378. DstTy);
  3379. }
  3380. llvm::Value *CodeGenFunction::
  3381. EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
  3382. bool isInc, bool isPre) {
  3383. return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
  3384. }
  3385. LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
  3386. llvm::Value *V;
  3387. // object->isa or (*object).isa
  3388. // Generate code as for: *(Class*)object
  3389. // build Class* type
  3390. llvm::Type *ClassPtrTy = ConvertType(E->getType());
  3391. Expr *BaseExpr = E->getBase();
  3392. if (BaseExpr->isRValue()) {
  3393. V = CreateMemTemp(E->getType(), "resval");
  3394. llvm::Value *Src = EmitScalarExpr(BaseExpr);
  3395. Builder.CreateStore(Src, V);
  3396. V = ScalarExprEmitter(*this).EmitLoadOfLValue(
  3397. MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc());
  3398. } else {
  3399. if (E->isArrow())
  3400. V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
  3401. else
  3402. V = EmitLValue(BaseExpr).getAddress();
  3403. }
  3404. // build Class* type
  3405. ClassPtrTy = ClassPtrTy->getPointerTo();
  3406. V = Builder.CreateBitCast(V, ClassPtrTy);
  3407. return MakeNaturalAlignAddrLValue(V, E->getType());
  3408. }
  3409. LValue CodeGenFunction::EmitCompoundAssignmentLValue(
  3410. const CompoundAssignOperator *E) {
  3411. ScalarExprEmitter Scalar(*this);
  3412. Value *Result = nullptr;
  3413. switch (E->getOpcode()) {
  3414. #define COMPOUND_OP(Op) \
  3415. case BO_##Op##Assign: \
  3416. return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
  3417. Result)
  3418. COMPOUND_OP(Mul);
  3419. COMPOUND_OP(Div);
  3420. COMPOUND_OP(Rem);
  3421. COMPOUND_OP(Add);
  3422. COMPOUND_OP(Sub);
  3423. COMPOUND_OP(Shl);
  3424. COMPOUND_OP(Shr);
  3425. COMPOUND_OP(And);
  3426. COMPOUND_OP(Xor);
  3427. COMPOUND_OP(Or);
  3428. #undef COMPOUND_OP
  3429. case BO_PtrMemD:
  3430. case BO_PtrMemI:
  3431. case BO_Mul:
  3432. case BO_Div:
  3433. case BO_Rem:
  3434. case BO_Add:
  3435. case BO_Sub:
  3436. case BO_Shl:
  3437. case BO_Shr:
  3438. case BO_LT:
  3439. case BO_GT:
  3440. case BO_LE:
  3441. case BO_GE:
  3442. case BO_EQ:
  3443. case BO_NE:
  3444. case BO_And:
  3445. case BO_Xor:
  3446. case BO_Or:
  3447. case BO_LAnd:
  3448. case BO_LOr:
  3449. case BO_Assign:
  3450. case BO_Comma:
  3451. llvm_unreachable("Not valid compound assignment operators");
  3452. }
  3453. llvm_unreachable("Unhandled compound assignment operator");
  3454. }