| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681 |
- //===------- SpirvEmitter.cpp - SPIR-V Binary Code Emitter ------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //===----------------------------------------------------------------------===//
- //
- // This file implements a SPIR-V emitter class that takes in HLSL AST and emits
- // SPIR-V binary words.
- //
- //===----------------------------------------------------------------------===//
- #include "SpirvEmitter.h"
- #include "AlignmentSizeCalculator.h"
- #include "RawBufferMethods.h"
- #include "dxc/HlslIntrinsicOp.h"
- #include "spirv-tools/optimizer.hpp"
- #include "clang/SPIRV/AstTypeProbe.h"
- #include "clang/Sema/Sema.h"
- #include "llvm/ADT/StringExtras.h"
- #include "InitListHandler.h"
- #include "dxc/DXIL/DxilConstants.h"
- #ifdef SUPPORT_QUERY_GIT_COMMIT_INFO
- #include "clang/Basic/Version.h"
- #else
- namespace clang {
- uint32_t getGitCommitCount() { return 0; }
- const char *getGitCommitHash() { return "<unknown-hash>"; }
- } // namespace clang
- #endif // SUPPORT_QUERY_GIT_COMMIT_INFO
- namespace clang {
- namespace spirv {
- namespace {
- // Returns true if the given decl has the given semantic.
- bool hasSemantic(const DeclaratorDecl *decl,
- hlsl::DXIL::SemanticKind semanticKind) {
- using namespace hlsl;
- for (auto *annotation : decl->getUnusualAnnotations()) {
- if (auto *semanticDecl = dyn_cast<SemanticDecl>(annotation)) {
- llvm::StringRef semanticName;
- uint32_t semanticIndex = 0;
- Semantic::DecomposeNameAndIndex(semanticDecl->SemanticName, &semanticName,
- &semanticIndex);
- const auto *semantic = Semantic::GetByName(semanticName);
- if (semantic->GetKind() == semanticKind)
- return true;
- }
- }
- return false;
- }
- bool patchConstFuncTakesHullOutputPatch(FunctionDecl *pcf) {
- for (const auto *param : pcf->parameters())
- if (hlsl::IsHLSLOutputPatchType(param->getType()))
- return true;
- return false;
- }
- inline bool isSpirvMatrixOp(spv::Op opcode) {
- return opcode == spv::Op::OpMatrixTimesMatrix ||
- opcode == spv::Op::OpMatrixTimesVector ||
- opcode == spv::Op::OpMatrixTimesScalar;
- }
- /// If expr is a (RW)StructuredBuffer.Load(), returns the object and writes
- /// index. Otherwiser, returns false.
- // TODO: The following doesn't handle Load(int, int) yet. And it is basically a
- // duplicate of doCXXMemberCallExpr.
- const Expr *isStructuredBufferLoad(const Expr *expr, const Expr **index) {
- using namespace hlsl;
- if (const auto *indexing = dyn_cast<CXXMemberCallExpr>(expr)) {
- const auto *callee = indexing->getDirectCallee();
- uint32_t opcode = static_cast<uint32_t>(IntrinsicOp::Num_Intrinsics);
- llvm::StringRef group;
- if (GetIntrinsicOp(callee, opcode, group)) {
- if (static_cast<IntrinsicOp>(opcode) == IntrinsicOp::MOP_Load) {
- const auto *object = indexing->getImplicitObjectArgument();
- if (isStructuredBuffer(object->getType())) {
- *index = indexing->getArg(0);
- return indexing->getImplicitObjectArgument();
- }
- }
- }
- }
- return nullptr;
- }
- /// Returns true if the given VarDecl will be translated into a SPIR-V variable
- /// not in the Private or Function storage class.
- inline bool isExternalVar(const VarDecl *var) {
- // Class static variables should be put in the Private storage class.
- // groupshared variables are allowed to be declared as "static". But we still
- // need to put them in the Workgroup storage class. That is, when seeing
- // "static groupshared", ignore "static".
- return var->hasExternalFormalLinkage()
- ? !var->isStaticDataMember()
- : (var->getAttr<HLSLGroupSharedAttr>() != nullptr);
- }
- /// Returns the referenced variable's DeclContext if the given expr is
- /// a DeclRefExpr referencing a ConstantBuffer/TextureBuffer. Otherwise,
- /// returns nullptr.
- const DeclContext *isConstantTextureBufferDeclRef(const Expr *expr) {
- if (const auto *declRefExpr = dyn_cast<DeclRefExpr>(expr->IgnoreParenCasts()))
- if (const auto *varDecl = dyn_cast<VarDecl>(declRefExpr->getFoundDecl()))
- if (isConstantTextureBuffer(varDecl))
- return varDecl->getType()->getAs<RecordType>()->getDecl();
- return nullptr;
- }
- /// Returns true if
- /// * the given expr is an DeclRefExpr referencing a kind of structured or byte
- /// buffer and it is non-alias one, or
- /// * the given expr is an CallExpr returning a kind of structured or byte
- /// buffer.
- /// * the given expr is an ArraySubscriptExpr referencing a kind of structured
- /// or byte buffer.
- ///
- /// Note: legalization specific code
- bool isReferencingNonAliasStructuredOrByteBuffer(const Expr *expr) {
- expr = expr->IgnoreParenCasts();
- if (const auto *declRefExpr = dyn_cast<DeclRefExpr>(expr)) {
- if (const auto *varDecl = dyn_cast<VarDecl>(declRefExpr->getFoundDecl()))
- if (isAKindOfStructuredOrByteBuffer(varDecl->getType()))
- return isExternalVar(varDecl);
- } else if (const auto *callExpr = dyn_cast<CallExpr>(expr)) {
- if (isAKindOfStructuredOrByteBuffer(callExpr->getType()))
- return true;
- } else if (const auto *arrSubExpr = dyn_cast<ArraySubscriptExpr>(expr)) {
- return isReferencingNonAliasStructuredOrByteBuffer(arrSubExpr->getBase());
- }
- return false;
- }
- bool spirvToolsLegalize(spv_target_env env, std::vector<uint32_t> *mod,
- std::string *messages) {
- spvtools::Optimizer optimizer(env);
- optimizer.SetMessageConsumer(
- [messages](spv_message_level_t /*level*/, const char * /*source*/,
- const spv_position_t & /*position*/,
- const char *message) { *messages += message; });
- spvtools::OptimizerOptions options;
- options.set_run_validator(false);
- optimizer.RegisterLegalizationPasses();
- optimizer.RegisterPass(spvtools::CreateReplaceInvalidOpcodePass());
- optimizer.RegisterPass(spvtools::CreateCompactIdsPass());
- return optimizer.Run(mod->data(), mod->size(), mod, options);
- }
- bool spirvToolsOptimize(spv_target_env env, std::vector<uint32_t> *mod,
- clang::spirv::SpirvCodeGenOptions &spirvOptions,
- std::string *messages) {
- spvtools::Optimizer optimizer(env);
- optimizer.SetMessageConsumer(
- [messages](spv_message_level_t /*level*/, const char * /*source*/,
- const spv_position_t & /*position*/,
- const char *message) { *messages += message; });
- spvtools::OptimizerOptions options;
- options.set_run_validator(false);
- if (spirvOptions.optConfig.empty()) {
- optimizer.RegisterPerformancePasses();
- if (spirvOptions.flattenResourceArrays)
- optimizer.RegisterPass(spvtools::CreateDescriptorScalarReplacementPass());
- optimizer.RegisterPass(spvtools::CreateCompactIdsPass());
- } else {
- // Command line options use llvm::SmallVector and llvm::StringRef, whereas
- // SPIR-V optimizer uses std::vector and std::string.
- std::vector<std::string> stdFlags;
- for (const auto &f : spirvOptions.optConfig)
- stdFlags.push_back(f.str());
- if (!optimizer.RegisterPassesFromFlags(stdFlags))
- return false;
- }
- return optimizer.Run(mod->data(), mod->size(), mod, options);
- }
- bool spirvToolsValidate(spv_target_env env, const SpirvCodeGenOptions &opts,
- bool beforeHlslLegalization, std::vector<uint32_t> *mod,
- std::string *messages) {
- spvtools::SpirvTools tools(env);
- tools.SetMessageConsumer(
- [messages](spv_message_level_t /*level*/, const char * /*source*/,
- const spv_position_t & /*position*/,
- const char *message) { *messages += message; });
- spvtools::ValidatorOptions options;
- options.SetBeforeHlslLegalization(beforeHlslLegalization);
- // GL: strict block layout rules
- // VK: relaxed block layout rules
- // DX: Skip block layout rules
- if (opts.useScalarLayout || opts.useDxLayout) {
- options.SetScalarBlockLayout(true);
- } else if (opts.useGlLayout) {
- // spirv-val by default checks this.
- } else {
- options.SetRelaxBlockLayout(true);
- }
- return tools.Validate(mod->data(), mod->size(), options);
- }
- /// Translates atomic HLSL opcodes into the equivalent SPIR-V opcode.
- spv::Op translateAtomicHlslOpcodeToSpirvOpcode(hlsl::IntrinsicOp opcode) {
- using namespace hlsl;
- using namespace spv;
- switch (opcode) {
- case IntrinsicOp::IOP_InterlockedAdd:
- case IntrinsicOp::MOP_InterlockedAdd:
- return Op::OpAtomicIAdd;
- case IntrinsicOp::IOP_InterlockedAnd:
- case IntrinsicOp::MOP_InterlockedAnd:
- return Op::OpAtomicAnd;
- case IntrinsicOp::IOP_InterlockedOr:
- case IntrinsicOp::MOP_InterlockedOr:
- return Op::OpAtomicOr;
- case IntrinsicOp::IOP_InterlockedXor:
- case IntrinsicOp::MOP_InterlockedXor:
- return Op::OpAtomicXor;
- case IntrinsicOp::IOP_InterlockedUMax:
- case IntrinsicOp::MOP_InterlockedUMax:
- return Op::OpAtomicUMax;
- case IntrinsicOp::IOP_InterlockedUMin:
- case IntrinsicOp::MOP_InterlockedUMin:
- return Op::OpAtomicUMin;
- case IntrinsicOp::IOP_InterlockedMax:
- case IntrinsicOp::MOP_InterlockedMax:
- return Op::OpAtomicSMax;
- case IntrinsicOp::IOP_InterlockedMin:
- case IntrinsicOp::MOP_InterlockedMin:
- return Op::OpAtomicSMin;
- case IntrinsicOp::IOP_InterlockedExchange:
- case IntrinsicOp::MOP_InterlockedExchange:
- return Op::OpAtomicExchange;
- default:
- // Only atomic opcodes are relevant.
- break;
- }
- assert(false && "unimplemented hlsl intrinsic opcode");
- return Op::Max;
- }
- // Returns true if the given opcode is an accepted binary opcode in
- // OpSpecConstantOp.
- bool isAcceptedSpecConstantBinaryOp(spv::Op op) {
- switch (op) {
- case spv::Op::OpIAdd:
- case spv::Op::OpISub:
- case spv::Op::OpIMul:
- case spv::Op::OpUDiv:
- case spv::Op::OpSDiv:
- case spv::Op::OpUMod:
- case spv::Op::OpSRem:
- case spv::Op::OpSMod:
- case spv::Op::OpShiftRightLogical:
- case spv::Op::OpShiftRightArithmetic:
- case spv::Op::OpShiftLeftLogical:
- case spv::Op::OpBitwiseOr:
- case spv::Op::OpBitwiseXor:
- case spv::Op::OpBitwiseAnd:
- case spv::Op::OpVectorShuffle:
- case spv::Op::OpCompositeExtract:
- case spv::Op::OpCompositeInsert:
- case spv::Op::OpLogicalOr:
- case spv::Op::OpLogicalAnd:
- case spv::Op::OpLogicalNot:
- case spv::Op::OpLogicalEqual:
- case spv::Op::OpLogicalNotEqual:
- case spv::Op::OpIEqual:
- case spv::Op::OpINotEqual:
- case spv::Op::OpULessThan:
- case spv::Op::OpSLessThan:
- case spv::Op::OpUGreaterThan:
- case spv::Op::OpSGreaterThan:
- case spv::Op::OpULessThanEqual:
- case spv::Op::OpSLessThanEqual:
- case spv::Op::OpUGreaterThanEqual:
- case spv::Op::OpSGreaterThanEqual:
- return true;
- default:
- // Accepted binary opcodes return true. Anything else is false.
- return false;
- }
- return false;
- }
- /// Returns true if the given expression is an accepted initializer for a spec
- /// constant.
- bool isAcceptedSpecConstantInit(const Expr *init) {
- // Allow numeric casts
- init = init->IgnoreParenCasts();
- if (isa<CXXBoolLiteralExpr>(init) || isa<IntegerLiteral>(init) ||
- isa<FloatingLiteral>(init))
- return true;
- // Allow the minus operator which is used to specify negative values
- if (const auto *unaryOp = dyn_cast<UnaryOperator>(init))
- return unaryOp->getOpcode() == UO_Minus &&
- isAcceptedSpecConstantInit(unaryOp->getSubExpr());
- return false;
- }
- /// Returns true if the given function parameter can act as shader stage
- /// input parameter.
- inline bool canActAsInParmVar(const ParmVarDecl *param) {
- // If the parameter has no in/out/inout attribute, it is defaulted to
- // an in parameter.
- return !param->hasAttr<HLSLOutAttr>() &&
- // GS output streams are marked as inout, but it should not be
- // used as in parameter.
- !hlsl::IsHLSLStreamOutputType(param->getType());
- }
- /// Returns true if the given function parameter can act as shader stage
- /// output parameter.
- inline bool canActAsOutParmVar(const ParmVarDecl *param) {
- return param->hasAttr<HLSLOutAttr>() || param->hasAttr<HLSLInOutAttr>() ||
- hlsl::IsHLSLRayQueryType(param->getType());
- }
- /// Returns true if the given expression is of builtin type and can be evaluated
- /// to a constant zero. Returns false otherwise.
- inline bool evaluatesToConstZero(const Expr *expr, ASTContext &astContext) {
- const auto type = expr->getType();
- if (!type->isBuiltinType())
- return false;
- Expr::EvalResult evalResult;
- if (expr->EvaluateAsRValue(evalResult, astContext) &&
- !evalResult.HasSideEffects) {
- const auto &val = evalResult.Val;
- return ((type->isBooleanType() && !val.getInt().getBoolValue()) ||
- (type->isIntegerType() && !val.getInt().getBoolValue()) ||
- (type->isFloatingType() && val.getFloat().isZero()));
- }
- return false;
- }
- /// Returns the HLSLBufferDecl if the given VarDecl is inside a cbuffer/tbuffer.
- /// Returns nullptr otherwise, including varDecl is a ConstantBuffer or
- /// TextureBuffer itself.
- inline const HLSLBufferDecl *getCTBufferContext(const VarDecl *varDecl) {
- if (const auto *bufferDecl =
- dyn_cast<HLSLBufferDecl>(varDecl->getDeclContext()))
- // Filter ConstantBuffer/TextureBuffer
- if (!bufferDecl->isConstantBufferView())
- return bufferDecl;
- return nullptr;
- }
- /// Returns the real definition of the callee of the given CallExpr.
- ///
- /// If we are calling a forward-declared function, callee will be the
- /// FunctionDecl for the foward-declared function, not the actual
- /// definition. The foward-delcaration and defintion are two completely
- /// different AST nodes.
- inline const FunctionDecl *getCalleeDefinition(const CallExpr *expr) {
- const auto *callee = expr->getDirectCallee();
- if (callee->isThisDeclarationADefinition())
- return callee;
- // We need to update callee to the actual definition here
- if (!callee->isDefined(callee))
- return nullptr;
- return callee;
- }
- /// Returns the referenced definition. The given expr is expected to be a
- /// DeclRefExpr or CallExpr after ignoring casts. Returns nullptr otherwise.
- const DeclaratorDecl *getReferencedDef(const Expr *expr) {
- if (!expr)
- return nullptr;
- expr = expr->IgnoreParenCasts();
- if (const auto *declRefExpr = dyn_cast<DeclRefExpr>(expr)) {
- return dyn_cast_or_null<DeclaratorDecl>(declRefExpr->getDecl());
- }
- if (const auto *callExpr = dyn_cast<CallExpr>(expr)) {
- return getCalleeDefinition(callExpr);
- }
- return nullptr;
- }
- /// Returns the number of base classes if this type is a derived class/struct.
- /// Returns zero otherwise.
- inline uint32_t getNumBaseClasses(QualType type) {
- if (const auto *cxxDecl = type->getAsCXXRecordDecl())
- return cxxDecl->getNumBases();
- return 0;
- }
- /// Gets the index sequence of casting a derived object to a base object by
- /// following the cast chain.
- void getBaseClassIndices(const CastExpr *expr,
- llvm::SmallVectorImpl<uint32_t> *indices) {
- assert(expr->getCastKind() == CK_UncheckedDerivedToBase ||
- expr->getCastKind() == CK_HLSLDerivedToBase);
- indices->clear();
- QualType derivedType = expr->getSubExpr()->getType();
- const auto *derivedDecl = derivedType->getAsCXXRecordDecl();
- // Go through the base cast chain: for each of the derived to base cast, find
- // the index of the base in question in the derived's bases.
- for (auto pathIt = expr->path_begin(), pathIe = expr->path_end();
- pathIt != pathIe; ++pathIt) {
- // The type of the base in question
- const auto baseType = (*pathIt)->getType();
- uint32_t index = 0;
- for (auto baseIt = derivedDecl->bases_begin(),
- baseIe = derivedDecl->bases_end();
- baseIt != baseIe; ++baseIt, ++index)
- if (baseIt->getType() == baseType) {
- indices->push_back(index);
- break;
- }
- assert(index < derivedDecl->getNumBases());
- // Continue to proceed the next base in the chain
- derivedType = baseType;
- derivedDecl = derivedType->getAsCXXRecordDecl();
- }
- }
- std::string getNamespacePrefix(const Decl *decl) {
- std::string nsPrefix = "";
- const DeclContext *dc = decl->getDeclContext();
- while (dc && !dc->isTranslationUnit()) {
- if (const NamespaceDecl *ns = dyn_cast<NamespaceDecl>(dc)) {
- if (!ns->isAnonymousNamespace()) {
- nsPrefix = ns->getName().str() + "::" + nsPrefix;
- }
- }
- dc = dc->getParent();
- }
- return nsPrefix;
- }
- std::string getFnName(const FunctionDecl *fn) {
- // Prefix the function name with the struct name if necessary
- std::string classOrStructName = "";
- if (const auto *memberFn = dyn_cast<CXXMethodDecl>(fn))
- if (const auto *st = dyn_cast<CXXRecordDecl>(memberFn->getDeclContext()))
- classOrStructName = st->getName().str() + ".";
- return getNamespacePrefix(fn) + classOrStructName + fn->getName().str();
- }
- } // namespace
- SpirvEmitter::SpirvEmitter(CompilerInstance &ci)
- : theCompilerInstance(ci), astContext(ci.getASTContext()),
- diags(ci.getDiagnostics()),
- spirvOptions(ci.getCodeGenOpts().SpirvOptions),
- entryFunctionName(ci.getCodeGenOpts().HLSLEntryFunction), spvContext(),
- featureManager(diags, spirvOptions),
- spvBuilder(astContext, spvContext, spirvOptions),
- declIdMapper(astContext, spvContext, spvBuilder, *this, featureManager,
- spirvOptions),
- entryFunction(nullptr), curFunction(nullptr), curThis(nullptr),
- seenPushConstantAt(), isSpecConstantMode(false), needsLegalization(false),
- beforeHlslLegalization(false), mainSourceFile(nullptr) {
- // Get ShaderModel from command line hlsl profile option.
- const hlsl::ShaderModel *shaderModel =
- hlsl::ShaderModel::GetByName(ci.getCodeGenOpts().HLSLProfile.c_str());
- if (shaderModel->GetKind() == hlsl::ShaderModel::Kind::Invalid)
- emitError("unknown shader module: %0", {}) << shaderModel->GetName();
- if (spirvOptions.invertY && !shaderModel->IsVS() && !shaderModel->IsDS() &&
- !shaderModel->IsGS())
- emitError("-fvk-invert-y can only be used in VS/DS/GS", {});
- if (spirvOptions.useGlLayout && spirvOptions.useDxLayout)
- emitError("cannot specify both -fvk-use-dx-layout and -fvk-use-gl-layout",
- {});
- // Set shader model kind and hlsl major/minor version.
- spvContext.setCurrentShaderModelKind(shaderModel->GetKind());
- spvContext.setMajorVersion(shaderModel->GetMajor());
- spvContext.setMinorVersion(shaderModel->GetMinor());
- if (spirvOptions.useDxLayout) {
- spirvOptions.cBufferLayoutRule = SpirvLayoutRule::FxcCTBuffer;
- spirvOptions.tBufferLayoutRule = SpirvLayoutRule::FxcCTBuffer;
- spirvOptions.sBufferLayoutRule = SpirvLayoutRule::FxcSBuffer;
- spirvOptions.ampPayloadLayoutRule = SpirvLayoutRule::FxcSBuffer;
- } else if (spirvOptions.useGlLayout) {
- spirvOptions.cBufferLayoutRule = SpirvLayoutRule::GLSLStd140;
- spirvOptions.tBufferLayoutRule = SpirvLayoutRule::GLSLStd430;
- spirvOptions.sBufferLayoutRule = SpirvLayoutRule::GLSLStd430;
- spirvOptions.ampPayloadLayoutRule = SpirvLayoutRule::GLSLStd430;
- } else if (spirvOptions.useScalarLayout) {
- spirvOptions.cBufferLayoutRule = SpirvLayoutRule::Scalar;
- spirvOptions.tBufferLayoutRule = SpirvLayoutRule::Scalar;
- spirvOptions.sBufferLayoutRule = SpirvLayoutRule::Scalar;
- spirvOptions.ampPayloadLayoutRule = SpirvLayoutRule::Scalar;
- } else {
- spirvOptions.cBufferLayoutRule = SpirvLayoutRule::RelaxedGLSLStd140;
- spirvOptions.tBufferLayoutRule = SpirvLayoutRule::RelaxedGLSLStd430;
- spirvOptions.sBufferLayoutRule = SpirvLayoutRule::RelaxedGLSLStd430;
- spirvOptions.ampPayloadLayoutRule = SpirvLayoutRule::RelaxedGLSLStd430;
- }
- // Set shader module version, source file name, and source file content (if
- // needed).
- llvm::StringRef source = "";
- std::vector<llvm::StringRef> fileNames;
- const auto &inputFiles = ci.getFrontendOpts().Inputs;
- // File name
- if (spirvOptions.debugInfoFile && !inputFiles.empty()) {
- for (const auto &inputFile : inputFiles) {
- fileNames.push_back(inputFile.getFile());
- }
- }
- // Source code
- if (spirvOptions.debugInfoSource) {
- const auto &sm = ci.getSourceManager();
- const llvm::MemoryBuffer *mainFile =
- sm.getBuffer(sm.getMainFileID(), SourceLocation());
- source = StringRef(mainFile->getBufferStart(), mainFile->getBufferSize());
- }
- mainSourceFile = spvBuilder.setDebugSource(spvContext.getMajorVersion(),
- spvContext.getMinorVersion(),
- fileNames, source);
- if (spirvOptions.debugInfoTool &&
- spirvOptions.targetEnv.compare("vulkan1.1") >= 0) {
- // Emit OpModuleProcessed to indicate the commit information.
- std::string commitHash =
- std::string("dxc-commit-hash: ") + clang::getGitCommitHash();
- spvBuilder.addModuleProcessed(commitHash);
- // Emit OpModuleProcessed to indicate the command line options that were
- // used to generate this module.
- if (!spirvOptions.clOptions.empty()) {
- // Using this format: "dxc-cl-option: XXXXXX"
- std::string clOptionStr = "dxc-cl-option:" + spirvOptions.clOptions;
- spvBuilder.addModuleProcessed(clOptionStr);
- }
- }
- }
- void SpirvEmitter::HandleTranslationUnit(ASTContext &context) {
- // Stop translating if there are errors in previous compilation stages.
- if (context.getDiagnostics().hasErrorOccurred())
- return;
- TranslationUnitDecl *tu = context.getTranslationUnitDecl();
- uint32_t numEntryPoints = 0;
- // The entry function is the seed of the queue.
- for (auto *decl : tu->decls()) {
- if (auto *funcDecl = dyn_cast<FunctionDecl>(decl)) {
- if (spvContext.isLib()) {
- if (const auto *shaderAttr = funcDecl->getAttr<HLSLShaderAttr>()) {
- // If we are compiling as a library then add everything that has a
- // ShaderAttr.
- addFunctionToWorkQueue(getShaderModelKind(shaderAttr->getStage()),
- funcDecl, /*isEntryFunction*/ true);
- numEntryPoints++;
- }
- } else {
- if (funcDecl->getName() == entryFunctionName) {
- addFunctionToWorkQueue(spvContext.getCurrentShaderModelKind(),
- funcDecl, /*isEntryFunction*/ true);
- numEntryPoints++;
- }
- }
- } else {
- doDecl(decl);
- }
- if (context.getDiagnostics().hasErrorOccurred())
- return;
- }
- // Translate all functions reachable from the entry function.
- // The queue can grow in the meanwhile; so need to keep evaluating
- // workQueue.size().
- for (uint32_t i = 0; i < workQueue.size(); ++i) {
- const FunctionInfo *curEntryOrCallee = workQueue[i];
- spvContext.setCurrentShaderModelKind(curEntryOrCallee->shaderModelKind);
- doDecl(curEntryOrCallee->funcDecl);
- if (context.getDiagnostics().hasErrorOccurred())
- return;
- }
- const spv_target_env targetEnv = featureManager.getTargetEnv();
- // Addressing and memory model are required in a valid SPIR-V module.
- spvBuilder.setMemoryModel(spv::AddressingModel::Logical,
- spv::MemoryModel::GLSL450);
- // Even though the 'workQueue' grows due to the above loop, the first
- // 'numEntryPoints' entries in the 'workQueue' are the ones with the HLSL
- // 'shader' attribute, and must therefore be entry functions.
- assert(numEntryPoints <= workQueue.size());
- for (uint32_t i = 0; i < numEntryPoints; ++i) {
- // TODO: assign specific StageVars w.r.t. to entry point
- const FunctionInfo *entryInfo = workQueue[i];
- assert(entryInfo->isEntryFunction);
- spvBuilder.addEntryPoint(
- getSpirvShaderStage(entryInfo->shaderModelKind),
- entryInfo->entryFunction, entryInfo->funcDecl->getName(),
- targetEnv == SPV_ENV_VULKAN_1_2
- ? spvBuilder.getModule()->getVariables()
- : llvm::ArrayRef<SpirvVariable *>(declIdMapper.collectStageVars()));
- }
- // Add Location decorations to stage input/output variables.
- if (!declIdMapper.decorateStageIOLocations())
- return;
- // Add descriptor set and binding decorations to resource variables.
- if (!declIdMapper.decorateResourceBindings())
- return;
- // Output the constructed module.
- std::vector<uint32_t> m = spvBuilder.takeModule();
- if (!spirvOptions.codeGenHighLevel) {
- // In order to flatten resource arrays, we must also unroll loops. Therefore
- // we should run legalization before optimization.
- needsLegalization = needsLegalization || spirvOptions.flattenResourceArrays;
- // Run legalization passes
- if (needsLegalization || declIdMapper.requiresLegalization()) {
- std::string messages;
- if (!spirvToolsLegalize(targetEnv, &m, &messages)) {
- emitFatalError("failed to legalize SPIR-V: %0", {}) << messages;
- emitNote("please file a bug report on "
- "https://github.com/Microsoft/DirectXShaderCompiler/issues "
- "with source code if possible",
- {});
- return;
- } else if (!messages.empty()) {
- emitWarning("SPIR-V legalization: %0", {}) << messages;
- }
- }
- // Run optimization passes
- if (theCompilerInstance.getCodeGenOpts().OptimizationLevel > 0) {
- std::string messages;
- if (!spirvToolsOptimize(targetEnv, &m, spirvOptions, &messages)) {
- emitFatalError("failed to optimize SPIR-V: %0", {}) << messages;
- emitNote("please file a bug report on "
- "https://github.com/Microsoft/DirectXShaderCompiler/issues "
- "with source code if possible",
- {});
- return;
- }
- }
- }
- // Validate the generated SPIR-V code
- if (!spirvOptions.disableValidation) {
- std::string messages;
- if (!spirvToolsValidate(targetEnv, spirvOptions,
- needsLegalization ||
- declIdMapper.requiresLegalization(),
- &m, &messages)) {
- emitFatalError("generated SPIR-V is invalid: %0", {}) << messages;
- emitNote("please file a bug report on "
- "https://github.com/Microsoft/DirectXShaderCompiler/issues "
- "with source code if possible",
- {});
- return;
- }
- }
- theCompilerInstance.getOutStream()->write(
- reinterpret_cast<const char *>(m.data()), m.size() * 4);
- }
- void SpirvEmitter::doDecl(const Decl *decl) {
- if (isa<EmptyDecl>(decl) || isa<TypedefDecl>(decl))
- return;
- if (decl->isImplicit()) {
- doImplicitDecl(decl);
- return;
- }
- if (const auto *varDecl = dyn_cast<VarDecl>(decl)) {
- // We can have VarDecls inside cbuffer/tbuffer. For those VarDecls, we need
- // to emit their cbuffer/tbuffer as a whole and access each individual one
- // using access chains.
- if (const auto *bufferDecl = getCTBufferContext(varDecl)) {
- doHLSLBufferDecl(bufferDecl);
- } else {
- doVarDecl(varDecl);
- }
- } else if (const auto *namespaceDecl = dyn_cast<NamespaceDecl>(decl)) {
- for (auto *subDecl : namespaceDecl->decls())
- // Note: We only emit functions as they are discovered through the call
- // graph starting from the entry-point. We should not emit unused
- // functions inside namespaces.
- if (!isa<FunctionDecl>(subDecl))
- doDecl(subDecl);
- } else if (const auto *funcDecl = dyn_cast<FunctionDecl>(decl)) {
- doFunctionDecl(funcDecl);
- } else if (const auto *bufferDecl = dyn_cast<HLSLBufferDecl>(decl)) {
- doHLSLBufferDecl(bufferDecl);
- } else if (const auto *recordDecl = dyn_cast<RecordDecl>(decl)) {
- doRecordDecl(recordDecl);
- } else if (const auto *enumDecl = dyn_cast<EnumDecl>(decl)) {
- doEnumDecl(enumDecl);
- } else {
- emitError("decl type %0 unimplemented", decl->getLocation())
- << decl->getDeclKindName();
- }
- }
- void SpirvEmitter::doStmt(const Stmt *stmt,
- llvm::ArrayRef<const Attr *> attrs) {
- if (const auto *compoundStmt = dyn_cast<CompoundStmt>(stmt)) {
- for (auto *st : compoundStmt->body())
- doStmt(st);
- } else if (const auto *retStmt = dyn_cast<ReturnStmt>(stmt)) {
- doReturnStmt(retStmt);
- } else if (const auto *declStmt = dyn_cast<DeclStmt>(stmt)) {
- doDeclStmt(declStmt);
- } else if (const auto *ifStmt = dyn_cast<IfStmt>(stmt)) {
- doIfStmt(ifStmt, attrs);
- } else if (const auto *switchStmt = dyn_cast<SwitchStmt>(stmt)) {
- doSwitchStmt(switchStmt, attrs);
- } else if (dyn_cast<CaseStmt>(stmt)) {
- processCaseStmtOrDefaultStmt(stmt);
- } else if (dyn_cast<DefaultStmt>(stmt)) {
- processCaseStmtOrDefaultStmt(stmt);
- } else if (const auto *breakStmt = dyn_cast<BreakStmt>(stmt)) {
- doBreakStmt(breakStmt);
- } else if (const auto *theDoStmt = dyn_cast<DoStmt>(stmt)) {
- doDoStmt(theDoStmt, attrs);
- } else if (const auto *discardStmt = dyn_cast<DiscardStmt>(stmt)) {
- doDiscardStmt(discardStmt);
- } else if (const auto *continueStmt = dyn_cast<ContinueStmt>(stmt)) {
- doContinueStmt(continueStmt);
- } else if (const auto *whileStmt = dyn_cast<WhileStmt>(stmt)) {
- doWhileStmt(whileStmt, attrs);
- } else if (const auto *forStmt = dyn_cast<ForStmt>(stmt)) {
- doForStmt(forStmt, attrs);
- } else if (dyn_cast<NullStmt>(stmt)) {
- // For the null statement ";". We don't need to do anything.
- } else if (const auto *expr = dyn_cast<Expr>(stmt)) {
- // All cases for expressions used as statements
- doExpr(expr);
- } else if (const auto *attrStmt = dyn_cast<AttributedStmt>(stmt)) {
- doStmt(attrStmt->getSubStmt(), attrStmt->getAttrs());
- } else {
- emitError("statement class '%0' unimplemented", stmt->getLocStart())
- << stmt->getStmtClassName() << stmt->getSourceRange();
- }
- }
- SpirvInstruction *SpirvEmitter::doExpr(const Expr *expr) {
- SpirvInstruction *result = nullptr;
- expr = expr->IgnoreParens();
- if (const auto *declRefExpr = dyn_cast<DeclRefExpr>(expr)) {
- result = declIdMapper.getDeclEvalInfo(declRefExpr->getDecl(),
- expr->getLocStart());
- } else if (const auto *memberExpr = dyn_cast<MemberExpr>(expr)) {
- result = doMemberExpr(memberExpr);
- } else if (const auto *castExpr = dyn_cast<CastExpr>(expr)) {
- result = doCastExpr(castExpr);
- } else if (const auto *initListExpr = dyn_cast<InitListExpr>(expr)) {
- result = doInitListExpr(initListExpr);
- } else if (const auto *boolLiteral = dyn_cast<CXXBoolLiteralExpr>(expr)) {
- result =
- spvBuilder.getConstantBool(boolLiteral->getValue(), isSpecConstantMode);
- result->setRValue();
- } else if (const auto *intLiteral = dyn_cast<IntegerLiteral>(expr)) {
- result = translateAPInt(intLiteral->getValue(), expr->getType());
- result->setRValue();
- } else if (const auto *floatLiteral = dyn_cast<FloatingLiteral>(expr)) {
- result = translateAPFloat(floatLiteral->getValue(), expr->getType());
- result->setRValue();
- } else if (const auto *stringLiteral = dyn_cast<StringLiteral>(expr)) {
- result = spvBuilder.getString(stringLiteral->getString());
- } else if (const auto *compoundAssignOp =
- dyn_cast<CompoundAssignOperator>(expr)) {
- // CompoundAssignOperator is a subclass of BinaryOperator. It should be
- // checked before BinaryOperator.
- result = doCompoundAssignOperator(compoundAssignOp);
- } else if (const auto *binOp = dyn_cast<BinaryOperator>(expr)) {
- result = doBinaryOperator(binOp);
- } else if (const auto *unaryOp = dyn_cast<UnaryOperator>(expr)) {
- result = doUnaryOperator(unaryOp);
- } else if (const auto *vecElemExpr = dyn_cast<HLSLVectorElementExpr>(expr)) {
- result = doHLSLVectorElementExpr(vecElemExpr);
- } else if (const auto *matElemExpr = dyn_cast<ExtMatrixElementExpr>(expr)) {
- result = doExtMatrixElementExpr(matElemExpr);
- } else if (const auto *funcCall = dyn_cast<CallExpr>(expr)) {
- result = doCallExpr(funcCall);
- } else if (const auto *subscriptExpr = dyn_cast<ArraySubscriptExpr>(expr)) {
- result = doArraySubscriptExpr(subscriptExpr);
- } else if (const auto *condExpr = dyn_cast<ConditionalOperator>(expr)) {
- result = doConditionalOperator(condExpr);
- } else if (const auto *defaultArgExpr = dyn_cast<CXXDefaultArgExpr>(expr)) {
- result = doExpr(defaultArgExpr->getParam()->getDefaultArg());
- } else if (isa<CXXThisExpr>(expr)) {
- assert(curThis);
- result = curThis;
- } else if (isa<CXXConstructExpr>(expr)) {
- result = curThis;
- } else {
- emitError("expression class '%0' unimplemented", expr->getExprLoc())
- << expr->getStmtClassName() << expr->getSourceRange();
- }
- return result;
- }
- SpirvInstruction *SpirvEmitter::loadIfGLValue(const Expr *expr) {
- // We are trying to load the value here, which is what an LValueToRValue
- // implicit cast is intended to do. We can ignore the cast if exists.
- expr = expr->IgnoreParenLValueCasts();
- return loadIfGLValue(expr, doExpr(expr));
- }
- SpirvInstruction *SpirvEmitter::loadIfGLValue(const Expr *expr,
- SpirvInstruction *info) {
- const auto exprType = expr->getType();
- // Do nothing if this is already rvalue
- if (!info || info->isRValue())
- return info;
- // Check whether we are trying to load an array of opaque objects as a whole.
- // If true, we are likely to copy it as a whole. To assist per-element
- // copying, avoid the load here and return the pointer directly.
- // TODO: consider moving this hack into SPIRV-Tools as a transformation.
- if (isOpaqueArrayType(exprType))
- return info;
- // Check whether we are trying to load an externally visible structured/byte
- // buffer as a whole. If true, it means we are creating alias for it. Avoid
- // the load and write the pointer directly to the alias variable then.
- //
- // Also for the case of alias function returns. If we are trying to load an
- // alias function return as a whole, it means we are assigning it to another
- // alias variable. Avoid the load and write the pointer directly.
- //
- // Note: legalization specific code
- if (isReferencingNonAliasStructuredOrByteBuffer(expr)) {
- return info;
- }
- if (loadIfAliasVarRef(expr, &info)) {
- // We are loading an alias variable as a whole here. This is likely for
- // wholesale assignments or function returns. Need to load the pointer.
- //
- // Note: legalization specific code
- return info;
- }
- SpirvInstruction *loadedInstr = nullptr;
- // TODO: Ouch. Very hacky. We need special path to get the value type if
- // we are loading a whole ConstantBuffer/TextureBuffer since the normal
- // type translation path won't work.
- if (const auto *declContext = isConstantTextureBufferDeclRef(expr)) {
- loadedInstr = spvBuilder.createLoad(
- declIdMapper.getCTBufferPushConstantType(declContext), info,
- expr->getExprLoc());
- } else {
- loadedInstr = spvBuilder.createLoad(exprType, info, expr->getExprLoc());
- }
- assert(loadedInstr);
- // Special-case: According to the SPIR-V Spec: There is no physical size or
- // bit pattern defined for boolean type. Therefore an unsigned integer is used
- // to represent booleans when layout is required. In such cases, after loading
- // the uint, we should perform a comparison.
- {
- uint32_t vecSize = 1, numRows = 0, numCols = 0;
- if (info->getLayoutRule() != SpirvLayoutRule::Void &&
- isBoolOrVecMatOfBoolType(exprType)) {
- QualType uintType = astContext.UnsignedIntTy;
- if (isScalarType(exprType) || isVectorType(exprType, nullptr, &vecSize)) {
- const auto fromType =
- vecSize == 1 ? uintType
- : astContext.getExtVectorType(uintType, vecSize);
- loadedInstr =
- castToBool(loadedInstr, fromType, exprType, expr->getLocStart());
- } else {
- const bool isMat = isMxNMatrix(exprType, nullptr, &numRows, &numCols);
- assert(isMat);
- (void)isMat;
- const clang::Type *type = exprType.getCanonicalType().getTypePtr();
- const RecordType *RT = cast<RecordType>(type);
- const ClassTemplateSpecializationDecl *templateSpecDecl =
- cast<ClassTemplateSpecializationDecl>(RT->getDecl());
- ClassTemplateDecl *templateDecl =
- templateSpecDecl->getSpecializedTemplate();
- const auto fromType = getHLSLMatrixType(
- astContext, theCompilerInstance.getSema(), templateDecl,
- astContext.UnsignedIntTy, numRows, numCols);
- loadedInstr =
- castToBool(loadedInstr, fromType, exprType, expr->getLocStart());
- }
- // Now that it is converted to Bool, it has no layout rule.
- // This result-id should be evaluated as bool from here on out.
- loadedInstr->setLayoutRule(SpirvLayoutRule::Void);
- }
- }
- loadedInstr->setRValue();
- return loadedInstr;
- }
- SpirvInstruction *SpirvEmitter::loadIfAliasVarRef(const Expr *expr) {
- auto *instr = doExpr(expr);
- loadIfAliasVarRef(expr, &instr);
- return instr;
- }
- bool SpirvEmitter::loadIfAliasVarRef(const Expr *varExpr,
- SpirvInstruction **instr) {
- assert(instr);
- if ((*instr) && (*instr)->containsAliasComponent() &&
- isAKindOfStructuredOrByteBuffer(varExpr->getType())) {
- // Load the pointer of the aliased-to-variable if the expression has a
- // pointer to pointer type.
- if (varExpr->isGLValue()) {
- *instr = spvBuilder.createLoad(varExpr->getType(), *instr,
- varExpr->getExprLoc());
- }
- return true;
- }
- return false;
- }
- SpirvInstruction *SpirvEmitter::castToType(SpirvInstruction *value,
- QualType fromType, QualType toType,
- SourceLocation srcLoc) {
- if (isFloatOrVecMatOfFloatType(toType))
- return castToFloat(value, fromType, toType, srcLoc);
- // Order matters here. Bool (vector) values will also be considered as uint
- // (vector) values. So given a bool (vector) argument, isUintOrVecOfUintType()
- // will also return true. We need to check bool before uint. The opposite is
- // not true.
- if (isBoolOrVecMatOfBoolType(toType))
- return castToBool(value, fromType, toType, srcLoc);
- if (isSintOrVecMatOfSintType(toType) || isUintOrVecMatOfUintType(toType))
- return castToInt(value, fromType, toType, srcLoc);
- emitError("casting to type %0 unimplemented", {}) << toType;
- return nullptr;
- }
- void SpirvEmitter::doFunctionDecl(const FunctionDecl *decl) {
- assert(decl->isThisDeclarationADefinition());
- // A RAII class for maintaining the current function under traversal.
- class FnEnvRAII {
- public:
- // Creates a new instance which sets fnEnv to the newFn on creation,
- // and resets fnEnv to its original value on destruction.
- FnEnvRAII(const FunctionDecl **fnEnv, const FunctionDecl *newFn)
- : oldFn(*fnEnv), fnSlot(fnEnv) {
- *fnEnv = newFn;
- }
- ~FnEnvRAII() { *fnSlot = oldFn; }
- private:
- const FunctionDecl *oldFn;
- const FunctionDecl **fnSlot;
- };
- FnEnvRAII fnEnvRAII(&curFunction, decl);
- // We are about to start translation for a new function. Clear the break stack
- // and the continue stack.
- breakStack = std::stack<SpirvBasicBlock *>();
- continueStack = std::stack<SpirvBasicBlock *>();
- // This will allow the entry-point name to be something like
- // myNamespace::myEntrypointFunc.
- std::string funcName = getFnName(decl);
- SpirvFunction *func = declIdMapper.getOrRegisterFn(decl);
- const auto iter = functionInfoMap.find(decl);
- if (iter != functionInfoMap.end()) {
- const auto &entryInfo = iter->second;
- if (entryInfo->isEntryFunction) {
- funcName = "src." + funcName;
- // Create wrapper for the entry function
- if (!emitEntryFunctionWrapper(decl, func))
- return;
- }
- }
- const QualType retType =
- declIdMapper.getTypeAndCreateCounterForPotentialAliasVar(decl);
- // Construct the function signature.
- llvm::SmallVector<QualType, 4> paramTypes;
- bool isNonStaticMemberFn = false;
- if (const auto *memberFn = dyn_cast<CXXMethodDecl>(decl)) {
- isNonStaticMemberFn = !memberFn->isStatic();
- if (isNonStaticMemberFn) {
- // For non-static member function, the first parameter should be the
- // object on which we are invoking this method.
- const QualType valueType =
- memberFn->getThisType(astContext)->getPointeeType();
- paramTypes.push_back(valueType);
- }
- }
- for (const auto *param : decl->params()) {
- const QualType valueType =
- declIdMapper.getTypeAndCreateCounterForPotentialAliasVar(param);
- paramTypes.push_back(valueType);
- }
- spvBuilder.beginFunction(retType, paramTypes, decl->getLocStart(), funcName,
- decl->hasAttr<HLSLPreciseAttr>(), func);
- if (isNonStaticMemberFn) {
- // Remember the parameter for the 'this' object so later we can handle
- // CXXThisExpr correctly.
- curThis = spvBuilder.addFnParam(paramTypes[0], /*isPrecise*/ false,
- decl->getLocStart(), "param.this");
- if (isOrContainsAKindOfStructuredOrByteBuffer(paramTypes[0])) {
- curThis->setContainsAliasComponent(true);
- needsLegalization = true;
- }
- }
- // Create all parameters.
- for (uint32_t i = 0; i < decl->getNumParams(); ++i) {
- const ParmVarDecl *paramDecl = decl->getParamDecl(i);
- (void)declIdMapper.createFnParam(paramDecl);
- }
- if (decl->hasBody()) {
- // The entry basic block.
- auto *entryLabel = spvBuilder.createBasicBlock("bb.entry");
- spvBuilder.setInsertPoint(entryLabel);
- // Process all statments in the body.
- doStmt(decl->getBody());
- // We have processed all Stmts in this function and now in the last
- // basic block. Make sure we have a termination instruction.
- if (!spvBuilder.isCurrentBasicBlockTerminated()) {
- const auto retType = decl->getReturnType();
- const auto returnLoc = decl->getBody()->getLocEnd();
- if (retType->isVoidType()) {
- spvBuilder.createReturn(returnLoc);
- } else {
- // If the source code does not provide a proper return value for some
- // control flow path, it's undefined behavior. We just return null
- // value here.
- spvBuilder.createReturnValue(spvBuilder.getConstantNull(retType),
- returnLoc);
- }
- }
- }
- spvBuilder.endFunction();
- }
- bool SpirvEmitter::validateVKAttributes(const NamedDecl *decl) {
- bool success = true;
- if (const auto *varDecl = dyn_cast<VarDecl>(decl)) {
- const auto varType = varDecl->getType();
- if ((isSubpassInput(varType) || isSubpassInputMS(varType)) &&
- !varDecl->hasAttr<VKInputAttachmentIndexAttr>()) {
- emitError("missing vk::input_attachment_index attribute",
- varDecl->getLocation());
- success = false;
- }
- }
- if (decl->getAttr<VKInputAttachmentIndexAttr>()) {
- if (!spvContext.isPS()) {
- emitError("SubpassInput(MS) only allowed in pixel shader",
- decl->getLocation());
- success = false;
- }
- if (!decl->isExternallyVisible()) {
- emitError("SubpassInput(MS) must be externally visible",
- decl->getLocation());
- success = false;
- }
- // We only allow VKInputAttachmentIndexAttr to be attached to global
- // variables. So it should be fine to cast here.
- const auto elementType =
- hlsl::GetHLSLResourceResultType(cast<VarDecl>(decl)->getType());
- if (!isScalarType(elementType) && !isVectorType(elementType)) {
- emitError(
- "only scalar/vector types allowed as SubpassInput(MS) parameter type",
- decl->getLocation());
- // Return directly to avoid further type processing, which will hit
- // asserts when lowering the type.
- return false;
- }
- }
- // The frontend will make sure that
- // * vk::push_constant applies to global variables of struct type
- // * vk::binding applies to global variables or cbuffers/tbuffers
- // * vk::counter_binding applies to global variables of RW/Append/Consume
- // StructuredBuffer
- // * vk::location applies to function parameters/returns and struct fields
- // So the only case we need to check co-existence is vk::push_constant and
- // vk::binding.
- if (const auto *pcAttr = decl->getAttr<VKPushConstantAttr>()) {
- const auto loc = pcAttr->getLocation();
- if (seenPushConstantAt.isInvalid()) {
- seenPushConstantAt = loc;
- } else {
- // TODO: Actually this is slightly incorrect. The Vulkan spec says:
- // There must be no more than one push constant block statically used
- // per shader entry point.
- // But we are checking whether there are more than one push constant
- // blocks defined. Tracking usage requires more work.
- emitError("cannot have more than one push constant block", loc);
- emitNote("push constant block previously defined here",
- seenPushConstantAt);
- success = false;
- }
- if (decl->hasAttr<VKBindingAttr>()) {
- emitError("vk::push_constant attribute cannot be used together with "
- "vk::binding attribute",
- loc);
- success = false;
- }
- }
- // vk::shader_record_nv is supported only on cbuffer/ConstantBuffer
- if (const auto *srbAttr = decl->getAttr<VKShaderRecordNVAttr>()) {
- const auto loc = srbAttr->getLocation();
- const HLSLBufferDecl *bufDecl = nullptr;
- bool isValidType = false;
- if (bufDecl = dyn_cast<HLSLBufferDecl>(decl))
- isValidType = bufDecl->isCBuffer();
- else if (bufDecl = dyn_cast<HLSLBufferDecl>(decl->getDeclContext()))
- isValidType = bufDecl->isCBuffer();
- if (!isValidType) {
- emitError(
- "vk::shader_record_nv can be applied only to cbuffer/ConstantBuffer",
- loc);
- success = false;
- }
- if (decl->hasAttr<VKBindingAttr>()) {
- emitError("vk::shader_record_nv attribute cannot be used together with "
- "vk::binding attribute",
- loc);
- success = false;
- }
- }
- return success;
- }
- void SpirvEmitter::doHLSLBufferDecl(const HLSLBufferDecl *bufferDecl) {
- // This is a cbuffer/tbuffer decl.
- // Check and emit warnings for member intializers which are not
- // supported in Vulkan
- for (const auto *member : bufferDecl->decls()) {
- if (const auto *varMember = dyn_cast<VarDecl>(member)) {
- if (!spirvOptions.noWarnIgnoredFeatures) {
- if (const auto *init = varMember->getInit())
- emitWarning("%select{tbuffer|cbuffer}0 member initializer "
- "ignored since no Vulkan equivalent",
- init->getExprLoc())
- << bufferDecl->isCBuffer() << init->getSourceRange();
- }
- // We cannot handle external initialization of column-major matrices now.
- if (isOrContainsNonFpColMajorMatrix(astContext, spirvOptions,
- varMember->getType(), varMember)) {
- emitError("externally initialized non-floating-point column-major "
- "matrices not supported yet",
- varMember->getLocation());
- }
- }
- }
- if (!validateVKAttributes(bufferDecl))
- return;
- if (bufferDecl->hasAttr<VKShaderRecordNVAttr>()) {
- (void)declIdMapper.createShaderRecordBufferNV(bufferDecl);
- } else {
- (void)declIdMapper.createCTBuffer(bufferDecl);
- }
- }
- void SpirvEmitter::doImplicitDecl(const Decl *decl) {
- // We only handle specific implicit declaration for raytracing
- // which are RayFlag/HitKind constant unsigned integers
- // Ignore others
- if (spvContext.isLib() || spvContext.isRay()) {
- const VarDecl *implDecl = dyn_cast<VarDecl>(decl);
- if (implDecl && (implDecl->getName().startswith(StringRef("RAY_FLAG")) ||
- implDecl->getName().startswith(StringRef("HIT_KIND")))) {
- (void)declIdMapper.createRayTracingNVImplicitVar(implDecl);
- }
- }
- }
- void SpirvEmitter::doRecordDecl(const RecordDecl *recordDecl) {
- // Ignore implict records
- // Somehow we'll have implicit records with:
- // static const int Length = count;
- // that can mess up with the normal CodeGen.
- if (recordDecl->isImplicit())
- return;
- // Handle each static member with inline initializer.
- // Each static member has a corresponding VarDecl inside the
- // RecordDecl. For those defined in the translation unit,
- // their VarDecls do not have initializer.
- for (auto *subDecl : recordDecl->decls())
- if (auto *varDecl = dyn_cast<VarDecl>(subDecl))
- if (varDecl->isStaticDataMember() && varDecl->hasInit())
- doVarDecl(varDecl);
- }
- void SpirvEmitter::doEnumDecl(const EnumDecl *decl) {
- for (auto it = decl->enumerator_begin(); it != decl->enumerator_end(); ++it)
- declIdMapper.createEnumConstant(*it);
- }
- void SpirvEmitter::doVarDecl(const VarDecl *decl) {
- if (!validateVKAttributes(decl))
- return;
- // HLSL has the 'string' type which can be used for rare purposes such as
- // printf (SPIR-V's DebugPrintf). SPIR-V does not have a 'char' or 'string'
- // type, and therefore any variable of such type should not be created.
- // DeclResultIdMapper maps such decl to an OpString instruction that
- // represents the variable's initializer literal.
- if (isStringType(decl->getType())) {
- declIdMapper.createOrUpdateStringVar(decl);
- return;
- }
- // We cannot handle external initialization of column-major matrices now.
- if (isExternalVar(decl) &&
- isOrContainsNonFpColMajorMatrix(astContext, spirvOptions, decl->getType(),
- decl)) {
- emitError("externally initialized non-floating-point column-major "
- "matrices not supported yet",
- decl->getLocation());
- }
- // Reject arrays of RW/append/consume structured buffers. They have assoicated
- // counters, which are quite nasty to handle.
- if (decl->getType()->isArrayType()) {
- auto type = decl->getType();
- do {
- type = type->getAsArrayTypeUnsafe()->getElementType();
- } while (type->isArrayType());
- if (isRWAppendConsumeSBuffer(type)) {
- emitError("arrays of RW/append/consume structured buffers unsupported",
- decl->getLocation());
- return;
- }
- }
- if (decl->hasAttr<VKConstantIdAttr>()) {
- // This is a VarDecl for specialization constant.
- createSpecConstant(decl);
- return;
- }
- if (decl->hasAttr<VKPushConstantAttr>()) {
- // This is a VarDecl for PushConstant block.
- (void)declIdMapper.createPushConstant(decl);
- return;
- }
- if (decl->hasAttr<VKShaderRecordNVAttr>()) {
- (void)declIdMapper.createShaderRecordBufferNV(decl);
- return;
- }
- if (isa<HLSLBufferDecl>(decl->getDeclContext())) {
- // This is a VarDecl of a ConstantBuffer/TextureBuffer type.
- (void)declIdMapper.createCTBuffer(decl);
- return;
- }
- SpirvVariable *var = nullptr;
- // The contents in externally visible variables can be updated via the
- // pipeline. They should be handled differently from file and function scope
- // variables.
- // File scope variables (static "global" and "local" variables) belongs to
- // the Private storage class, while function scope variables (normal "local"
- // variables) belongs to the Function storage class.
- if (isExternalVar(decl)) {
- var = declIdMapper.createExternVar(decl);
- } else {
- // We already know the variable is not externally visible here. If it does
- // not have local storage, it should be file scope variable.
- const bool isFileScopeVar = !decl->hasLocalStorage();
- if (isFileScopeVar)
- var = declIdMapper.createFileVar(decl, llvm::None);
- else
- var = declIdMapper.createFnVar(decl, llvm::None);
- // Emit OpStore to initialize the variable
- // TODO: revert back to use OpVariable initializer
- // We should only evaluate the initializer once for a static variable.
- if (isFileScopeVar) {
- if (decl->isStaticLocal()) {
- initOnce(decl->getType(), decl->getName(), var, decl->getInit());
- } else {
- // Defer to initialize these global variables at the beginning of the
- // entry function.
- toInitGloalVars.push_back(decl);
- }
- }
- // Function local variables. Just emit OpStore at the current insert point.
- else if (const Expr *init = decl->getInit()) {
- if (auto *constInit = tryToEvaluateAsConst(init)) {
- spvBuilder.createStore(var, constInit, decl->getLocation());
- } else {
- storeValue(var, loadIfGLValue(init), decl->getType(),
- decl->getLocation());
- }
- // Update counter variable associated with local variables
- tryToAssignCounterVar(decl, init);
- }
- // Variables that are not externally visible and of opaque types should
- // request legalization.
- if (!needsLegalization && isOpaqueType(decl->getType()))
- needsLegalization = true;
- }
- // All variables that are of opaque struct types should request legalization.
- if (!needsLegalization && isOpaqueStructType(decl->getType()))
- needsLegalization = true;
- }
- spv::LoopControlMask SpirvEmitter::translateLoopAttribute(const Stmt *stmt,
- const Attr &attr) {
- switch (attr.getKind()) {
- case attr::HLSLLoop:
- case attr::HLSLFastOpt:
- return spv::LoopControlMask::DontUnroll;
- case attr::HLSLUnroll:
- return spv::LoopControlMask::Unroll;
- case attr::HLSLAllowUAVCondition:
- if (!spirvOptions.noWarnIgnoredFeatures) {
- emitWarning("unsupported allow_uav_condition attribute ignored",
- stmt->getLocStart());
- }
- break;
- default:
- llvm_unreachable("found unknown loop attribute");
- }
- return spv::LoopControlMask::MaskNone;
- }
- void SpirvEmitter::doDiscardStmt(const DiscardStmt *discardStmt) {
- assert(!spvBuilder.isCurrentBasicBlockTerminated());
- // The discard statement can only be called from a pixel shader
- if (!spvContext.isPS()) {
- emitError("discard statement may only be used in pixel shaders",
- discardStmt->getLoc());
- return;
- }
- // SPV_EXT_demote_to_helper_invocation SPIR-V extension provides a new
- // instruction OpDemoteToHelperInvocationEXT allowing shaders to "demote" a
- // fragment shader invocation to behave like a helper invocation for its
- // duration. The demoted invocation will have no further side effects and will
- // not output to the framebuffer, but remains active and can participate in
- // computing derivatives and in subgroup operations. This is a better match
- // for the "discard" instruction in HLSL.
- spvBuilder.createDemoteToHelperInvocationEXT(discardStmt->getLoc());
- }
- void SpirvEmitter::doDoStmt(const DoStmt *theDoStmt,
- llvm::ArrayRef<const Attr *> attrs) {
- // do-while loops are composed of:
- //
- // do {
- // <body>
- // } while(<check>);
- //
- // SPIR-V requires loops to have a merge basic block as well as a continue
- // basic block. Even though do-while loops do not have an explicit continue
- // block as in for-loops, we still do need to create a continue block.
- //
- // Since SPIR-V requires structured control flow, we need two more basic
- // blocks, <header> and <merge>. <header> is the block before control flow
- // diverges, and <merge> is the block where control flow subsequently
- // converges. The <check> can be performed in the <continue> basic block.
- // The final CFG should normally be like the following. Exceptions
- // will occur with non-local exits like loop breaks or early returns.
- //
- // +----------+
- // | header | <-----------------------------------+
- // +----------+ |
- // | | (true)
- // v |
- // +------+ +--------------------+ |
- // | body | ----> | continue (<check>) |-----------+
- // +------+ +--------------------+
- // |
- // | (false)
- // +-------+ |
- // | merge | <-------------+
- // +-------+
- //
- // For more details, see "2.11. Structured Control Flow" in the SPIR-V spec.
- const spv::LoopControlMask loopControl =
- attrs.empty() ? spv::LoopControlMask::MaskNone
- : translateLoopAttribute(theDoStmt, *attrs.front());
- // Create basic blocks
- auto *headerBB = spvBuilder.createBasicBlock("do_while.header");
- auto *bodyBB = spvBuilder.createBasicBlock("do_while.body");
- auto *continueBB = spvBuilder.createBasicBlock("do_while.continue");
- auto *mergeBB = spvBuilder.createBasicBlock("do_while.merge");
- // Make sure any continue statements branch to the continue block, and any
- // break statements branch to the merge block.
- continueStack.push(continueBB);
- breakStack.push(mergeBB);
- // Branch from the current insert point to the header block.
- spvBuilder.createBranch(headerBB, theDoStmt->getLocStart());
- spvBuilder.addSuccessor(headerBB);
- // Process the <header> block
- // The header block must always branch to the body.
- spvBuilder.setInsertPoint(headerBB);
- const Stmt *body = theDoStmt->getBody();
- spvBuilder.createBranch(bodyBB,
- body ? body->getLocStart() : theDoStmt->getLocStart(),
- mergeBB, continueBB, loopControl);
- spvBuilder.addSuccessor(bodyBB);
- // The current basic block has OpLoopMerge instruction. We need to set its
- // continue and merge target.
- spvBuilder.setContinueTarget(continueBB);
- spvBuilder.setMergeTarget(mergeBB);
- // Process the <body> block
- spvBuilder.setInsertPoint(bodyBB);
- if (body) {
- doStmt(body);
- }
- if (!spvBuilder.isCurrentBasicBlockTerminated()) {
- spvBuilder.createBranch(continueBB, body ? body->getLocEnd()
- : theDoStmt->getLocStart());
- }
- spvBuilder.addSuccessor(continueBB);
- // Process the <continue> block. The check for whether the loop should
- // continue lies in the continue block.
- // *NOTE*: There's a SPIR-V rule that when a conditional branch is to occur in
- // a continue block of a loop, there should be no OpSelectionMerge. Only an
- // OpBranchConditional must be specified.
- spvBuilder.setInsertPoint(continueBB);
- SpirvInstruction *condition = nullptr;
- if (const Expr *check = theDoStmt->getCond()) {
- condition = doExpr(check);
- } else {
- condition = spvBuilder.getConstantBool(true);
- }
- spvBuilder.createConditionalBranch(condition, headerBB, mergeBB,
- theDoStmt->getLocEnd());
- spvBuilder.addSuccessor(headerBB);
- spvBuilder.addSuccessor(mergeBB);
- // Set insertion point to the <merge> block for subsequent statements
- spvBuilder.setInsertPoint(mergeBB);
- // Done with the current scope's continue block and merge block.
- continueStack.pop();
- breakStack.pop();
- }
- void SpirvEmitter::doContinueStmt(const ContinueStmt *continueStmt) {
- assert(!spvBuilder.isCurrentBasicBlockTerminated());
- auto *continueTargetBB = continueStack.top();
- spvBuilder.createBranch(continueTargetBB, continueStmt->getLocStart());
- spvBuilder.addSuccessor(continueTargetBB);
- // Some statements that alter the control flow (break, continue, return, and
- // discard), require creation of a new basic block to hold any statement that
- // may follow them. For example: StmtB and StmtC below are put inside a new
- // basic block which is unreachable.
- //
- // while (true) {
- // StmtA;
- // continue;
- // StmtB;
- // StmtC;
- // }
- auto *newBB = spvBuilder.createBasicBlock();
- spvBuilder.setInsertPoint(newBB);
- }
- void SpirvEmitter::doWhileStmt(const WhileStmt *whileStmt,
- llvm::ArrayRef<const Attr *> attrs) {
- // While loops are composed of:
- // while (<check>) { <body> }
- //
- // SPIR-V requires loops to have a merge basic block as well as a continue
- // basic block. Even though while loops do not have an explicit continue
- // block as in for-loops, we still do need to create a continue block.
- //
- // Since SPIR-V requires structured control flow, we need two more basic
- // blocks, <header> and <merge>. <header> is the block before control flow
- // diverges, and <merge> is the block where control flow subsequently
- // converges. The <check> block can take the responsibility of the <header>
- // block. The final CFG should normally be like the following. Exceptions
- // will occur with non-local exits like loop breaks or early returns.
- //
- // +----------+
- // | header | <------------------+
- // | (check) | |
- // +----------+ |
- // | |
- // +-------+-------+ |
- // | false | true |
- // | v |
- // | +------+ +------------------+
- // | | body | --> | continue (no-op) |
- // v +------+ +------------------+
- // +-------+
- // | merge |
- // +-------+
- //
- // For more details, see "2.11. Structured Control Flow" in the SPIR-V spec.
- const spv::LoopControlMask loopControl =
- attrs.empty() ? spv::LoopControlMask::MaskNone
- : translateLoopAttribute(whileStmt, *attrs.front());
- // Create basic blocks
- auto *checkBB = spvBuilder.createBasicBlock("while.check");
- auto *bodyBB = spvBuilder.createBasicBlock("while.body");
- auto *continueBB = spvBuilder.createBasicBlock("while.continue");
- auto *mergeBB = spvBuilder.createBasicBlock("while.merge");
- // Make sure any continue statements branch to the continue block, and any
- // break statements branch to the merge block.
- continueStack.push(continueBB);
- breakStack.push(mergeBB);
- // Process the <check> block
- spvBuilder.createBranch(checkBB, whileStmt->getLocStart());
- spvBuilder.addSuccessor(checkBB);
- spvBuilder.setInsertPoint(checkBB);
- // If we have:
- // while (int a = foo()) {...}
- // we should evaluate 'a' by calling 'foo()' every single time the check has
- // to occur.
- if (const auto *condVarDecl = whileStmt->getConditionVariableDeclStmt())
- doStmt(condVarDecl);
- SpirvInstruction *condition = nullptr;
- const Expr *check = whileStmt->getCond();
- if (check) {
- condition = doExpr(check);
- } else {
- condition = spvBuilder.getConstantBool(true);
- }
- spvBuilder.createConditionalBranch(
- condition, bodyBB,
- /*false branch*/ mergeBB, whileStmt->getLocStart(),
- /*merge*/ mergeBB, continueBB, spv::SelectionControlMask::MaskNone,
- loopControl);
- spvBuilder.addSuccessor(bodyBB);
- spvBuilder.addSuccessor(mergeBB);
- // The current basic block has OpLoopMerge instruction. We need to set its
- // continue and merge target.
- spvBuilder.setContinueTarget(continueBB);
- spvBuilder.setMergeTarget(mergeBB);
- // Process the <body> block
- spvBuilder.setInsertPoint(bodyBB);
- const Stmt *body = whileStmt->getBody();
- if (body) {
- doStmt(body);
- }
- if (!spvBuilder.isCurrentBasicBlockTerminated())
- spvBuilder.createBranch(continueBB, whileStmt->getLocEnd());
- spvBuilder.addSuccessor(continueBB);
- // Process the <continue> block. While loops do not have an explicit
- // continue block. The continue block just branches to the <check> block.
- spvBuilder.setInsertPoint(continueBB);
- spvBuilder.createBranch(checkBB, whileStmt->getLocEnd());
- spvBuilder.addSuccessor(checkBB);
- // Set insertion point to the <merge> block for subsequent statements
- spvBuilder.setInsertPoint(mergeBB);
- // Done with the current scope's continue and merge blocks.
- continueStack.pop();
- breakStack.pop();
- }
- void SpirvEmitter::doForStmt(const ForStmt *forStmt,
- llvm::ArrayRef<const Attr *> attrs) {
- // for loops are composed of:
- // for (<init>; <check>; <continue>) <body>
- //
- // To translate a for loop, we'll need to emit all <init> statements
- // in the current basic block, and then have separate basic blocks for
- // <check>, <continue>, and <body>. Besides, since SPIR-V requires
- // structured control flow, we need two more basic blocks, <header>
- // and <merge>. <header> is the block before control flow diverges,
- // while <merge> is the block where control flow subsequently converges.
- // The <check> block can take the responsibility of the <header> block.
- // The final CFG should normally be like the following. Exceptions will
- // occur with non-local exits like loop breaks or early returns.
- // +--------+
- // | init |
- // +--------+
- // |
- // v
- // +----------+
- // | header | <---------------+
- // | (check) | |
- // +----------+ |
- // | |
- // +-------+-------+ |
- // | false | true |
- // | v |
- // | +------+ +----------+
- // | | body | --> | continue |
- // v +------+ +----------+
- // +-------+
- // | merge |
- // +-------+
- //
- // For more details, see "2.11. Structured Control Flow" in the SPIR-V spec.
- const spv::LoopControlMask loopControl =
- attrs.empty() ? spv::LoopControlMask::MaskNone
- : translateLoopAttribute(forStmt, *attrs.front());
- // Create basic blocks
- auto *checkBB = spvBuilder.createBasicBlock("for.check");
- auto *bodyBB = spvBuilder.createBasicBlock("for.body");
- auto *continueBB = spvBuilder.createBasicBlock("for.continue");
- auto *mergeBB = spvBuilder.createBasicBlock("for.merge");
- // Make sure any continue statements branch to the continue block, and any
- // break statements branch to the merge block.
- continueStack.push(continueBB);
- breakStack.push(mergeBB);
- // Process the <init> block
- if (const Stmt *initStmt = forStmt->getInit()) {
- doStmt(initStmt);
- }
- const Expr *check = forStmt->getCond();
- spvBuilder.createBranch(checkBB, check ? check->getLocStart()
- : forStmt->getLocStart());
- spvBuilder.addSuccessor(checkBB);
- // Process the <check> block
- spvBuilder.setInsertPoint(checkBB);
- SpirvInstruction *condition = nullptr;
- if (check) {
- condition = doExpr(check);
- } else {
- condition = spvBuilder.getConstantBool(true);
- }
- const Stmt *body = forStmt->getBody();
- spvBuilder.createConditionalBranch(
- condition, bodyBB,
- /*false branch*/ mergeBB,
- check ? check->getLocEnd()
- : (body ? body->getLocStart() : forStmt->getLocStart()),
- /*merge*/ mergeBB, continueBB, spv::SelectionControlMask::MaskNone,
- loopControl);
- spvBuilder.addSuccessor(bodyBB);
- spvBuilder.addSuccessor(mergeBB);
- // The current basic block has OpLoopMerge instruction. We need to set its
- // continue and merge target.
- spvBuilder.setContinueTarget(continueBB);
- spvBuilder.setMergeTarget(mergeBB);
- // Process the <body> block
- spvBuilder.setInsertPoint(bodyBB);
- if (body) {
- doStmt(body);
- }
- if (!spvBuilder.isCurrentBasicBlockTerminated())
- spvBuilder.createBranch(continueBB, forStmt->getLocEnd());
- spvBuilder.addSuccessor(continueBB);
- // Process the <continue> block
- spvBuilder.setInsertPoint(continueBB);
- if (const Expr *cont = forStmt->getInc()) {
- doExpr(cont);
- }
- // <continue> should jump back to header
- spvBuilder.createBranch(checkBB, forStmt->getLocEnd());
- spvBuilder.addSuccessor(checkBB);
- // Set insertion point to the <merge> block for subsequent statements
- spvBuilder.setInsertPoint(mergeBB);
- // Done with the current scope's continue block and merge block.
- continueStack.pop();
- breakStack.pop();
- }
- void SpirvEmitter::doIfStmt(const IfStmt *ifStmt,
- llvm::ArrayRef<const Attr *> attrs) {
- // if statements are composed of:
- // if (<check>) { <then> } else { <else> }
- //
- // To translate if statements, we'll need to emit the <check> expressions
- // in the current basic block, and then create separate basic blocks for
- // <then> and <else>. Additionally, we'll need a <merge> block as per
- // SPIR-V's structured control flow requirements. Depending whether there
- // exists the else branch, the final CFG should normally be like the
- // following. Exceptions will occur with non-local exits like loop breaks
- // or early returns.
- // +-------+ +-------+
- // | check | | check |
- // +-------+ +-------+
- // | |
- // +-------+-------+ +-----+-----+
- // | true | false | true | false
- // v v or v |
- // +------+ +------+ +------+ |
- // | then | | else | | then | |
- // +------+ +------+ +------+ |
- // | | | v
- // | +-------+ | | +-------+
- // +-> | merge | <-+ +---> | merge |
- // +-------+ +-------+
- { // Try to see if we can const-eval the condition
- bool condition = false;
- if (ifStmt->getCond()->EvaluateAsBooleanCondition(condition, astContext)) {
- if (condition) {
- doStmt(ifStmt->getThen());
- } else if (ifStmt->getElse()) {
- doStmt(ifStmt->getElse());
- }
- return;
- }
- }
- auto selectionControl = spv::SelectionControlMask::MaskNone;
- if (!attrs.empty()) {
- const Attr *attribute = attrs.front();
- switch (attribute->getKind()) {
- case attr::HLSLBranch:
- selectionControl = spv::SelectionControlMask::DontFlatten;
- break;
- case attr::HLSLFlatten:
- selectionControl = spv::SelectionControlMask::Flatten;
- break;
- default:
- if (!spirvOptions.noWarnIgnoredFeatures) {
- emitWarning("unknown if statement attribute '%0' ignored",
- attribute->getLocation())
- << attribute->getSpelling();
- }
- break;
- }
- }
- if (const auto *declStmt = ifStmt->getConditionVariableDeclStmt())
- doDeclStmt(declStmt);
- // First emit the instruction for evaluating the condition.
- auto *condition = doExpr(ifStmt->getCond());
- // Then we need to emit the instruction for the conditional branch.
- // We'll need the <label-id> for the then/else/merge block to do so.
- const bool hasElse = ifStmt->getElse() != nullptr;
- auto *thenBB = spvBuilder.createBasicBlock("if.true");
- auto *mergeBB = spvBuilder.createBasicBlock("if.merge");
- auto *elseBB = hasElse ? spvBuilder.createBasicBlock("if.false") : mergeBB;
- // Create the branch instruction. This will end the current basic block.
- const auto *then = ifStmt->getThen();
- spvBuilder.createConditionalBranch(condition, thenBB, elseBB,
- then->getLocStart(), mergeBB,
- /*continue*/ 0, selectionControl);
- spvBuilder.addSuccessor(thenBB);
- spvBuilder.addSuccessor(elseBB);
- // The current basic block has the OpSelectionMerge instruction. We need
- // to record its merge target.
- spvBuilder.setMergeTarget(mergeBB);
- // Handle the then branch
- spvBuilder.setInsertPoint(thenBB);
- doStmt(then);
- if (!spvBuilder.isCurrentBasicBlockTerminated())
- spvBuilder.createBranch(mergeBB, ifStmt->getLocEnd());
- spvBuilder.addSuccessor(mergeBB);
- // Handle the else branch (if exists)
- if (hasElse) {
- spvBuilder.setInsertPoint(elseBB);
- const auto *elseStmt = ifStmt->getElse();
- doStmt(elseStmt);
- if (!spvBuilder.isCurrentBasicBlockTerminated())
- spvBuilder.createBranch(mergeBB, elseStmt->getLocEnd());
- spvBuilder.addSuccessor(mergeBB);
- }
- // From now on, we'll emit instructions into the merge block.
- spvBuilder.setInsertPoint(mergeBB);
- }
- void SpirvEmitter::doReturnStmt(const ReturnStmt *stmt) {
- if (const auto *retVal = stmt->getRetValue()) {
- // Update counter variable associated with function returns
- tryToAssignCounterVar(curFunction, retVal);
- auto *retInfo = loadIfGLValue(retVal);
- if (!retInfo)
- return;
- auto retType = retVal->getType();
- if (retInfo->getStorageClass() != spv::StorageClass::Function &&
- retType->isStructureType()) {
- // We are returning some value from a non-Function storage class. Need to
- // create a temporary variable to "convert" the value to Function storage
- // class and then return.
- auto *tempVar =
- spvBuilder.addFnVar(retType, retVal->getLocEnd(), "temp.var.ret");
- storeValue(tempVar, retInfo, retType, retVal->getLocEnd());
- spvBuilder.createReturnValue(
- spvBuilder.createLoad(retType, tempVar, retVal->getLocEnd()),
- stmt->getReturnLoc());
- } else {
- spvBuilder.createReturnValue(retInfo, stmt->getReturnLoc());
- }
- } else {
- spvBuilder.createReturn(stmt->getReturnLoc());
- }
- // We are translating a ReturnStmt, we should be in some function's body.
- assert(curFunction->hasBody());
- // If this return statement is the last statement in the function, then
- // whe have no more work to do.
- if (cast<CompoundStmt>(curFunction->getBody())->body_back() == stmt)
- return;
- // Some statements that alter the control flow (break, continue, return, and
- // discard), require creation of a new basic block to hold any statement that
- // may follow them. In this case, the newly created basic block will contain
- // any statement that may come after an early return.
- auto *newBB = spvBuilder.createBasicBlock();
- spvBuilder.setInsertPoint(newBB);
- }
- void SpirvEmitter::doBreakStmt(const BreakStmt *breakStmt) {
- assert(!spvBuilder.isCurrentBasicBlockTerminated());
- auto *breakTargetBB = breakStack.top();
- spvBuilder.addSuccessor(breakTargetBB);
- spvBuilder.createBranch(breakTargetBB, breakStmt->getLocStart());
- // Some statements that alter the control flow (break, continue, return, and
- // discard), require creation of a new basic block to hold any statement that
- // may follow them. For example: StmtB and StmtC below are put inside a new
- // basic block which is unreachable.
- //
- // while (true) {
- // StmtA;
- // break;
- // StmtB;
- // StmtC;
- // }
- auto *newBB = spvBuilder.createBasicBlock();
- spvBuilder.setInsertPoint(newBB);
- }
- void SpirvEmitter::doSwitchStmt(const SwitchStmt *switchStmt,
- llvm::ArrayRef<const Attr *> attrs) {
- // Switch statements are composed of:
- // switch (<condition variable>) {
- // <CaseStmt>
- // <CaseStmt>
- // <CaseStmt>
- // <DefaultStmt> (optional)
- // }
- //
- // +-------+
- // | check |
- // +-------+
- // |
- // +-------+-------+----------------+---------------+
- // | 1 | 2 | 3 | (others)
- // v v v v
- // +-------+ +-------------+ +-------+ +------------+
- // | case1 | | case2 | | case3 | ... | default |
- // | | |(fallthrough)|---->| | | (optional) |
- // +-------+ |+------------+ +-------+ +------------+
- // | | |
- // | | |
- // | +-------+ | |
- // | | | <--------------------+ |
- // +-> | merge | |
- // | | <-------------------------------------+
- // +-------+
- // If no attributes are given, or if "forcecase" attribute was provided,
- // we'll do our best to use OpSwitch if possible.
- // If any of the cases compares to a variable (rather than an integer
- // literal), we cannot use OpSwitch because OpSwitch expects literal
- // numbers as parameters.
- const bool isAttrForceCase =
- !attrs.empty() && attrs.front()->getKind() == attr::HLSLForceCase;
- const bool canUseSpirvOpSwitch =
- (attrs.empty() || isAttrForceCase) &&
- allSwitchCasesAreIntegerLiterals(switchStmt->getBody());
- if (isAttrForceCase && !canUseSpirvOpSwitch &&
- !spirvOptions.noWarnIgnoredFeatures) {
- emitWarning("ignored 'forcecase' attribute for the switch statement "
- "since one or more case values are not integer literals",
- switchStmt->getLocStart());
- }
- if (canUseSpirvOpSwitch)
- processSwitchStmtUsingSpirvOpSwitch(switchStmt);
- else
- processSwitchStmtUsingIfStmts(switchStmt);
- }
- SpirvInstruction *
- SpirvEmitter::doArraySubscriptExpr(const ArraySubscriptExpr *expr) {
- llvm::SmallVector<SpirvInstruction *, 4> indices;
- const auto *base = collectArrayStructIndices(
- expr, /*rawIndex*/ false, /*rawIndices*/ nullptr, &indices);
- auto *info = loadIfAliasVarRef(base);
- if (!indices.empty()) {
- info = turnIntoElementPtr(base->getType(), info, expr->getType(), indices,
- base->getExprLoc());
- }
- return info;
- }
- SpirvInstruction *SpirvEmitter::doBinaryOperator(const BinaryOperator *expr) {
- const auto opcode = expr->getOpcode();
- // Handle assignment first since we need to evaluate rhs before lhs.
- // For other binary operations, we need to evaluate lhs before rhs.
- if (opcode == BO_Assign) {
- // Update counter variable associated with lhs of assignments
- tryToAssignCounterVar(expr->getLHS(), expr->getRHS());
- return processAssignment(expr->getLHS(), loadIfGLValue(expr->getRHS()),
- /*isCompoundAssignment=*/false);
- }
- // Try to optimize floatMxN * float and floatN * float case
- if (opcode == BO_Mul) {
- if (auto *result = tryToGenFloatMatrixScale(expr))
- return result;
- if (auto *result = tryToGenFloatVectorScale(expr))
- return result;
- }
- return processBinaryOp(expr->getLHS(), expr->getRHS(), opcode,
- expr->getLHS()->getType(), expr->getType(),
- expr->getSourceRange(), expr->getOperatorLoc());
- }
- SpirvInstruction *SpirvEmitter::doCallExpr(const CallExpr *callExpr) {
- if (const auto *operatorCall = dyn_cast<CXXOperatorCallExpr>(callExpr))
- return doCXXOperatorCallExpr(operatorCall);
- if (const auto *memberCall = dyn_cast<CXXMemberCallExpr>(callExpr))
- return doCXXMemberCallExpr(memberCall);
- // Intrinsic functions such as 'dot' or 'mul'
- if (hlsl::IsIntrinsicOp(callExpr->getDirectCallee())) {
- return processIntrinsicCallExpr(callExpr);
- }
- // Normal standalone functions
- return processCall(callExpr);
- }
- SpirvInstruction *SpirvEmitter::processCall(const CallExpr *callExpr) {
- const FunctionDecl *callee = getCalleeDefinition(callExpr);
- // Note that we always want the defintion because Stmts/Exprs in the
- // function body references the parameters in the definition.
- if (!callee) {
- emitError("found undefined function", callExpr->getExprLoc());
- return nullptr;
- }
- const auto paramTypeMatchesArgType = [](QualType paramType,
- QualType argType) {
- if (argType == paramType)
- return true;
- if (const auto *refType = paramType->getAs<ReferenceType>())
- paramType = refType->getPointeeType();
- auto argUnqualifiedType = argType->getUnqualifiedDesugaredType();
- auto paramUnqualifiedType = paramType->getUnqualifiedDesugaredType();
- if (argUnqualifiedType == paramUnqualifiedType)
- return true;
- return false;
- };
- const auto numParams = callee->getNumParams();
- bool isNonStaticMemberCall = false;
- QualType objectType = {}; // Type of the object (if exists)
- SpirvInstruction *objInstr = nullptr; // EvalInfo for the object (if exists)
- llvm::SmallVector<SpirvInstruction *, 4> vars; // Variables for function call
- llvm::SmallVector<bool, 4> isTempVar; // Temporary variable or not
- llvm::SmallVector<SpirvInstruction *, 4> args; // Evaluated arguments
- if (const auto *memberCall = dyn_cast<CXXMemberCallExpr>(callExpr)) {
- const auto *memberFn = cast<CXXMethodDecl>(memberCall->getCalleeDecl());
- isNonStaticMemberCall = !memberFn->isStatic();
- if (isNonStaticMemberCall) {
- // For non-static member calls, evaluate the object and pass it as the
- // first argument.
- const auto *object = memberCall->getImplicitObjectArgument();
- object = object->IgnoreParenNoopCasts(astContext);
- // Update counter variable associated with the implicit object
- tryToAssignCounterVar(getOrCreateDeclForMethodObject(memberFn), object);
- objectType = object->getType();
- objInstr = doExpr(object);
- // If not already a variable, we need to create a temporary variable and
- // pass the object pointer to the function. Example:
- // getObject().objectMethod();
- // Also, any parameter passed to the member function must be of Function
- // storage class.
- if (objInstr->isRValue()) {
- args.push_back(createTemporaryVar(
- objectType, getAstTypeName(objectType),
- // May need to load to use as initializer
- loadIfGLValue(object, objInstr), object->getLocStart()));
- } else {
- // Based on SPIR-V spec, function parameter must always be in Function
- // scope. If we pass a non-function scope argument, we need
- // the legalization.
- if (objInstr->getStorageClass() != spv::StorageClass::Function)
- beforeHlslLegalization = true;
- args.push_back(objInstr);
- }
- // We do not need to create a new temporary variable for the this
- // object. Use the evaluated argument.
- vars.push_back(args.back());
- isTempVar.push_back(false);
- }
- }
- // Evaluate parameters
- for (uint32_t i = 0; i < numParams; ++i) {
- // We want the argument variable here so that we can write back to it
- // later. We will do the OpLoad of this argument manually. So ingore
- // the LValueToRValue implicit cast here.
- auto *arg = callExpr->getArg(i)->IgnoreParenLValueCasts();
- const auto *param = callee->getParamDecl(i);
- // Get the evaluation info if this argument is referencing some variable
- // *as a whole*, in which case we can avoid creating the temporary variable
- // for it if it can act as out parameter.
- SpirvInstruction *argInfo = nullptr;
- if (const auto *declRefExpr = dyn_cast<DeclRefExpr>(arg)) {
- argInfo = declIdMapper.getDeclEvalInfo(declRefExpr->getDecl(),
- arg->getLocStart());
- }
- auto *argInst = doExpr(arg);
- auto argType = arg->getType();
- // If argInfo is nullptr and argInst is a rvalue, we do not have a proper
- // pointer to pass to the function. we need a temporary variable in that
- // case.
- if ((argInfo || (argInst && !argInst->isRValue())) &&
- canActAsOutParmVar(param) &&
- paramTypeMatchesArgType(param->getType(), arg->getType())) {
- // Based on SPIR-V spec, function parameter must be always Function
- // scope. In addition, we must pass memory object declaration argument
- // to function. If we pass an argument that is not function scope
- // or not memory object declaration, we need the legalization.
- if (!argInfo || argInfo->getStorageClass() != spv::StorageClass::Function)
- beforeHlslLegalization = true;
- isTempVar.push_back(false);
- args.push_back(argInst);
- vars.push_back(argInfo ? argInfo : argInst);
- } else {
- // We need to create variables for holding the values to be used as
- // arguments. The variables themselves are of pointer types.
- const QualType varType =
- declIdMapper.getTypeAndCreateCounterForPotentialAliasVar(param);
- const std::string varName = "param.var." + param->getNameAsString();
- // Temporary "param.var.*" variables are used for OpFunctionCall purposes.
- // 'precise' attribute on function parameters only affect computations
- // inside the function, not the variables at the call sites. Therefore, we
- // do not need to mark the "param.var.*" variables as precise.
- const bool isPrecise = false;
- auto *tempVar =
- spvBuilder.addFnVar(varType, arg->getLocStart(), varName, isPrecise);
- vars.push_back(tempVar);
- isTempVar.push_back(true);
- args.push_back(argInst);
- // Update counter variable associated with function parameters
- tryToAssignCounterVar(param, arg);
- // Manually load the argument here
- auto *rhsVal = loadIfGLValue(arg, args.back());
- // The AST does not include cast nodes to and from the function parameter
- // type for 'out' and 'inout' cases. Example:
- //
- // void foo(out half3 param) {...}
- // void main() { float3 arg; foo(arg); }
- //
- // In such cases, we first do a manual cast before passing the argument to
- // the function. And we will cast back the results once the function call
- // has returned.
- if (canActAsOutParmVar(param) &&
- !paramTypeMatchesArgType(param->getType(), arg->getType())) {
- auto paramType = param->getType();
- if (const auto *refType = paramType->getAs<ReferenceType>())
- paramType = refType->getPointeeType();
- rhsVal =
- castToType(rhsVal, arg->getType(), paramType, arg->getLocStart());
- }
- // Initialize the temporary variables using the contents of the arguments
- storeValue(tempVar, rhsVal, param->getType(), arg->getLocStart());
- }
- }
- if (beforeHlslLegalization)
- needsLegalization = true;
- assert(vars.size() == isTempVar.size());
- assert(vars.size() == args.size());
- // Push the callee into the work queue if it is not there.
- addFunctionToWorkQueue(spvContext.getCurrentShaderModelKind(), callee,
- /*isEntryFunction*/ false);
- const QualType retType =
- declIdMapper.getTypeAndCreateCounterForPotentialAliasVar(callee);
- // Get or forward declare the function <result-id>
- SpirvFunction *func = declIdMapper.getOrRegisterFn(callee);
- auto *retVal = spvBuilder.createFunctionCall(
- retType, func, vars, callExpr->getCallee()->getExprLoc());
- // Go through all parameters and write those marked as out/inout
- for (uint32_t i = 0; i < numParams; ++i) {
- const auto *param = callee->getParamDecl(i);
- // If it calls a non-static member function, the object itself is argument
- // 0, and therefore all other argument positions are shifted by 1.
- const uint32_t index = i + isNonStaticMemberCall;
- if (isTempVar[index] && canActAsOutParmVar(param)) {
- const auto *arg = callExpr->getArg(i);
- SpirvInstruction *value = spvBuilder.createLoad(
- param->getType(), vars[index], arg->getLocStart());
- // Now we want to assign 'value' to arg. But first, in rare cases when
- // using 'out' or 'inout' where the parameter and argument have a type
- // mismatch, we need to first cast 'value' to the type of 'arg' because
- // the AST will not include a cast node.
- if (!paramTypeMatchesArgType(param->getType(), arg->getType())) {
- auto paramType = param->getType();
- if (const auto *refType = paramType->getAs<ReferenceType>())
- paramType = refType->getPointeeType();
- value =
- castToType(value, paramType, arg->getType(), arg->getLocStart());
- }
- processAssignment(arg, value, false, args[index]);
- }
- }
- return retVal;
- }
- SpirvInstruction *SpirvEmitter::doCastExpr(const CastExpr *expr) {
- const Expr *subExpr = expr->getSubExpr();
- const QualType subExprType = subExpr->getType();
- const QualType toType = expr->getType();
- const auto srcLoc = expr->getExprLoc();
- switch (expr->getCastKind()) {
- case CastKind::CK_LValueToRValue:
- return loadIfGLValue(subExpr);
- case CastKind::CK_NoOp:
- return doExpr(subExpr);
- case CastKind::CK_IntegralCast:
- case CastKind::CK_FloatingToIntegral:
- case CastKind::CK_HLSLCC_IntegralCast:
- case CastKind::CK_HLSLCC_FloatingToIntegral: {
- // Integer literals in the AST are represented using 64bit APInt
- // themselves and then implicitly casted into the expected bitwidth.
- // We need special treatment of integer literals here because generating
- // a 64bit constant and then explicit casting in SPIR-V requires Int64
- // capability. We should avoid introducing unnecessary capabilities to
- // our best.
- if (auto *value = tryToEvaluateAsConst(expr)) {
- value->setRValue();
- return value;
- }
- auto *value = castToInt(loadIfGLValue(subExpr), subExprType, toType,
- subExpr->getLocStart());
- value->setRValue();
- return value;
- }
- case CastKind::CK_FloatingCast:
- case CastKind::CK_IntegralToFloating:
- case CastKind::CK_HLSLCC_FloatingCast:
- case CastKind::CK_HLSLCC_IntegralToFloating: {
- // First try to see if we can do constant folding for floating point
- // numbers like what we are doing for integers in the above.
- if (auto *value = tryToEvaluateAsConst(expr)) {
- value->setRValue();
- return value;
- }
- auto *value = castToFloat(loadIfGLValue(subExpr), subExprType, toType,
- subExpr->getLocStart());
- value->setRValue();
- return value;
- }
- case CastKind::CK_IntegralToBoolean:
- case CastKind::CK_FloatingToBoolean:
- case CastKind::CK_HLSLCC_IntegralToBoolean:
- case CastKind::CK_HLSLCC_FloatingToBoolean: {
- // First try to see if we can do constant folding.
- if (auto *value = tryToEvaluateAsConst(expr)) {
- value->setRValue();
- return value;
- }
- auto *value = castToBool(loadIfGLValue(subExpr), subExprType, toType,
- subExpr->getLocStart());
- value->setRValue();
- return value;
- }
- case CastKind::CK_HLSLVectorSplat: {
- const size_t size = hlsl::GetHLSLVecSize(expr->getType());
- return createVectorSplat(subExpr, size);
- }
- case CastKind::CK_HLSLVectorTruncationCast: {
- const QualType toVecType = toType;
- const QualType elemType = hlsl::GetHLSLVecElementType(toType);
- const auto toSize = hlsl::GetHLSLVecSize(toType);
- auto *composite = doExpr(subExpr);
- llvm::SmallVector<SpirvInstruction *, 4> elements;
- for (uint32_t i = 0; i < toSize; ++i) {
- elements.push_back(spvBuilder.createCompositeExtract(
- elemType, composite, {i}, expr->getExprLoc()));
- }
- auto *value = elements.front();
- if (toSize > 1) {
- value = spvBuilder.createCompositeConstruct(toVecType, elements,
- expr->getExprLoc());
- }
- value->setRValue();
- return value;
- }
- case CastKind::CK_HLSLVectorToScalarCast: {
- // The underlying should already be a vector of size 1.
- assert(hlsl::GetHLSLVecSize(subExprType) == 1);
- return doExpr(subExpr);
- }
- case CastKind::CK_HLSLVectorToMatrixCast: {
- // If target type is already an 1xN matrix type, we just return the
- // underlying vector.
- if (is1xNMatrix(toType))
- return doExpr(subExpr);
- // A vector can have no more than 4 elements. The only remaining case
- // is casting from size-4 vector to size-2-by-2 matrix.
- auto *vec = loadIfGLValue(subExpr);
- QualType elemType = {};
- uint32_t rowCount = 0, colCount = 0;
- const bool isMat = isMxNMatrix(toType, &elemType, &rowCount, &colCount);
- assert(isMat && rowCount == 2 && colCount == 2);
- (void)isMat;
- QualType vec2Type = astContext.getExtVectorType(elemType, 2);
- auto *subVec1 = spvBuilder.createVectorShuffle(vec2Type, vec, vec, {0, 1},
- expr->getLocStart());
- auto *subVec2 = spvBuilder.createVectorShuffle(vec2Type, vec, vec, {2, 3},
- expr->getLocStart());
- auto *mat = spvBuilder.createCompositeConstruct(toType, {subVec1, subVec2},
- expr->getLocStart());
- mat->setRValue();
- return mat;
- }
- case CastKind::CK_HLSLMatrixSplat: {
- // From scalar to matrix
- uint32_t rowCount = 0, colCount = 0;
- hlsl::GetHLSLMatRowColCount(toType, rowCount, colCount);
- // Handle degenerated cases first
- if (rowCount == 1 && colCount == 1)
- return doExpr(subExpr);
- if (colCount == 1)
- return createVectorSplat(subExpr, rowCount);
- const auto vecSplat = createVectorSplat(subExpr, colCount);
- if (rowCount == 1)
- return vecSplat;
- if (isa<SpirvConstant>(vecSplat)) {
- llvm::SmallVector<SpirvConstant *, 4> vectors(
- size_t(rowCount), cast<SpirvConstant>(vecSplat));
- auto *value = spvBuilder.getConstantComposite(toType, vectors);
- value->setRValue();
- return value;
- } else {
- llvm::SmallVector<SpirvInstruction *, 4> vectors(size_t(rowCount),
- vecSplat);
- auto *value = spvBuilder.createCompositeConstruct(toType, vectors,
- expr->getLocEnd());
- value->setRValue();
- return value;
- }
- }
- case CastKind::CK_HLSLMatrixTruncationCast: {
- const QualType srcType = subExprType;
- auto *src = doExpr(subExpr);
- const QualType elemType = hlsl::GetHLSLMatElementType(srcType);
- llvm::SmallVector<uint32_t, 4> indexes;
- // It is possible that the source matrix is in fact a vector.
- // For example: Truncate float1x3 --> float1x2.
- // The front-end disallows float1x3 --> float2x1.
- {
- uint32_t srcVecSize = 0, dstVecSize = 0;
- if (isVectorType(srcType, nullptr, &srcVecSize) &&
- isVectorType(toType, nullptr, &dstVecSize)) {
- for (uint32_t i = 0; i < dstVecSize; ++i)
- indexes.push_back(i);
- auto *val = spvBuilder.createVectorShuffle(toType, src, src, indexes,
- expr->getLocStart());
- val->setRValue();
- return val;
- }
- }
- uint32_t srcRows = 0, srcCols = 0, dstRows = 0, dstCols = 0;
- hlsl::GetHLSLMatRowColCount(srcType, srcRows, srcCols);
- hlsl::GetHLSLMatRowColCount(toType, dstRows, dstCols);
- const QualType srcRowType = astContext.getExtVectorType(elemType, srcCols);
- const QualType dstRowType = astContext.getExtVectorType(elemType, dstCols);
- // Indexes to pass to OpVectorShuffle
- for (uint32_t i = 0; i < dstCols; ++i)
- indexes.push_back(i);
- llvm::SmallVector<SpirvInstruction *, 4> extractedVecs;
- for (uint32_t row = 0; row < dstRows; ++row) {
- // Extract a row
- SpirvInstruction *rowInstr = spvBuilder.createCompositeExtract(
- srcRowType, src, {row}, expr->getExprLoc());
- // Extract the necessary columns from that row.
- // The front-end ensures dstCols <= srcCols.
- // If dstCols equals srcCols, we can use the whole row directly.
- if (dstCols == 1) {
- rowInstr = spvBuilder.createCompositeExtract(elemType, rowInstr, {0},
- expr->getLocStart());
- } else if (dstCols < srcCols) {
- rowInstr = spvBuilder.createVectorShuffle(
- dstRowType, rowInstr, rowInstr, indexes, expr->getLocStart());
- }
- extractedVecs.push_back(rowInstr);
- }
- auto *val = extractedVecs.front();
- if (extractedVecs.size() > 1) {
- val = spvBuilder.createCompositeConstruct(toType, extractedVecs,
- expr->getExprLoc());
- }
- val->setRValue();
- return val;
- }
- case CastKind::CK_HLSLMatrixToScalarCast: {
- // The underlying should already be a matrix of 1x1.
- assert(is1x1Matrix(subExprType));
- return doExpr(subExpr);
- }
- case CastKind::CK_HLSLMatrixToVectorCast: {
- // If the underlying matrix is Mx1 or 1xM for M in {1, 2,3,4}, we can return
- // the underlying matrix because it'll be evaluated as a vector by default.
- if (is1x1Matrix(subExprType) || is1xNMatrix(subExprType) ||
- isMx1Matrix(subExprType))
- return doExpr(subExpr);
- // A vector can have no more than 4 elements. The only remaining case
- // is casting from a 2x2 matrix to a vector of size 4.
- auto *mat = loadIfGLValue(subExpr);
- QualType elemType = {};
- uint32_t rowCount = 0, colCount = 0, elemCount = 0;
- const bool isMat =
- isMxNMatrix(subExprType, &elemType, &rowCount, &colCount);
- const bool isVec = isVectorType(toType, nullptr, &elemCount);
- assert(isMat && rowCount == 2 && colCount == 2);
- assert(isVec && elemCount == 4);
- (void)isMat;
- (void)isVec;
- QualType vec2Type = astContext.getExtVectorType(elemType, 2);
- auto *row0 = spvBuilder.createCompositeExtract(vec2Type, mat, {0}, srcLoc);
- auto *row1 = spvBuilder.createCompositeExtract(vec2Type, mat, {1}, srcLoc);
- auto *vec = spvBuilder.createVectorShuffle(toType, row0, row1, {0, 1, 2, 3},
- srcLoc);
- vec->setRValue();
- return vec;
- }
- case CastKind::CK_FunctionToPointerDecay:
- // Just need to return the function id
- return doExpr(subExpr);
- case CastKind::CK_FlatConversion: {
- SpirvInstruction *subExprInstr = nullptr;
- QualType evalType = subExprType;
- // Optimization: we can use OpConstantNull for cases where we want to
- // initialize an entire data structure to zeros.
- if (evaluatesToConstZero(subExpr, astContext)) {
- subExprInstr = spvBuilder.getConstantNull(toType);
- subExprInstr->setRValue();
- return subExprInstr;
- }
- // Try to evaluate float literals as float rather than double.
- if (const auto *floatLiteral = dyn_cast<FloatingLiteral>(subExpr)) {
- subExprInstr = tryToEvaluateAsFloat32(floatLiteral->getValue());
- if (subExprInstr)
- evalType = astContext.FloatTy;
- }
- // Evaluate 'literal float' initializer type as float rather than double.
- // TODO: This could result in rounding error if the initializer is a
- // non-literal expression that requires larger than 32 bits and has the
- // 'literal float' type.
- else if (subExprType->isSpecificBuiltinType(BuiltinType::LitFloat)) {
- evalType = astContext.FloatTy;
- }
- // Try to evaluate integer literals as 32-bit int rather than 64-bit int.
- else if (const auto *intLiteral = dyn_cast<IntegerLiteral>(subExpr)) {
- const bool isSigned = subExprType->isSignedIntegerType();
- subExprInstr = tryToEvaluateAsInt32(intLiteral->getValue(), isSigned);
- if (subExprInstr)
- evalType = isSigned ? astContext.IntTy : astContext.UnsignedIntTy;
- }
- // For assigning one array instance to another one with the same array type
- // (regardless of constness and literalness), the rhs will be wrapped in a
- // FlatConversion. Similarly for assigning a struct to another struct with
- // identical members.
- // |- <lhs>
- // `- ImplicitCastExpr <FlatConversion>
- // `- ImplicitCastExpr <LValueToRValue>
- // `- <rhs>
- else if (isSameType(astContext, toType, evalType) ||
- // We can have casts changing the shape but without affecting
- // memory order, e.g., `float4 a[2]; float b[8] = (float[8])a;`.
- // This is also represented as FlatConversion. For such cases, we
- // can rely on the InitListHandler, which can decompse
- // vectors/matrices.
- subExprType->isArrayType()) {
- auto *valInstr =
- InitListHandler(astContext, *this).processCast(toType, subExpr);
- if (valInstr)
- valInstr->setRValue();
- return valInstr;
- }
- // We can have casts changing the shape but without affecting memory order,
- // e.g., `float4 a[2]; float b[8] = (float[8])a;`. This is also represented
- // as FlatConversion. For such cases, we can rely on the InitListHandler,
- // which can decompse vectors/matrices.
- else if (subExprType->isArrayType()) {
- auto *valInstr = InitListHandler(astContext, *this)
- .processCast(expr->getType(), subExpr);
- if (valInstr)
- valInstr->setRValue();
- return valInstr;
- }
- if (!subExprInstr)
- subExprInstr = doExpr(subExpr);
- auto *val = processFlatConversion(toType, evalType, subExprInstr,
- expr->getExprLoc());
- val->setRValue();
- return val;
- }
- case CastKind::CK_UncheckedDerivedToBase:
- case CastKind::CK_HLSLDerivedToBase: {
- // Find the index sequence of the base to which we are casting
- llvm::SmallVector<uint32_t, 4> baseIndices;
- getBaseClassIndices(expr, &baseIndices);
- // Turn them in to SPIR-V constants
- llvm::SmallVector<SpirvInstruction *, 4> baseIndexInstructions(
- baseIndices.size(), nullptr);
- for (uint32_t i = 0; i < baseIndices.size(); ++i)
- baseIndexInstructions[i] = spvBuilder.getConstantInt(
- astContext.UnsignedIntTy, llvm::APInt(32, baseIndices[i]));
- auto *derivedInfo = doExpr(subExpr);
- return turnIntoElementPtr(subExpr->getType(), derivedInfo, expr->getType(),
- baseIndexInstructions, subExpr->getExprLoc());
- }
- case CastKind::CK_ArrayToPointerDecay: {
- // Literal string to const string conversion falls under this category.
- if (hlsl::IsStringLiteralType(subExprType) && hlsl::IsStringType(toType)) {
- return doExpr(subExpr);
- } else {
- emitError("implicit cast kind '%0' unimplemented", expr->getExprLoc())
- << expr->getCastKindName() << expr->getSourceRange();
- expr->dump();
- return 0;
- }
- }
- default:
- emitError("implicit cast kind '%0' unimplemented", expr->getExprLoc())
- << expr->getCastKindName() << expr->getSourceRange();
- expr->dump();
- return 0;
- }
- }
- SpirvInstruction *SpirvEmitter::processFlatConversion(
- const QualType type, const QualType initType, SpirvInstruction *initInstr,
- SourceLocation srcLoc) {
- // Try to translate the canonical type first
- const auto canonicalType = type.getCanonicalType();
- if (canonicalType != type)
- return processFlatConversion(canonicalType, initType, initInstr, srcLoc);
- // Primitive types
- {
- QualType ty = {};
- if (isScalarType(type, &ty)) {
- if (const auto *builtinType = ty->getAs<BuiltinType>()) {
- switch (builtinType->getKind()) {
- case BuiltinType::Void: {
- emitError("cannot create a constant of void type", srcLoc);
- return 0;
- }
- case BuiltinType::Bool:
- return castToBool(initInstr, initType, ty, srcLoc);
- // Target type is an integer variant.
- case BuiltinType::Int:
- case BuiltinType::Short:
- case BuiltinType::Min12Int:
- case BuiltinType::Min16Int:
- case BuiltinType::Min16UInt:
- case BuiltinType::UShort:
- case BuiltinType::UInt:
- case BuiltinType::Long:
- case BuiltinType::LongLong:
- case BuiltinType::ULong:
- case BuiltinType::ULongLong:
- return castToInt(initInstr, initType, ty, srcLoc);
- // Target type is a float variant.
- case BuiltinType::Double:
- case BuiltinType::Float:
- case BuiltinType::Half:
- case BuiltinType::HalfFloat:
- case BuiltinType::Min10Float:
- case BuiltinType::Min16Float:
- return castToFloat(initInstr, initType, ty, srcLoc);
- default:
- emitError("flat conversion of type %0 unimplemented", srcLoc)
- << builtinType->getTypeClassName();
- return 0;
- }
- }
- }
- }
- // Vector types
- {
- QualType elemType = {};
- uint32_t elemCount = {};
- if (isVectorType(type, &elemType, &elemCount)) {
- auto *elem = processFlatConversion(elemType, initType, initInstr, srcLoc);
- llvm::SmallVector<SpirvInstruction *, 4> constituents(size_t(elemCount),
- elem);
- return spvBuilder.createCompositeConstruct(type, constituents, srcLoc);
- }
- }
- // Matrix types
- {
- QualType elemType = {};
- uint32_t rowCount = 0, colCount = 0;
- if (isMxNMatrix(type, &elemType, &rowCount, &colCount)) {
- // By default HLSL matrices are row major, while SPIR-V matrices are
- // column major. We are mapping what HLSL semantically mean a row into a
- // column here.
- const QualType vecType = astContext.getExtVectorType(elemType, colCount);
- auto *elem = processFlatConversion(elemType, initType, initInstr, srcLoc);
- const llvm::SmallVector<SpirvInstruction *, 4> constituents(
- size_t(colCount), elem);
- auto *col =
- spvBuilder.createCompositeConstruct(vecType, constituents, srcLoc);
- const llvm::SmallVector<SpirvInstruction *, 4> rows(size_t(rowCount),
- col);
- return spvBuilder.createCompositeConstruct(type, rows, srcLoc);
- }
- }
- // Struct type
- if (const auto *structType = type->getAs<RecordType>()) {
- const auto *decl = structType->getDecl();
- llvm::SmallVector<SpirvInstruction *, 4> fields;
- for (const auto *field : decl->fields()) {
- // There is a special case for FlatConversion. If T is a struct with only
- // one member, S, then (T)<an-instance-of-S> is allowed, which essentially
- // constructs a new T instance using the instance of S as its only member.
- // Check whether we are handling that case here first.
- if (field->getType().getCanonicalType() == initType.getCanonicalType()) {
- fields.push_back(initInstr);
- } else {
- fields.push_back(processFlatConversion(field->getType(), initType,
- initInstr, srcLoc));
- }
- }
- return spvBuilder.createCompositeConstruct(type, fields, srcLoc);
- }
- // Array type
- if (const auto *arrayType = astContext.getAsConstantArrayType(type)) {
- const auto size =
- static_cast<uint32_t>(arrayType->getSize().getZExtValue());
- auto *elem = processFlatConversion(arrayType->getElementType(), initType,
- initInstr, srcLoc);
- llvm::SmallVector<SpirvInstruction *, 4> constituents(size_t(size), elem);
- return spvBuilder.createCompositeConstruct(type, constituents, srcLoc);
- }
- emitError("flat conversion of type %0 unimplemented", {})
- << type->getTypeClassName();
- type->dump();
- return 0;
- }
- SpirvInstruction *
- SpirvEmitter::doCompoundAssignOperator(const CompoundAssignOperator *expr) {
- const auto opcode = expr->getOpcode();
- // Try to optimize floatMxN *= float and floatN *= float case
- if (opcode == BO_MulAssign) {
- if (auto *result = tryToGenFloatMatrixScale(expr))
- return result;
- if (auto *result = tryToGenFloatVectorScale(expr))
- return result;
- }
- const auto *rhs = expr->getRHS();
- const auto *lhs = expr->getLHS();
- SpirvInstruction *lhsPtr = nullptr;
- auto *result = processBinaryOp(
- lhs, rhs, opcode, expr->getComputationLHSType(), expr->getType(),
- expr->getSourceRange(), expr->getOperatorLoc(), &lhsPtr);
- return processAssignment(lhs, result, true, lhsPtr);
- }
- SpirvInstruction *
- SpirvEmitter::doConditionalOperator(const ConditionalOperator *expr) {
- const auto type = expr->getType();
- const SourceLocation loc = expr->getExprLoc();
- // According to HLSL doc, all sides of the ?: expression are always evaluated.
- // If we are selecting between two SampleState objects, none of the three
- // operands has a LValueToRValue implicit cast.
- auto *condition = loadIfGLValue(expr->getCond());
- auto *trueBranch = loadIfGLValue(expr->getTrueExpr());
- auto *falseBranch = loadIfGLValue(expr->getFalseExpr());
- // For cases where the return type is a scalar or a vector, we can use
- // OpSelect to choose between the two. OpSelect's return type must be either
- // scalar or vector.
- if (isScalarType(type) || isVectorType(type)) {
- // The SPIR-V OpSelect instruction must have a selection argument that is
- // the same size as the return type. If the return type is a vector, the
- // selection must be a vector of booleans (one per output component).
- uint32_t count = 0;
- if (isVectorType(expr->getType(), nullptr, &count) &&
- !isVectorType(expr->getCond()->getType())) {
- const llvm::SmallVector<SpirvInstruction *, 4> components(size_t(count),
- condition);
- condition = spvBuilder.createCompositeConstruct(
- astContext.getExtVectorType(astContext.BoolTy, count), components,
- expr->getCond()->getLocEnd());
- }
- auto *value =
- spvBuilder.createSelect(type, condition, trueBranch, falseBranch, loc);
- value->setRValue();
- return value;
- }
- // If we can't use OpSelect, we need to create if-else control flow.
- auto *tempVar = spvBuilder.addFnVar(type, loc, "temp.var.ternary");
- auto *thenBB = spvBuilder.createBasicBlock("if.true");
- auto *mergeBB = spvBuilder.createBasicBlock("if.merge");
- auto *elseBB = spvBuilder.createBasicBlock("if.false");
- // Create the branch instruction. This will end the current basic block.
- spvBuilder.createConditionalBranch(condition, thenBB, elseBB,
- expr->getCond()->getLocEnd(), mergeBB);
- spvBuilder.addSuccessor(thenBB);
- spvBuilder.addSuccessor(elseBB);
- spvBuilder.setMergeTarget(mergeBB);
- // Handle the then branch
- spvBuilder.setInsertPoint(thenBB);
- spvBuilder.createStore(tempVar, trueBranch,
- expr->getTrueExpr()->getLocStart());
- spvBuilder.createBranch(mergeBB, expr->getTrueExpr()->getLocEnd());
- spvBuilder.addSuccessor(mergeBB);
- // Handle the else branch
- spvBuilder.setInsertPoint(elseBB);
- spvBuilder.createStore(tempVar, falseBranch,
- expr->getFalseExpr()->getLocStart());
- spvBuilder.createBranch(mergeBB, expr->getFalseExpr()->getLocEnd());
- spvBuilder.addSuccessor(mergeBB);
- // From now on, emit instructions into the merge block.
- spvBuilder.setInsertPoint(mergeBB);
- auto *result = spvBuilder.createLoad(type, tempVar, expr->getLocEnd());
- result->setRValue();
- return result;
- }
- SpirvInstruction *
- SpirvEmitter::processByteAddressBufferStructuredBufferGetDimensions(
- const CXXMemberCallExpr *expr) {
- const auto *object = expr->getImplicitObjectArgument();
- auto *objectInstr = loadIfAliasVarRef(object);
- const auto type = object->getType();
- const bool isBABuf = isByteAddressBuffer(type) || isRWByteAddressBuffer(type);
- const bool isStructuredBuf = isStructuredBuffer(type) ||
- isAppendStructuredBuffer(type) ||
- isConsumeStructuredBuffer(type);
- assert(isBABuf || isStructuredBuf);
- // (RW)ByteAddressBuffers/(RW)StructuredBuffers are represented as a structure
- // with only one member that is a runtime array. We need to perform
- // OpArrayLength on member 0.
- SpirvInstruction *length = spvBuilder.createArrayLength(
- astContext.UnsignedIntTy, expr->getExprLoc(), objectInstr, 0);
- // For (RW)ByteAddressBuffers, GetDimensions() must return the array length
- // in bytes, but OpArrayLength returns the number of uints in the runtime
- // array. Therefore we must multiply the results by 4.
- if (isBABuf) {
- length = spvBuilder.createBinaryOp(
- spv::Op::OpIMul, astContext.UnsignedIntTy, length,
- // TODO(jaebaek): What line info we should emit for constants?
- spvBuilder.getConstantInt(astContext.UnsignedIntTy,
- llvm::APInt(32, 4u)),
- expr->getExprLoc());
- }
- spvBuilder.createStore(doExpr(expr->getArg(0)), length,
- expr->getArg(0)->getLocStart());
- if (isStructuredBuf) {
- // For (RW)StructuredBuffer, the stride of the runtime array (which is the
- // size of the struct) must also be written to the second argument.
- AlignmentSizeCalculator alignmentCalc(astContext, spirvOptions);
- uint32_t size = 0, stride = 0;
- std::tie(std::ignore, size) =
- alignmentCalc.getAlignmentAndSize(type, spirvOptions.sBufferLayoutRule,
- /*isRowMajor*/ llvm::None, &stride);
- auto *sizeInstr = spvBuilder.getConstantInt(astContext.UnsignedIntTy,
- llvm::APInt(32, size));
- spvBuilder.createStore(doExpr(expr->getArg(1)), sizeInstr,
- expr->getArg(1)->getLocStart());
- }
- return nullptr;
- }
- SpirvInstruction *SpirvEmitter::processRWByteAddressBufferAtomicMethods(
- hlsl::IntrinsicOp opcode, const CXXMemberCallExpr *expr) {
- // The signature of RWByteAddressBuffer atomic methods are largely:
- // void Interlocked*(in UINT dest, in UINT value);
- // void Interlocked*(in UINT dest, in UINT value, out UINT original_value);
- const auto *object = expr->getImplicitObjectArgument();
- auto *objectInfo = loadIfAliasVarRef(object);
- auto *zero =
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 0));
- auto *offset = doExpr(expr->getArg(0));
- // Right shift by 2 to convert the byte offset to uint32_t offset
- auto *address = spvBuilder.createBinaryOp(
- spv::Op::OpShiftRightLogical, astContext.UnsignedIntTy, offset,
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 2)),
- expr->getExprLoc());
- auto *ptr =
- spvBuilder.createAccessChain(astContext.UnsignedIntTy, objectInfo,
- {zero, address}, object->getLocStart());
- const bool isCompareExchange =
- opcode == hlsl::IntrinsicOp::MOP_InterlockedCompareExchange;
- const bool isCompareStore =
- opcode == hlsl::IntrinsicOp::MOP_InterlockedCompareStore;
- if (isCompareExchange || isCompareStore) {
- auto *comparator = doExpr(expr->getArg(1));
- auto *originalVal = spvBuilder.createAtomicCompareExchange(
- astContext.UnsignedIntTy, ptr, spv::Scope::Device,
- spv::MemorySemanticsMask::MaskNone, spv::MemorySemanticsMask::MaskNone,
- doExpr(expr->getArg(2)), comparator, expr->getCallee()->getExprLoc());
- if (isCompareExchange)
- spvBuilder.createStore(doExpr(expr->getArg(3)), originalVal,
- expr->getArg(3)->getLocStart());
- } else {
- auto *value = doExpr(expr->getArg(1));
- SpirvInstruction *originalVal = spvBuilder.createAtomicOp(
- translateAtomicHlslOpcodeToSpirvOpcode(opcode),
- astContext.UnsignedIntTy, ptr, spv::Scope::Device,
- spv::MemorySemanticsMask::MaskNone, value,
- expr->getCallee()->getExprLoc());
- if (expr->getNumArgs() > 2) {
- originalVal = castToType(originalVal, astContext.UnsignedIntTy,
- expr->getArg(2)->getType(),
- expr->getArg(2)->getLocStart());
- spvBuilder.createStore(doExpr(expr->getArg(2)), originalVal,
- expr->getArg(2)->getLocStart());
- }
- }
- return nullptr;
- }
- SpirvInstruction *
- SpirvEmitter::processGetSamplePosition(const CXXMemberCallExpr *expr) {
- const auto *object = expr->getImplicitObjectArgument()->IgnoreParens();
- auto *sampleCount = spvBuilder.createImageQuery(
- spv::Op::OpImageQuerySamples, astContext.UnsignedIntTy,
- expr->getExprLoc(), loadIfGLValue(object));
- if (!spirvOptions.noWarnEmulatedFeatures)
- emitWarning("GetSamplePosition is emulated using many SPIR-V instructions "
- "due to lack of direct SPIR-V equivalent, so it only supports "
- "standard sample settings with 1, 2, 4, 8, or 16 samples and "
- "will return float2(0, 0) for other cases",
- expr->getCallee()->getExprLoc());
- return emitGetSamplePosition(sampleCount, doExpr(expr->getArg(0)),
- expr->getCallee()->getExprLoc());
- }
- SpirvInstruction *
- SpirvEmitter::processSubpassLoad(const CXXMemberCallExpr *expr) {
- const auto *object = expr->getImplicitObjectArgument()->IgnoreParens();
- SpirvInstruction *sample =
- expr->getNumArgs() == 1 ? doExpr(expr->getArg(0)) : nullptr;
- auto *zero = spvBuilder.getConstantInt(astContext.IntTy, llvm::APInt(32, 0));
- auto *location = spvBuilder.getConstantComposite(
- astContext.getExtVectorType(astContext.IntTy, 2), {zero, zero});
- return processBufferTextureLoad(object, location, /*constOffset*/ 0,
- /*varOffset*/ 0, /*lod*/ sample,
- /*residencyCode*/ 0, expr->getExprLoc());
- }
- SpirvInstruction *
- SpirvEmitter::processBufferTextureGetDimensions(const CXXMemberCallExpr *expr) {
- const auto *object = expr->getImplicitObjectArgument();
- auto *objectInstr = loadIfGLValue(object);
- const auto type = object->getType();
- const auto *recType = type->getAs<RecordType>();
- assert(recType);
- const auto typeName = recType->getDecl()->getName();
- const auto numArgs = expr->getNumArgs();
- const Expr *mipLevel = nullptr, *numLevels = nullptr, *numSamples = nullptr;
- assert(isTexture(type) || isRWTexture(type) || isBuffer(type) ||
- isRWBuffer(type));
- // For Texture1D, arguments are either:
- // a) width
- // b) MipLevel, width, NumLevels
- // For Texture1DArray, arguments are either:
- // a) width, elements
- // b) MipLevel, width, elements, NumLevels
- // For Texture2D, arguments are either:
- // a) width, height
- // b) MipLevel, width, height, NumLevels
- // For Texture2DArray, arguments are either:
- // a) width, height, elements
- // b) MipLevel, width, height, elements, NumLevels
- // For Texture3D, arguments are either:
- // a) width, height, depth
- // b) MipLevel, width, height, depth, NumLevels
- // For Texture2DMS, arguments are: width, height, NumSamples
- // For Texture2DMSArray, arguments are: width, height, elements, NumSamples
- // For TextureCube, arguments are either:
- // a) width, height
- // b) MipLevel, width, height, NumLevels
- // For TextureCubeArray, arguments are either:
- // a) width, height, elements
- // b) MipLevel, width, height, elements, NumLevels
- // Note: SPIR-V Spec requires return type of OpImageQuerySize(Lod) to be a
- // scalar/vector of integers. SPIR-V Spec also requires return type of
- // OpImageQueryLevels and OpImageQuerySamples to be scalar integers.
- // The HLSL methods, however, have overloaded functions which have float
- // output arguments. Since the AST naturally won't have casting AST nodes for
- // such cases, we'll have to perform the cast ourselves.
- const auto storeToOutputArg = [this](const Expr *outputArg,
- SpirvInstruction *id, QualType type) {
- id = castToType(id, type, outputArg->getType(), outputArg->getExprLoc());
- spvBuilder.createStore(doExpr(outputArg), id, outputArg->getLocStart());
- };
- if ((typeName == "Texture1D" && numArgs > 1) ||
- (typeName == "Texture2D" && numArgs > 2) ||
- (typeName == "TextureCube" && numArgs > 2) ||
- (typeName == "Texture3D" && numArgs > 3) ||
- (typeName == "Texture1DArray" && numArgs > 2) ||
- (typeName == "TextureCubeArray" && numArgs > 3) ||
- (typeName == "Texture2DArray" && numArgs > 3)) {
- mipLevel = expr->getArg(0);
- numLevels = expr->getArg(numArgs - 1);
- }
- if (isTextureMS(type)) {
- numSamples = expr->getArg(numArgs - 1);
- }
- uint32_t querySize = numArgs;
- // If numLevels arg is present, mipLevel must also be present. These are not
- // queried via ImageQuerySizeLod.
- if (numLevels)
- querySize -= 2;
- // If numLevels arg is present, mipLevel must also be present.
- else if (numSamples)
- querySize -= 1;
- const QualType resultQualType =
- querySize == 1
- ? astContext.UnsignedIntTy
- : astContext.getExtVectorType(astContext.UnsignedIntTy, querySize);
- // Only Texture types use ImageQuerySizeLod.
- // TextureMS, RWTexture, Buffers, RWBuffers use ImageQuerySize.
- SpirvInstruction *lod = nullptr;
- if (isTexture(type) && !numSamples) {
- if (mipLevel) {
- // For Texture types when mipLevel argument is present.
- lod = doExpr(mipLevel);
- } else {
- // For Texture types when mipLevel argument is omitted.
- lod = spvBuilder.getConstantInt(astContext.IntTy, llvm::APInt(32, 0));
- }
- }
- SpirvInstruction *query =
- lod ? cast<SpirvInstruction>(spvBuilder.createImageQuery(
- spv::Op::OpImageQuerySizeLod, resultQualType,
- expr->getCallee()->getExprLoc(), objectInstr, lod))
- : cast<SpirvInstruction>(spvBuilder.createImageQuery(
- spv::Op::OpImageQuerySize, resultQualType,
- expr->getCallee()->getExprLoc(), objectInstr));
- if (querySize == 1) {
- const uint32_t argIndex = mipLevel ? 1 : 0;
- storeToOutputArg(expr->getArg(argIndex), query, resultQualType);
- } else {
- for (uint32_t i = 0; i < querySize; ++i) {
- const uint32_t argIndex = mipLevel ? i + 1 : i;
- auto *component = spvBuilder.createCompositeExtract(
- astContext.UnsignedIntTy, query, {i},
- expr->getCallee()->getExprLoc());
- // If the first arg is the mipmap level, we must write the results
- // starting from Arg(i+1), not Arg(i).
- storeToOutputArg(expr->getArg(argIndex), component,
- astContext.UnsignedIntTy);
- }
- }
- if (numLevels || numSamples) {
- const Expr *numLevelsSamplesArg = numLevels ? numLevels : numSamples;
- const spv::Op opcode =
- numLevels ? spv::Op::OpImageQueryLevels : spv::Op::OpImageQuerySamples;
- auto *numLevelsSamplesQuery = spvBuilder.createImageQuery(
- opcode, astContext.UnsignedIntTy, expr->getCallee()->getExprLoc(),
- objectInstr);
- storeToOutputArg(numLevelsSamplesArg, numLevelsSamplesQuery,
- astContext.UnsignedIntTy);
- }
- return nullptr;
- }
- SpirvInstruction *
- SpirvEmitter::processTextureLevelOfDetail(const CXXMemberCallExpr *expr,
- bool unclamped) {
- // Possible signatures are as follows:
- // Texture1D(Array).CalculateLevelOfDetail(SamplerState S, float x);
- // Texture2D(Array).CalculateLevelOfDetail(SamplerState S, float2 xy);
- // TextureCube(Array).CalculateLevelOfDetail(SamplerState S, float3 xyz);
- // Texture3D.CalculateLevelOfDetail(SamplerState S, float3 xyz);
- // Return type is always a single float (LOD).
- assert(expr->getNumArgs() == 2u);
- const auto *object = expr->getImplicitObjectArgument();
- auto *objectInfo = loadIfGLValue(object);
- auto *samplerState = doExpr(expr->getArg(0));
- auto *coordinate = doExpr(expr->getArg(1));
- auto *sampledImage = spvBuilder.createSampledImage(
- object->getType(), objectInfo, samplerState, expr->getExprLoc());
- // The result type of OpImageQueryLod must be a float2.
- const QualType queryResultType =
- astContext.getExtVectorType(astContext.FloatTy, 2u);
- auto *query =
- spvBuilder.createImageQuery(spv::Op::OpImageQueryLod, queryResultType,
- expr->getExprLoc(), sampledImage, coordinate);
- // The first component of the float2 contains the mipmap array layer.
- // The second component of the float2 represents the unclamped lod.
- return spvBuilder.createCompositeExtract(astContext.FloatTy, query,
- unclamped ? 1 : 0,
- expr->getCallee()->getExprLoc());
- }
- SpirvInstruction *SpirvEmitter::processTextureGatherRGBACmpRGBA(
- const CXXMemberCallExpr *expr, const bool isCmp, const uint32_t component) {
- // Parameters for .Gather{Red|Green|Blue|Alpha}() are one of the following
- // two sets:
- // * SamplerState s, float2 location, int2 offset
- // * SamplerState s, float2 location, int2 offset0, int2 offset1,
- // int offset2, int2 offset3
- //
- // An additional 'out uint status' parameter can appear in both of the above.
- //
- // Parameters for .GatherCmp{Red|Green|Blue|Alpha}() are one of the following
- // two sets:
- // * SamplerState s, float2 location, float compare_value, int2 offset
- // * SamplerState s, float2 location, float compare_value, int2 offset1,
- // int2 offset2, int2 offset3, int2 offset4
- //
- // An additional 'out uint status' parameter can appear in both of the above.
- //
- // TextureCube's signature is somewhat different from the rest.
- // Parameters for .Gather{Red|Green|Blue|Alpha}() for TextureCube are:
- // * SamplerState s, float2 location, out uint status
- // Parameters for .GatherCmp{Red|Green|Blue|Alpha}() for TextureCube are:
- // * SamplerState s, float2 location, float compare_value, out uint status
- //
- // Return type is always a 4-component vector.
- const FunctionDecl *callee = expr->getDirectCallee();
- const auto numArgs = expr->getNumArgs();
- const auto *imageExpr = expr->getImplicitObjectArgument();
- const auto loc = expr->getCallee()->getExprLoc();
- const QualType imageType = imageExpr->getType();
- const QualType retType = callee->getReturnType();
- // If the last arg is an unsigned integer, it must be the status.
- const bool hasStatusArg =
- expr->getArg(numArgs - 1)->getType()->isUnsignedIntegerType();
- // Subtract 1 for status arg (if it exists), subtract 1 for compare_value (if
- // it exists), and subtract 2 for SamplerState and location.
- const auto numOffsetArgs = numArgs - hasStatusArg - isCmp - 2;
- // No offset args for TextureCube, 1 or 4 offset args for the rest.
- assert(numOffsetArgs == 0 || numOffsetArgs == 1 || numOffsetArgs == 4);
- auto *image = loadIfGLValue(imageExpr);
- auto *sampler = doExpr(expr->getArg(0));
- auto *coordinate = doExpr(expr->getArg(1));
- auto *compareVal = isCmp ? doExpr(expr->getArg(2)) : nullptr;
- // Handle offsets (if any).
- bool needsEmulation = false;
- SpirvInstruction *constOffset = nullptr, *varOffset = nullptr,
- *constOffsets = nullptr;
- if (numOffsetArgs == 1) {
- // The offset arg is not optional.
- handleOffsetInMethodCall(expr, 2 + isCmp, &constOffset, &varOffset);
- } else if (numOffsetArgs == 4) {
- auto *offset0 = tryToEvaluateAsConst(expr->getArg(2 + isCmp));
- auto *offset1 = tryToEvaluateAsConst(expr->getArg(3 + isCmp));
- auto *offset2 = tryToEvaluateAsConst(expr->getArg(4 + isCmp));
- auto *offset3 = tryToEvaluateAsConst(expr->getArg(5 + isCmp));
- // If any of the offsets is not constant, we then need to emulate the call
- // using 4 OpImageGather instructions. Otherwise, we can leverage the
- // ConstOffsets image operand.
- if (offset0 && offset1 && offset2 && offset3) {
- const QualType v2i32 = astContext.getExtVectorType(astContext.IntTy, 2);
- const auto offsetType = astContext.getConstantArrayType(
- v2i32, llvm::APInt(32, 4), clang::ArrayType::Normal, 0);
- constOffsets = spvBuilder.getConstantComposite(
- offsetType, {offset0, offset1, offset2, offset3});
- } else {
- needsEmulation = true;
- }
- }
- auto *status = hasStatusArg ? doExpr(expr->getArg(numArgs - 1)) : nullptr;
- if (needsEmulation) {
- const auto elemType = hlsl::GetHLSLVecElementType(callee->getReturnType());
- SpirvInstruction *texels[4];
- for (uint32_t i = 0; i < 4; ++i) {
- varOffset = doExpr(expr->getArg(2 + isCmp + i));
- auto *gatherRet = spvBuilder.createImageGather(
- retType, imageType, image, sampler, coordinate,
- spvBuilder.getConstantInt(astContext.IntTy,
- llvm::APInt(32, component, true)),
- compareVal,
- /*constOffset*/ nullptr, varOffset, /*constOffsets*/ nullptr,
- /*sampleNumber*/ nullptr, status, loc);
- texels[i] =
- spvBuilder.createCompositeExtract(elemType, gatherRet, {i}, loc);
- }
- return spvBuilder.createCompositeConstruct(
- retType, {texels[0], texels[1], texels[2], texels[3]}, loc);
- }
- return spvBuilder.createImageGather(
- retType, imageType, image, sampler, coordinate,
- spvBuilder.getConstantInt(astContext.IntTy,
- llvm::APInt(32, component, true)),
- compareVal, constOffset, varOffset, constOffsets,
- /*sampleNumber*/ nullptr, status, loc);
- }
- SpirvInstruction *
- SpirvEmitter::processTextureGatherCmp(const CXXMemberCallExpr *expr) {
- // Signature for Texture2D/Texture2DArray:
- //
- // float4 GatherCmp(
- // in SamplerComparisonState s,
- // in float2 location,
- // in float compare_value
- // [,in int2 offset]
- // [,out uint Status]
- // );
- //
- // Signature for TextureCube/TextureCubeArray:
- //
- // float4 GatherCmp(
- // in SamplerComparisonState s,
- // in float2 location,
- // in float compare_value,
- // out uint Status
- // );
- //
- // Other Texture types do not have the GatherCmp method.
- const FunctionDecl *callee = expr->getDirectCallee();
- const auto numArgs = expr->getNumArgs();
- const auto loc = expr->getExprLoc();
- const bool hasStatusArg =
- expr->getArg(numArgs - 1)->getType()->isUnsignedIntegerType();
- const bool hasOffsetArg = (numArgs == 5) || (numArgs == 4 && !hasStatusArg);
- const auto *imageExpr = expr->getImplicitObjectArgument();
- auto *image = loadIfGLValue(imageExpr);
- auto *sampler = doExpr(expr->getArg(0));
- auto *coordinate = doExpr(expr->getArg(1));
- auto *comparator = doExpr(expr->getArg(2));
- SpirvInstruction *constOffset = nullptr, *varOffset = nullptr;
- if (hasOffsetArg)
- handleOffsetInMethodCall(expr, 3, &constOffset, &varOffset);
- const auto retType = callee->getReturnType();
- const auto imageType = imageExpr->getType();
- const auto status =
- hasStatusArg ? doExpr(expr->getArg(numArgs - 1)) : nullptr;
- return spvBuilder.createImageGather(
- retType, imageType, image, sampler, coordinate,
- /*component*/ nullptr, comparator, constOffset, varOffset,
- /*constOffsets*/ nullptr,
- /*sampleNumber*/ nullptr, status, loc);
- }
- SpirvInstruction *SpirvEmitter::processBufferTextureLoad(
- const Expr *object, SpirvInstruction *location,
- SpirvInstruction *constOffset, SpirvInstruction *varOffset,
- SpirvInstruction *lod, SpirvInstruction *residencyCode,
- SourceLocation loc) {
- // Loading for Buffer and RWBuffer translates to an OpImageFetch.
- // The result type of an OpImageFetch must be a vec4 of float or int.
- const auto type = object->getType();
- assert(isBuffer(type) || isRWBuffer(type) || isTexture(type) ||
- isRWTexture(type) || isSubpassInput(type) || isSubpassInputMS(type));
- const bool doFetch = isBuffer(type) || isTexture(type);
- auto *objectInfo = loadIfGLValue(object);
- // For Texture2DMS and Texture2DMSArray, Sample must be used rather than Lod.
- SpirvInstruction *sampleNumber = nullptr;
- if (isTextureMS(type) || isSubpassInputMS(type)) {
- sampleNumber = lod;
- lod = nullptr;
- }
- const auto sampledType = hlsl::GetHLSLResourceResultType(type);
- QualType elemType = sampledType;
- uint32_t elemCount = 1;
- bool isTemplateOverStruct = false;
- // Check whether the template type is a vector type or struct type.
- if (!isVectorType(sampledType, &elemType, &elemCount)) {
- if (sampledType->getAsStructureType()) {
- isTemplateOverStruct = true;
- // For struct type, we need to make sure it can fit into a 4-component
- // vector. Detailed failing reasons will be emitted by the function so
- // we don't need to emit errors here.
- if (!canFitIntoOneRegister(astContext, sampledType, &elemType,
- &elemCount))
- return nullptr;
- }
- }
- if (!elemType->isFloatingType() && !elemType->isIntegerType()) {
- emitError("loading %0 value unsupported", object->getExprLoc()) << type;
- return nullptr;
- }
- // OpImageFetch and OpImageRead can only fetch a vector of 4 elements.
- const QualType texelType = astContext.getExtVectorType(elemType, 4u);
- auto *texel = spvBuilder.createImageFetchOrRead(
- doFetch, texelType, type, objectInfo, location, lod, constOffset,
- varOffset, /*constOffsets*/ nullptr, sampleNumber, residencyCode, loc);
- // If the result type is a vec1, vec2, or vec3, some extra processing
- // (extraction) is required.
- auto *retVal = extractVecFromVec4(texel, elemCount, elemType, loc);
- if (isTemplateOverStruct) {
- // Convert to the struct so that we are consistent with types in the AST.
- retVal = convertVectorToStruct(sampledType, elemType, retVal, loc);
- }
- retVal->setRValue();
- return retVal;
- }
- SpirvInstruction *SpirvEmitter::processByteAddressBufferLoadStore(
- const CXXMemberCallExpr *expr, uint32_t numWords, bool doStore) {
- SpirvInstruction *result = nullptr;
- const auto object = expr->getImplicitObjectArgument();
- auto *objectInfo = loadIfAliasVarRef(object);
- assert(numWords >= 1 && numWords <= 4);
- if (doStore) {
- assert(isRWByteAddressBuffer(object->getType()));
- assert(expr->getNumArgs() == 2);
- } else {
- assert(isRWByteAddressBuffer(object->getType()) ||
- isByteAddressBuffer(object->getType()));
- if (expr->getNumArgs() == 2) {
- emitError(
- "(RW)ByteAddressBuffer::Load(in address, out status) not supported",
- expr->getExprLoc());
- return 0;
- }
- }
- const Expr *addressExpr = expr->getArg(0);
- auto *byteAddress = doExpr(addressExpr);
- const QualType addressType = addressExpr->getType();
- // The front-end prevents usage of templated Load2, Load3, Load4, Store2,
- // Store3, Store4 intrinsic functions.
- const bool isTemplatedLoadOrStore =
- (numWords == 1) &&
- (doStore ? !expr->getArg(1)->getType()->isSpecificBuiltinType(
- BuiltinType::UInt)
- : !expr->getType()->isSpecificBuiltinType(BuiltinType::UInt));
- // Do a OpShiftRightLogical by 2 (divide by 4 to get aligned memory
- // access). The AST always casts the address to unsinged integer, so shift
- // by unsinged integer 2.
- auto *constUint2 =
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 2));
- SpirvInstruction *address =
- spvBuilder.createBinaryOp(spv::Op::OpShiftRightLogical, addressType,
- byteAddress, constUint2, expr->getExprLoc());
- if (isTemplatedLoadOrStore) {
- // Templated load. Need to (potentially) perform more
- // loads/casts/composite-constructs.
- uint32_t bitOffset = 0;
- if (doStore) {
- auto *values = doExpr(expr->getArg(1));
- RawBufferHandler(*this).processTemplatedStoreToBuffer(
- values, objectInfo, address, expr->getArg(1)->getType(), bitOffset);
- return nullptr;
- } else {
- RawBufferHandler rawBufferHandler(*this);
- return rawBufferHandler.processTemplatedLoadFromBuffer(
- objectInfo, address, expr->getType(), bitOffset);
- }
- }
- // Perform access chain into the RWByteAddressBuffer.
- // First index must be zero (member 0 of the struct is a
- // runtimeArray). The second index passed to OpAccessChain should be
- // the address.
- auto *constUint0 =
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 0));
- if (doStore) {
- auto *values = doExpr(expr->getArg(1));
- auto *curStoreAddress = address;
- for (uint32_t wordCounter = 0; wordCounter < numWords; ++wordCounter) {
- // Extract a 32-bit word from the input.
- auto *curValue = numWords == 1
- ? values
- : spvBuilder.createCompositeExtract(
- astContext.UnsignedIntTy, values,
- {wordCounter}, expr->getArg(1)->getExprLoc());
- // Update the output address if necessary.
- if (wordCounter > 0) {
- auto *offset = spvBuilder.getConstantInt(astContext.UnsignedIntTy,
- llvm::APInt(32, wordCounter));
- curStoreAddress =
- spvBuilder.createBinaryOp(spv::Op::OpIAdd, addressType, address,
- offset, expr->getCallee()->getExprLoc());
- }
- // Store the word to the right address at the output.
- auto *storePtr = spvBuilder.createAccessChain(
- astContext.UnsignedIntTy, objectInfo, {constUint0, curStoreAddress},
- object->getLocStart());
- spvBuilder.createStore(storePtr, curValue,
- expr->getCallee()->getExprLoc());
- }
- } else {
- auto *loadPtr = spvBuilder.createAccessChain(
- astContext.UnsignedIntTy, objectInfo, {constUint0, address},
- object->getLocStart());
- result = spvBuilder.createLoad(astContext.UnsignedIntTy, loadPtr,
- expr->getCallee()->getExprLoc());
- if (numWords > 1) {
- // Load word 2, 3, and 4 where necessary. Use OpCompositeConstruct to
- // return a vector result.
- llvm::SmallVector<SpirvInstruction *, 4> values;
- values.push_back(result);
- for (uint32_t wordCounter = 2; wordCounter <= numWords; ++wordCounter) {
- auto *offset = spvBuilder.getConstantInt(
- astContext.UnsignedIntTy, llvm::APInt(32, wordCounter - 1));
- auto *newAddress =
- spvBuilder.createBinaryOp(spv::Op::OpIAdd, addressType, address,
- offset, expr->getCallee()->getExprLoc());
- loadPtr = spvBuilder.createAccessChain(
- astContext.UnsignedIntTy, objectInfo, {constUint0, newAddress},
- object->getLocStart());
- values.push_back(
- spvBuilder.createLoad(astContext.UnsignedIntTy, loadPtr,
- expr->getCallee()->getExprLoc()));
- }
- const QualType resultType =
- astContext.getExtVectorType(addressType, numWords);
- result = spvBuilder.createCompositeConstruct(resultType, values,
- expr->getLocStart());
- result->setRValue();
- }
- }
- return result;
- }
- SpirvInstruction *
- SpirvEmitter::processStructuredBufferLoad(const CXXMemberCallExpr *expr) {
- if (expr->getNumArgs() == 2) {
- emitError(
- "(RW)StructuredBuffer::Load(in location, out status) not supported",
- expr->getExprLoc());
- return 0;
- }
- const auto *buffer = expr->getImplicitObjectArgument();
- auto *info = loadIfAliasVarRef(buffer);
- const QualType structType =
- hlsl::GetHLSLResourceResultType(buffer->getType());
- auto *zero = spvBuilder.getConstantInt(astContext.IntTy, llvm::APInt(32, 0));
- auto *index = doExpr(expr->getArg(0));
- return turnIntoElementPtr(buffer->getType(), info, structType, {zero, index},
- buffer->getExprLoc());
- }
- SpirvInstruction *
- SpirvEmitter::incDecRWACSBufferCounter(const CXXMemberCallExpr *expr,
- bool isInc, bool loadObject) {
- auto *zero =
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 0));
- auto *sOne =
- spvBuilder.getConstantInt(astContext.IntTy, llvm::APInt(32, 1, true));
- const auto srcLoc = expr->getCallee()->getExprLoc();
- const auto *object =
- expr->getImplicitObjectArgument()->IgnoreParenNoopCasts(astContext);
- if (loadObject) {
- // We don't need the object's <result-id> here since counter variable is a
- // separate variable. But we still need the side effects of evaluating the
- // object, e.g., if the source code is foo(...).IncrementCounter(), we still
- // want to emit the code for foo(...).
- (void)doExpr(object);
- }
- const auto *counterPair = getFinalACSBufferCounter(object);
- if (!counterPair) {
- emitFatalError("cannot find the associated counter variable",
- object->getExprLoc());
- return nullptr;
- }
- auto *counterPtr = spvBuilder.createAccessChain(
- astContext.IntTy, counterPair->get(spvBuilder, spvContext), {zero},
- srcLoc);
- SpirvInstruction *index = nullptr;
- if (isInc) {
- index = spvBuilder.createAtomicOp(
- spv::Op::OpAtomicIAdd, astContext.IntTy, counterPtr, spv::Scope::Device,
- spv::MemorySemanticsMask::MaskNone, sOne, srcLoc);
- } else {
- // Note that OpAtomicISub returns the value before the subtraction;
- // so we need to do substraction again with OpAtomicISub's return value.
- auto *prev = spvBuilder.createAtomicOp(
- spv::Op::OpAtomicISub, astContext.IntTy, counterPtr, spv::Scope::Device,
- spv::MemorySemanticsMask::MaskNone, sOne, srcLoc);
- index = spvBuilder.createBinaryOp(spv::Op::OpISub, astContext.IntTy, prev,
- sOne, srcLoc);
- }
- return index;
- }
- bool SpirvEmitter::tryToAssignCounterVar(const DeclaratorDecl *dstDecl,
- const Expr *srcExpr) {
- // We are handling associated counters here. Casts should not alter which
- // associated counter to manipulate.
- srcExpr = srcExpr->IgnoreParenCasts();
- // For parameters of forward-declared functions. We must make sure the
- // associated counter variable is created. But for forward-declared functions,
- // the translation of the real definition may not be started yet.
- if (const auto *param = dyn_cast<ParmVarDecl>(dstDecl))
- declIdMapper.createFnParamCounterVar(param);
- // For implicit objects of methods. Similar to the above.
- else if (const auto *thisObject = dyn_cast<ImplicitParamDecl>(dstDecl))
- declIdMapper.createFnParamCounterVar(thisObject);
- // Handle AssocCounter#1 (see CounterVarFields comment)
- if (const auto *dstPair = declIdMapper.getCounterIdAliasPair(dstDecl)) {
- const auto *srcPair = getFinalACSBufferCounter(srcExpr);
- if (!srcPair) {
- emitFatalError("cannot find the associated counter variable",
- srcExpr->getExprLoc());
- return false;
- }
- dstPair->assign(*srcPair, spvBuilder, spvContext);
- return true;
- }
- // Handle AssocCounter#3
- llvm::SmallVector<uint32_t, 4> srcIndices;
- const auto *dstFields = declIdMapper.getCounterVarFields(dstDecl);
- const auto *srcFields = getIntermediateACSBufferCounter(srcExpr, &srcIndices);
- if (dstFields && srcFields) {
- // The destination is a struct whose fields are directly alias resources.
- // But that's not necessarily true for the source, which can be deep
- // nested structs. That means they will have different index "prefixes"
- // for all their fields; while the "prefix" for destination is effectively
- // an empty list (since it is not nested in other structs). We need to
- // strip the index prefix from the source.
- return dstFields->assign(*srcFields, /*dstIndices=*/{}, srcIndices,
- spvBuilder, spvContext);
- }
- // AssocCounter#2 and AssocCounter#4 for the lhs cannot happen since the lhs
- // is a stand-alone decl in this method.
- return false;
- }
- bool SpirvEmitter::tryToAssignCounterVar(const Expr *dstExpr,
- const Expr *srcExpr) {
- dstExpr = dstExpr->IgnoreParenCasts();
- srcExpr = srcExpr->IgnoreParenCasts();
- const auto *dstPair = getFinalACSBufferCounter(dstExpr);
- const auto *srcPair = getFinalACSBufferCounter(srcExpr);
- if ((dstPair == nullptr) != (srcPair == nullptr)) {
- emitFatalError("cannot handle associated counter variable assignment",
- srcExpr->getExprLoc());
- return false;
- }
- // Handle AssocCounter#1 & AssocCounter#2
- if (dstPair && srcPair) {
- dstPair->assign(*srcPair, spvBuilder, spvContext);
- return true;
- }
- // Handle AssocCounter#3 & AssocCounter#4
- llvm::SmallVector<uint32_t, 4> dstIndices;
- llvm::SmallVector<uint32_t, 4> srcIndices;
- const auto *srcFields = getIntermediateACSBufferCounter(srcExpr, &srcIndices);
- const auto *dstFields = getIntermediateACSBufferCounter(dstExpr, &dstIndices);
- if (dstFields && srcFields) {
- return dstFields->assign(*srcFields, dstIndices, srcIndices, spvBuilder,
- spvContext);
- }
- return false;
- }
- const CounterIdAliasPair *
- SpirvEmitter::getFinalACSBufferCounter(const Expr *expr) {
- // AssocCounter#1: referencing some stand-alone variable
- if (const auto *decl = getReferencedDef(expr))
- return declIdMapper.getCounterIdAliasPair(decl);
- // AssocCounter#2: referencing some non-struct field
- llvm::SmallVector<uint32_t, 4> rawIndices;
- const auto *base = collectArrayStructIndices(
- expr, /*rawIndex=*/true, &rawIndices, /*indices*/ nullptr);
- const auto *decl =
- (base && isa<CXXThisExpr>(base))
- ? getOrCreateDeclForMethodObject(cast<CXXMethodDecl>(curFunction))
- : getReferencedDef(base);
- return declIdMapper.getCounterIdAliasPair(decl, &rawIndices);
- }
- const CounterVarFields *SpirvEmitter::getIntermediateACSBufferCounter(
- const Expr *expr, llvm::SmallVector<uint32_t, 4> *rawIndices) {
- const auto *base = collectArrayStructIndices(expr, /*rawIndex=*/true,
- rawIndices, /*indices*/ nullptr);
- const auto *decl =
- (base && isa<CXXThisExpr>(base))
- // Use the decl we created to represent the implicit object
- ? getOrCreateDeclForMethodObject(cast<CXXMethodDecl>(curFunction))
- // Find the referenced decl from the original source code
- : getReferencedDef(base);
- return declIdMapper.getCounterVarFields(decl);
- }
- const ImplicitParamDecl *
- SpirvEmitter::getOrCreateDeclForMethodObject(const CXXMethodDecl *method) {
- const auto found = thisDecls.find(method);
- if (found != thisDecls.end())
- return found->second;
- const std::string name = method->getName().str() + ".this";
- // Create a new identifier to convey the name
- auto &identifier = astContext.Idents.get(name);
- return thisDecls[method] = ImplicitParamDecl::Create(
- astContext, /*DC=*/nullptr, SourceLocation(), &identifier,
- method->getThisType(astContext)->getPointeeType());
- }
- SpirvInstruction *
- SpirvEmitter::processACSBufferAppendConsume(const CXXMemberCallExpr *expr) {
- const bool isAppend = expr->getNumArgs() == 1;
- auto *zero =
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 0));
- const auto *object =
- expr->getImplicitObjectArgument()->IgnoreParenNoopCasts(astContext);
- auto *bufferInfo = loadIfAliasVarRef(object);
- auto *index = incDecRWACSBufferCounter(
- expr, isAppend,
- // We have already translated the object in the above. Avoid duplication.
- /*loadObject=*/false);
- auto bufferElemTy = hlsl::GetHLSLResourceResultType(object->getType());
- // If this is a variable to communicate with host e.g., ACSBuffer
- // and its type is bool or vector of bool, its effective type used
- // for SPIRV must be uint not bool. We must convert it to uint here.
- bool needCast = false;
- if (bufferInfo->getLayoutRule() != SpirvLayoutRule::Void &&
- isBoolOrVecOfBoolType(bufferElemTy)) {
- uint32_t vecSize = 1;
- const bool isVec = isVectorType(bufferElemTy, nullptr, &vecSize);
- bufferElemTy =
- isVec ? astContext.getExtVectorType(astContext.UnsignedIntTy, vecSize)
- : astContext.UnsignedIntTy;
- needCast = true;
- }
- bufferInfo = turnIntoElementPtr(object->getType(), bufferInfo, bufferElemTy,
- {zero, index}, object->getExprLoc());
- if (isAppend) {
- // Write out the value
- auto *arg0 = doExpr(expr->getArg(0));
- if (!arg0)
- return nullptr;
- if (!arg0->isRValue()) {
- arg0 = spvBuilder.createLoad(bufferElemTy, arg0,
- expr->getArg(0)->getExprLoc());
- }
- if (needCast &&
- !isSameType(astContext, bufferElemTy, arg0->getAstResultType())) {
- arg0 = castToType(arg0, arg0->getAstResultType(), bufferElemTy,
- expr->getArg(0)->getExprLoc());
- }
- storeValue(bufferInfo, arg0, bufferElemTy, expr->getCallee()->getExprLoc());
- return 0;
- } else {
- // Note that we are returning a pointer (lvalue) here inorder to further
- // acess the fields in this element, e.g., buffer.Consume().a.b. So we
- // cannot forcefully set all normal function calls as returning rvalue.
- return bufferInfo;
- }
- }
- SpirvInstruction *
- SpirvEmitter::processStreamOutputAppend(const CXXMemberCallExpr *expr) {
- // TODO: handle multiple stream-output objects
- const auto *object =
- expr->getImplicitObjectArgument()->IgnoreParenNoopCasts(astContext);
- const auto *stream = cast<DeclRefExpr>(object)->getDecl();
- auto *value = doExpr(expr->getArg(0));
- declIdMapper.writeBackOutputStream(stream, stream->getType(), value);
- spvBuilder.createEmitVertex(expr->getExprLoc());
- return nullptr;
- }
- SpirvInstruction *
- SpirvEmitter::processStreamOutputRestart(const CXXMemberCallExpr *expr) {
- // TODO: handle multiple stream-output objects
- spvBuilder.createEndPrimitive(expr->getExprLoc());
- return 0;
- }
- SpirvInstruction *
- SpirvEmitter::emitGetSamplePosition(SpirvInstruction *sampleCount,
- SpirvInstruction *sampleIndex,
- SourceLocation loc) {
- struct Float2 {
- float x;
- float y;
- };
- static const Float2 pos2[] = {
- {4.0 / 16.0, 4.0 / 16.0},
- {-4.0 / 16.0, -4.0 / 16.0},
- };
- static const Float2 pos4[] = {
- {-2.0 / 16.0, -6.0 / 16.0},
- {6.0 / 16.0, -2.0 / 16.0},
- {-6.0 / 16.0, 2.0 / 16.0},
- {2.0 / 16.0, 6.0 / 16.0},
- };
- static const Float2 pos8[] = {
- {1.0 / 16.0, -3.0 / 16.0}, {-1.0 / 16.0, 3.0 / 16.0},
- {5.0 / 16.0, 1.0 / 16.0}, {-3.0 / 16.0, -5.0 / 16.0},
- {-5.0 / 16.0, 5.0 / 16.0}, {-7.0 / 16.0, -1.0 / 16.0},
- {3.0 / 16.0, 7.0 / 16.0}, {7.0 / 16.0, -7.0 / 16.0},
- };
- static const Float2 pos16[] = {
- {1.0 / 16.0, 1.0 / 16.0}, {-1.0 / 16.0, -3.0 / 16.0},
- {-3.0 / 16.0, 2.0 / 16.0}, {4.0 / 16.0, -1.0 / 16.0},
- {-5.0 / 16.0, -2.0 / 16.0}, {2.0 / 16.0, 5.0 / 16.0},
- {5.0 / 16.0, 3.0 / 16.0}, {3.0 / 16.0, -5.0 / 16.0},
- {-2.0 / 16.0, 6.0 / 16.0}, {0.0 / 16.0, -7.0 / 16.0},
- {-4.0 / 16.0, -6.0 / 16.0}, {-6.0 / 16.0, 4.0 / 16.0},
- {-8.0 / 16.0, 0.0 / 16.0}, {7.0 / 16.0, -4.0 / 16.0},
- {6.0 / 16.0, 7.0 / 16.0}, {-7.0 / 16.0, -8.0 / 16.0},
- };
- // We are emitting the SPIR-V for the following HLSL source code:
- //
- // float2 position;
- //
- // if (count == 2) {
- // position = pos2[index];
- // }
- // else if (count == 4) {
- // position = pos4[index];
- // }
- // else if (count == 8) {
- // position = pos8[index];
- // }
- // else if (count == 16) {
- // position = pos16[index];
- // }
- // else {
- // position = float2(0.0f, 0.0f);
- // }
- const auto v2f32Type = astContext.getExtVectorType(astContext.FloatTy, 2);
- // Creates a SPIR-V function scope variable of type float2[len].
- const auto createArray = [this, v2f32Type, loc](const Float2 *ptr,
- uint32_t len) {
- llvm::SmallVector<SpirvConstant *, 16> components;
- for (uint32_t i = 0; i < len; ++i) {
- auto *x = spvBuilder.getConstantFloat(astContext.FloatTy,
- llvm::APFloat(ptr[i].x));
- auto *y = spvBuilder.getConstantFloat(astContext.FloatTy,
- llvm::APFloat(ptr[i].y));
- components.push_back(spvBuilder.getConstantComposite(v2f32Type, {x, y}));
- }
- const auto arrType = astContext.getConstantArrayType(
- v2f32Type, llvm::APInt(32, len), clang::ArrayType::Normal, 0);
- auto *val = spvBuilder.getConstantComposite(arrType, components);
- const std::string varName =
- "var.GetSamplePosition.data." + std::to_string(len);
- auto *var = spvBuilder.addFnVar(arrType, loc, varName);
- spvBuilder.createStore(var, val, loc);
- return var;
- };
- auto *pos2Arr = createArray(pos2, 2);
- auto *pos4Arr = createArray(pos4, 4);
- auto *pos8Arr = createArray(pos8, 8);
- auto *pos16Arr = createArray(pos16, 16);
- auto *resultVar =
- spvBuilder.addFnVar(v2f32Type, loc, "var.GetSamplePosition.result");
- auto *then2BB = spvBuilder.createBasicBlock("if.GetSamplePosition.then2");
- auto *then4BB = spvBuilder.createBasicBlock("if.GetSamplePosition.then4");
- auto *then8BB = spvBuilder.createBasicBlock("if.GetSamplePosition.then8");
- auto *then16BB = spvBuilder.createBasicBlock("if.GetSamplePosition.then16");
- auto *else2BB = spvBuilder.createBasicBlock("if.GetSamplePosition.else2");
- auto *else4BB = spvBuilder.createBasicBlock("if.GetSamplePosition.else4");
- auto *else8BB = spvBuilder.createBasicBlock("if.GetSamplePosition.else8");
- auto *else16BB = spvBuilder.createBasicBlock("if.GetSamplePosition.else16");
- auto *merge2BB = spvBuilder.createBasicBlock("if.GetSamplePosition.merge2");
- auto *merge4BB = spvBuilder.createBasicBlock("if.GetSamplePosition.merge4");
- auto *merge8BB = spvBuilder.createBasicBlock("if.GetSamplePosition.merge8");
- auto *merge16BB = spvBuilder.createBasicBlock("if.GetSamplePosition.merge16");
- // if (count == 2) {
- const auto check2 = spvBuilder.createBinaryOp(
- spv::Op::OpIEqual, astContext.BoolTy, sampleCount,
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 2)),
- loc);
- spvBuilder.createConditionalBranch(check2, then2BB, else2BB, loc, merge2BB);
- spvBuilder.addSuccessor(then2BB);
- spvBuilder.addSuccessor(else2BB);
- spvBuilder.setMergeTarget(merge2BB);
- // position = pos2[index];
- // }
- spvBuilder.setInsertPoint(then2BB);
- auto *ac =
- spvBuilder.createAccessChain(v2f32Type, pos2Arr, {sampleIndex}, loc);
- spvBuilder.createStore(resultVar, spvBuilder.createLoad(v2f32Type, ac, loc),
- loc);
- spvBuilder.createBranch(merge2BB, loc);
- spvBuilder.addSuccessor(merge2BB);
- // else if (count == 4) {
- spvBuilder.setInsertPoint(else2BB);
- const auto check4 = spvBuilder.createBinaryOp(
- spv::Op::OpIEqual, astContext.BoolTy, sampleCount,
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 4)),
- loc);
- spvBuilder.createConditionalBranch(check4, then4BB, else4BB, loc, merge4BB);
- spvBuilder.addSuccessor(then4BB);
- spvBuilder.addSuccessor(else4BB);
- spvBuilder.setMergeTarget(merge4BB);
- // position = pos4[index];
- // }
- spvBuilder.setInsertPoint(then4BB);
- ac = spvBuilder.createAccessChain(v2f32Type, pos4Arr, {sampleIndex}, loc);
- spvBuilder.createStore(resultVar, spvBuilder.createLoad(v2f32Type, ac, loc),
- loc);
- spvBuilder.createBranch(merge4BB, loc);
- spvBuilder.addSuccessor(merge4BB);
- // else if (count == 8) {
- spvBuilder.setInsertPoint(else4BB);
- const auto check8 = spvBuilder.createBinaryOp(
- spv::Op::OpIEqual, astContext.BoolTy, sampleCount,
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 8)),
- loc);
- spvBuilder.createConditionalBranch(check8, then8BB, else8BB, loc, merge8BB);
- spvBuilder.addSuccessor(then8BB);
- spvBuilder.addSuccessor(else8BB);
- spvBuilder.setMergeTarget(merge8BB);
- // position = pos8[index];
- // }
- spvBuilder.setInsertPoint(then8BB);
- ac = spvBuilder.createAccessChain(v2f32Type, pos8Arr, {sampleIndex}, loc);
- spvBuilder.createStore(resultVar, spvBuilder.createLoad(v2f32Type, ac, loc),
- loc);
- spvBuilder.createBranch(merge8BB, loc);
- spvBuilder.addSuccessor(merge8BB);
- // else if (count == 16) {
- spvBuilder.setInsertPoint(else8BB);
- const auto check16 = spvBuilder.createBinaryOp(
- spv::Op::OpIEqual, astContext.BoolTy, sampleCount,
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 16)),
- loc);
- spvBuilder.createConditionalBranch(check16, then16BB, else16BB, loc,
- merge16BB);
- spvBuilder.addSuccessor(then16BB);
- spvBuilder.addSuccessor(else16BB);
- spvBuilder.setMergeTarget(merge16BB);
- // position = pos16[index];
- // }
- spvBuilder.setInsertPoint(then16BB);
- ac = spvBuilder.createAccessChain(v2f32Type, pos16Arr, {sampleIndex}, loc);
- spvBuilder.createStore(resultVar, spvBuilder.createLoad(v2f32Type, ac, loc),
- loc);
- spvBuilder.createBranch(merge16BB, loc);
- spvBuilder.addSuccessor(merge16BB);
- // else {
- // position = float2(0.0f, 0.0f);
- // }
- spvBuilder.setInsertPoint(else16BB);
- auto *zero =
- spvBuilder.getConstantFloat(astContext.FloatTy, llvm::APFloat(0.0f));
- auto *v2f32Zero = spvBuilder.getConstantComposite(v2f32Type, {zero, zero});
- spvBuilder.createStore(resultVar, v2f32Zero, loc);
- spvBuilder.createBranch(merge16BB, loc);
- spvBuilder.addSuccessor(merge16BB);
- spvBuilder.setInsertPoint(merge16BB);
- spvBuilder.createBranch(merge8BB, loc);
- spvBuilder.addSuccessor(merge8BB);
- spvBuilder.setInsertPoint(merge8BB);
- spvBuilder.createBranch(merge4BB, loc);
- spvBuilder.addSuccessor(merge4BB);
- spvBuilder.setInsertPoint(merge4BB);
- spvBuilder.createBranch(merge2BB, loc);
- spvBuilder.addSuccessor(merge2BB);
- spvBuilder.setInsertPoint(merge2BB);
- return spvBuilder.createLoad(v2f32Type, resultVar, loc);
- }
- SpirvInstruction *
- SpirvEmitter::doCXXMemberCallExpr(const CXXMemberCallExpr *expr) {
- const FunctionDecl *callee = expr->getDirectCallee();
- llvm::StringRef group;
- uint32_t opcode = static_cast<uint32_t>(hlsl::IntrinsicOp::Num_Intrinsics);
- if (hlsl::GetIntrinsicOp(callee, opcode, group)) {
- return processIntrinsicMemberCall(expr,
- static_cast<hlsl::IntrinsicOp>(opcode));
- }
- return processCall(expr);
- }
- void SpirvEmitter::handleOffsetInMethodCall(const CXXMemberCallExpr *expr,
- uint32_t index,
- SpirvInstruction **constOffset,
- SpirvInstruction **varOffset) {
- assert(constOffset && varOffset);
- // Ensure the given arg index is not out-of-range.
- assert(index < expr->getNumArgs());
- *constOffset = *varOffset = nullptr; // Initialize both first
- if ((*constOffset = tryToEvaluateAsConst(expr->getArg(index))))
- return; // Constant offset
- else
- *varOffset = doExpr(expr->getArg(index));
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicMemberCall(const CXXMemberCallExpr *expr,
- hlsl::IntrinsicOp opcode) {
- using namespace hlsl;
- SpirvInstruction *retVal = nullptr;
- switch (opcode) {
- case IntrinsicOp::MOP_Sample:
- retVal = processTextureSampleGather(expr, /*isSample=*/true);
- break;
- case IntrinsicOp::MOP_Gather:
- retVal = processTextureSampleGather(expr, /*isSample=*/false);
- break;
- case IntrinsicOp::MOP_SampleBias:
- retVal = processTextureSampleBiasLevel(expr, /*isBias=*/true);
- break;
- case IntrinsicOp::MOP_SampleLevel:
- retVal = processTextureSampleBiasLevel(expr, /*isBias=*/false);
- break;
- case IntrinsicOp::MOP_SampleGrad:
- retVal = processTextureSampleGrad(expr);
- break;
- case IntrinsicOp::MOP_SampleCmp:
- retVal = processTextureSampleCmpCmpLevelZero(expr, /*isCmp=*/true);
- break;
- case IntrinsicOp::MOP_SampleCmpLevelZero:
- retVal = processTextureSampleCmpCmpLevelZero(expr, /*isCmp=*/false);
- break;
- case IntrinsicOp::MOP_GatherRed:
- retVal = processTextureGatherRGBACmpRGBA(expr, /*isCmp=*/false, 0);
- break;
- case IntrinsicOp::MOP_GatherGreen:
- retVal = processTextureGatherRGBACmpRGBA(expr, /*isCmp=*/false, 1);
- break;
- case IntrinsicOp::MOP_GatherBlue:
- retVal = processTextureGatherRGBACmpRGBA(expr, /*isCmp=*/false, 2);
- break;
- case IntrinsicOp::MOP_GatherAlpha:
- retVal = processTextureGatherRGBACmpRGBA(expr, /*isCmp=*/false, 3);
- break;
- case IntrinsicOp::MOP_GatherCmp:
- retVal = processTextureGatherCmp(expr);
- break;
- case IntrinsicOp::MOP_GatherCmpRed:
- retVal = processTextureGatherRGBACmpRGBA(expr, /*isCmp=*/true, 0);
- break;
- case IntrinsicOp::MOP_Load:
- return processBufferTextureLoad(expr);
- case IntrinsicOp::MOP_Load2:
- return processByteAddressBufferLoadStore(expr, 2, /*doStore*/ false);
- case IntrinsicOp::MOP_Load3:
- return processByteAddressBufferLoadStore(expr, 3, /*doStore*/ false);
- case IntrinsicOp::MOP_Load4:
- return processByteAddressBufferLoadStore(expr, 4, /*doStore*/ false);
- case IntrinsicOp::MOP_Store:
- return processByteAddressBufferLoadStore(expr, 1, /*doStore*/ true);
- case IntrinsicOp::MOP_Store2:
- return processByteAddressBufferLoadStore(expr, 2, /*doStore*/ true);
- case IntrinsicOp::MOP_Store3:
- return processByteAddressBufferLoadStore(expr, 3, /*doStore*/ true);
- case IntrinsicOp::MOP_Store4:
- return processByteAddressBufferLoadStore(expr, 4, /*doStore*/ true);
- case IntrinsicOp::MOP_GetDimensions:
- retVal = processGetDimensions(expr);
- break;
- case IntrinsicOp::MOP_CalculateLevelOfDetail:
- retVal = processTextureLevelOfDetail(expr, /* unclamped */ false);
- case IntrinsicOp::MOP_CalculateLevelOfDetailUnclamped:
- retVal = processTextureLevelOfDetail(expr, /* unclamped */ true);
- break;
- case IntrinsicOp::MOP_IncrementCounter:
- retVal =
- spvBuilder.createUnaryOp(spv::Op::OpBitcast, astContext.UnsignedIntTy,
- incDecRWACSBufferCounter(expr, /*isInc*/ true),
- expr->getCallee()->getExprLoc());
- break;
- case IntrinsicOp::MOP_DecrementCounter:
- retVal = spvBuilder.createUnaryOp(
- spv::Op::OpBitcast, astContext.UnsignedIntTy,
- incDecRWACSBufferCounter(expr, /*isInc*/ false),
- expr->getCallee()->getExprLoc());
- break;
- case IntrinsicOp::MOP_Append:
- if (hlsl::IsHLSLStreamOutputType(
- expr->getImplicitObjectArgument()->getType()))
- return processStreamOutputAppend(expr);
- else
- return processACSBufferAppendConsume(expr);
- case IntrinsicOp::MOP_Consume:
- return processACSBufferAppendConsume(expr);
- case IntrinsicOp::MOP_RestartStrip:
- retVal = processStreamOutputRestart(expr);
- break;
- case IntrinsicOp::MOP_InterlockedAdd:
- case IntrinsicOp::MOP_InterlockedAnd:
- case IntrinsicOp::MOP_InterlockedOr:
- case IntrinsicOp::MOP_InterlockedXor:
- case IntrinsicOp::MOP_InterlockedUMax:
- case IntrinsicOp::MOP_InterlockedUMin:
- case IntrinsicOp::MOP_InterlockedMax:
- case IntrinsicOp::MOP_InterlockedMin:
- case IntrinsicOp::MOP_InterlockedExchange:
- case IntrinsicOp::MOP_InterlockedCompareExchange:
- case IntrinsicOp::MOP_InterlockedCompareStore:
- retVal = processRWByteAddressBufferAtomicMethods(opcode, expr);
- break;
- case IntrinsicOp::MOP_GetSamplePosition:
- retVal = processGetSamplePosition(expr);
- break;
- case IntrinsicOp::MOP_SubpassLoad:
- retVal = processSubpassLoad(expr);
- break;
- case IntrinsicOp::MOP_GatherCmpGreen:
- case IntrinsicOp::MOP_GatherCmpBlue:
- case IntrinsicOp::MOP_GatherCmpAlpha:
- emitError("no equivalent for %0 intrinsic method in Vulkan",
- expr->getCallee()->getExprLoc())
- << expr->getMethodDecl()->getName();
- return nullptr;
- case IntrinsicOp::MOP_TraceRayInline:
- return processTraceRayInline(expr);
- case IntrinsicOp::MOP_Abort:
- case IntrinsicOp::MOP_CandidateGeometryIndex:
- case IntrinsicOp::MOP_CandidateInstanceContributionToHitGroupIndex:
- case IntrinsicOp::MOP_CandidateInstanceID:
- case IntrinsicOp::MOP_CandidateInstanceIndex:
- case IntrinsicOp::MOP_CandidateObjectRayDirection:
- case IntrinsicOp::MOP_CandidateObjectRayOrigin:
- case IntrinsicOp::MOP_CandidateObjectToWorld3x4:
- case IntrinsicOp::MOP_CandidateObjectToWorld4x3:
- case IntrinsicOp::MOP_CandidatePrimitiveIndex:
- case IntrinsicOp::MOP_CandidateProceduralPrimitiveNonOpaque:
- case IntrinsicOp::MOP_CandidateTriangleBarycentrics:
- case IntrinsicOp::MOP_CandidateTriangleFrontFace:
- case IntrinsicOp::MOP_CandidateTriangleRayT:
- case IntrinsicOp::MOP_CandidateType:
- case IntrinsicOp::MOP_CandidateWorldToObject3x4:
- case IntrinsicOp::MOP_CandidateWorldToObject4x3:
- case IntrinsicOp::MOP_CommitNonOpaqueTriangleHit:
- case IntrinsicOp::MOP_CommitProceduralPrimitiveHit:
- case IntrinsicOp::MOP_CommittedGeometryIndex:
- case IntrinsicOp::MOP_CommittedInstanceContributionToHitGroupIndex:
- case IntrinsicOp::MOP_CommittedInstanceID:
- case IntrinsicOp::MOP_CommittedInstanceIndex:
- case IntrinsicOp::MOP_CommittedObjectRayDirection:
- case IntrinsicOp::MOP_CommittedObjectRayOrigin:
- case IntrinsicOp::MOP_CommittedObjectToWorld3x4:
- case IntrinsicOp::MOP_CommittedObjectToWorld4x3:
- case IntrinsicOp::MOP_CommittedPrimitiveIndex:
- case IntrinsicOp::MOP_CommittedRayT:
- case IntrinsicOp::MOP_CommittedStatus:
- case IntrinsicOp::MOP_CommittedTriangleBarycentrics:
- case IntrinsicOp::MOP_CommittedTriangleFrontFace:
- case IntrinsicOp::MOP_CommittedWorldToObject3x4:
- case IntrinsicOp::MOP_CommittedWorldToObject4x3:
- case IntrinsicOp::MOP_Proceed:
- case IntrinsicOp::MOP_RayFlags:
- case IntrinsicOp::MOP_RayTMin:
- case IntrinsicOp::MOP_WorldRayDirection:
- case IntrinsicOp::MOP_WorldRayOrigin:
- return processRayQueryIntrinsics(expr, opcode);
- default:
- emitError("intrinsic '%0' method unimplemented",
- expr->getCallee()->getExprLoc())
- << expr->getDirectCallee()->getName();
- return nullptr;
- }
- if (retVal)
- retVal->setRValue();
- return retVal;
- }
- SpirvInstruction *SpirvEmitter::createImageSample(
- QualType retType, QualType imageType, SpirvInstruction *image,
- SpirvInstruction *sampler, SpirvInstruction *coordinate,
- SpirvInstruction *compareVal, SpirvInstruction *bias, SpirvInstruction *lod,
- std::pair<SpirvInstruction *, SpirvInstruction *> grad,
- SpirvInstruction *constOffset, SpirvInstruction *varOffset,
- SpirvInstruction *constOffsets, SpirvInstruction *sample,
- SpirvInstruction *minLod, SpirvInstruction *residencyCodeId,
- SourceLocation loc) {
- // SampleDref* instructions in SPIR-V always return a scalar.
- // They also have the correct type in HLSL.
- if (compareVal) {
- return spvBuilder.createImageSample(retType, imageType, image, sampler,
- coordinate, compareVal, bias, lod, grad,
- constOffset, varOffset, constOffsets,
- sample, minLod, residencyCodeId, loc);
- }
- // Non-Dref Sample instructions in SPIR-V must always return a vec4.
- auto texelType = retType;
- QualType elemType = {};
- uint32_t retVecSize = 0;
- if (isVectorType(retType, &elemType, &retVecSize) && retVecSize != 4) {
- texelType = astContext.getExtVectorType(elemType, 4);
- } else if (isScalarType(retType)) {
- retVecSize = 1;
- elemType = retType;
- texelType = astContext.getExtVectorType(retType, 4);
- }
- // The Lod and Grad image operands requires explicit-lod instructions.
- // Otherwise we use implicit-lod instructions.
- const bool isExplicit = lod || (grad.first && grad.second);
- // Implicit-lod instructions are only allowed in pixel shader.
- if (!spvContext.isPS() && !isExplicit)
- needsLegalization = true;
- auto *retVal = spvBuilder.createImageSample(
- texelType, imageType, image, sampler, coordinate, compareVal, bias, lod,
- grad, constOffset, varOffset, constOffsets, sample, minLod,
- residencyCodeId, loc);
- // Extract smaller vector from the vec4 result if necessary.
- if (texelType != retType) {
- retVal = extractVecFromVec4(retVal, retVecSize, elemType, loc);
- }
- return retVal;
- }
- SpirvInstruction *
- SpirvEmitter::processTextureSampleGather(const CXXMemberCallExpr *expr,
- const bool isSample) {
- // Signatures:
- // For Texture1D, Texture1DArray, Texture2D, Texture2DArray, Texture3D:
- // DXGI_FORMAT Object.Sample(sampler_state S,
- // float Location
- // [, int Offset]
- // [, float Clamp]
- // [, out uint Status]);
- //
- // For TextureCube and TextureCubeArray:
- // DXGI_FORMAT Object.Sample(sampler_state S,
- // float Location
- // [, float Clamp]
- // [, out uint Status]);
- //
- // For Texture2D/Texture2DArray:
- // <Template Type>4 Object.Gather(sampler_state S,
- // float2|3|4 Location,
- // int2 Offset
- // [, uint Status]);
- //
- // For TextureCube/TextureCubeArray:
- // <Template Type>4 Object.Gather(sampler_state S,
- // float2|3|4 Location
- // [, uint Status]);
- //
- // Other Texture types do not have a Gather method.
- const auto numArgs = expr->getNumArgs();
- const auto loc = expr->getExprLoc();
- const bool hasStatusArg =
- expr->getArg(numArgs - 1)->getType()->isUnsignedIntegerType();
- SpirvInstruction *clamp = nullptr;
- if (numArgs > 2 && expr->getArg(2)->getType()->isFloatingType())
- clamp = doExpr(expr->getArg(2));
- else if (numArgs > 3 && expr->getArg(3)->getType()->isFloatingType())
- clamp = doExpr(expr->getArg(3));
- const bool hasClampArg = (clamp != 0);
- const auto status =
- hasStatusArg ? doExpr(expr->getArg(numArgs - 1)) : nullptr;
- // Subtract 1 for status (if it exists), subtract 1 for clamp (if it exists),
- // and subtract 2 for sampler_state and location.
- const bool hasOffsetArg = numArgs - hasStatusArg - hasClampArg - 2 > 0;
- const auto *imageExpr = expr->getImplicitObjectArgument();
- const QualType imageType = imageExpr->getType();
- auto *image = loadIfGLValue(imageExpr);
- auto *sampler = doExpr(expr->getArg(0));
- auto *coordinate = doExpr(expr->getArg(1));
- // .Sample()/.Gather() may have a third optional paramter for offset.
- SpirvInstruction *constOffset = nullptr, *varOffset = nullptr;
- if (hasOffsetArg)
- handleOffsetInMethodCall(expr, 2, &constOffset, &varOffset);
- const auto retType = expr->getDirectCallee()->getReturnType();
- if (isSample) {
- return createImageSample(retType, imageType, image, sampler, coordinate,
- /*compareVal*/ nullptr, /*bias*/ nullptr,
- /*lod*/ nullptr, std::make_pair(nullptr, nullptr),
- constOffset, varOffset,
- /*constOffsets*/ nullptr, /*sampleNumber*/ nullptr,
- /*minLod*/ clamp, status,
- expr->getCallee()->getLocStart());
- } else {
- return spvBuilder.createImageGather(
- retType, imageType, image, sampler, coordinate,
- // .Gather() doc says we return four components of red data.
- spvBuilder.getConstantInt(astContext.IntTy, llvm::APInt(32, 0)),
- /*compareVal*/ nullptr, constOffset, varOffset,
- /*constOffsets*/ nullptr, /*sampleNumber*/ nullptr, status, loc);
- }
- }
- SpirvInstruction *
- SpirvEmitter::processTextureSampleBiasLevel(const CXXMemberCallExpr *expr,
- const bool isBias) {
- // Signatures:
- // For Texture1D, Texture1DArray, Texture2D, Texture2DArray, and Texture3D:
- // DXGI_FORMAT Object.SampleBias(sampler_state S,
- // float Location,
- // float Bias
- // [, int Offset]
- // [, float clamp]
- // [, out uint Status]);
- //
- // For TextureCube and TextureCubeArray:
- // DXGI_FORMAT Object.SampleBias(sampler_state S,
- // float Location,
- // float Bias
- // [, float clamp]
- // [, out uint Status]);
- //
- // For Texture1D, Texture1DArray, Texture2D, Texture2DArray, and Texture3D:
- // DXGI_FORMAT Object.SampleLevel(sampler_state S,
- // float Location,
- // float LOD
- // [, int Offset]
- // [, out uint Status]);
- //
- // For TextureCube and TextureCubeArray:
- // DXGI_FORMAT Object.SampleLevel(sampler_state S,
- // float Location,
- // float LOD
- // [, out uint Status]);
- const auto numArgs = expr->getNumArgs();
- const bool hasStatusArg =
- expr->getArg(numArgs - 1)->getType()->isUnsignedIntegerType();
- auto *status = hasStatusArg ? doExpr(expr->getArg(numArgs - 1)) : nullptr;
- SpirvInstruction *clamp = nullptr;
- // The .SampleLevel() methods do not take the clamp argument.
- if (isBias) {
- if (numArgs > 3 && expr->getArg(3)->getType()->isFloatingType())
- clamp = doExpr(expr->getArg(3));
- else if (numArgs > 4 && expr->getArg(4)->getType()->isFloatingType())
- clamp = doExpr(expr->getArg(4));
- }
- const bool hasClampArg = clamp != nullptr;
- // Subtract 1 for clamp (if it exists), 1 for status (if it exists),
- // and 3 for sampler_state, location, and Bias/LOD.
- const bool hasOffsetArg = numArgs - hasClampArg - hasStatusArg - 3 > 0;
- const auto *imageExpr = expr->getImplicitObjectArgument();
- const QualType imageType = imageExpr->getType();
- auto *image = loadIfGLValue(imageExpr);
- auto *sampler = doExpr(expr->getArg(0));
- auto *coordinate = doExpr(expr->getArg(1));
- SpirvInstruction *lod = nullptr;
- SpirvInstruction *bias = nullptr;
- if (isBias) {
- bias = doExpr(expr->getArg(2));
- } else {
- lod = doExpr(expr->getArg(2));
- }
- // If offset is present in .Bias()/.SampleLevel(), it is the fourth argument.
- SpirvInstruction *constOffset = nullptr, *varOffset = nullptr;
- if (hasOffsetArg)
- handleOffsetInMethodCall(expr, 3, &constOffset, &varOffset);
- const auto retType = expr->getDirectCallee()->getReturnType();
- return createImageSample(
- retType, imageType, image, sampler, coordinate,
- /*compareVal*/ nullptr, bias, lod, std::make_pair(nullptr, nullptr),
- constOffset, varOffset,
- /*constOffsets*/ nullptr, /*sampleNumber*/ nullptr,
- /*minLod*/ clamp, status, expr->getCallee()->getLocStart());
- }
- SpirvInstruction *
- SpirvEmitter::processTextureSampleGrad(const CXXMemberCallExpr *expr) {
- // Signature:
- // For Texture1D, Texture1DArray, Texture2D, Texture2DArray, and Texture3D:
- // DXGI_FORMAT Object.SampleGrad(sampler_state S,
- // float Location,
- // float DDX,
- // float DDY
- // [, int Offset]
- // [, float Clamp]
- // [, out uint Status]);
- //
- // For TextureCube and TextureCubeArray:
- // DXGI_FORMAT Object.SampleGrad(sampler_state S,
- // float Location,
- // float DDX,
- // float DDY
- // [, float Clamp]
- // [, out uint Status]);
- const auto numArgs = expr->getNumArgs();
- const bool hasStatusArg =
- expr->getArg(numArgs - 1)->getType()->isUnsignedIntegerType();
- auto *status = hasStatusArg ? doExpr(expr->getArg(numArgs - 1)) : nullptr;
- SpirvInstruction *clamp = nullptr;
- if (numArgs > 4 && expr->getArg(4)->getType()->isFloatingType())
- clamp = doExpr(expr->getArg(4));
- else if (numArgs > 5 && expr->getArg(5)->getType()->isFloatingType())
- clamp = doExpr(expr->getArg(5));
- const bool hasClampArg = clamp != nullptr;
- // Subtract 1 for clamp (if it exists), 1 for status (if it exists),
- // and 4 for sampler_state, location, DDX, and DDY;
- const bool hasOffsetArg = numArgs - hasClampArg - hasStatusArg - 4 > 0;
- const auto *imageExpr = expr->getImplicitObjectArgument();
- const QualType imageType = imageExpr->getType();
- auto *image = loadIfGLValue(imageExpr);
- auto *sampler = doExpr(expr->getArg(0));
- auto *coordinate = doExpr(expr->getArg(1));
- auto *ddx = doExpr(expr->getArg(2));
- auto *ddy = doExpr(expr->getArg(3));
- // If offset is present in .SampleGrad(), it is the fifth argument.
- SpirvInstruction *constOffset = nullptr, *varOffset = nullptr;
- if (hasOffsetArg)
- handleOffsetInMethodCall(expr, 4, &constOffset, &varOffset);
- const auto retType = expr->getDirectCallee()->getReturnType();
- return createImageSample(
- retType, imageType, image, sampler, coordinate,
- /*compareVal*/ nullptr, /*bias*/ nullptr,
- /*lod*/ nullptr, std::make_pair(ddx, ddy), constOffset, varOffset,
- /*constOffsets*/ nullptr, /*sampleNumber*/ nullptr,
- /*minLod*/ clamp, status, expr->getCallee()->getLocStart());
- }
- SpirvInstruction *
- SpirvEmitter::processTextureSampleCmpCmpLevelZero(const CXXMemberCallExpr *expr,
- const bool isCmp) {
- // .SampleCmp() Signature:
- //
- // For Texture1D, Texture1DArray, Texture2D, Texture2DArray:
- // float Object.SampleCmp(
- // SamplerComparisonState S,
- // float Location,
- // float CompareValue
- // [, int Offset]
- // [, float Clamp]
- // [, out uint Status]
- // );
- //
- // For TextureCube and TextureCubeArray:
- // float Object.SampleCmp(
- // SamplerComparisonState S,
- // float Location,
- // float CompareValue
- // [, float Clamp]
- // [, out uint Status]
- // );
- //
- // .SampleCmpLevelZero() is identical to .SampleCmp() on mipmap level 0 only.
- // It never takes a clamp argument, which is good because lod and clamp may
- // not be used together.
- //
- // .SampleCmpLevelZero() Signature:
- //
- // For Texture1D, Texture1DArray, Texture2D, Texture2DArray:
- // float Object.SampleCmpLevelZero(
- // SamplerComparisonState S,
- // float Location,
- // float CompareValue
- // [, int Offset]
- // [, out uint Status]
- // );
- //
- // For TextureCube and TextureCubeArray:
- // float Object.SampleCmpLevelZero(
- // SamplerComparisonState S,
- // float Location,
- // float CompareValue
- // [, out uint Status]
- // );
- const auto numArgs = expr->getNumArgs();
- const bool hasStatusArg =
- expr->getArg(numArgs - 1)->getType()->isUnsignedIntegerType();
- auto *status = hasStatusArg ? doExpr(expr->getArg(numArgs - 1)) : nullptr;
- SpirvInstruction *clamp = nullptr;
- // The .SampleCmpLevelZero() methods do not take the clamp argument.
- if (isCmp) {
- if (numArgs > 3 && expr->getArg(3)->getType()->isFloatingType())
- clamp = doExpr(expr->getArg(3));
- else if (numArgs > 4 && expr->getArg(4)->getType()->isFloatingType())
- clamp = doExpr(expr->getArg(4));
- }
- const bool hasClampArg = clamp != nullptr;
- // Subtract 1 for clamp (if it exists), 1 for status (if it exists),
- // and 3 for sampler_state, location, and compare_value.
- const bool hasOffsetArg = numArgs - hasClampArg - hasStatusArg - 3 > 0;
- const auto *imageExpr = expr->getImplicitObjectArgument();
- auto *image = loadIfGLValue(imageExpr);
- auto *sampler = doExpr(expr->getArg(0));
- auto *coordinate = doExpr(expr->getArg(1));
- auto *compareVal = doExpr(expr->getArg(2));
- // If offset is present in .SampleCmp(), it will be the fourth argument.
- SpirvInstruction *constOffset = nullptr, *varOffset = nullptr;
- if (hasOffsetArg)
- handleOffsetInMethodCall(expr, 3, &constOffset, &varOffset);
- auto *lod = isCmp ? nullptr
- : spvBuilder.getConstantFloat(astContext.FloatTy,
- llvm::APFloat(0.0f));
- const auto retType = expr->getDirectCallee()->getReturnType();
- const auto imageType = imageExpr->getType();
- return createImageSample(
- retType, imageType, image, sampler, coordinate, compareVal,
- /*bias*/ nullptr, lod, std::make_pair(nullptr, nullptr), constOffset,
- varOffset,
- /*constOffsets*/ nullptr, /*sampleNumber*/ nullptr, /*minLod*/ clamp,
- status, expr->getCallee()->getLocStart());
- }
- SpirvInstruction *
- SpirvEmitter::processBufferTextureLoad(const CXXMemberCallExpr *expr) {
- // Signature:
- // For Texture1D, Texture1DArray, Texture2D, Texture2DArray, Texture3D:
- // ret Object.Load(int Location
- // [, int Offset]
- // [, uint status]);
- //
- // For Texture2DMS and Texture2DMSArray, there is one additional argument:
- // ret Object.Load(int Location
- // [, int SampleIndex]
- // [, int Offset]
- // [, uint status]);
- //
- // For (RW)Buffer, RWTexture1D, RWTexture1DArray, RWTexture2D,
- // RWTexture2DArray, RWTexture3D:
- // ret Object.Load (int Location
- // [, uint status]);
- //
- // Note: (RW)ByteAddressBuffer and (RW)StructuredBuffer types also have Load
- // methods that take an additional Status argument. However, since these types
- // are not represented as OpTypeImage in SPIR-V, we don't have a way of
- // figuring out the Residency Code for them. Therefore having the Status
- // argument for these types is not supported.
- //
- // For (RW)ByteAddressBuffer:
- // ret Object.{Load,Load2,Load3,Load4} (int Location
- // [, uint status]);
- //
- // For (RW)StructuredBuffer:
- // ret Object.Load (int Location
- // [, uint status]);
- //
- const auto *object = expr->getImplicitObjectArgument();
- const auto objectType = object->getType();
- if (isRWByteAddressBuffer(objectType) || isByteAddressBuffer(objectType))
- return processByteAddressBufferLoadStore(expr, 1, /*doStore*/ false);
- if (isStructuredBuffer(objectType))
- return processStructuredBufferLoad(expr);
- const auto numArgs = expr->getNumArgs();
- const auto *locationArg = expr->getArg(0);
- const bool textureMS = isTextureMS(objectType);
- const bool hasStatusArg =
- expr->getArg(numArgs - 1)->getType()->isUnsignedIntegerType();
- auto *status = hasStatusArg ? doExpr(expr->getArg(numArgs - 1)) : nullptr;
- auto loc = expr->getExprLoc();
- if (isBuffer(objectType) || isRWBuffer(objectType) || isRWTexture(objectType))
- return processBufferTextureLoad(object, doExpr(locationArg),
- /*constOffset*/ nullptr,
- /*varOffset*/ nullptr, /*lod*/ nullptr,
- /*residencyCode*/ status, loc);
- // Subtract 1 for status (if it exists), and 1 for sampleIndex (if it exists),
- // and 1 for location.
- const bool hasOffsetArg = numArgs - hasStatusArg - textureMS - 1 > 0;
- if (isTexture(objectType)) {
- // .Load() has a second optional paramter for offset.
- SpirvInstruction *location = doExpr(locationArg);
- SpirvInstruction *constOffset = nullptr, *varOffset = nullptr;
- SpirvInstruction *coordinate = location, *lod = nullptr;
- if (textureMS) {
- // SampleIndex is only available when the Object is of Texture2DMS or
- // Texture2DMSArray types. Under those cases, Offset will be the third
- // parameter (index 2).
- lod = doExpr(expr->getArg(1));
- if (hasOffsetArg)
- handleOffsetInMethodCall(expr, 2, &constOffset, &varOffset);
- } else {
- // For Texture Load() functions, the location parameter is a vector
- // that consists of both the coordinate and the mipmap level (via the
- // last vector element). We need to split it here since the
- // OpImageFetch SPIR-V instruction encodes them as separate arguments.
- splitVecLastElement(locationArg->getType(), location, &coordinate, &lod,
- locationArg->getExprLoc());
- // For textures other than Texture2DMS(Array), offset should be the
- // second parameter (index 1).
- if (hasOffsetArg)
- handleOffsetInMethodCall(expr, 1, &constOffset, &varOffset);
- }
- return processBufferTextureLoad(object, coordinate, constOffset, varOffset,
- lod, status, loc);
- }
- emitError("Load() of the given object type unimplemented",
- object->getExprLoc());
- return nullptr;
- }
- SpirvInstruction *
- SpirvEmitter::processGetDimensions(const CXXMemberCallExpr *expr) {
- const auto objectType = expr->getImplicitObjectArgument()->getType();
- if (isTexture(objectType) || isRWTexture(objectType) ||
- isBuffer(objectType) || isRWBuffer(objectType)) {
- return processBufferTextureGetDimensions(expr);
- } else if (isByteAddressBuffer(objectType) ||
- isRWByteAddressBuffer(objectType) ||
- isStructuredBuffer(objectType) ||
- isAppendStructuredBuffer(objectType) ||
- isConsumeStructuredBuffer(objectType)) {
- return processByteAddressBufferStructuredBufferGetDimensions(expr);
- } else {
- emitError("GetDimensions() of the given object type unimplemented",
- expr->getExprLoc());
- return nullptr;
- }
- }
- SpirvInstruction *
- SpirvEmitter::doCXXOperatorCallExpr(const CXXOperatorCallExpr *expr) {
- { // Handle Buffer/RWBuffer/Texture/RWTexture indexing
- const Expr *baseExpr = nullptr;
- const Expr *indexExpr = nullptr;
- const Expr *lodExpr = nullptr;
- // For Textures, regular indexing (operator[]) uses slice 0.
- if (isBufferTextureIndexing(expr, &baseExpr, &indexExpr)) {
- auto *lod = isTexture(baseExpr->getType())
- ? spvBuilder.getConstantInt(astContext.UnsignedIntTy,
- llvm::APInt(32, 0))
- : nullptr;
- return processBufferTextureLoad(baseExpr, doExpr(indexExpr),
- /*constOffset*/ nullptr,
- /*varOffset*/ nullptr, lod,
- /*residencyCode*/ nullptr,
- expr->getExprLoc());
- }
- // .mips[][] or .sample[][] must use the correct slice.
- if (isTextureMipsSampleIndexing(expr, &baseExpr, &indexExpr, &lodExpr)) {
- auto *lod = doExpr(lodExpr);
- return processBufferTextureLoad(baseExpr, doExpr(indexExpr),
- /*constOffset*/ nullptr,
- /*varOffset*/ nullptr, lod,
- /*residencyCode*/ nullptr,
- expr->getExprLoc());
- }
- }
- llvm::SmallVector<SpirvInstruction *, 4> indices;
- const Expr *baseExpr = collectArrayStructIndices(
- expr, /*rawIndex*/ false, /*rawIndices*/ nullptr, &indices);
- auto base = loadIfAliasVarRef(baseExpr);
- if (indices.empty())
- return base; // For indexing into size-1 vectors and 1xN matrices
- // If we are indexing into a rvalue, to use OpAccessChain, we first need
- // to create a local variable to hold the rvalue.
- //
- // TODO: We can optimize the codegen by emitting OpCompositeExtract if
- // all indices are contant integers.
- if (base->isRValue()) {
- base = createTemporaryVar(baseExpr->getType(), "vector", base,
- baseExpr->getExprLoc());
- }
- return turnIntoElementPtr(baseExpr->getType(), base, expr->getType(), indices,
- baseExpr->getExprLoc());
- }
- SpirvInstruction *
- SpirvEmitter::doExtMatrixElementExpr(const ExtMatrixElementExpr *expr) {
- const Expr *baseExpr = expr->getBase();
- auto *baseInfo = doExpr(baseExpr);
- const auto layoutRule = baseInfo->getLayoutRule();
- const auto elemType = hlsl::GetHLSLMatElementType(baseExpr->getType());
- const auto accessor = expr->getEncodedElementAccess();
- uint32_t rowCount = 0, colCount = 0;
- hlsl::GetHLSLMatRowColCount(baseExpr->getType(), rowCount, colCount);
- // Construct a temporary vector out of all elements accessed:
- // 1. Create access chain for each element using OpAccessChain
- // 2. Load each element using OpLoad
- // 3. Create the vector using OpCompositeConstruct
- llvm::SmallVector<SpirvInstruction *, 4> elements;
- for (uint32_t i = 0; i < accessor.Count; ++i) {
- uint32_t row = 0, col = 0;
- SpirvInstruction *elem = nullptr;
- accessor.GetPosition(i, &row, &col);
- llvm::SmallVector<uint32_t, 2> indices;
- // If the matrix only has one row/column, we are indexing into a vector
- // then. Only one index is needed for such cases.
- if (rowCount > 1)
- indices.push_back(row);
- if (colCount > 1)
- indices.push_back(col);
- if (!baseInfo->isRValue()) {
- llvm::SmallVector<SpirvInstruction *, 2> indexInstructions(indices.size(),
- nullptr);
- for (uint32_t i = 0; i < indices.size(); ++i)
- indexInstructions[i] = spvBuilder.getConstantInt(
- astContext.IntTy, llvm::APInt(32, indices[i], true));
- if (!indices.empty()) {
- assert(!baseInfo->isRValue());
- // Load the element via access chain
- elem = spvBuilder.createAccessChain(
- elemType, baseInfo, indexInstructions, baseExpr->getLocStart());
- } else {
- // The matrix is of size 1x1. No need to use access chain, base should
- // be the source pointer.
- elem = baseInfo;
- }
- elem = spvBuilder.createLoad(elemType, elem, baseExpr->getLocStart());
- } else { // e.g., (mat1 + mat2)._m11
- elem = spvBuilder.createCompositeExtract(elemType, baseInfo, indices,
- baseExpr->getLocStart());
- }
- elements.push_back(elem);
- }
- const auto size = elements.size();
- auto *value = elements.front();
- if (size > 1) {
- value = spvBuilder.createCompositeConstruct(
- astContext.getExtVectorType(elemType, size), elements,
- expr->getLocStart());
- }
- // Note: Special-case: Booleans have no physical layout, and therefore when
- // layout is required booleans are represented as unsigned integers.
- // Therefore, after loading the uint we should convert it boolean.
- if (elemType->isBooleanType() && layoutRule != SpirvLayoutRule::Void) {
- const auto fromType =
- size == 1 ? astContext.UnsignedIntTy
- : astContext.getExtVectorType(astContext.UnsignedIntTy, size);
- const auto toType =
- size == 1 ? astContext.BoolTy
- : astContext.getExtVectorType(astContext.BoolTy, size);
- value = castToBool(value, fromType, toType, expr->getLocStart());
- }
- value->setRValue();
- return value;
- }
- SpirvInstruction *
- SpirvEmitter::doHLSLVectorElementExpr(const HLSLVectorElementExpr *expr) {
- const Expr *baseExpr = nullptr;
- hlsl::VectorMemberAccessPositions accessor;
- condenseVectorElementExpr(expr, &baseExpr, &accessor);
- const QualType baseType = baseExpr->getType();
- assert(hlsl::IsHLSLVecType(baseType));
- const auto baseSize = hlsl::GetHLSLVecSize(baseType);
- const auto accessorSize = static_cast<size_t>(accessor.Count);
- // Depending on the number of elements selected, we emit different
- // instructions.
- // For vectors of size greater than 1, if we are only selecting one element,
- // typical access chain or composite extraction should be fine. But if we
- // are selecting more than one elements, we must resolve to vector specific
- // operations.
- // For size-1 vectors, if we are selecting their single elements multiple
- // times, we need composite construct instructions.
- if (accessorSize == 1) {
- auto *baseInfo = doExpr(baseExpr);
- if (!baseInfo || baseSize == 1) {
- // Selecting one element from a size-1 vector. The underlying vector is
- // already treated as a scalar.
- return baseInfo;
- }
- // If the base is an lvalue, we should emit an access chain instruction
- // so that we can load/store the specified element. For rvalue base,
- // we should use composite extraction. We should check the immediate base
- // instead of the original base here since we can have something like
- // v.xyyz to turn a lvalue v into rvalue.
- const auto type = expr->getType();
- if (!baseInfo->isRValue()) { // E.g., v.x;
- auto *index = spvBuilder.getConstantInt(
- astContext.IntTy, llvm::APInt(32, accessor.Swz0, true));
- // We need a lvalue here. Do not try to load.
- return spvBuilder.createAccessChain(type, baseInfo, {index},
- baseExpr->getLocStart());
- } else { // E.g., (v + w).x;
- // The original base vector may not be a rvalue. Need to load it if
- // it is lvalue since ImplicitCastExpr (LValueToRValue) will be missing
- // for that case.
- SpirvInstruction *result = spvBuilder.createCompositeExtract(
- type, baseInfo, {accessor.Swz0}, baseExpr->getLocStart());
- // Special-case: Booleans in SPIR-V do not have a physical layout. Uint is
- // used to represent them when layout is required.
- if (expr->getType()->isBooleanType() &&
- baseInfo->getLayoutRule() != SpirvLayoutRule::Void)
- result = castToBool(result, astContext.UnsignedIntTy, astContext.BoolTy,
- expr->getLocStart());
- return result;
- }
- }
- if (baseSize == 1) {
- // Selecting more than one element from a size-1 vector, for example,
- // <scalar>.xx. Construct the vector.
- auto *info = loadIfGLValue(baseExpr);
- const auto type = expr->getType();
- llvm::SmallVector<SpirvInstruction *, 4> components(accessorSize, info);
- info = spvBuilder.createCompositeConstruct(type, components,
- expr->getLocStart());
- info->setRValue();
- return info;
- }
- llvm::SmallVector<uint32_t, 4> selectors;
- selectors.resize(accessorSize);
- // Whether we are selecting elements in the original order
- bool originalOrder = baseSize == accessorSize;
- for (uint32_t i = 0; i < accessorSize; ++i) {
- accessor.GetPosition(i, &selectors[i]);
- // We can select more elements than the vector provides. This handles
- // that case too.
- originalOrder &= selectors[i] == i;
- }
- if (originalOrder)
- return doExpr(baseExpr);
- auto *info = loadIfGLValue(baseExpr);
- // Use base for both vectors. But we are only selecting values from the
- // first one.
- return spvBuilder.createVectorShuffle(expr->getType(), info, info, selectors,
- expr->getLocStart());
- }
- SpirvInstruction *SpirvEmitter::doInitListExpr(const InitListExpr *expr) {
- if (auto *id = tryToEvaluateAsConst(expr)) {
- id->setRValue();
- return id;
- }
- auto *result = InitListHandler(astContext, *this).processInit(expr);
- result->setRValue();
- return result;
- }
- SpirvInstruction *SpirvEmitter::doMemberExpr(const MemberExpr *expr) {
- llvm::SmallVector<SpirvInstruction *, 4> indices;
- const Expr *base = collectArrayStructIndices(
- expr, /*rawIndex*/ false, /*rawIndices*/ nullptr, &indices);
- auto *instr = loadIfAliasVarRef(base);
- if (instr && !indices.empty()) {
- instr = turnIntoElementPtr(base->getType(), instr, expr->getType(), indices,
- base->getExprLoc());
- }
- return instr;
- }
- SpirvVariable *SpirvEmitter::createTemporaryVar(QualType type,
- llvm::StringRef name,
- SpirvInstruction *init,
- SourceLocation loc) {
- // We are creating a temporary variable in the Function storage class here,
- // which means it has void layout rule.
- const std::string varName = "temp.var." + name.str();
- auto *var = spvBuilder.addFnVar(type, loc, varName);
- storeValue(var, init, type, loc);
- return var;
- }
- SpirvInstruction *SpirvEmitter::doUnaryOperator(const UnaryOperator *expr) {
- const auto opcode = expr->getOpcode();
- const auto *subExpr = expr->getSubExpr();
- const auto subType = subExpr->getType();
- auto *subValue = doExpr(subExpr);
- switch (opcode) {
- case UO_PreInc:
- case UO_PreDec:
- case UO_PostInc:
- case UO_PostDec: {
- const bool isPre = opcode == UO_PreInc || opcode == UO_PreDec;
- const bool isInc = opcode == UO_PreInc || opcode == UO_PostInc;
- const spv::Op spvOp = translateOp(isInc ? BO_Add : BO_Sub, subType);
- SpirvInstruction *originValue =
- subValue->isRValue()
- ? subValue
- : spvBuilder.createLoad(subType, subValue, subExpr->getLocStart());
- auto *one = hlsl::IsHLSLMatType(subType) ? getMatElemValueOne(subType)
- : getValueOne(subType);
- SpirvInstruction *incValue = nullptr;
- if (isMxNMatrix(subType)) {
- // For matrices, we can only increment/decrement each vector of it.
- const auto actOnEachVec = [this, spvOp, one,
- expr](uint32_t /*index*/, QualType vecType,
- SpirvInstruction *lhsVec) {
- auto *val = spvBuilder.createBinaryOp(spvOp, vecType, lhsVec, one,
- expr->getOperatorLoc());
- val->setRValue();
- return val;
- };
- incValue = processEachVectorInMatrix(subExpr, originValue, actOnEachVec,
- expr->getLocStart());
- } else {
- incValue = spvBuilder.createBinaryOp(spvOp, subType, originValue, one,
- expr->getOperatorLoc());
- }
- // If this is a RWBuffer/RWTexture assignment, OpImageWrite will be used.
- // Otherwise, store using OpStore.
- if (tryToAssignToRWBufferRWTexture(subExpr, incValue)) {
- incValue->setRValue();
- subValue = incValue;
- } else {
- spvBuilder.createStore(subValue, incValue, subExpr->getLocStart());
- }
- // Prefix increment/decrement operator returns a lvalue, while postfix
- // increment/decrement returns a rvalue.
- if (isPre) {
- return subValue;
- } else {
- originValue->setRValue();
- return originValue;
- }
- }
- case UO_Not: {
- subValue = spvBuilder.createUnaryOp(spv::Op::OpNot, subType, subValue,
- expr->getOperatorLoc());
- subValue->setRValue();
- return subValue;
- }
- case UO_LNot: {
- // Parsing will do the necessary casting to make sure we are applying the
- // ! operator on boolean values.
- subValue = spvBuilder.createUnaryOp(spv::Op::OpLogicalNot, subType,
- subValue, expr->getOperatorLoc());
- subValue->setRValue();
- return subValue;
- }
- case UO_Plus:
- // No need to do anything for the prefix + operator.
- return subValue;
- case UO_Minus: {
- // SPIR-V have two opcodes for negating values: OpSNegate and OpFNegate.
- const spv::Op spvOp = isFloatOrVecOfFloatType(subType) ? spv::Op::OpFNegate
- : spv::Op::OpSNegate;
- subValue = spvBuilder.createUnaryOp(spvOp, subType, subValue,
- expr->getOperatorLoc());
- subValue->setRValue();
- return subValue;
- }
- default:
- break;
- }
- emitError("unary operator '%0' unimplemented", expr->getExprLoc())
- << expr->getOpcodeStr(opcode);
- expr->dump();
- return 0;
- }
- spv::Op SpirvEmitter::translateOp(BinaryOperator::Opcode op, QualType type) {
- const bool isSintType = isSintOrVecMatOfSintType(type);
- const bool isUintType = isUintOrVecMatOfUintType(type);
- const bool isFloatType = isFloatOrVecMatOfFloatType(type);
- #define BIN_OP_CASE_INT_FLOAT(kind, intBinOp, floatBinOp) \
- \
- case BO_##kind: { \
- if (isSintType || isUintType) { \
- return spv::Op::Op##intBinOp; \
- } \
- if (isFloatType) { \
- return spv::Op::Op##floatBinOp; \
- } \
- } break
- #define BIN_OP_CASE_SINT_UINT_FLOAT(kind, sintBinOp, uintBinOp, floatBinOp) \
- \
- case BO_##kind: { \
- if (isSintType) { \
- return spv::Op::Op##sintBinOp; \
- } \
- if (isUintType) { \
- return spv::Op::Op##uintBinOp; \
- } \
- if (isFloatType) { \
- return spv::Op::Op##floatBinOp; \
- } \
- } break
- #define BIN_OP_CASE_SINT_UINT(kind, sintBinOp, uintBinOp) \
- \
- case BO_##kind: { \
- if (isSintType) { \
- return spv::Op::Op##sintBinOp; \
- } \
- if (isUintType) { \
- return spv::Op::Op##uintBinOp; \
- } \
- } break
- switch (op) {
- case BO_EQ: {
- if (isBoolOrVecMatOfBoolType(type))
- return spv::Op::OpLogicalEqual;
- if (isSintType || isUintType)
- return spv::Op::OpIEqual;
- if (isFloatType)
- return spv::Op::OpFOrdEqual;
- } break;
- case BO_NE: {
- if (isBoolOrVecMatOfBoolType(type))
- return spv::Op::OpLogicalNotEqual;
- if (isSintType || isUintType)
- return spv::Op::OpINotEqual;
- if (isFloatType)
- return spv::Op::OpFOrdNotEqual;
- } break;
- // According to HLSL doc, all sides of the && and || expression are always
- // evaluated.
- case BO_LAnd:
- return spv::Op::OpLogicalAnd;
- case BO_LOr:
- return spv::Op::OpLogicalOr;
- BIN_OP_CASE_INT_FLOAT(Add, IAdd, FAdd);
- BIN_OP_CASE_INT_FLOAT(AddAssign, IAdd, FAdd);
- BIN_OP_CASE_INT_FLOAT(Sub, ISub, FSub);
- BIN_OP_CASE_INT_FLOAT(SubAssign, ISub, FSub);
- BIN_OP_CASE_INT_FLOAT(Mul, IMul, FMul);
- BIN_OP_CASE_INT_FLOAT(MulAssign, IMul, FMul);
- BIN_OP_CASE_SINT_UINT_FLOAT(Div, SDiv, UDiv, FDiv);
- BIN_OP_CASE_SINT_UINT_FLOAT(DivAssign, SDiv, UDiv, FDiv);
- // According to HLSL spec, "the modulus operator returns the remainder of
- // a division." "The % operator is defined only in cases where either both
- // sides are positive or both sides are negative."
- //
- // In SPIR-V, there are two reminder operations: Op*Rem and Op*Mod. With
- // the former, the sign of a non-0 result comes from Operand 1, while
- // with the latter, from Operand 2.
- //
- // For operands with different signs, technically we can map % to either
- // Op*Rem or Op*Mod since it's undefined behavior. But it is more
- // consistent with C (HLSL starts as a C derivative) and Clang frontend
- // const expression evaluation if we map % to Op*Rem.
- //
- // Note there is no OpURem in SPIR-V.
- BIN_OP_CASE_SINT_UINT_FLOAT(Rem, SRem, UMod, FRem);
- BIN_OP_CASE_SINT_UINT_FLOAT(RemAssign, SRem, UMod, FRem);
- BIN_OP_CASE_SINT_UINT_FLOAT(LT, SLessThan, ULessThan, FOrdLessThan);
- BIN_OP_CASE_SINT_UINT_FLOAT(LE, SLessThanEqual, ULessThanEqual,
- FOrdLessThanEqual);
- BIN_OP_CASE_SINT_UINT_FLOAT(GT, SGreaterThan, UGreaterThan,
- FOrdGreaterThan);
- BIN_OP_CASE_SINT_UINT_FLOAT(GE, SGreaterThanEqual, UGreaterThanEqual,
- FOrdGreaterThanEqual);
- BIN_OP_CASE_SINT_UINT(And, BitwiseAnd, BitwiseAnd);
- BIN_OP_CASE_SINT_UINT(AndAssign, BitwiseAnd, BitwiseAnd);
- BIN_OP_CASE_SINT_UINT(Or, BitwiseOr, BitwiseOr);
- BIN_OP_CASE_SINT_UINT(OrAssign, BitwiseOr, BitwiseOr);
- BIN_OP_CASE_SINT_UINT(Xor, BitwiseXor, BitwiseXor);
- BIN_OP_CASE_SINT_UINT(XorAssign, BitwiseXor, BitwiseXor);
- BIN_OP_CASE_SINT_UINT(Shl, ShiftLeftLogical, ShiftLeftLogical);
- BIN_OP_CASE_SINT_UINT(ShlAssign, ShiftLeftLogical, ShiftLeftLogical);
- BIN_OP_CASE_SINT_UINT(Shr, ShiftRightArithmetic, ShiftRightLogical);
- BIN_OP_CASE_SINT_UINT(ShrAssign, ShiftRightArithmetic, ShiftRightLogical);
- default:
- break;
- }
- #undef BIN_OP_CASE_INT_FLOAT
- #undef BIN_OP_CASE_SINT_UINT_FLOAT
- #undef BIN_OP_CASE_SINT_UINT
- emitError("translating binary operator '%0' unimplemented", {})
- << BinaryOperator::getOpcodeStr(op);
- return spv::Op::OpNop;
- }
- SpirvInstruction *
- SpirvEmitter::processAssignment(const Expr *lhs, SpirvInstruction *rhs,
- const bool isCompoundAssignment,
- SpirvInstruction *lhsPtr) {
- lhs = lhs->IgnoreParenNoopCasts(astContext);
- // Assigning to vector swizzling should be handled differently.
- if (SpirvInstruction *result = tryToAssignToVectorElements(lhs, rhs))
- return result;
- // Assigning to matrix swizzling should be handled differently.
- if (SpirvInstruction *result = tryToAssignToMatrixElements(lhs, rhs))
- return result;
- // Assigning to a RWBuffer/RWTexture should be handled differently.
- if (SpirvInstruction *result = tryToAssignToRWBufferRWTexture(lhs, rhs))
- return result;
- // Assigning to a out attribute or indices object in mesh shader should be
- // handled differently.
- if (SpirvInstruction *result = tryToAssignToMSOutAttrsOrIndices(lhs, rhs))
- return result;
- // Assigning to a 'string' variable. SPIR-V doesn't have a string type, and we
- // do not allow creating or modifying string variables. We do allow use of
- // string literals using OpString.
- if (isStringType(lhs->getType())) {
- emitError("string variables are immutable in SPIR-V.", lhs->getExprLoc());
- return nullptr;
- }
- // Normal assignment procedure
- if (!lhsPtr)
- lhsPtr = doExpr(lhs);
- storeValue(lhsPtr, rhs, lhs->getType(), lhs->getLocStart());
- // Plain assignment returns a rvalue, while compound assignment returns
- // lvalue.
- return isCompoundAssignment ? lhsPtr : rhs;
- }
- void SpirvEmitter::storeValue(SpirvInstruction *lhsPtr,
- SpirvInstruction *rhsVal, QualType lhsValType,
- SourceLocation loc) {
- // Defend against nullptr source or destination so errors can bubble up to the
- // user.
- if (!lhsPtr || !rhsVal)
- return;
- if (const auto *refType = lhsValType->getAs<ReferenceType>())
- lhsValType = refType->getPointeeType();
- QualType matElemType = {};
- const bool lhsIsMat = isMxNMatrix(lhsValType, &matElemType);
- const bool lhsIsFloatMat = lhsIsMat && matElemType->isFloatingType();
- const bool lhsIsNonFpMat = lhsIsMat && !matElemType->isFloatingType();
- if (isScalarType(lhsValType) || isVectorType(lhsValType) || lhsIsFloatMat) {
- // Special-case: According to the SPIR-V Spec: There is no physical size
- // or bit pattern defined for boolean type. Therefore an unsigned integer
- // is used to represent booleans when layout is required. In such cases,
- // we should cast the boolean to uint before creating OpStore.
- if (isBoolOrVecOfBoolType(lhsValType) &&
- lhsPtr->getLayoutRule() != SpirvLayoutRule::Void) {
- uint32_t vecSize = 1;
- const bool isVec = isVectorType(lhsValType, nullptr, &vecSize);
- const auto toType =
- isVec ? astContext.getExtVectorType(astContext.UnsignedIntTy, vecSize)
- : astContext.UnsignedIntTy;
- const auto fromType =
- isVec ? astContext.getExtVectorType(astContext.BoolTy, vecSize)
- : astContext.BoolTy;
- rhsVal = castToInt(rhsVal, fromType, toType, {});
- }
- spvBuilder.createStore(lhsPtr, rhsVal, loc);
- } else if (isOpaqueType(lhsValType)) {
- // Resource types are represented using RecordType in the AST.
- // Handle them before the general RecordType.
- //
- // HLSL allows to put resource types that translating into SPIR-V opaque
- // types in structs, or assign to variables of resource types. These can all
- // result in illegal SPIR-V for Vulkan. We just translate here literally and
- // let SPIRV-Tools opt to do the legalization work.
- //
- // Note: legalization specific code
- if (hlsl::IsHLSLRayQueryType(lhsValType)) {
- emitError("store value of type %0 is unsupported", {}) << lhsValType;
- return;
- }
- spvBuilder.createStore(lhsPtr, rhsVal, loc);
- needsLegalization = true;
- } else if (isAKindOfStructuredOrByteBuffer(lhsValType)) {
- // The rhs should be a pointer and the lhs should be a pointer-to-pointer.
- // Directly store the pointer here and let SPIRV-Tools opt to do the clean
- // up.
- //
- // Note: legalization specific code
- spvBuilder.createStore(lhsPtr, rhsVal, loc);
- needsLegalization = true;
- // For ConstantBuffers/TextureBuffers, we decompose and assign each field
- // recursively like normal structs using the following logic.
- //
- // The frontend forbids declaring ConstantBuffer<T> or TextureBuffer<T>
- // variables as function parameters/returns/variables, but happily accepts
- // assignments/returns from ConstantBuffer<T>/TextureBuffer<T> to function
- // parameters/returns/variables of type T. And ConstantBuffer<T> is not
- // represented differently as struct T.
- } else if (isOpaqueArrayType(lhsValType)) {
- // For opaque array types, we cannot perform OpLoad on the whole array and
- // then write out as a whole; instead, we need to OpLoad each element
- // using access chains. This is to influence later SPIR-V transformations
- // to use access chains to access each opaque object; if we do array
- // wholesale handling here, they will be in the final transformed code.
- // Drivers don't like that.
- // TODO: consider moving this hack into SPIRV-Tools as a transformation.
- assert(lhsValType->isConstantArrayType());
- assert(!rhsVal->isRValue());
- const auto *arrayType = astContext.getAsConstantArrayType(lhsValType);
- const auto elemType = arrayType->getElementType();
- const auto arraySize =
- static_cast<uint32_t>(arrayType->getSize().getZExtValue());
- // Do separate load of each element via access chain
- llvm::SmallVector<SpirvInstruction *, 8> elements;
- for (uint32_t i = 0; i < arraySize; ++i) {
- auto *subRhsPtr = spvBuilder.createAccessChain(
- elemType, rhsVal,
- {spvBuilder.getConstantInt(astContext.IntTy,
- llvm::APInt(32, i, true))},
- loc);
- elements.push_back(spvBuilder.createLoad(elemType, subRhsPtr, loc));
- }
- // Create a new composite and write out once
- spvBuilder.createStore(
- lhsPtr,
- spvBuilder.createCompositeConstruct(lhsValType, elements,
- rhsVal->getSourceLocation()),
- loc);
- } else if (lhsPtr->getLayoutRule() == rhsVal->getLayoutRule()) {
- // If lhs and rhs has the same memory layout, we should be safe to load
- // from rhs and directly store into lhs and avoid decomposing rhs.
- // Note: this check should happen after those setting needsLegalization.
- // TODO: is this optimization always correct?
- spvBuilder.createStore(lhsPtr, rhsVal, loc);
- } else if (lhsValType->isRecordType() || lhsValType->isConstantArrayType() ||
- lhsIsNonFpMat) {
- spvBuilder.createStore(
- lhsPtr,
- reconstructValue(rhsVal, lhsValType, lhsPtr->getLayoutRule(), loc),
- loc);
- } else {
- emitError("storing value of type %0 unimplemented", {}) << lhsValType;
- }
- }
- SpirvInstruction *SpirvEmitter::reconstructValue(SpirvInstruction *srcVal,
- const QualType valType,
- SpirvLayoutRule dstLR,
- SourceLocation loc) {
- // Lambda for casting scalar or vector of bool<-->uint in cases where one side
- // of the reconstruction (lhs or rhs) has a layout rule.
- const auto handleBooleanLayout = [this, &srcVal, dstLR,
- loc](SpirvInstruction *val,
- QualType valType) {
- // We only need to cast if we have a scalar or vector of booleans.
- if (!isBoolOrVecOfBoolType(valType))
- return val;
- SpirvLayoutRule srcLR = srcVal->getLayoutRule();
- // Source value has a layout rule, and has therefore been represented
- // as a uint. Cast it to boolean before using.
- bool shouldCastToBool =
- srcLR != SpirvLayoutRule::Void && dstLR == SpirvLayoutRule::Void;
- // Destination has a layout rule, and should therefore be represented
- // as a uint. Cast to uint before using.
- bool shouldCastToUint =
- srcLR == SpirvLayoutRule::Void && dstLR != SpirvLayoutRule::Void;
- // No boolean layout issues to take care of.
- if (!shouldCastToBool && !shouldCastToUint)
- return val;
- uint32_t vecSize = 1;
- isVectorType(valType, nullptr, &vecSize);
- QualType boolType =
- vecSize == 1 ? astContext.BoolTy
- : astContext.getExtVectorType(astContext.BoolTy, vecSize);
- QualType uintType =
- vecSize == 1
- ? astContext.UnsignedIntTy
- : astContext.getExtVectorType(astContext.UnsignedIntTy, vecSize);
- if (shouldCastToBool)
- return castToBool(val, uintType, boolType, loc);
- if (shouldCastToUint)
- return castToInt(val, boolType, uintType, loc);
- return val;
- };
- // Lambda for cases where we want to reconstruct an array
- const auto reconstructArray = [this, &srcVal, valType, dstLR,
- loc](uint32_t arraySize,
- QualType arrayElemType) {
- llvm::SmallVector<SpirvInstruction *, 4> elements;
- for (uint32_t i = 0; i < arraySize; ++i) {
- SpirvInstruction *subSrcVal =
- spvBuilder.createCompositeExtract(arrayElemType, srcVal, {i}, loc);
- subSrcVal->setLayoutRule(srcVal->getLayoutRule());
- elements.push_back(
- reconstructValue(subSrcVal, arrayElemType, dstLR, loc));
- }
- auto *result = spvBuilder.createCompositeConstruct(
- valType, elements, srcVal->getSourceLocation());
- result->setLayoutRule(dstLR);
- return result;
- };
- // Constant arrays
- if (const auto *arrayType = astContext.getAsConstantArrayType(valType)) {
- const auto elemType = arrayType->getElementType();
- const auto size =
- static_cast<uint32_t>(arrayType->getSize().getZExtValue());
- return reconstructArray(size, elemType);
- }
- // Non-floating-point matrices
- QualType matElemType = {};
- uint32_t numRows = 0, numCols = 0;
- const bool isNonFpMat =
- isMxNMatrix(valType, &matElemType, &numRows, &numCols) &&
- !matElemType->isFloatingType();
- if (isNonFpMat) {
- // Note: This check should happen before the RecordType check.
- // Non-fp matrices are represented as arrays of vectors in SPIR-V.
- // Each array element is a vector. Get the QualType for the vector.
- const auto elemType = astContext.getExtVectorType(matElemType, numCols);
- return reconstructArray(numRows, elemType);
- }
- // Note: This check should happen before the RecordType check since
- // vector/matrix/resource types are represented as RecordType in the AST.
- if (hlsl::IsHLSLVecMatType(valType) || hlsl::IsHLSLResourceType(valType))
- return handleBooleanLayout(srcVal, valType);
- // Structs
- if (const auto *recordType = valType->getAs<RecordType>()) {
- uint32_t index = 0;
- llvm::SmallVector<SpirvInstruction *, 4> elements;
- for (const auto *field : recordType->getDecl()->fields()) {
- SpirvInstruction *subSrcVal = spvBuilder.createCompositeExtract(
- field->getType(), srcVal, {index}, loc);
- subSrcVal->setLayoutRule(srcVal->getLayoutRule());
- elements.push_back(
- reconstructValue(subSrcVal, field->getType(), dstLR, loc));
- ++index;
- }
- auto *result = spvBuilder.createCompositeConstruct(
- valType, elements, srcVal->getSourceLocation());
- result->setLayoutRule(dstLR);
- return result;
- }
- return handleBooleanLayout(srcVal, valType);
- }
- SpirvInstruction *SpirvEmitter::processBinaryOp(
- const Expr *lhs, const Expr *rhs, const BinaryOperatorKind opcode,
- const QualType computationType, const QualType resultType,
- SourceRange sourceRange, SourceLocation loc, SpirvInstruction **lhsInfo,
- const spv::Op mandateGenOpcode) {
- const QualType lhsType = lhs->getType();
- const QualType rhsType = rhs->getType();
- // If the operands are of matrix type, we need to dispatch the operation
- // onto each element vector iff the operands are not degenerated matrices
- // and we don't have a matrix specific SPIR-V instruction for the operation.
- if (!isSpirvMatrixOp(mandateGenOpcode) && isMxNMatrix(lhsType)) {
- return processMatrixBinaryOp(lhs, rhs, opcode, sourceRange, loc);
- }
- // Comma operator works differently from other binary operations as there is
- // no SPIR-V instruction for it. For each comma, we must evaluate lhs and rhs
- // respectively, and return the results of rhs.
- if (opcode == BO_Comma) {
- (void)doExpr(lhs);
- return doExpr(rhs);
- }
- SpirvInstruction *rhsVal = nullptr, *lhsPtr = nullptr, *lhsVal = nullptr;
- if (BinaryOperator::isCompoundAssignmentOp(opcode)) {
- // Evalute rhs before lhs
- rhsVal = loadIfGLValue(rhs);
- lhsVal = lhsPtr = doExpr(lhs);
- // This is a compound assignment. We need to load the lhs value if lhs
- // is not already rvalue and does not generate a vector shuffle.
- if (!lhsPtr->isRValue() && !isVectorShuffle(lhs)) {
- lhsVal = loadIfGLValue(lhs, lhsPtr);
- }
- // For a compound assignments, the AST does not have the proper implicit
- // cast if lhs and rhs have different types. So we need to manually cast lhs
- // to the computation type.
- if (computationType != lhsType)
- lhsVal = castToType(lhsVal, lhsType, computationType, lhs->getExprLoc());
- } else {
- // Evalute lhs before rhs
- lhsPtr = doExpr(lhs);
- lhsVal = loadIfGLValue(lhs, lhsPtr);
- rhsVal = loadIfGLValue(rhs);
- }
- if (lhsInfo)
- *lhsInfo = lhsPtr;
- const spv::Op spvOp = (mandateGenOpcode == spv::Op::Max)
- ? translateOp(opcode, computationType)
- : mandateGenOpcode;
- switch (opcode) {
- case BO_Shl:
- case BO_Shr:
- case BO_ShlAssign:
- case BO_ShrAssign:
- // We need to cull the RHS to make sure that we are not shifting by an
- // amount that is larger than the bitwidth of the LHS.
- rhsVal = spvBuilder.createBinaryOp(spv::Op::OpBitwiseAnd, computationType,
- rhsVal, getMaskForBitwidthValue(rhsType),
- loc);
- // Fall through
- case BO_Add:
- case BO_Sub:
- case BO_Mul:
- case BO_Div:
- case BO_Rem:
- case BO_LT:
- case BO_LE:
- case BO_GT:
- case BO_GE:
- case BO_EQ:
- case BO_NE:
- case BO_And:
- case BO_Or:
- case BO_Xor:
- case BO_LAnd:
- case BO_LOr:
- case BO_AddAssign:
- case BO_SubAssign:
- case BO_MulAssign:
- case BO_DivAssign:
- case BO_RemAssign:
- case BO_AndAssign:
- case BO_OrAssign:
- case BO_XorAssign: {
- // To evaluate this expression as an OpSpecConstantOp, we need to make sure
- // both operands are constant and at least one of them is a spec constant.
- if (SpirvConstant *lhsValConstant = dyn_cast<SpirvConstant>(lhsVal)) {
- if (SpirvConstant *rhsValConstant = dyn_cast<SpirvConstant>(rhsVal)) {
- if (isAcceptedSpecConstantBinaryOp(spvOp)) {
- if (lhsValConstant->isSpecConstant() ||
- rhsValConstant->isSpecConstant()) {
- auto *val = spvBuilder.createSpecConstantBinaryOp(
- spvOp, resultType, lhsVal, rhsVal, loc);
- val->setRValue();
- return val;
- }
- }
- }
- }
- // Normal binary operation
- SpirvInstruction *val = nullptr;
- if (BinaryOperator::isCompoundAssignmentOp(opcode)) {
- val = spvBuilder.createBinaryOp(spvOp, computationType, lhsVal, rhsVal,
- loc);
- // For a compound assignments, the AST does not have the proper implicit
- // cast if lhs and rhs have different types. So we need to manually cast
- // the result back to lhs' type.
- if (computationType != lhsType)
- val = castToType(val, computationType, lhsType, lhs->getExprLoc());
- } else {
- val = spvBuilder.createBinaryOp(spvOp, resultType, lhsVal, rhsVal, loc);
- }
- val->setRValue();
- // Propagate RelaxedPrecision
- if (lhsVal->isRelaxedPrecision() || rhsVal->isRelaxedPrecision())
- val->setRelaxedPrecision();
- return val;
- }
- case BO_Assign:
- llvm_unreachable("assignment should not be handled here");
- break;
- case BO_PtrMemD:
- case BO_PtrMemI:
- case BO_Comma:
- // Unimplemented
- break;
- }
- emitError("binary operator '%0' unimplemented", lhs->getExprLoc())
- << BinaryOperator::getOpcodeStr(opcode) << sourceRange;
- return nullptr;
- }
- void SpirvEmitter::initOnce(QualType varType, std::string varName,
- SpirvVariable *var, const Expr *varInit) {
- // For uninitialized resource objects, we do nothing since there is no
- // meaningful zero values for them.
- if (!varInit && hlsl::IsHLSLResourceType(varType))
- return;
- varName = "init.done." + varName;
- auto loc = varInit ? varInit->getLocStart() : SourceLocation();
- // Create a file/module visible variable to hold the initialization state.
- SpirvVariable *initDoneVar = spvBuilder.addModuleVar(
- astContext.BoolTy, spv::StorageClass::Private, /*isPrecise*/ false,
- varName, spvBuilder.getConstantBool(false));
- auto *condition = spvBuilder.createLoad(astContext.BoolTy, initDoneVar, loc);
- auto *todoBB = spvBuilder.createBasicBlock("if.init.todo");
- auto *doneBB = spvBuilder.createBasicBlock("if.init.done");
- // If initDoneVar contains true, we jump to the "done" basic block; otherwise,
- // jump to the "todo" basic block.
- spvBuilder.createConditionalBranch(condition, doneBB, todoBB, loc, doneBB);
- spvBuilder.addSuccessor(todoBB);
- spvBuilder.addSuccessor(doneBB);
- spvBuilder.setMergeTarget(doneBB);
- spvBuilder.setInsertPoint(todoBB);
- // Do initialization and mark done
- if (varInit) {
- var->setStorageClass(spv::StorageClass::Private);
- storeValue(
- // Static function variable are of private storage class
- var, loadIfGLValue(varInit), varInit->getType(), varInit->getLocEnd());
- } else {
- spvBuilder.createStore(var, spvBuilder.getConstantNull(varType), loc);
- }
- spvBuilder.createStore(initDoneVar, spvBuilder.getConstantBool(true), loc);
- spvBuilder.createBranch(doneBB, loc);
- spvBuilder.addSuccessor(doneBB);
- spvBuilder.setInsertPoint(doneBB);
- }
- bool SpirvEmitter::isVectorShuffle(const Expr *expr) {
- // TODO: the following check is essentially duplicated from
- // doHLSLVectorElementExpr. Should unify them.
- if (const auto *vecElemExpr = dyn_cast<HLSLVectorElementExpr>(expr)) {
- const Expr *base = nullptr;
- hlsl::VectorMemberAccessPositions accessor;
- condenseVectorElementExpr(vecElemExpr, &base, &accessor);
- const auto accessorSize = accessor.Count;
- if (accessorSize == 1) {
- // Selecting only one element. OpAccessChain or OpCompositeExtract for
- // such cases.
- return false;
- }
- const auto baseSize = hlsl::GetHLSLVecSize(base->getType());
- if (accessorSize != baseSize)
- return true;
- for (uint32_t i = 0; i < accessorSize; ++i) {
- uint32_t position;
- accessor.GetPosition(i, &position);
- if (position != i)
- return true;
- }
- // Selecting exactly the original vector. No vector shuffle generated.
- return false;
- }
- return false;
- }
- bool SpirvEmitter::isTextureMipsSampleIndexing(const CXXOperatorCallExpr *expr,
- const Expr **base,
- const Expr **location,
- const Expr **lod) {
- if (!expr)
- return false;
- // <object>.mips[][] consists of an outer operator[] and an inner operator[]
- const CXXOperatorCallExpr *outerExpr = expr;
- if (outerExpr->getOperator() != OverloadedOperatorKind::OO_Subscript)
- return false;
- const Expr *arg0 = outerExpr->getArg(0)->IgnoreParenNoopCasts(astContext);
- const CXXOperatorCallExpr *innerExpr = dyn_cast<CXXOperatorCallExpr>(arg0);
- // Must have an inner operator[]
- if (!innerExpr ||
- innerExpr->getOperator() != OverloadedOperatorKind::OO_Subscript) {
- return false;
- }
- const Expr *innerArg0 =
- innerExpr->getArg(0)->IgnoreParenNoopCasts(astContext);
- const MemberExpr *memberExpr = dyn_cast<MemberExpr>(innerArg0);
- if (!memberExpr)
- return false;
- // Must be accessing the member named "mips" or "sample"
- const auto &memberName =
- memberExpr->getMemberNameInfo().getName().getAsString();
- if (memberName != "mips" && memberName != "sample")
- return false;
- const Expr *object = memberExpr->getBase();
- const auto objectType = object->getType();
- if (!isTexture(objectType))
- return false;
- if (base)
- *base = object;
- if (lod)
- *lod = innerExpr->getArg(1);
- if (location)
- *location = outerExpr->getArg(1);
- return true;
- }
- bool SpirvEmitter::isBufferTextureIndexing(const CXXOperatorCallExpr *indexExpr,
- const Expr **base,
- const Expr **index) {
- if (!indexExpr)
- return false;
- // Must be operator[]
- if (indexExpr->getOperator() != OverloadedOperatorKind::OO_Subscript)
- return false;
- const Expr *object = indexExpr->getArg(0);
- const auto objectType = object->getType();
- if (isBuffer(objectType) || isRWBuffer(objectType) || isTexture(objectType) ||
- isRWTexture(objectType)) {
- if (base)
- *base = object;
- if (index)
- *index = indexExpr->getArg(1);
- return true;
- }
- return false;
- }
- void SpirvEmitter::condenseVectorElementExpr(
- const HLSLVectorElementExpr *expr, const Expr **basePtr,
- hlsl::VectorMemberAccessPositions *flattenedAccessor) {
- llvm::SmallVector<hlsl::VectorMemberAccessPositions, 2> accessors;
- *basePtr = expr;
- // Recursively descending until we find the true base vector (the base vector
- // that does not have a base vector). In the meanwhile, collecting accessors
- // in the reverse order.
- // Example: for myVector.yxwz.yxz.xx.yx, the true base is 'myVector'.
- while (const auto *vecElemBase = dyn_cast<HLSLVectorElementExpr>(*basePtr)) {
- accessors.push_back(vecElemBase->getEncodedElementAccess());
- *basePtr = vecElemBase->getBase();
- // We need to skip any number of parentheses around swizzling at any level.
- while (const auto *parenExpr = dyn_cast<ParenExpr>(*basePtr))
- *basePtr = parenExpr->getSubExpr();
- }
- *flattenedAccessor = accessors.back();
- for (int32_t i = accessors.size() - 2; i >= 0; --i) {
- const auto ¤tAccessor = accessors[i];
- // Apply the current level of accessor to the flattened accessor of all
- // previous levels of ones.
- hlsl::VectorMemberAccessPositions combinedAccessor;
- for (uint32_t j = 0; j < currentAccessor.Count; ++j) {
- uint32_t currentPosition = 0;
- currentAccessor.GetPosition(j, ¤tPosition);
- uint32_t previousPosition = 0;
- flattenedAccessor->GetPosition(currentPosition, &previousPosition);
- combinedAccessor.SetPosition(j, previousPosition);
- }
- combinedAccessor.Count = currentAccessor.Count;
- combinedAccessor.IsValid =
- flattenedAccessor->IsValid && currentAccessor.IsValid;
- *flattenedAccessor = combinedAccessor;
- }
- }
- SpirvInstruction *SpirvEmitter::createVectorSplat(const Expr *scalarExpr,
- uint32_t size) {
- SpirvInstruction *scalarVal = nullptr;
- // Try to evaluate the element as constant first. If successful, then we
- // can generate constant instructions for this vector splat.
- if ((scalarVal = tryToEvaluateAsConst(scalarExpr))) {
- scalarVal->setRValue();
- } else {
- scalarVal = loadIfGLValue(scalarExpr);
- }
- if (!scalarVal || size == 1) {
- // Just return the scalar value for vector splat with size 1.
- // Note that can be used as an lvalue, so we need to carry over
- // the lvalueness for non-constant cases.
- return scalarVal;
- }
- const auto vecType = astContext.getExtVectorType(scalarExpr->getType(), size);
- // TODO: we are saying the constant has Function storage class here.
- // Should find a more meaningful one.
- if (auto *constVal = dyn_cast<SpirvConstant>(scalarVal)) {
- llvm::SmallVector<SpirvConstant *, 4> elements(size_t(size), constVal);
- auto *value = spvBuilder.getConstantComposite(vecType, elements);
- value->setRValue();
- return value;
- } else {
- llvm::SmallVector<SpirvInstruction *, 4> elements(size_t(size), scalarVal);
- auto *value = spvBuilder.createCompositeConstruct(
- vecType, elements, scalarExpr->getLocStart());
- value->setRValue();
- return value;
- }
- }
- void SpirvEmitter::splitVecLastElement(QualType vecType, SpirvInstruction *vec,
- SpirvInstruction **residual,
- SpirvInstruction **lastElement,
- SourceLocation loc) {
- assert(hlsl::IsHLSLVecType(vecType));
- const uint32_t count = hlsl::GetHLSLVecSize(vecType);
- assert(count > 1);
- const QualType elemType = hlsl::GetHLSLVecElementType(vecType);
- if (count == 2) {
- *residual = spvBuilder.createCompositeExtract(elemType, vec, 0, loc);
- } else {
- llvm::SmallVector<uint32_t, 4> indices;
- for (uint32_t i = 0; i < count - 1; ++i)
- indices.push_back(i);
- const QualType type = astContext.getExtVectorType(elemType, count - 1);
- *residual = spvBuilder.createVectorShuffle(type, vec, vec, indices, loc);
- }
- *lastElement =
- spvBuilder.createCompositeExtract(elemType, vec, {count - 1}, loc);
- }
- SpirvInstruction *SpirvEmitter::convertVectorToStruct(QualType structType,
- QualType elemType,
- SpirvInstruction *vector,
- SourceLocation loc) {
- assert(structType->isStructureType());
- const auto *structDecl = structType->getAsStructureType()->getDecl();
- uint32_t vectorIndex = 0;
- uint32_t elemCount = 1;
- llvm::SmallVector<SpirvInstruction *, 4> members;
- for (const auto *field : structDecl->fields()) {
- if (isScalarType(field->getType())) {
- members.push_back(spvBuilder.createCompositeExtract(
- elemType, vector, {vectorIndex++}, loc));
- } else if (isVectorType(field->getType(), nullptr, &elemCount)) {
- llvm::SmallVector<uint32_t, 4> indices;
- for (uint32_t i = 0; i < elemCount; ++i)
- indices.push_back(vectorIndex++);
- members.push_back(spvBuilder.createVectorShuffle(
- astContext.getExtVectorType(elemType, elemCount), vector, vector,
- indices, loc));
- } else {
- assert(false && "unhandled type");
- }
- }
- return spvBuilder.createCompositeConstruct(structType, members,
- vector->getSourceLocation());
- }
- SpirvInstruction *
- SpirvEmitter::tryToGenFloatVectorScale(const BinaryOperator *expr) {
- const QualType type = expr->getType();
- const SourceRange range = expr->getSourceRange();
- QualType elemType = {};
- // We can only translate floatN * float into OpVectorTimesScalar.
- // So the result type must be floatN. Note that float1 is not a valid vector
- // in SPIR-V.
- if (!(isVectorType(type, &elemType) && elemType->isFloatingType()))
- return nullptr;
- const Expr *lhs = expr->getLHS();
- const Expr *rhs = expr->getRHS();
- // Multiplying a float vector with a float scalar will be represented in
- // AST via a binary operation with two float vectors as operands; one of
- // the operand is from an implicit cast with kind CK_HLSLVectorSplat.
- // vector * scalar
- if (hlsl::IsHLSLVecType(lhs->getType())) {
- if (const auto *cast = dyn_cast<ImplicitCastExpr>(rhs)) {
- if (cast->getCastKind() == CK_HLSLVectorSplat) {
- const QualType vecType = expr->getType();
- if (isa<CompoundAssignOperator>(expr)) {
- SpirvInstruction *lhsPtr = nullptr;
- auto *result =
- processBinaryOp(lhs, cast->getSubExpr(), expr->getOpcode(),
- vecType, vecType, range, expr->getOperatorLoc(),
- &lhsPtr, spv::Op::OpVectorTimesScalar);
- return processAssignment(lhs, result, true, lhsPtr);
- } else {
- return processBinaryOp(lhs, cast->getSubExpr(), expr->getOpcode(),
- vecType, vecType, range,
- expr->getOperatorLoc(), nullptr,
- spv::Op::OpVectorTimesScalar);
- }
- }
- }
- }
- // scalar * vector
- if (hlsl::IsHLSLVecType(rhs->getType())) {
- if (const auto *cast = dyn_cast<ImplicitCastExpr>(lhs)) {
- if (cast->getCastKind() == CK_HLSLVectorSplat) {
- const QualType vecType = expr->getType();
- // We need to switch the positions of lhs and rhs here because
- // OpVectorTimesScalar requires the first operand to be a vector and
- // the second to be a scalar.
- return processBinaryOp(rhs, cast->getSubExpr(), expr->getOpcode(),
- vecType, vecType, range, expr->getOperatorLoc(),
- nullptr, spv::Op::OpVectorTimesScalar);
- }
- }
- }
- return nullptr;
- }
- SpirvInstruction *
- SpirvEmitter::tryToGenFloatMatrixScale(const BinaryOperator *expr) {
- const QualType type = expr->getType();
- const SourceRange range = expr->getSourceRange();
- // We translate 'floatMxN * float' into OpMatrixTimesScalar.
- // We translate 'floatMx1 * float' and 'float1xN * float' using
- // OpVectorTimesScalar.
- // So the result type can be floatMxN, floatMx1, or float1xN.
- if (!hlsl::IsHLSLMatType(type) ||
- !hlsl::GetHLSLMatElementType(type)->isFloatingType() || is1x1Matrix(type))
- return 0;
- const Expr *lhs = expr->getLHS();
- const Expr *rhs = expr->getRHS();
- const QualType lhsType = lhs->getType();
- const QualType rhsType = rhs->getType();
- const auto selectOpcode = [](const QualType ty) {
- return isMx1Matrix(ty) || is1xNMatrix(ty) ? spv::Op::OpVectorTimesScalar
- : spv::Op::OpMatrixTimesScalar;
- };
- // Multiplying a float matrix with a float scalar will be represented in
- // AST via a binary operation with two float matrices as operands; one of
- // the operand is from an implicit cast with kind CK_HLSLMatrixSplat.
- // matrix * scalar
- if (hlsl::IsHLSLMatType(lhsType)) {
- if (const auto *cast = dyn_cast<ImplicitCastExpr>(rhs)) {
- if (cast->getCastKind() == CK_HLSLMatrixSplat) {
- const QualType matType = expr->getType();
- const spv::Op opcode = selectOpcode(lhsType);
- if (isa<CompoundAssignOperator>(expr)) {
- SpirvInstruction *lhsPtr = nullptr;
- auto *result = processBinaryOp(
- lhs, cast->getSubExpr(), expr->getOpcode(), matType, matType,
- range, expr->getOperatorLoc(), &lhsPtr, opcode);
- return processAssignment(lhs, result, true, lhsPtr);
- } else {
- return processBinaryOp(lhs, cast->getSubExpr(), expr->getOpcode(),
- matType, matType, range,
- expr->getOperatorLoc(), nullptr, opcode);
- }
- }
- }
- }
- // scalar * matrix
- if (hlsl::IsHLSLMatType(rhsType)) {
- if (const auto *cast = dyn_cast<ImplicitCastExpr>(lhs)) {
- if (cast->getCastKind() == CK_HLSLMatrixSplat) {
- const QualType matType = expr->getType();
- const spv::Op opcode = selectOpcode(rhsType);
- // We need to switch the positions of lhs and rhs here because
- // OpMatrixTimesScalar requires the first operand to be a matrix and
- // the second to be a scalar.
- return processBinaryOp(rhs, cast->getSubExpr(), expr->getOpcode(),
- matType, matType, range, expr->getOperatorLoc(),
- nullptr, opcode);
- }
- }
- }
- return nullptr;
- }
- SpirvInstruction *
- SpirvEmitter::tryToAssignToVectorElements(const Expr *lhs,
- SpirvInstruction *rhs) {
- // Assigning to a vector swizzling lhs is tricky if we are neither
- // writing to one element nor all elements in their original order.
- // Under such cases, we need to create a new vector swizzling involving
- // both the lhs and rhs vectors and then write the result of this swizzling
- // into the base vector of lhs.
- // For example, for vec4.yz = vec2, we nee to do the following:
- //
- // %vec4Val = OpLoad %v4float %vec4
- // %vec2Val = OpLoad %v2float %vec2
- // %shuffle = OpVectorShuffle %v4float %vec4Val %vec2Val 0 4 5 3
- // OpStore %vec4 %shuffle
- //
- // When doing the vector shuffle, we use the lhs base vector as the first
- // vector and the rhs vector as the second vector. Therefore, all elements
- // in the second vector will be selected into the shuffle result.
- const auto *lhsExpr = dyn_cast<HLSLVectorElementExpr>(lhs);
- if (!lhsExpr)
- return 0;
- // Special case for <scalar-value>.x, which will have an AST of
- // HLSLVectorElementExpr whose base is an ImplicitCastExpr
- // (CK_HLSLVectorSplat). We just need to assign to <scalar-value>
- // for such case.
- if (const auto *baseCast = dyn_cast<CastExpr>(lhsExpr->getBase()))
- if (baseCast->getCastKind() == CastKind::CK_HLSLVectorSplat &&
- hlsl::GetHLSLVecSize(baseCast->getType()) == 1)
- return processAssignment(baseCast->getSubExpr(), rhs, false);
- const Expr *base = nullptr;
- hlsl::VectorMemberAccessPositions accessor;
- condenseVectorElementExpr(lhsExpr, &base, &accessor);
- const QualType baseType = base->getType();
- assert(hlsl::IsHLSLVecType(baseType));
- const auto baseSize = hlsl::GetHLSLVecSize(baseType);
- const auto accessorSize = accessor.Count;
- // Whether selecting the whole original vector
- bool isSelectOrigin = accessorSize == baseSize;
- // Assigning to one component
- if (accessorSize == 1) {
- if (isBufferTextureIndexing(dyn_cast_or_null<CXXOperatorCallExpr>(base))) {
- // Assigning to one component of a RWBuffer/RWTexture element
- // We need to use OpImageWrite here.
- // Compose the new vector value first
- auto *oldVec = doExpr(base);
- auto *newVec = spvBuilder.createCompositeInsert(
- baseType, oldVec, {accessor.Swz0}, rhs, lhs->getLocStart());
- auto *result = tryToAssignToRWBufferRWTexture(base, newVec);
- assert(result); // Definitely RWBuffer/RWTexture assignment
- (void)result;
- return rhs; // TODO: incorrect for compound assignments
- } else {
- // Assigning to one component of mesh out attribute/indices vector object.
- SpirvInstruction *vecComponent = spvBuilder.getConstantInt(
- astContext.UnsignedIntTy, llvm::APInt(32, accessor.Swz0));
- if (tryToAssignToMSOutAttrsOrIndices(base, rhs, vecComponent))
- return rhs;
- // Assigning to one normal vector component. Nothing special, just fall
- // back to the normal CodeGen path.
- return nullptr;
- }
- }
- if (isSelectOrigin) {
- for (uint32_t i = 0; i < accessorSize; ++i) {
- uint32_t position;
- accessor.GetPosition(i, &position);
- if (position != i)
- isSelectOrigin = false;
- }
- }
- // Assigning to the original vector
- if (isSelectOrigin) {
- // Ignore this HLSLVectorElementExpr and dispatch to base
- return processAssignment(base, rhs, false);
- }
- if (tryToAssignToMSOutAttrsOrIndices(base, rhs, /*vecComponent=*/nullptr,
- /*noWriteBack=*/true)) {
- // Assigning to 'n' components of mesh out attribute/indices vector object.
- const QualType elemType =
- hlsl::GetHLSLVecElementType(rhs->getAstResultType());
- uint32_t i = 0;
- for (; i < accessor.Count; ++i) {
- auto *rhsElem = spvBuilder.createCompositeExtract(elemType, rhs, {i},
- lhs->getLocStart());
- uint32_t position;
- accessor.GetPosition(i, &position);
- SpirvInstruction *vecComponent = spvBuilder.getConstantInt(
- astContext.UnsignedIntTy, llvm::APInt(32, position));
- if (!tryToAssignToMSOutAttrsOrIndices(base, rhsElem, vecComponent))
- break;
- }
- assert(i == accessor.Count);
- return rhs;
- }
- llvm::SmallVector<uint32_t, 4> selectors;
- selectors.resize(baseSize);
- // Assume we are selecting all original elements first.
- for (uint32_t i = 0; i < baseSize; ++i) {
- selectors[i] = i;
- }
- // Now fix up the elements that actually got overwritten by the rhs vector.
- // Since we are using the rhs vector as the second vector, their index
- // should be offset'ed by the size of the lhs base vector.
- for (uint32_t i = 0; i < accessor.Count; ++i) {
- uint32_t position;
- accessor.GetPosition(i, &position);
- selectors[position] = baseSize + i;
- }
- auto *vec1 = doExpr(base);
- auto *vec1Val = vec1->isRValue() ? vec1
- : spvBuilder.createLoad(baseType, vec1,
- base->getLocStart());
- auto *shuffle = spvBuilder.createVectorShuffle(baseType, vec1Val, rhs,
- selectors, lhs->getLocStart());
- if (!tryToAssignToRWBufferRWTexture(base, shuffle))
- spvBuilder.createStore(vec1, shuffle, lhs->getLocStart());
- // TODO: OK, this return value is incorrect for compound assignments, for
- // which cases we should return lvalues. Should at least emit errors if
- // this return value is used (can be checked via ASTContext.getParents).
- return rhs;
- }
- SpirvInstruction *
- SpirvEmitter::tryToAssignToRWBufferRWTexture(const Expr *lhs,
- SpirvInstruction *rhs) {
- const Expr *baseExpr = nullptr;
- const Expr *indexExpr = nullptr;
- const auto lhsExpr = dyn_cast<CXXOperatorCallExpr>(lhs);
- if (isBufferTextureIndexing(lhsExpr, &baseExpr, &indexExpr)) {
- auto *loc = doExpr(indexExpr);
- const QualType imageType = baseExpr->getType();
- auto *baseInfo = doExpr(baseExpr);
- auto *image =
- spvBuilder.createLoad(imageType, baseInfo, baseExpr->getExprLoc());
- spvBuilder.createImageWrite(imageType, image, loc, rhs, lhs->getExprLoc());
- return rhs;
- }
- return nullptr;
- }
- SpirvInstruction *
- SpirvEmitter::tryToAssignToMatrixElements(const Expr *lhs,
- SpirvInstruction *rhs) {
- const auto *lhsExpr = dyn_cast<ExtMatrixElementExpr>(lhs);
- if (!lhsExpr)
- return nullptr;
- const Expr *baseMat = lhsExpr->getBase();
- auto *base = doExpr(baseMat);
- const QualType elemType = hlsl::GetHLSLMatElementType(baseMat->getType());
- uint32_t rowCount = 0, colCount = 0;
- hlsl::GetHLSLMatRowColCount(baseMat->getType(), rowCount, colCount);
- // For each lhs element written to:
- // 1. Extract the corresponding rhs element using OpCompositeExtract
- // 2. Create access chain for the lhs element using OpAccessChain
- // 3. Write using OpStore
- const auto accessor = lhsExpr->getEncodedElementAccess();
- for (uint32_t i = 0; i < accessor.Count; ++i) {
- uint32_t row = 0, col = 0;
- accessor.GetPosition(i, &row, &col);
- llvm::SmallVector<uint32_t, 2> indices;
- // If the matrix only have one row/column, we are indexing into a vector
- // then. Only one index is needed for such cases.
- if (rowCount > 1)
- indices.push_back(row);
- if (colCount > 1)
- indices.push_back(col);
- llvm::SmallVector<SpirvInstruction *, 2> indexInstructions(indices.size(),
- nullptr);
- for (uint32_t i = 0; i < indices.size(); ++i)
- indexInstructions[i] = spvBuilder.getConstantInt(
- astContext.IntTy, llvm::APInt(32, indices[i], true));
- // If we are writing to only one element, the rhs should already be a
- // scalar value.
- auto *rhsElem = rhs;
- if (accessor.Count > 1) {
- rhsElem = spvBuilder.createCompositeExtract(elemType, rhs, {i},
- rhs->getSourceLocation());
- }
- // If the lhs is actually a matrix of size 1x1, we don't need the access
- // chain. base is already the dest pointer.
- auto *lhsElemPtr = base;
- if (!indexInstructions.empty()) {
- assert(!base->isRValue());
- // Load the element via access chain
- lhsElemPtr = spvBuilder.createAccessChain(
- elemType, lhsElemPtr, indexInstructions, lhs->getLocStart());
- }
- spvBuilder.createStore(lhsElemPtr, rhsElem, lhs->getLocStart());
- }
- // TODO: OK, this return value is incorrect for compound assignments, for
- // which cases we should return lvalues. Should at least emit errors if
- // this return value is used (can be checked via ASTContext.getParents).
- return rhs;
- }
- SpirvInstruction *SpirvEmitter::tryToAssignToMSOutAttrsOrIndices(
- const Expr *lhs, SpirvInstruction *rhs, SpirvInstruction *vecComponent,
- bool noWriteBack) {
- // Early exit for non-mesh shaders.
- if (!spvContext.isMS())
- return nullptr;
- llvm::SmallVector<SpirvInstruction *, 4> indices;
- bool isMSOutAttribute = false;
- bool isMSOutAttributeBlock = false;
- bool isMSOutIndices = false;
- const Expr *base = collectArrayStructIndices(lhs, /*rawIndex*/ false,
- /*rawIndices*/ nullptr, &indices,
- &isMSOutAttribute);
- // Expecting at least one array index - early exit.
- if (!base || indices.empty())
- return nullptr;
- const DeclaratorDecl *varDecl = nullptr;
- if (isMSOutAttribute) {
- const MemberExpr *memberExpr = dyn_cast<MemberExpr>(base);
- assert(memberExpr);
- varDecl = cast<DeclaratorDecl>(memberExpr->getMemberDecl());
- } else {
- if (const auto *arg = dyn_cast<DeclRefExpr>(base)) {
- if (varDecl = dyn_cast<DeclaratorDecl>(arg->getDecl())) {
- if (varDecl->hasAttr<HLSLIndicesAttr>()) {
- isMSOutIndices = true;
- } else if (varDecl->hasAttr<HLSLVerticesAttr>() ||
- varDecl->hasAttr<HLSLPrimitivesAttr>()) {
- isMSOutAttributeBlock = true;
- }
- }
- }
- }
- // Return if no out attribute or indices object found.
- if (!(isMSOutAttribute || isMSOutAttributeBlock || isMSOutIndices)) {
- return nullptr;
- }
- // For noWriteBack, return without generating write instructions.
- if (noWriteBack) {
- return rhs;
- }
- // Add vecComponent to indices.
- if (vecComponent) {
- indices.push_back(vecComponent);
- }
- if (isMSOutAttribute) {
- assignToMSOutAttribute(varDecl, rhs, indices);
- } else if (isMSOutIndices) {
- assignToMSOutIndices(varDecl, rhs, indices);
- } else {
- assert(isMSOutAttributeBlock);
- QualType type = varDecl->getType();
- assert(isa<ConstantArrayType>(type));
- type = astContext.getAsConstantArrayType(type)->getElementType();
- assert(type->isStructureType());
- // Extract subvalue and assign to its corresponding member attribute.
- const auto *structDecl = type->getAs<RecordType>()->getDecl();
- for (const auto *field : structDecl->fields()) {
- const auto fieldType = field->getType();
- SpirvInstruction *subValue = spvBuilder.createCompositeExtract(
- fieldType, rhs, {getNumBaseClasses(type) + field->getFieldIndex()},
- lhs->getLocStart());
- assignToMSOutAttribute(field, subValue, indices);
- }
- }
- // TODO: OK, this return value is incorrect for compound assignments, for
- // which cases we should return lvalues. Should at least emit errors if
- // this return value is used (can be checked via ASTContext.getParents).
- return rhs;
- }
- void SpirvEmitter::assignToMSOutAttribute(
- const DeclaratorDecl *decl, SpirvInstruction *value,
- const llvm::SmallVector<SpirvInstruction *, 4> &indices) {
- assert(spvContext.isMS() && !indices.empty());
- // Extract attribute index and vecComponent (if any).
- SpirvInstruction *attrIndex = indices.front();
- SpirvInstruction *vecComponent = nullptr;
- if (indices.size() > 1) {
- vecComponent = indices.back();
- }
- auto semanticInfo = declIdMapper.getStageVarSemantic(decl);
- assert(semanticInfo.isValid());
- const auto loc = decl->getLocation();
- // Special handle writes to clip/cull distance attributes.
- if (!declIdMapper.glPerVertex.tryToAccess(
- hlsl::DXIL::SigPointKind::MSOut, semanticInfo.semantic->GetKind(),
- semanticInfo.index, attrIndex, &value, /*noWriteBack=*/false,
- vecComponent, loc)) {
- // All other attribute writes are handled below.
- auto *varInstr = declIdMapper.getStageVarInstruction(decl);
- QualType valueType = value->getAstResultType();
- varInstr = spvBuilder.createAccessChain(valueType, varInstr, indices, loc);
- spvBuilder.createStore(varInstr, value, loc);
- }
- }
- void SpirvEmitter::assignToMSOutIndices(
- const DeclaratorDecl *decl, SpirvInstruction *value,
- const llvm::SmallVector<SpirvInstruction *, 4> &indices) {
- assert(spvContext.isMS() && !indices.empty());
- // Extract vertex index and vecComponent (if any).
- SpirvInstruction *vertIndex = indices.front();
- SpirvInstruction *vecComponent = nullptr;
- if (indices.size() > 1) {
- vecComponent = indices.back();
- }
- auto *var = declIdMapper.getStageVarInstruction(decl);
- const auto *varTypeDecl = astContext.getAsConstantArrayType(decl->getType());
- QualType varType = varTypeDecl->getElementType();
- uint32_t numVertices = 1;
- if (!isVectorType(varType, nullptr, &numVertices)) {
- assert(isScalarType(varType));
- }
- QualType valueType = value->getAstResultType();
- uint32_t numValues = 1;
- if (!isVectorType(valueType, nullptr, &numValues)) {
- assert(isScalarType(valueType));
- }
- const auto loc = decl->getLocation();
- if (numVertices == 1) {
- // for "point" output topology.
- assert(numValues == 1);
- // create accesschain for PrimitiveIndicesNV[vertIndex].
- auto *ptr = spvBuilder.createAccessChain(astContext.UnsignedIntTy, var,
- {vertIndex}, loc);
- // finally create store for PrimitiveIndicesNV[vertIndex] = value.
- spvBuilder.createStore(ptr, value, loc);
- } else {
- // for "line" or "triangle" output topology.
- assert(numVertices == 2 || numVertices == 3);
- // set baseOffset = vertIndex * numVertices.
- auto *baseOffset = spvBuilder.createBinaryOp(
- spv::Op::OpIMul, astContext.UnsignedIntTy, vertIndex,
- spvBuilder.getConstantInt(astContext.UnsignedIntTy,
- llvm::APInt(32, numVertices)),
- loc);
- if (vecComponent) {
- // write an individual vector component of uint2 or uint3.
- assert(numValues == 1);
- // set baseOffset = baseOffset + vecComponent.
- baseOffset =
- spvBuilder.createBinaryOp(spv::Op::OpIAdd, astContext.UnsignedIntTy,
- baseOffset, vecComponent, loc);
- // create accesschain for PrimitiveIndicesNV[baseOffset].
- auto *ptr = spvBuilder.createAccessChain(astContext.UnsignedIntTy, var,
- {baseOffset}, loc);
- // finally create store for PrimitiveIndicesNV[baseOffset] = value.
- spvBuilder.createStore(ptr, value, loc);
- } else {
- // write all vector components of uint2 or uint3.
- assert(numValues == numVertices);
- auto *curOffset = baseOffset;
- for (uint32_t i = 0; i < numValues; ++i) {
- if (i != 0) {
- // set curOffset = baseOffset + i.
- curOffset = spvBuilder.createBinaryOp(
- spv::Op::OpIAdd, astContext.UnsignedIntTy, baseOffset,
- spvBuilder.getConstantInt(astContext.UnsignedIntTy,
- llvm::APInt(32, i)),
- loc);
- }
- // create accesschain for PrimitiveIndicesNV[curOffset].
- auto *ptr = spvBuilder.createAccessChain(astContext.UnsignedIntTy, var,
- {curOffset}, loc);
- // finally create store for PrimitiveIndicesNV[curOffset] = value[i].
- spvBuilder.createStore(ptr,
- spvBuilder.createCompositeExtract(
- astContext.UnsignedIntTy, value, {i}, loc),
- loc);
- }
- }
- }
- }
- SpirvInstruction *SpirvEmitter::processEachVectorInMatrix(
- const Expr *matrix, SpirvInstruction *matrixVal,
- llvm::function_ref<SpirvInstruction *(uint32_t, QualType,
- SpirvInstruction *)>
- actOnEachVector,
- SourceLocation loc) {
- const auto matType = matrix->getType();
- assert(isMxNMatrix(matType));
- const QualType vecType = getComponentVectorType(astContext, matType);
- uint32_t rowCount = 0, colCount = 0;
- hlsl::GetHLSLMatRowColCount(matType, rowCount, colCount);
- llvm::SmallVector<SpirvInstruction *, 4> vectors;
- // Extract each component vector and do operation on it
- for (uint32_t i = 0; i < rowCount; ++i) {
- auto *lhsVec = spvBuilder.createCompositeExtract(vecType, matrixVal, {i},
- matrix->getLocStart());
- vectors.push_back(actOnEachVector(i, vecType, lhsVec));
- }
- // Construct the result matrix
- auto *val = spvBuilder.createCompositeConstruct(matType, vectors, loc);
- val->setRValue();
- return val;
- }
- void SpirvEmitter::createSpecConstant(const VarDecl *varDecl) {
- class SpecConstantEnvRAII {
- public:
- // Creates a new instance which sets mode to true on creation,
- // and resets mode to false on destruction.
- SpecConstantEnvRAII(bool *mode) : modeSlot(mode) { *modeSlot = true; }
- ~SpecConstantEnvRAII() { *modeSlot = false; }
- private:
- bool *modeSlot;
- };
- const QualType varType = varDecl->getType();
- bool hasError = false;
- if (!varDecl->isExternallyVisible()) {
- emitError("specialization constant must be externally visible",
- varDecl->getLocation());
- hasError = true;
- }
- if (const auto *builtinType = varType->getAs<BuiltinType>()) {
- switch (builtinType->getKind()) {
- case BuiltinType::Bool:
- case BuiltinType::Int:
- case BuiltinType::UInt:
- case BuiltinType::Float:
- break;
- default:
- emitError("unsupported specialization constant type",
- varDecl->getLocStart());
- hasError = true;
- }
- }
- const auto *init = varDecl->getInit();
- if (!init) {
- emitError("missing default value for specialization constant",
- varDecl->getLocation());
- hasError = true;
- } else if (!isAcceptedSpecConstantInit(init)) {
- emitError("unsupported specialization constant initializer",
- init->getLocStart())
- << init->getSourceRange();
- hasError = true;
- }
- if (hasError)
- return;
- SpecConstantEnvRAII specConstantEnvRAII(&isSpecConstantMode);
- const auto specConstant = doExpr(init);
- // We are not creating a variable to hold the spec constant, instead, we
- // translate the varDecl directly into the spec constant here.
- spvBuilder.decorateSpecId(
- specConstant, varDecl->getAttr<VKConstantIdAttr>()->getSpecConstId(),
- varDecl->getLocation());
- specConstant->setDebugName(varDecl->getName());
- declIdMapper.registerSpecConstant(varDecl, specConstant);
- }
- SpirvInstruction *
- SpirvEmitter::processMatrixBinaryOp(const Expr *lhs, const Expr *rhs,
- const BinaryOperatorKind opcode,
- SourceRange range, SourceLocation loc) {
- // TODO: some code are duplicated from processBinaryOp. Try to unify them.
- const auto lhsType = lhs->getType();
- assert(isMxNMatrix(lhsType));
- const spv::Op spvOp = translateOp(opcode, lhsType);
- SpirvInstruction *rhsVal = nullptr, *lhsPtr = nullptr, *lhsVal = nullptr;
- if (BinaryOperator::isCompoundAssignmentOp(opcode)) {
- // Evalute rhs before lhs
- rhsVal = doExpr(rhs);
- lhsPtr = doExpr(lhs);
- lhsVal = spvBuilder.createLoad(lhsType, lhsPtr, lhs->getLocStart());
- } else {
- // Evalute lhs before rhs
- lhsVal = lhsPtr = doExpr(lhs);
- rhsVal = doExpr(rhs);
- }
- switch (opcode) {
- case BO_Add:
- case BO_Sub:
- case BO_Mul:
- case BO_Div:
- case BO_Rem:
- case BO_AddAssign:
- case BO_SubAssign:
- case BO_MulAssign:
- case BO_DivAssign:
- case BO_RemAssign: {
- const auto actOnEachVec = [this, spvOp, rhsVal, rhs,
- loc](uint32_t index, QualType vecType,
- SpirvInstruction *lhsVec) {
- // For each vector of lhs, we need to load the corresponding vector of
- // rhs and do the operation on them.
- auto *rhsVec = spvBuilder.createCompositeExtract(vecType, rhsVal, {index},
- rhs->getLocStart());
- auto *val =
- spvBuilder.createBinaryOp(spvOp, vecType, lhsVec, rhsVec, loc);
- val->setRValue();
- return val;
- };
- return processEachVectorInMatrix(lhs, lhsVal, actOnEachVec,
- lhs->getLocStart());
- }
- case BO_Assign:
- llvm_unreachable("assignment should not be handled here");
- default:
- break;
- }
- emitError("binary operator '%0' over matrix type unimplemented",
- lhs->getExprLoc())
- << BinaryOperator::getOpcodeStr(opcode) << range;
- return nullptr;
- }
- const Expr *SpirvEmitter::collectArrayStructIndices(
- const Expr *expr, bool rawIndex,
- llvm::SmallVectorImpl<uint32_t> *rawIndices,
- llvm::SmallVectorImpl<SpirvInstruction *> *indices,
- bool *isMSOutAttribute) {
- assert((rawIndex && rawIndices) || (!rawIndex && indices));
- if (const auto *indexing = dyn_cast<MemberExpr>(expr)) {
- // First check whether this is referring to a static member. If it is, we
- // create a DeclRefExpr for it.
- if (auto *varDecl = dyn_cast<VarDecl>(indexing->getMemberDecl()))
- if (varDecl->isStaticDataMember())
- return DeclRefExpr::Create(
- astContext, NestedNameSpecifierLoc(), SourceLocation(), varDecl,
- /*RefersToEnclosingVariableOrCapture=*/false, SourceLocation(),
- varDecl->getType(), VK_LValue);
- const Expr *base = collectArrayStructIndices(
- indexing->getBase()->IgnoreParenNoopCasts(astContext), rawIndex,
- rawIndices, indices, isMSOutAttribute);
- if (isMSOutAttribute && base) {
- if (const auto *arg = dyn_cast<DeclRefExpr>(base)) {
- if (const auto *varDecl = dyn_cast<VarDecl>(arg->getDecl())) {
- if (varDecl->hasAttr<HLSLVerticesAttr>() ||
- varDecl->hasAttr<HLSLPrimitivesAttr>()) {
- assert(spvContext.isMS());
- *isMSOutAttribute = true;
- return expr;
- }
- }
- }
- }
- // Append the index of the current level
- const auto *fieldDecl = cast<FieldDecl>(indexing->getMemberDecl());
- assert(fieldDecl);
- // If we are accessing a derived struct, we need to account for the number
- // of base structs, since they are placed as fields at the beginning of the
- // derived struct.
- auto baseType = indexing->getBase()->getType();
- if (baseType->isPointerType()) {
- baseType = baseType->getPointeeType();
- }
- const uint32_t index =
- getNumBaseClasses(baseType) + fieldDecl->getFieldIndex();
- if (rawIndex) {
- rawIndices->push_back(index);
- } else {
- indices->push_back(spvBuilder.getConstantInt(
- astContext.IntTy, llvm::APInt(32, index, true)));
- }
- return base;
- }
- if (const auto *indexing = dyn_cast<ArraySubscriptExpr>(expr)) {
- if (rawIndex)
- return nullptr; // TODO: handle constant array index
- // The base of an ArraySubscriptExpr has a wrapping LValueToRValue implicit
- // cast. We need to ingore it to avoid creating OpLoad.
- const Expr *thisBase = indexing->getBase()->IgnoreParenLValueCasts();
- const Expr *base = collectArrayStructIndices(thisBase, rawIndex, rawIndices,
- indices, isMSOutAttribute);
- // The index into an array must be an integer number.
- const auto *idxExpr = indexing->getIdx();
- const auto idxExprType = idxExpr->getType();
- SpirvInstruction *thisIndex = doExpr(idxExpr);
- if (!idxExprType->isIntegerType() || idxExprType->isBooleanType()) {
- thisIndex = castToInt(thisIndex, idxExprType, astContext.UnsignedIntTy,
- idxExpr->getExprLoc());
- }
- indices->push_back(thisIndex);
- return base;
- }
- if (const auto *indexing = dyn_cast<CXXOperatorCallExpr>(expr))
- if (indexing->getOperator() == OverloadedOperatorKind::OO_Subscript) {
- if (rawIndex)
- return nullptr; // TODO: handle constant array index
- // If this is indexing into resources, we need specific OpImage*
- // instructions for accessing. Return directly to avoid further building
- // up the access chain.
- if (isBufferTextureIndexing(indexing))
- return indexing;
- const Expr *thisBase =
- indexing->getArg(0)->IgnoreParenNoopCasts(astContext);
- const auto thisBaseType = thisBase->getType();
- const Expr *base = collectArrayStructIndices(
- thisBase, rawIndex, rawIndices, indices, isMSOutAttribute);
- if (thisBaseType != base->getType() &&
- isAKindOfStructuredOrByteBuffer(thisBaseType)) {
- // The immediate base is a kind of structured or byte buffer. It should
- // be an alias variable. Break the normal index collecting chain.
- // Return the immediate base as the base so that we can apply other
- // hacks for legalization over it.
- //
- // Note: legalization specific code
- indices->clear();
- base = thisBase;
- }
- // If the base is a StructureType, we need to push an addtional index 0
- // here. This is because we created an additional OpTypeRuntimeArray
- // in the structure.
- if (isStructuredBuffer(thisBaseType))
- indices->push_back(
- spvBuilder.getConstantInt(astContext.IntTy, llvm::APInt(32, 0)));
- if ((hlsl::IsHLSLVecType(thisBaseType) &&
- (hlsl::GetHLSLVecSize(thisBaseType) == 1)) ||
- is1x1Matrix(thisBaseType) || is1xNMatrix(thisBaseType)) {
- // If this is a size-1 vector or 1xN matrix, ignore the index.
- } else {
- indices->push_back(doExpr(indexing->getArg(1)));
- }
- return base;
- }
- {
- const Expr *index = nullptr;
- // TODO: the following is duplicating the logic in doCXXMemberCallExpr.
- if (const auto *object = isStructuredBufferLoad(expr, &index)) {
- if (rawIndex)
- return nullptr; // TODO: handle constant array index
- // For object.Load(index), there should be no more indexing into the
- // object.
- indices->push_back(
- spvBuilder.getConstantInt(astContext.IntTy, llvm::APInt(32, 0)));
- indices->push_back(doExpr(index));
- return object;
- }
- }
- // This the deepest we can go. No more array or struct indexing.
- return expr;
- }
- SpirvInstruction *SpirvEmitter::turnIntoElementPtr(
- QualType baseType, SpirvInstruction *base, QualType elemType,
- const llvm::SmallVector<SpirvInstruction *, 4> &indices,
- SourceLocation loc) {
- // If this is a rvalue, we need a temporary object to hold it
- // so that we can get access chain from it.
- const bool needTempVar = base->isRValue();
- SpirvInstruction *accessChainBase = base;
- if (needTempVar) {
- auto varName = getAstTypeName(baseType);
- const auto var = createTemporaryVar(baseType, varName, base, loc);
- var->setLayoutRule(SpirvLayoutRule::Void);
- var->setStorageClass(spv::StorageClass::Function);
- var->setContainsAliasComponent(base->containsAliasComponent());
- accessChainBase = var;
- }
- base = spvBuilder.createAccessChain(elemType, accessChainBase, indices, loc);
- // Okay, this part seems weird, but it is intended:
- // If the base is originally a rvalue, the whole AST involving the base
- // is consistently set up to handle rvalues. By copying the base into
- // a temporary variable and grab an access chain from it, we are breaking
- // the consistency by turning the base from rvalue into lvalue. Keep in
- // mind that there will be no LValueToRValue casts in the AST for us
- // to rely on to load the access chain if a rvalue is expected. Therefore,
- // we must do the load here. Otherwise, it's up to the consumer of this
- // access chain to do the load, and that can be everywhere.
- if (needTempVar) {
- base = spvBuilder.createLoad(elemType, base, loc);
- }
- return base;
- }
- SpirvInstruction *SpirvEmitter::castToBool(SpirvInstruction *fromVal,
- QualType fromType,
- QualType toBoolType,
- SourceLocation loc) {
- if (isSameType(astContext, fromType, toBoolType))
- return fromVal;
- { // Special case handling for converting to a matrix of booleans.
- QualType elemType = {};
- uint32_t rowCount = 0, colCount = 0;
- if (isMxNMatrix(fromType, &elemType, &rowCount, &colCount)) {
- const auto fromRowQualType =
- astContext.getExtVectorType(elemType, colCount);
- const auto toBoolRowQualType =
- astContext.getExtVectorType(astContext.BoolTy, colCount);
- llvm::SmallVector<SpirvInstruction *, 4> rows;
- for (uint32_t i = 0; i < rowCount; ++i) {
- auto *row = spvBuilder.createCompositeExtract(fromRowQualType, fromVal,
- {i}, loc);
- rows.push_back(
- castToBool(row, fromRowQualType, toBoolRowQualType, loc));
- }
- return spvBuilder.createCompositeConstruct(toBoolType, rows, loc);
- }
- }
- // Converting to bool means comparing with value zero.
- const spv::Op spvOp = translateOp(BO_NE, fromType);
- auto *zeroVal = getValueZero(fromType);
- return spvBuilder.createBinaryOp(spvOp, toBoolType, fromVal, zeroVal, loc);
- }
- SpirvInstruction *SpirvEmitter::castToInt(SpirvInstruction *fromVal,
- QualType fromType, QualType toIntType,
- SourceLocation srcLoc) {
- if (isEnumType(fromType))
- fromType = astContext.IntTy;
- if (isSameType(astContext, fromType, toIntType))
- return fromVal;
- if (isBoolOrVecOfBoolType(fromType)) {
- auto *one = getValueOne(toIntType);
- auto *zero = getValueZero(toIntType);
- return spvBuilder.createSelect(toIntType, fromVal, one, zero, srcLoc);
- }
- if (isSintOrVecOfSintType(fromType) || isUintOrVecOfUintType(fromType)) {
- // First convert the source to the bitwidth of the destination if necessary.
- QualType convertedType = {};
- fromVal =
- convertBitwidth(fromVal, srcLoc, fromType, toIntType, &convertedType);
- // If bitwidth conversion was the only thing we needed to do, we're done.
- if (isSameScalarOrVecType(convertedType, toIntType))
- return fromVal;
- return spvBuilder.createUnaryOp(spv::Op::OpBitcast, toIntType, fromVal,
- srcLoc);
- }
- if (isFloatOrVecOfFloatType(fromType)) {
- // First convert the source to the bitwidth of the destination if necessary.
- fromVal = convertBitwidth(fromVal, srcLoc, fromType, toIntType);
- if (isSintOrVecOfSintType(toIntType)) {
- return spvBuilder.createUnaryOp(spv::Op::OpConvertFToS, toIntType,
- fromVal, srcLoc);
- } else if (isUintOrVecOfUintType(toIntType)) {
- return spvBuilder.createUnaryOp(spv::Op::OpConvertFToU, toIntType,
- fromVal, srcLoc);
- } else {
- emitError("casting from floating point to integer unimplemented", srcLoc);
- }
- }
- {
- QualType elemType = {};
- uint32_t numRows = 0, numCols = 0;
- if (isMxNMatrix(fromType, &elemType, &numRows, &numCols)) {
- // The source matrix and the target matrix must have the same dimensions.
- QualType toElemType = {};
- uint32_t toNumRows = 0, toNumCols = 0;
- const bool isMat =
- isMxNMatrix(toIntType, &toElemType, &toNumRows, &toNumCols);
- assert(isMat && numRows == toNumRows && numCols == toNumCols);
- (void)isMat;
- (void)toNumRows;
- (void)toNumCols;
- // Casting to a matrix of integers: Cast each row and construct a
- // composite.
- llvm::SmallVector<SpirvInstruction *, 4> castedRows;
- const QualType vecType = getComponentVectorType(astContext, fromType);
- const auto fromVecQualType =
- astContext.getExtVectorType(elemType, numCols);
- const auto toIntVecQualType =
- astContext.getExtVectorType(toElemType, numCols);
- for (uint32_t row = 0; row < numRows; ++row) {
- auto *rowId =
- spvBuilder.createCompositeExtract(vecType, fromVal, {row}, srcLoc);
- castedRows.push_back(
- castToInt(rowId, fromVecQualType, toIntVecQualType, srcLoc));
- }
- return spvBuilder.createCompositeConstruct(toIntType, castedRows, srcLoc);
- }
- }
- return nullptr;
- }
- SpirvInstruction *SpirvEmitter::convertBitwidth(SpirvInstruction *fromVal,
- SourceLocation loc,
- QualType fromType,
- QualType toType,
- QualType *resultType) {
- // At the moment, we will not make bitwidth conversions to/from literal int
- // and literal float types because they do not represent the intended SPIR-V
- // bitwidth.
- if (isLitTypeOrVecOfLitType(fromType) || isLitTypeOrVecOfLitType(toType))
- return fromVal;
- const auto fromBitwidth = getElementSpirvBitwidth(
- astContext, fromType, spirvOptions.enable16BitTypes);
- const auto toBitwidth = getElementSpirvBitwidth(
- astContext, toType, spirvOptions.enable16BitTypes);
- if (fromBitwidth == toBitwidth) {
- if (resultType)
- *resultType = fromType;
- return fromVal;
- }
- // We want the 'fromType' with the 'toBitwidth'.
- const QualType targetType =
- getTypeWithCustomBitwidth(astContext, fromType, toBitwidth);
- if (resultType)
- *resultType = targetType;
- if (isFloatOrVecOfFloatType(fromType))
- return spvBuilder.createUnaryOp(spv::Op::OpFConvert, targetType, fromVal,
- loc);
- if (isSintOrVecOfSintType(fromType))
- return spvBuilder.createUnaryOp(spv::Op::OpSConvert, targetType, fromVal,
- loc);
- if (isUintOrVecOfUintType(fromType))
- return spvBuilder.createUnaryOp(spv::Op::OpUConvert, targetType, fromVal,
- loc);
- llvm_unreachable("invalid type passed to convertBitwidth");
- }
- SpirvInstruction *SpirvEmitter::castToFloat(SpirvInstruction *fromVal,
- QualType fromType,
- QualType toFloatType,
- SourceLocation srcLoc) {
- if (isSameType(astContext, fromType, toFloatType))
- return fromVal;
- if (isBoolOrVecOfBoolType(fromType)) {
- auto *one = getValueOne(toFloatType);
- auto *zero = getValueZero(toFloatType);
- return spvBuilder.createSelect(toFloatType, fromVal, one, zero, srcLoc);
- }
- if (isSintOrVecOfSintType(fromType)) {
- // First convert the source to the bitwidth of the destination if necessary.
- fromVal = convertBitwidth(fromVal, srcLoc, fromType, toFloatType);
- return spvBuilder.createUnaryOp(spv::Op::OpConvertSToF, toFloatType,
- fromVal, srcLoc);
- }
- if (isUintOrVecOfUintType(fromType)) {
- // First convert the source to the bitwidth of the destination if necessary.
- fromVal = convertBitwidth(fromVal, srcLoc, fromType, toFloatType);
- return spvBuilder.createUnaryOp(spv::Op::OpConvertUToF, toFloatType,
- fromVal, srcLoc);
- }
- if (isFloatOrVecOfFloatType(fromType)) {
- // This is the case of float to float conversion with different bitwidths.
- return convertBitwidth(fromVal, srcLoc, fromType, toFloatType);
- }
- // Casting matrix types
- {
- QualType elemType = {};
- uint32_t numRows = 0, numCols = 0;
- if (isMxNMatrix(fromType, &elemType, &numRows, &numCols)) {
- // The source matrix and the target matrix must have the same dimensions.
- QualType toElemType = {};
- uint32_t toNumRows = 0, toNumCols = 0;
- const auto isMat =
- isMxNMatrix(toFloatType, &toElemType, &toNumRows, &toNumCols);
- assert(isMat && numRows == toNumRows && numCols == toNumCols);
- (void)isMat;
- (void)toNumRows;
- (void)toNumCols;
- // Casting to a matrix of floats: Cast each row and construct a
- // composite.
- llvm::SmallVector<SpirvInstruction *, 4> castedRows;
- const QualType vecType = getComponentVectorType(astContext, fromType);
- const auto fromVecQualType =
- astContext.getExtVectorType(elemType, numCols);
- const auto toIntVecQualType =
- astContext.getExtVectorType(toElemType, numCols);
- for (uint32_t row = 0; row < numRows; ++row) {
- auto *rowId =
- spvBuilder.createCompositeExtract(vecType, fromVal, {row}, srcLoc);
- castedRows.push_back(
- castToFloat(rowId, fromVecQualType, toIntVecQualType, srcLoc));
- }
- return spvBuilder.createCompositeConstruct(toFloatType, castedRows,
- srcLoc);
- }
- }
- emitError("casting to floating point unimplemented", srcLoc);
- return nullptr;
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicCallExpr(const CallExpr *callExpr) {
- const FunctionDecl *callee = callExpr->getDirectCallee();
- const SourceLocation srcLoc = callExpr->getExprLoc();
- assert(hlsl::IsIntrinsicOp(callee) &&
- "doIntrinsicCallExpr was called for a non-intrinsic function.");
- const bool isFloatType = isFloatOrVecMatOfFloatType(callExpr->getType());
- const bool isSintType = isSintOrVecMatOfSintType(callExpr->getType());
- // Figure out which intrinsic function to translate.
- llvm::StringRef group;
- uint32_t opcode = static_cast<uint32_t>(hlsl::IntrinsicOp::Num_Intrinsics);
- hlsl::GetIntrinsicOp(callee, opcode, group);
- GLSLstd450 glslOpcode = GLSLstd450Bad;
- SpirvInstruction *retVal = nullptr;
- #define INTRINSIC_SPIRV_OP_CASE(intrinsicOp, spirvOp, doEachVec) \
- case hlsl::IntrinsicOp::IOP_##intrinsicOp: { \
- retVal = processIntrinsicUsingSpirvInst(callExpr, spv::Op::Op##spirvOp, \
- doEachVec); \
- } break
- #define INTRINSIC_OP_CASE(intrinsicOp, glslOp, doEachVec) \
- case hlsl::IntrinsicOp::IOP_##intrinsicOp: { \
- glslOpcode = GLSLstd450::GLSLstd450##glslOp; \
- retVal = processIntrinsicUsingGLSLInst(callExpr, glslOpcode, doEachVec, \
- srcLoc); \
- } break
- #define INTRINSIC_OP_CASE_INT_FLOAT(intrinsicOp, glslIntOp, glslFloatOp, \
- doEachVec) \
- case hlsl::IntrinsicOp::IOP_##intrinsicOp: { \
- glslOpcode = isFloatType ? GLSLstd450::GLSLstd450##glslFloatOp \
- : GLSLstd450::GLSLstd450##glslIntOp; \
- retVal = processIntrinsicUsingGLSLInst(callExpr, glslOpcode, doEachVec, \
- srcLoc); \
- } break
- #define INTRINSIC_OP_CASE_SINT_UINT(intrinsicOp, glslSintOp, glslUintOp, \
- doEachVec) \
- case hlsl::IntrinsicOp::IOP_##intrinsicOp: { \
- glslOpcode = isSintType ? GLSLstd450::GLSLstd450##glslSintOp \
- : GLSLstd450::GLSLstd450##glslUintOp; \
- retVal = processIntrinsicUsingGLSLInst(callExpr, glslOpcode, doEachVec, \
- srcLoc); \
- } break
- #define INTRINSIC_OP_CASE_SINT_UINT_FLOAT(intrinsicOp, glslSintOp, glslUintOp, \
- glslFloatOp, doEachVec) \
- case hlsl::IntrinsicOp::IOP_##intrinsicOp: { \
- glslOpcode = isFloatType \
- ? GLSLstd450::GLSLstd450##glslFloatOp \
- : isSintType ? GLSLstd450::GLSLstd450##glslSintOp \
- : GLSLstd450::GLSLstd450##glslUintOp; \
- retVal = processIntrinsicUsingGLSLInst(callExpr, glslOpcode, doEachVec, \
- srcLoc); \
- } break
- switch (const auto hlslOpcode = static_cast<hlsl::IntrinsicOp>(opcode)) {
- case hlsl::IntrinsicOp::IOP_InterlockedAdd:
- case hlsl::IntrinsicOp::IOP_InterlockedAnd:
- case hlsl::IntrinsicOp::IOP_InterlockedMax:
- case hlsl::IntrinsicOp::IOP_InterlockedUMax:
- case hlsl::IntrinsicOp::IOP_InterlockedMin:
- case hlsl::IntrinsicOp::IOP_InterlockedUMin:
- case hlsl::IntrinsicOp::IOP_InterlockedOr:
- case hlsl::IntrinsicOp::IOP_InterlockedXor:
- case hlsl::IntrinsicOp::IOP_InterlockedExchange:
- case hlsl::IntrinsicOp::IOP_InterlockedCompareStore:
- case hlsl::IntrinsicOp::IOP_InterlockedCompareExchange:
- retVal = processIntrinsicInterlockedMethod(callExpr, hlslOpcode);
- break;
- case hlsl::IntrinsicOp::IOP_NonUniformResourceIndex:
- retVal = processIntrinsicNonUniformResourceIndex(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_tex1D:
- case hlsl::IntrinsicOp::IOP_tex1Dbias:
- case hlsl::IntrinsicOp::IOP_tex1Dgrad:
- case hlsl::IntrinsicOp::IOP_tex1Dlod:
- case hlsl::IntrinsicOp::IOP_tex1Dproj:
- case hlsl::IntrinsicOp::IOP_tex2D:
- case hlsl::IntrinsicOp::IOP_tex2Dbias:
- case hlsl::IntrinsicOp::IOP_tex2Dgrad:
- case hlsl::IntrinsicOp::IOP_tex2Dlod:
- case hlsl::IntrinsicOp::IOP_tex2Dproj:
- case hlsl::IntrinsicOp::IOP_tex3D:
- case hlsl::IntrinsicOp::IOP_tex3Dbias:
- case hlsl::IntrinsicOp::IOP_tex3Dgrad:
- case hlsl::IntrinsicOp::IOP_tex3Dlod:
- case hlsl::IntrinsicOp::IOP_tex3Dproj:
- case hlsl::IntrinsicOp::IOP_texCUBE:
- case hlsl::IntrinsicOp::IOP_texCUBEbias:
- case hlsl::IntrinsicOp::IOP_texCUBEgrad:
- case hlsl::IntrinsicOp::IOP_texCUBElod:
- case hlsl::IntrinsicOp::IOP_texCUBEproj: {
- emitError("deprecated %0 intrinsic function will not be supported", srcLoc)
- << callee->getName();
- return nullptr;
- }
- case hlsl::IntrinsicOp::IOP_dot:
- retVal = processIntrinsicDot(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_GroupMemoryBarrier:
- retVal = processIntrinsicMemoryBarrier(callExpr,
- /*isDevice*/ false,
- /*groupSync*/ false,
- /*isAllBarrier*/ false);
- break;
- case hlsl::IntrinsicOp::IOP_GroupMemoryBarrierWithGroupSync:
- retVal = processIntrinsicMemoryBarrier(callExpr,
- /*isDevice*/ false,
- /*groupSync*/ true,
- /*isAllBarrier*/ false);
- break;
- case hlsl::IntrinsicOp::IOP_DeviceMemoryBarrier:
- retVal = processIntrinsicMemoryBarrier(callExpr, /*isDevice*/ true,
- /*groupSync*/ false,
- /*isAllBarrier*/ false);
- break;
- case hlsl::IntrinsicOp::IOP_DeviceMemoryBarrierWithGroupSync:
- retVal = processIntrinsicMemoryBarrier(callExpr, /*isDevice*/ true,
- /*groupSync*/ true,
- /*isAllBarrier*/ false);
- break;
- case hlsl::IntrinsicOp::IOP_AllMemoryBarrier:
- retVal = processIntrinsicMemoryBarrier(callExpr, /*isDevice*/ true,
- /*groupSync*/ false,
- /*isAllBarrier*/ true);
- break;
- case hlsl::IntrinsicOp::IOP_AllMemoryBarrierWithGroupSync:
- retVal = processIntrinsicMemoryBarrier(callExpr, /*isDevice*/ true,
- /*groupSync*/ true,
- /*isAllBarrier*/ true);
- break;
- case hlsl::IntrinsicOp::IOP_CheckAccessFullyMapped:
- retVal = spvBuilder.createImageSparseTexelsResident(
- doExpr(callExpr->getArg(0)), srcLoc);
- break;
- case hlsl::IntrinsicOp::IOP_mul:
- case hlsl::IntrinsicOp::IOP_umul:
- retVal = processIntrinsicMul(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_all:
- retVal = processIntrinsicAllOrAny(callExpr, spv::Op::OpAll);
- break;
- case hlsl::IntrinsicOp::IOP_any:
- retVal = processIntrinsicAllOrAny(callExpr, spv::Op::OpAny);
- break;
- case hlsl::IntrinsicOp::IOP_asdouble:
- case hlsl::IntrinsicOp::IOP_asfloat:
- case hlsl::IntrinsicOp::IOP_asint:
- case hlsl::IntrinsicOp::IOP_asuint:
- retVal = processIntrinsicAsType(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_clip:
- retVal = processIntrinsicClip(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_dst:
- retVal = processIntrinsicDst(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_clamp:
- case hlsl::IntrinsicOp::IOP_uclamp:
- retVal = processIntrinsicClamp(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_frexp:
- retVal = processIntrinsicFrexp(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_ldexp:
- retVal = processIntrinsicLdexp(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_lit:
- retVal = processIntrinsicLit(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_mad:
- case hlsl::IntrinsicOp::IOP_umad:
- retVal = processIntrinsicMad(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_modf:
- retVal = processIntrinsicModf(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_msad4:
- retVal = processIntrinsicMsad4(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_printf:
- retVal = processIntrinsicPrintf(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_sign: {
- if (isFloatOrVecMatOfFloatType(callExpr->getArg(0)->getType()))
- retVal = processIntrinsicFloatSign(callExpr);
- else
- retVal =
- processIntrinsicUsingGLSLInst(callExpr, GLSLstd450::GLSLstd450SSign,
- /*actPerRowForMatrices*/ true, srcLoc);
- } break;
- case hlsl::IntrinsicOp::IOP_D3DCOLORtoUBYTE4:
- retVal = processD3DCOLORtoUBYTE4(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_isfinite:
- retVal = processIntrinsicIsFinite(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_sincos:
- retVal = processIntrinsicSinCos(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_rcp:
- retVal = processIntrinsicRcp(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_saturate:
- retVal = processIntrinsicSaturate(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_log10:
- retVal = processIntrinsicLog10(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_f16tof32:
- retVal = processIntrinsicF16ToF32(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_f32tof16:
- retVal = processIntrinsicF32ToF16(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_WaveGetLaneCount: {
- featureManager.requestTargetEnv(SPV_ENV_VULKAN_1_1, "WaveGetLaneCount",
- srcLoc);
- const QualType retType = callExpr->getCallReturnType(astContext);
- auto *var =
- declIdMapper.getBuiltinVar(spv::BuiltIn::SubgroupSize, retType, srcLoc);
- retVal = spvBuilder.createLoad(retType, var, srcLoc);
- } break;
- case hlsl::IntrinsicOp::IOP_WaveGetLaneIndex: {
- featureManager.requestTargetEnv(SPV_ENV_VULKAN_1_1, "WaveGetLaneIndex",
- srcLoc);
- const QualType retType = callExpr->getCallReturnType(astContext);
- auto *var = declIdMapper.getBuiltinVar(
- spv::BuiltIn::SubgroupLocalInvocationId, retType, srcLoc);
- retVal = spvBuilder.createLoad(retType, var, srcLoc);
- } break;
- case hlsl::IntrinsicOp::IOP_WaveIsFirstLane:
- retVal = processWaveQuery(callExpr, spv::Op::OpGroupNonUniformElect);
- break;
- case hlsl::IntrinsicOp::IOP_WaveActiveAllTrue:
- retVal = processWaveVote(callExpr, spv::Op::OpGroupNonUniformAll);
- break;
- case hlsl::IntrinsicOp::IOP_WaveActiveAnyTrue:
- retVal = processWaveVote(callExpr, spv::Op::OpGroupNonUniformAny);
- break;
- case hlsl::IntrinsicOp::IOP_WaveActiveBallot:
- retVal = processWaveVote(callExpr, spv::Op::OpGroupNonUniformBallot);
- break;
- case hlsl::IntrinsicOp::IOP_WaveActiveAllEqual:
- retVal = processWaveVote(callExpr, spv::Op::OpGroupNonUniformAllEqual);
- break;
- case hlsl::IntrinsicOp::IOP_WaveActiveCountBits:
- retVal = processWaveCountBits(callExpr, spv::GroupOperation::Reduce);
- break;
- case hlsl::IntrinsicOp::IOP_WaveActiveUSum:
- case hlsl::IntrinsicOp::IOP_WaveActiveSum:
- case hlsl::IntrinsicOp::IOP_WaveActiveUProduct:
- case hlsl::IntrinsicOp::IOP_WaveActiveProduct:
- case hlsl::IntrinsicOp::IOP_WaveActiveUMax:
- case hlsl::IntrinsicOp::IOP_WaveActiveMax:
- case hlsl::IntrinsicOp::IOP_WaveActiveUMin:
- case hlsl::IntrinsicOp::IOP_WaveActiveMin:
- case hlsl::IntrinsicOp::IOP_WaveActiveBitAnd:
- case hlsl::IntrinsicOp::IOP_WaveActiveBitOr:
- case hlsl::IntrinsicOp::IOP_WaveActiveBitXor: {
- const auto retType = callExpr->getCallReturnType(astContext);
- retVal = processWaveReductionOrPrefix(
- callExpr, translateWaveOp(hlslOpcode, retType, srcLoc),
- spv::GroupOperation::Reduce);
- } break;
- case hlsl::IntrinsicOp::IOP_WavePrefixUSum:
- case hlsl::IntrinsicOp::IOP_WavePrefixSum:
- case hlsl::IntrinsicOp::IOP_WavePrefixUProduct:
- case hlsl::IntrinsicOp::IOP_WavePrefixProduct: {
- const auto retType = callExpr->getCallReturnType(astContext);
- retVal = processWaveReductionOrPrefix(
- callExpr, translateWaveOp(hlslOpcode, retType, srcLoc),
- spv::GroupOperation::ExclusiveScan);
- } break;
- case hlsl::IntrinsicOp::IOP_WavePrefixCountBits:
- retVal = processWaveCountBits(callExpr, spv::GroupOperation::ExclusiveScan);
- break;
- case hlsl::IntrinsicOp::IOP_WaveReadLaneAt:
- case hlsl::IntrinsicOp::IOP_WaveReadLaneFirst:
- retVal = processWaveBroadcast(callExpr);
- break;
- case hlsl::IntrinsicOp::IOP_QuadReadAcrossX:
- case hlsl::IntrinsicOp::IOP_QuadReadAcrossY:
- case hlsl::IntrinsicOp::IOP_QuadReadAcrossDiagonal:
- case hlsl::IntrinsicOp::IOP_QuadReadLaneAt:
- retVal = processWaveQuadWideShuffle(callExpr, hlslOpcode);
- break;
- case hlsl::IntrinsicOp::IOP_abort:
- case hlsl::IntrinsicOp::IOP_GetRenderTargetSampleCount:
- case hlsl::IntrinsicOp::IOP_GetRenderTargetSamplePosition: {
- emitError("no equivalent for %0 intrinsic function in Vulkan", srcLoc)
- << callee->getName();
- return 0;
- }
- case hlsl::IntrinsicOp::IOP_transpose: {
- const Expr *mat = callExpr->getArg(0);
- const QualType matType = mat->getType();
- if (hlsl::GetHLSLMatElementType(matType)->isFloatingType())
- retVal =
- processIntrinsicUsingSpirvInst(callExpr, spv::Op::OpTranspose, false);
- else
- retVal = processNonFpMatrixTranspose(matType, doExpr(mat), srcLoc);
- break;
- }
- // DXR raytracing intrinsics
- case hlsl::IntrinsicOp::IOP_DispatchRaysDimensions:
- case hlsl::IntrinsicOp::IOP_DispatchRaysIndex:
- case hlsl::IntrinsicOp::IOP_GeometryIndex:
- case hlsl::IntrinsicOp::IOP_HitKind:
- case hlsl::IntrinsicOp::IOP_InstanceIndex:
- case hlsl::IntrinsicOp::IOP_InstanceID:
- case hlsl::IntrinsicOp::IOP_ObjectRayDirection:
- case hlsl::IntrinsicOp::IOP_ObjectRayOrigin:
- case hlsl::IntrinsicOp::IOP_ObjectToWorld3x4:
- case hlsl::IntrinsicOp::IOP_ObjectToWorld4x3:
- case hlsl::IntrinsicOp::IOP_PrimitiveIndex:
- case hlsl::IntrinsicOp::IOP_RayFlags:
- case hlsl::IntrinsicOp::IOP_RayTCurrent:
- case hlsl::IntrinsicOp::IOP_RayTMin:
- case hlsl::IntrinsicOp::IOP_WorldRayDirection:
- case hlsl::IntrinsicOp::IOP_WorldRayOrigin:
- case hlsl::IntrinsicOp::IOP_WorldToObject3x4:
- case hlsl::IntrinsicOp::IOP_WorldToObject4x3: {
- retVal = processRayBuiltins(callExpr, hlslOpcode);
- break;
- }
- case hlsl::IntrinsicOp::IOP_AcceptHitAndEndSearch:
- case hlsl::IntrinsicOp::IOP_IgnoreHit: {
- // Any modifications made to the ray payload in an any hit shader are
- // preserved before calling AcceptHit/IgnoreHit. Write out the results to
- // the payload which is visible only in entry functions
- const auto iter = functionInfoMap.find(curFunction);
- if (iter != functionInfoMap.end()) {
- const auto &entryInfo = iter->second;
- if (entryInfo->isEntryFunction) {
- const auto payloadArg = curFunction->getParamDecl(0);
- const auto payloadArgInst =
- declIdMapper.getDeclEvalInfo(payloadArg, payloadArg->getLocStart());
- auto tempLoad = spvBuilder.createLoad(
- payloadArg->getType(), payloadArgInst, payloadArg->getLocStart());
- spvBuilder.createStore(currentRayPayload, tempLoad,
- callExpr->getExprLoc());
- }
- }
- spvBuilder.createRayTracingOpsNV(
- hlslOpcode == hlsl::IntrinsicOp ::IOP_AcceptHitAndEndSearch
- ? spv::Op::OpTerminateRayNV
- : spv::Op::OpIgnoreIntersectionNV,
- QualType(), {}, srcLoc);
- break;
- }
- case hlsl::IntrinsicOp::IOP_ReportHit: {
- retVal = processReportHit(callExpr);
- break;
- }
- case hlsl::IntrinsicOp::IOP_TraceRay: {
- processTraceRay(callExpr);
- break;
- }
- case hlsl::IntrinsicOp::IOP_CallShader: {
- processCallShader(callExpr);
- break;
- }
- case hlsl::IntrinsicOp::IOP_DispatchMesh: {
- processDispatchMesh(callExpr);
- break;
- }
- case hlsl::IntrinsicOp::IOP_SetMeshOutputCounts: {
- processMeshOutputCounts(callExpr);
- break;
- }
- INTRINSIC_SPIRV_OP_CASE(ddx, DPdx, true);
- INTRINSIC_SPIRV_OP_CASE(ddx_coarse, DPdxCoarse, false);
- INTRINSIC_SPIRV_OP_CASE(ddx_fine, DPdxFine, false);
- INTRINSIC_SPIRV_OP_CASE(ddy, DPdy, true);
- INTRINSIC_SPIRV_OP_CASE(ddy_coarse, DPdyCoarse, false);
- INTRINSIC_SPIRV_OP_CASE(ddy_fine, DPdyFine, false);
- INTRINSIC_SPIRV_OP_CASE(countbits, BitCount, false);
- INTRINSIC_SPIRV_OP_CASE(isinf, IsInf, true);
- INTRINSIC_SPIRV_OP_CASE(isnan, IsNan, true);
- INTRINSIC_SPIRV_OP_CASE(fmod, FMod, true);
- INTRINSIC_SPIRV_OP_CASE(fwidth, Fwidth, true);
- INTRINSIC_SPIRV_OP_CASE(reversebits, BitReverse, false);
- INTRINSIC_OP_CASE(round, Round, true);
- INTRINSIC_OP_CASE(uabs, SAbs, true);
- INTRINSIC_OP_CASE_INT_FLOAT(abs, SAbs, FAbs, true);
- INTRINSIC_OP_CASE(acos, Acos, true);
- INTRINSIC_OP_CASE(asin, Asin, true);
- INTRINSIC_OP_CASE(atan, Atan, true);
- INTRINSIC_OP_CASE(atan2, Atan2, true);
- INTRINSIC_OP_CASE(ceil, Ceil, true);
- INTRINSIC_OP_CASE(cos, Cos, true);
- INTRINSIC_OP_CASE(cosh, Cosh, true);
- INTRINSIC_OP_CASE(cross, Cross, false);
- INTRINSIC_OP_CASE(degrees, Degrees, true);
- INTRINSIC_OP_CASE(distance, Distance, false);
- INTRINSIC_OP_CASE(determinant, Determinant, false);
- INTRINSIC_OP_CASE(exp, Exp, true);
- INTRINSIC_OP_CASE(exp2, Exp2, true);
- INTRINSIC_OP_CASE_SINT_UINT(firstbithigh, FindSMsb, FindUMsb, false);
- INTRINSIC_OP_CASE_SINT_UINT(ufirstbithigh, FindSMsb, FindUMsb, false);
- INTRINSIC_OP_CASE(faceforward, FaceForward, false);
- INTRINSIC_OP_CASE(firstbitlow, FindILsb, false);
- INTRINSIC_OP_CASE(floor, Floor, true);
- INTRINSIC_OP_CASE(fma, Fma, true);
- INTRINSIC_OP_CASE(frac, Fract, true);
- INTRINSIC_OP_CASE(length, Length, false);
- INTRINSIC_OP_CASE(lerp, FMix, true);
- INTRINSIC_OP_CASE(log, Log, true);
- INTRINSIC_OP_CASE(log2, Log2, true);
- INTRINSIC_OP_CASE_SINT_UINT_FLOAT(max, SMax, UMax, FMax, true);
- INTRINSIC_OP_CASE(umax, UMax, true);
- INTRINSIC_OP_CASE_SINT_UINT_FLOAT(min, SMin, UMin, FMin, true);
- INTRINSIC_OP_CASE(umin, UMin, true);
- INTRINSIC_OP_CASE(normalize, Normalize, false);
- INTRINSIC_OP_CASE(pow, Pow, true);
- INTRINSIC_OP_CASE(radians, Radians, true);
- INTRINSIC_OP_CASE(reflect, Reflect, false);
- INTRINSIC_OP_CASE(refract, Refract, false);
- INTRINSIC_OP_CASE(rsqrt, InverseSqrt, true);
- INTRINSIC_OP_CASE(smoothstep, SmoothStep, true);
- INTRINSIC_OP_CASE(step, Step, true);
- INTRINSIC_OP_CASE(sin, Sin, true);
- INTRINSIC_OP_CASE(sinh, Sinh, true);
- INTRINSIC_OP_CASE(tan, Tan, true);
- INTRINSIC_OP_CASE(tanh, Tanh, true);
- INTRINSIC_OP_CASE(sqrt, Sqrt, true);
- INTRINSIC_OP_CASE(trunc, Trunc, true);
- default:
- emitError("%0 intrinsic function unimplemented", srcLoc)
- << callee->getName();
- return 0;
- }
- #undef INTRINSIC_OP_CASE
- #undef INTRINSIC_OP_CASE_INT_FLOAT
- if (retVal)
- retVal->setRValue();
- return retVal;
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicInterlockedMethod(const CallExpr *expr,
- hlsl::IntrinsicOp opcode) {
- // The signature of intrinsic atomic methods are:
- // void Interlocked*(in R dest, in T value);
- // void Interlocked*(in R dest, in T value, out T original_value);
- // Note: ALL Interlocked*() methods are forced to have an unsigned integer
- // 'value'. Meaning, T is forced to be 'unsigned int'. If the provided
- // parameter is not an unsigned integer, the frontend inserts an
- // 'ImplicitCastExpr' to convert it to unsigned integer. OpAtomicIAdd (and
- // other SPIR-V OpAtomic* instructions) require that the pointee in 'dest' to
- // be of the same type as T. This will result in an invalid SPIR-V if 'dest'
- // is a signed integer typed resource such as RWTexture1D<int>. For example,
- // the following OpAtomicIAdd is invalid because the pointee type defined in
- // %1 is a signed integer, while the value passed to atomic add (%3) is an
- // unsigned integer.
- //
- // %_ptr_Image_int = OpTypePointer Image %int
- // %1 = OpImageTexelPointer %_ptr_Image_int %RWTexture1D_int %index %uint_0
- // %2 = OpLoad %int %value
- // %3 = OpBitcast %uint %2 <-------- Inserted by the frontend
- // %4 = OpAtomicIAdd %int %1 %uint_1 %uint_0 %3
- //
- // In such cases, we bypass the forced IntegralCast.
- // Moreover, the frontend does not add a cast AST node to cast uint to int
- // where necessary. To ensure SPIR-V validity, we add that where necessary.
- auto *zero =
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 0));
- const auto *dest = expr->getArg(0);
- const auto srcLoc = expr->getExprLoc();
- const auto baseType = dest->getType()->getCanonicalTypeUnqualified();
- if (!baseType->isIntegerType()) {
- emitError("can only perform atomic operations on scalar integer values",
- dest->getLocStart());
- return nullptr;
- }
- const auto doArg = [baseType, this](const CallExpr *callExpr,
- uint32_t argIndex) {
- const Expr *valueExpr = callExpr->getArg(argIndex);
- if (const auto *castExpr = dyn_cast<ImplicitCastExpr>(valueExpr))
- if (castExpr->getCastKind() == CK_IntegralCast &&
- castExpr->getSubExpr()->getType() == baseType)
- valueExpr = castExpr->getSubExpr();
- auto *argInstr = doExpr(valueExpr);
- if (valueExpr->getType() != baseType)
- argInstr = castToInt(argInstr, valueExpr->getType(), baseType,
- valueExpr->getExprLoc());
- return argInstr;
- };
- const auto writeToOutputArg = [&baseType, dest,
- this](SpirvInstruction *toWrite,
- const CallExpr *callExpr,
- uint32_t outputArgIndex) {
- const auto outputArg = callExpr->getArg(outputArgIndex);
- const auto outputArgType = outputArg->getType();
- if (baseType != outputArgType)
- toWrite =
- castToInt(toWrite, baseType, outputArgType, dest->getLocStart());
- spvBuilder.createStore(doExpr(outputArg), toWrite, callExpr->getExprLoc());
- };
- // If a vector swizzling of a texture is done as an argument of an
- // interlocked method, we need to handle the access to the texture
- // buffer element correctly. For example:
- //
- // InterlockedAdd(myRWTexture[index].r, 1);
- //
- // `-CallExpr
- // |-ImplicitCastExpr
- // | `-DeclRefExpr Function 'InterlockedAdd'
- // | 'void (unsigned int &, unsigned int)'
- // |-HLSLVectorElementExpr 'unsigned int' lvalue vectorcomponent r
- // | `-ImplicitCastExpr 'vector<uint, 1>':'vector<unsigned int, 1>'
- // | <HLSLVectorSplat>
- // | `-CXXOperatorCallExpr 'unsigned int' lvalue
- const auto *cxxOpCall = dyn_cast<CXXOperatorCallExpr>(dest);
- if (const auto *vector = dyn_cast<HLSLVectorElementExpr>(dest)) {
- const Expr *base = vector->getBase();
- cxxOpCall = dyn_cast<CXXOperatorCallExpr>(base);
- if (const auto *cast = dyn_cast<CastExpr>(base)) {
- cxxOpCall = dyn_cast<CXXOperatorCallExpr>(cast->getSubExpr());
- }
- }
- // If the argument is indexing into a texture/buffer, we need to create an
- // OpImageTexelPointer instruction.
- SpirvInstruction *ptr = nullptr;
- if (cxxOpCall) {
- const Expr *base = nullptr;
- const Expr *index = nullptr;
- if (isBufferTextureIndexing(cxxOpCall, &base, &index)) {
- if (hlsl::IsHLSLResourceType(base->getType())) {
- const auto resultTy = hlsl::GetHLSLResourceResultType(base->getType());
- if (!isScalarType(resultTy, nullptr)) {
- emitError("Interlocked operation for texture buffer whose result "
- "type is non-scalar type is not allowed",
- dest->getExprLoc());
- return nullptr;
- }
- }
- auto *baseInstr = doExpr(base);
- if (baseInstr->isRValue()) {
- // OpImageTexelPointer's Image argument must have a type of
- // OpTypePointer with Type OpTypeImage. Need to create a temporary
- // variable if the baseId is an rvalue.
- baseInstr =
- createTemporaryVar(base->getType(), getAstTypeName(base->getType()),
- baseInstr, base->getExprLoc());
- }
- auto *coordInstr = doExpr(index);
- ptr = spvBuilder.createImageTexelPointer(baseType, baseInstr, coordInstr,
- zero, srcLoc);
- }
- }
- if (!ptr) {
- auto *ptrInfo = doExpr(dest);
- const auto sc = ptrInfo->getStorageClass();
- if (sc == spv::StorageClass::Private || sc == spv::StorageClass::Function) {
- emitError("using static variable or function scope variable in "
- "interlocked operation is not allowed",
- dest->getExprLoc());
- return nullptr;
- }
- ptr = ptrInfo;
- }
- const bool isCompareExchange =
- opcode == hlsl::IntrinsicOp::IOP_InterlockedCompareExchange;
- const bool isCompareStore =
- opcode == hlsl::IntrinsicOp::IOP_InterlockedCompareStore;
- if (isCompareExchange || isCompareStore) {
- auto *comparator = doArg(expr, 1);
- auto *valueInstr = doArg(expr, 2);
- auto *originalVal = spvBuilder.createAtomicCompareExchange(
- baseType, ptr, spv::Scope::Device, spv::MemorySemanticsMask::MaskNone,
- spv::MemorySemanticsMask::MaskNone, valueInstr, comparator, srcLoc);
- if (isCompareExchange)
- writeToOutputArg(originalVal, expr, 3);
- } else {
- auto *value = doArg(expr, 1);
- // Since these atomic operations write through the provided pointer, the
- // signed vs. unsigned opcode must be decided based on the pointee type
- // of the first argument. However, the frontend decides the opcode based on
- // the second argument (value). Therefore, the HLSL opcode provided by the
- // frontend may be wrong. Therefore we need the following code to make sure
- // we are using the correct SPIR-V opcode.
- spv::Op atomicOp = translateAtomicHlslOpcodeToSpirvOpcode(opcode);
- if (atomicOp == spv::Op::OpAtomicUMax && baseType->isSignedIntegerType())
- atomicOp = spv::Op::OpAtomicSMax;
- if (atomicOp == spv::Op::OpAtomicSMax && baseType->isUnsignedIntegerType())
- atomicOp = spv::Op::OpAtomicUMax;
- if (atomicOp == spv::Op::OpAtomicUMin && baseType->isSignedIntegerType())
- atomicOp = spv::Op::OpAtomicSMin;
- if (atomicOp == spv::Op::OpAtomicSMin && baseType->isUnsignedIntegerType())
- atomicOp = spv::Op::OpAtomicUMin;
- auto *originalVal = spvBuilder.createAtomicOp(
- atomicOp, baseType, ptr, spv::Scope::Device,
- spv::MemorySemanticsMask::MaskNone, value, srcLoc);
- if (expr->getNumArgs() > 2)
- writeToOutputArg(originalVal, expr, 2);
- }
- return nullptr;
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicNonUniformResourceIndex(const CallExpr *expr) {
- auto *index = doExpr(expr->getArg(0));
- // Decorate the expression in NonUniformResourceIndex() with NonUniformEXT.
- // Aside from this, we also need to eventually populate the NonUniformEXT
- // status to the usages of this expression. This is done by the
- // NonUniformVisitor class.
- //
- // The decoration shouldn't be applied to the operand, rather to a copy of the
- // result. Even though applying the decoration to the operand may not be
- // functionally incorrect (since adding NonUniform is more conservative), it
- // could affect performance and isn't the intent of the shader.
- auto *copyInstr =
- spvBuilder.createCopyObject(expr->getType(), index, expr->getExprLoc());
- copyInstr->setNonUniform();
- return copyInstr;
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicMsad4(const CallExpr *callExpr) {
- const auto loc = callExpr->getExprLoc();
- if (!spirvOptions.noWarnEmulatedFeatures)
- emitWarning("msad4 intrinsic function is emulated using many SPIR-V "
- "instructions due to lack of direct SPIR-V equivalent",
- loc);
- // Compares a 4-byte reference value and an 8-byte source value and
- // accumulates a vector of 4 sums. Each sum corresponds to the masked sum
- // of absolute differences of a different byte alignment between the
- // reference value and the source value.
- // If we have:
- // uint v0; // reference
- // uint2 v1; // source
- // uint4 v2; // accum
- // uint4 o0; // result of msad4
- // uint4 r0, t0; // temporary values
- //
- // Then msad4(v0, v1, v2) translates to the following SM5 assembly according
- // to fxc:
- // Step 1:
- // ushr r0.xyz, v1.xxxx, l(8, 16, 24, 0)
- // Step 2:
- // [result], [ width ], [ offset ], [ insert ], [ base ]
- // bfi t0.yzw, l(0, 8, 16, 24), l(0, 24, 16, 8), v1.yyyy , r0.xxyz
- // mov t0.x, v1.x
- // Step 3:
- // msad o0.xyzw, v0.xxxx, t0.xyzw, v2.xyzw
- const auto boolType = astContext.BoolTy;
- const auto intType = astContext.IntTy;
- const auto uintType = astContext.UnsignedIntTy;
- const auto uint4Type = astContext.getExtVectorType(uintType, 4);
- auto *reference = doExpr(callExpr->getArg(0));
- auto *source = doExpr(callExpr->getArg(1));
- auto *accum = doExpr(callExpr->getArg(2));
- const auto uint0 =
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 0));
- const auto uint8 =
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 8));
- const auto uint16 =
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 16));
- const auto uint24 =
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 24));
- // Step 1.
- auto *v1x = spvBuilder.createCompositeExtract(uintType, source, {0}, loc);
- // r0.x = v1xS8 = v1.x shifted by 8 bits
- auto *v1xS8 = spvBuilder.createBinaryOp(spv::Op::OpShiftLeftLogical, uintType,
- v1x, uint8, loc);
- // r0.y = v1xS16 = v1.x shifted by 16 bits
- auto *v1xS16 = spvBuilder.createBinaryOp(spv::Op::OpShiftLeftLogical,
- uintType, v1x, uint16, loc);
- // r0.z = v1xS24 = v1.x shifted by 24 bits
- auto *v1xS24 = spvBuilder.createBinaryOp(spv::Op::OpShiftLeftLogical,
- uintType, v1x, uint24, loc);
- // Step 2.
- // Do bfi 3 times. DXIL bfi is equivalent to SPIR-V OpBitFieldInsert.
- auto *v1y = spvBuilder.createCompositeExtract(uintType, source, {1}, loc);
- // Note that t0.x = v1.x, nothing we need to do for that.
- auto *t0y =
- spvBuilder.createBitFieldInsert(uintType, /*base*/ v1xS8, /*insert*/ v1y,
- /*offset*/ uint24,
- /*width*/ uint8, loc);
- auto *t0z =
- spvBuilder.createBitFieldInsert(uintType, /*base*/ v1xS16, /*insert*/ v1y,
- /*offset*/ uint16,
- /*width*/ uint16, loc);
- auto *t0w =
- spvBuilder.createBitFieldInsert(uintType, /*base*/ v1xS24, /*insert*/ v1y,
- /*offset*/ uint8,
- /*width*/ uint24, loc);
- // Step 3. MSAD (Masked Sum of Absolute Differences)
- // Now perform MSAD four times.
- // Need to mimic this algorithm in SPIR-V!
- //
- // UINT msad( UINT ref, UINT src, UINT accum )
- // {
- // for (UINT i = 0; i < 4; i++)
- // {
- // BYTE refByte, srcByte, absDiff;
- //
- // refByte = (BYTE)(ref >> (i * 8));
- // if (!refByte)
- // {
- // continue;
- // }
- //
- // srcByte = (BYTE)(src >> (i * 8));
- // if (refByte >= srcByte)
- // {
- // absDiff = refByte - srcByte;
- // }
- // else
- // {
- // absDiff = srcByte - refByte;
- // }
- //
- // // The recommended overflow behavior for MSAD is
- // // to do a 32-bit saturate. This is not
- // // required, however, and wrapping is allowed.
- // // So from an application point of view,
- // // overflow behavior is undefined.
- // if (UINT_MAX - accum < absDiff)
- // {
- // accum = UINT_MAX;
- // break;
- // }
- // accum += absDiff;
- // }
- //
- // return accum;
- // }
- auto *accum0 = spvBuilder.createCompositeExtract(uintType, accum, {0}, loc);
- auto *accum1 = spvBuilder.createCompositeExtract(uintType, accum, {1}, loc);
- auto *accum2 = spvBuilder.createCompositeExtract(uintType, accum, {2}, loc);
- auto *accum3 = spvBuilder.createCompositeExtract(uintType, accum, {3}, loc);
- const llvm::SmallVector<SpirvInstruction *, 4> sources = {v1x, t0y, t0z, t0w};
- llvm::SmallVector<SpirvInstruction *, 4> accums = {accum0, accum1, accum2,
- accum3};
- llvm::SmallVector<SpirvInstruction *, 4> refBytes;
- llvm::SmallVector<SpirvInstruction *, 4> signedRefBytes;
- llvm::SmallVector<SpirvInstruction *, 4> isRefByteZero;
- for (uint32_t i = 0; i < 4; ++i) {
- refBytes.push_back(spvBuilder.createBitFieldExtract(
- uintType, reference, /*offset*/
- spvBuilder.getConstantInt(astContext.UnsignedIntTy,
- llvm::APInt(32, i * 8)),
- /*count*/ uint8, /*isSigned*/ false, loc));
- signedRefBytes.push_back(spvBuilder.createUnaryOp(
- spv::Op::OpBitcast, intType, refBytes.back(), loc));
- isRefByteZero.push_back(spvBuilder.createBinaryOp(
- spv::Op::OpIEqual, boolType, refBytes.back(), uint0, loc));
- }
- for (uint32_t msadNum = 0; msadNum < 4; ++msadNum) {
- for (uint32_t byteCount = 0; byteCount < 4; ++byteCount) {
- // 'count' is always 8 because we are extracting 8 bits out of 32.
- auto *srcByte = spvBuilder.createBitFieldExtract(
- uintType, sources[msadNum],
- /*offset*/
- spvBuilder.getConstantInt(astContext.UnsignedIntTy,
- llvm::APInt(32, 8 * byteCount)),
- /*count*/ uint8, /*isSigned*/ false, loc);
- auto *signedSrcByte =
- spvBuilder.createUnaryOp(spv::Op::OpBitcast, intType, srcByte, loc);
- auto *sub = spvBuilder.createBinaryOp(spv::Op::OpISub, intType,
- signedRefBytes[byteCount],
- signedSrcByte, loc);
- auto *absSub = spvBuilder.createGLSLExtInst(
- intType, GLSLstd450::GLSLstd450SAbs, {sub}, loc);
- auto *diff = spvBuilder.createSelect(
- uintType, isRefByteZero[byteCount], uint0,
- spvBuilder.createUnaryOp(spv::Op::OpBitcast, uintType, absSub, loc),
- loc);
- // As pointed out by the DXIL reference above, it is *not* required to
- // saturate the output to UINT_MAX in case of overflow. Wrapping around is
- // also allowed. For simplicity, we will wrap around at this point.
- accums[msadNum] = spvBuilder.createBinaryOp(spv::Op::OpIAdd, uintType,
- accums[msadNum], diff, loc);
- }
- }
- return spvBuilder.createCompositeConstruct(uint4Type, accums, loc);
- }
- SpirvInstruction *SpirvEmitter::processWaveQuery(const CallExpr *callExpr,
- spv::Op opcode) {
- // Signatures:
- // bool WaveIsFirstLane()
- // uint WaveGetLaneCount()
- // uint WaveGetLaneIndex()
- assert(callExpr->getNumArgs() == 0);
- featureManager.requestTargetEnv(SPV_ENV_VULKAN_1_1, "Wave Operation",
- callExpr->getExprLoc());
- const QualType retType = callExpr->getCallReturnType(astContext);
- return spvBuilder.createGroupNonUniformElect(
- opcode, retType, spv::Scope::Subgroup, callExpr->getExprLoc());
- }
- SpirvInstruction *SpirvEmitter::processWaveVote(const CallExpr *callExpr,
- spv::Op opcode) {
- // Signatures:
- // bool WaveActiveAnyTrue( bool expr )
- // bool WaveActiveAllTrue( bool expr )
- // bool uint4 WaveActiveBallot( bool expr )
- assert(callExpr->getNumArgs() == 1);
- featureManager.requestTargetEnv(SPV_ENV_VULKAN_1_1, "Wave Operation",
- callExpr->getExprLoc());
- auto *predicate = doExpr(callExpr->getArg(0));
- const QualType retType = callExpr->getCallReturnType(astContext);
- return spvBuilder.createGroupNonUniformUnaryOp(
- callExpr->getExprLoc(), opcode, retType, spv::Scope::Subgroup, predicate);
- }
- spv::Op SpirvEmitter::translateWaveOp(hlsl::IntrinsicOp op, QualType type,
- SourceLocation srcLoc) {
- const bool isSintType = isSintOrVecMatOfSintType(type);
- const bool isUintType = isUintOrVecMatOfUintType(type);
- const bool isFloatType = isFloatOrVecMatOfFloatType(type);
- #define WAVE_OP_CASE_INT(kind, intWaveOp) \
- \
- case hlsl::IntrinsicOp::IOP_Wave##kind: { \
- if (isSintType || isUintType) { \
- return spv::Op::OpGroupNonUniform##intWaveOp; \
- } \
- } break
- #define WAVE_OP_CASE_INT_FLOAT(kind, intWaveOp, floatWaveOp) \
- \
- case hlsl::IntrinsicOp::IOP_Wave##kind: { \
- if (isSintType || isUintType) { \
- return spv::Op::OpGroupNonUniform##intWaveOp; \
- } \
- if (isFloatType) { \
- return spv::Op::OpGroupNonUniform##floatWaveOp; \
- } \
- } break
- #define WAVE_OP_CASE_SINT_UINT_FLOAT(kind, sintWaveOp, uintWaveOp, \
- floatWaveOp) \
- \
- case hlsl::IntrinsicOp::IOP_Wave##kind: { \
- if (isSintType) { \
- return spv::Op::OpGroupNonUniform##sintWaveOp; \
- } \
- if (isUintType) { \
- return spv::Op::OpGroupNonUniform##uintWaveOp; \
- } \
- if (isFloatType) { \
- return spv::Op::OpGroupNonUniform##floatWaveOp; \
- } \
- } break
- switch (op) {
- WAVE_OP_CASE_INT_FLOAT(ActiveUSum, IAdd, FAdd);
- WAVE_OP_CASE_INT_FLOAT(ActiveSum, IAdd, FAdd);
- WAVE_OP_CASE_INT_FLOAT(ActiveUProduct, IMul, FMul);
- WAVE_OP_CASE_INT_FLOAT(ActiveProduct, IMul, FMul);
- WAVE_OP_CASE_INT_FLOAT(PrefixUSum, IAdd, FAdd);
- WAVE_OP_CASE_INT_FLOAT(PrefixSum, IAdd, FAdd);
- WAVE_OP_CASE_INT_FLOAT(PrefixUProduct, IMul, FMul);
- WAVE_OP_CASE_INT_FLOAT(PrefixProduct, IMul, FMul);
- WAVE_OP_CASE_INT(ActiveBitAnd, BitwiseAnd);
- WAVE_OP_CASE_INT(ActiveBitOr, BitwiseOr);
- WAVE_OP_CASE_INT(ActiveBitXor, BitwiseXor);
- WAVE_OP_CASE_SINT_UINT_FLOAT(ActiveUMax, SMax, UMax, FMax);
- WAVE_OP_CASE_SINT_UINT_FLOAT(ActiveMax, SMax, UMax, FMax);
- WAVE_OP_CASE_SINT_UINT_FLOAT(ActiveUMin, SMin, UMin, FMin);
- WAVE_OP_CASE_SINT_UINT_FLOAT(ActiveMin, SMin, UMin, FMin);
- default:
- // Only Simple Wave Ops are handled here.
- break;
- }
- #undef WAVE_OP_CASE_INT_FLOAT
- #undef WAVE_OP_CASE_INT
- #undef WAVE_OP_CASE_SINT_UINT_FLOAT
- emitError("translating wave operator '%0' unimplemented", srcLoc)
- << static_cast<uint32_t>(op);
- return spv::Op::OpNop;
- }
- SpirvInstruction *
- SpirvEmitter::processWaveCountBits(const CallExpr *callExpr,
- spv::GroupOperation groupOp) {
- // Signatures:
- // uint WaveActiveCountBits(bool bBit)
- // uint WavePrefixCountBits(Bool bBit)
- assert(callExpr->getNumArgs() == 1);
- featureManager.requestTargetEnv(SPV_ENV_VULKAN_1_1, "Wave Operation",
- callExpr->getExprLoc());
- auto *predicate = doExpr(callExpr->getArg(0));
- const auto srcLoc = callExpr->getExprLoc();
- const QualType u32Type = astContext.UnsignedIntTy;
- const QualType v4u32Type = astContext.getExtVectorType(u32Type, 4);
- const QualType retType = callExpr->getCallReturnType(astContext);
- auto *ballot = spvBuilder.createGroupNonUniformUnaryOp(
- srcLoc, spv::Op::OpGroupNonUniformBallot, v4u32Type, spv::Scope::Subgroup,
- predicate);
- return spvBuilder.createGroupNonUniformUnaryOp(
- srcLoc, spv::Op::OpGroupNonUniformBallotBitCount, retType,
- spv::Scope::Subgroup, ballot,
- llvm::Optional<spv::GroupOperation>(groupOp));
- }
- SpirvInstruction *SpirvEmitter::processWaveReductionOrPrefix(
- const CallExpr *callExpr, spv::Op opcode, spv::GroupOperation groupOp) {
- // Signatures:
- // bool WaveActiveAllEqual( <type> expr )
- // <type> WaveActiveSum( <type> expr )
- // <type> WaveActiveProduct( <type> expr )
- // <int_type> WaveActiveBitAnd( <int_type> expr )
- // <int_type> WaveActiveBitOr( <int_type> expr )
- // <int_type> WaveActiveBitXor( <int_type> expr )
- // <type> WaveActiveMin( <type> expr)
- // <type> WaveActiveMax( <type> expr)
- //
- // <type> WavePrefixProduct(<type> value)
- // <type> WavePrefixSum(<type> value)
- assert(callExpr->getNumArgs() == 1);
- featureManager.requestTargetEnv(SPV_ENV_VULKAN_1_1, "Wave Operation",
- callExpr->getExprLoc());
- auto *predicate = doExpr(callExpr->getArg(0));
- const QualType retType = callExpr->getCallReturnType(astContext);
- return spvBuilder.createGroupNonUniformUnaryOp(
- callExpr->getExprLoc(), opcode, retType, spv::Scope::Subgroup, predicate,
- llvm::Optional<spv::GroupOperation>(groupOp));
- }
- SpirvInstruction *SpirvEmitter::processWaveBroadcast(const CallExpr *callExpr) {
- // Signatures:
- // <type> WaveReadLaneFirst(<type> expr)
- // <type> WaveReadLaneAt(<type> expr, uint laneIndex)
- const auto numArgs = callExpr->getNumArgs();
- const auto srcLoc = callExpr->getExprLoc();
- assert(numArgs == 1 || numArgs == 2);
- featureManager.requestTargetEnv(SPV_ENV_VULKAN_1_1, "Wave Operation",
- callExpr->getExprLoc());
- auto *value = doExpr(callExpr->getArg(0));
- const QualType retType = callExpr->getCallReturnType(astContext);
- if (numArgs == 2)
- return spvBuilder.createGroupNonUniformBinaryOp(
- spv::Op::OpGroupNonUniformBroadcast, retType, spv::Scope::Subgroup,
- value, doExpr(callExpr->getArg(1)), srcLoc);
- else
- return spvBuilder.createGroupNonUniformUnaryOp(
- srcLoc, spv::Op::OpGroupNonUniformBroadcastFirst, retType,
- spv::Scope::Subgroup, value);
- }
- SpirvInstruction *
- SpirvEmitter::processWaveQuadWideShuffle(const CallExpr *callExpr,
- hlsl::IntrinsicOp op) {
- // Signatures:
- // <type> QuadReadAcrossX(<type> localValue)
- // <type> QuadReadAcrossY(<type> localValue)
- // <type> QuadReadAcrossDiagonal(<type> localValue)
- // <type> QuadReadLaneAt(<type> sourceValue, uint quadLaneID)
- assert(callExpr->getNumArgs() == 1 || callExpr->getNumArgs() == 2);
- featureManager.requestTargetEnv(SPV_ENV_VULKAN_1_1, "Wave Operation",
- callExpr->getExprLoc());
- auto *value = doExpr(callExpr->getArg(0));
- const auto srcLoc = callExpr->getExprLoc();
- const QualType retType = callExpr->getCallReturnType(astContext);
- SpirvInstruction *target = nullptr;
- spv::Op opcode = spv::Op::OpGroupNonUniformQuadSwap;
- switch (op) {
- case hlsl::IntrinsicOp::IOP_QuadReadAcrossX:
- target =
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 0));
- break;
- case hlsl::IntrinsicOp::IOP_QuadReadAcrossY:
- target =
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 1));
- break;
- case hlsl::IntrinsicOp::IOP_QuadReadAcrossDiagonal:
- target =
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 2));
- break;
- case hlsl::IntrinsicOp::IOP_QuadReadLaneAt:
- target = doExpr(callExpr->getArg(1));
- opcode = spv::Op::OpGroupNonUniformQuadBroadcast;
- break;
- default:
- llvm_unreachable("case should not appear here");
- }
- return spvBuilder.createGroupNonUniformBinaryOp(
- opcode, retType, spv::Scope::Subgroup, value, target, srcLoc);
- }
- SpirvInstruction *SpirvEmitter::processIntrinsicModf(const CallExpr *callExpr) {
- // Signature is: ret modf(x, ip)
- // [in] x: the input floating-point value.
- // [out] ip: the integer portion of x.
- // [out] ret: the fractional portion of x.
- // All of the above must be a scalar, vector, or matrix with the same
- // component types. Component types can be float or int.
- // The ModfStruct SPIR-V instruction returns a struct. The first member is the
- // fractional part and the second member is the integer portion.
- // ModfStruct {
- // <scalar or vector of float> frac;
- // <scalar or vector of float> ip;
- // }
- // Note if the input number (x) is not a float (i.e. 'x' is an int), it is
- // automatically converted to float before modf is invoked. Sadly, the 'ip'
- // argument is not treated the same way. Therefore, in such cases we'll have
- // to manually convert the float result into int.
- const Expr *arg = callExpr->getArg(0);
- const Expr *ipArg = callExpr->getArg(1);
- const auto loc = callExpr->getLocStart();
- const auto argType = arg->getType();
- const auto ipType = ipArg->getType();
- const auto returnType = callExpr->getType();
- auto *argInstr = doExpr(arg);
- // For scalar and vector argument types.
- {
- if (isScalarType(argType) || isVectorType(argType)) {
- // The struct members *must* have the same type.
- const auto modfStructType = spvContext.getHybridStructType(
- {HybridStructType::FieldInfo(argType, "frac"),
- HybridStructType::FieldInfo(argType, "ip")},
- "ModfStructType");
- auto *modf = spvBuilder.createGLSLExtInst(
- modfStructType, GLSLstd450::GLSLstd450ModfStruct, {argInstr}, loc);
- SpirvInstruction *ip =
- spvBuilder.createCompositeExtract(argType, modf, {1}, loc);
- // This will do nothing if the input number (x) and the ip are both of the
- // same type. Otherwise, it will convert the ip into int as necessary.
- ip = castToInt(ip, argType, ipType, ipArg->getLocStart());
- processAssignment(ipArg, ip, false, nullptr);
- return spvBuilder.createCompositeExtract(argType, modf, {0}, loc);
- }
- }
- // For matrix argument types.
- {
- uint32_t rowCount = 0, colCount = 0;
- QualType elemType = {};
- if (isMxNMatrix(argType, &elemType, &rowCount, &colCount)) {
- const auto colType = astContext.getExtVectorType(elemType, colCount);
- const auto modfStructType = spvContext.getHybridStructType(
- {HybridStructType::FieldInfo(colType, "frac"),
- HybridStructType::FieldInfo(colType, "ip")},
- "ModfStructType");
- llvm::SmallVector<SpirvInstruction *, 4> fracs;
- llvm::SmallVector<SpirvInstruction *, 4> ips;
- for (uint32_t i = 0; i < rowCount; ++i) {
- auto *curRow =
- spvBuilder.createCompositeExtract(colType, argInstr, {i}, loc);
- auto *modf = spvBuilder.createGLSLExtInst(
- modfStructType, GLSLstd450::GLSLstd450ModfStruct, {curRow}, loc);
- ips.push_back(
- spvBuilder.createCompositeExtract(colType, modf, {1}, loc));
- fracs.push_back(
- spvBuilder.createCompositeExtract(colType, modf, {0}, loc));
- }
- SpirvInstruction *ip =
- spvBuilder.createCompositeConstruct(argType, ips, loc);
- // If the 'ip' is not a float type, the AST will not contain a CastExpr
- // because this is internal to the intrinsic function. So, in such a
- // case we need to cast manually.
- if (!hlsl::GetHLSLMatElementType(ipType)->isFloatingType())
- ip = castToInt(ip, argType, ipType, ipArg->getLocStart());
- processAssignment(ipArg, ip, false, nullptr);
- return spvBuilder.createCompositeConstruct(returnType, fracs, loc);
- }
- }
- emitError("invalid argument type passed to Modf intrinsic function",
- callExpr->getExprLoc());
- return nullptr;
- }
- SpirvInstruction *SpirvEmitter::processIntrinsicMad(const CallExpr *callExpr) {
- // Signature is: ret mad(a,b,c)
- // All of the above must be a scalar, vector, or matrix with the same
- // component types. Component types can be float or int.
- // The return value is equal to "a * b + c"
- // In the case of float arguments, we can use the GLSL extended instruction
- // set's Fma instruction with NoContraction decoration. In the case of integer
- // arguments, we'll have to manually perform an OpIMul followed by an OpIAdd
- // (We should also apply NoContraction decoration to these two instructions to
- // get precise arithmetic).
- // TODO: We currently don't propagate the NoContraction decoration.
- const auto loc = callExpr->getLocStart();
- const Expr *arg0 = callExpr->getArg(0);
- const Expr *arg1 = callExpr->getArg(1);
- const Expr *arg2 = callExpr->getArg(2);
- // All arguments and the return type are the same.
- const auto argType = arg0->getType();
- auto *arg0Instr = doExpr(arg0);
- auto *arg1Instr = doExpr(arg1);
- auto *arg2Instr = doExpr(arg2);
- auto arg0Loc = arg0->getLocStart();
- auto arg1Loc = arg1->getLocStart();
- auto arg2Loc = arg2->getLocStart();
- // For floating point arguments, we can use the extended instruction set's Fma
- // instruction. Sadly we can't simply call processIntrinsicUsingGLSLInst
- // because we need to specifically decorate the Fma instruction with
- // NoContraction decoration.
- if (isFloatOrVecMatOfFloatType(argType)) {
- // For matrix cases, operate on each row of the matrix.
- if (isMxNMatrix(arg0->getType())) {
- const auto actOnEachVec = [this, loc, arg1Instr, arg2Instr, arg1Loc,
- arg2Loc](uint32_t index, QualType vecType,
- SpirvInstruction *arg0Row) {
- auto *arg1Row = spvBuilder.createCompositeExtract(vecType, arg1Instr,
- {index}, arg1Loc);
- auto *arg2Row = spvBuilder.createCompositeExtract(vecType, arg2Instr,
- {index}, arg2Loc);
- auto *fma = spvBuilder.createGLSLExtInst(
- vecType, GLSLstd450Fma, {arg0Row, arg1Row, arg2Row}, loc);
- spvBuilder.decorateNoContraction(fma, loc);
- return fma;
- };
- return processEachVectorInMatrix(arg0, arg0Instr, actOnEachVec, loc);
- }
- // Non-matrix cases
- auto *fma = spvBuilder.createGLSLExtInst(
- argType, GLSLstd450Fma, {arg0Instr, arg1Instr, arg2Instr}, loc);
- spvBuilder.decorateNoContraction(fma, loc);
- return fma;
- }
- // For scalar and vector argument types.
- {
- if (isScalarType(argType) || isVectorType(argType)) {
- auto *mul = spvBuilder.createBinaryOp(spv::Op::OpIMul, argType, arg0Instr,
- arg1Instr, loc);
- auto *add = spvBuilder.createBinaryOp(spv::Op::OpIAdd, argType, mul,
- arg2Instr, loc);
- spvBuilder.decorateNoContraction(mul, loc);
- spvBuilder.decorateNoContraction(add, loc);
- return add;
- }
- }
- // For matrix argument types.
- {
- uint32_t rowCount = 0, colCount = 0;
- QualType elemType = {};
- if (isMxNMatrix(argType, &elemType, &rowCount, &colCount)) {
- const auto colType = astContext.getExtVectorType(elemType, colCount);
- llvm::SmallVector<SpirvInstruction *, 4> resultRows;
- for (uint32_t i = 0; i < rowCount; ++i) {
- auto *rowArg0 =
- spvBuilder.createCompositeExtract(colType, arg0Instr, {i}, arg0Loc);
- auto *rowArg1 =
- spvBuilder.createCompositeExtract(colType, arg1Instr, {i}, arg1Loc);
- auto *rowArg2 =
- spvBuilder.createCompositeExtract(colType, arg2Instr, {i}, arg2Loc);
- auto *mul = spvBuilder.createBinaryOp(spv::Op::OpIMul, colType, rowArg0,
- rowArg1, loc);
- auto *add = spvBuilder.createBinaryOp(spv::Op::OpIAdd, colType, mul,
- rowArg2, loc);
- spvBuilder.decorateNoContraction(mul, loc);
- spvBuilder.decorateNoContraction(add, loc);
- resultRows.push_back(add);
- }
- return spvBuilder.createCompositeConstruct(argType, resultRows, loc);
- }
- }
- emitError("invalid argument type passed to mad intrinsic function",
- callExpr->getExprLoc());
- return 0;
- }
- SpirvInstruction *SpirvEmitter::processIntrinsicLit(const CallExpr *callExpr) {
- // Signature is: float4 lit(float n_dot_l, float n_dot_h, float m)
- //
- // This function returns a lighting coefficient vector
- // (ambient, diffuse, specular, 1) where:
- // ambient = 1.
- // diffuse = (n_dot_l < 0) ? 0 : n_dot_l
- // specular = (n_dot_l < 0 || n_dot_h < 0) ? 0 : ((n_dot_h) * m)
- auto *nDotL = doExpr(callExpr->getArg(0));
- auto *nDotH = doExpr(callExpr->getArg(1));
- auto *m = doExpr(callExpr->getArg(2));
- const auto loc = callExpr->getExprLoc();
- const QualType floatType = astContext.FloatTy;
- const QualType boolType = astContext.BoolTy;
- SpirvInstruction *floatZero =
- spvBuilder.getConstantFloat(astContext.FloatTy, llvm::APFloat(0.0f));
- SpirvInstruction *floatOne =
- spvBuilder.getConstantFloat(astContext.FloatTy, llvm::APFloat(1.0f));
- const QualType retType = callExpr->getType();
- auto *diffuse = spvBuilder.createGLSLExtInst(
- floatType, GLSLstd450::GLSLstd450FMax, {floatZero, nDotL}, loc);
- auto *min = spvBuilder.createGLSLExtInst(
- floatType, GLSLstd450::GLSLstd450FMin, {nDotL, nDotH}, loc);
- auto *isNeg = spvBuilder.createBinaryOp(spv::Op::OpFOrdLessThan, boolType,
- min, floatZero, loc);
- auto *mul =
- spvBuilder.createBinaryOp(spv::Op::OpFMul, floatType, nDotH, m, loc);
- auto *specular =
- spvBuilder.createSelect(floatType, isNeg, floatZero, mul, loc);
- return spvBuilder.createCompositeConstruct(
- retType, {floatOne, diffuse, specular, floatOne}, callExpr->getLocEnd());
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicFrexp(const CallExpr *callExpr) {
- // Signature is: ret frexp(x, exp)
- // [in] x: the input floating-point value.
- // [out] exp: the calculated exponent.
- // [out] ret: the calculated mantissa.
- // All of the above must be a scalar, vector, or matrix of *float* type.
- // The FrexpStruct SPIR-V instruction returns a struct. The first
- // member is the significand (mantissa) and must be of the same type as the
- // input parameter, and the second member is the exponent and must always be a
- // scalar or vector of 32-bit *integer* type.
- // FrexpStruct {
- // <scalar or vector of int/float> mantissa;
- // <scalar or vector of integers> exponent;
- // }
- const Expr *arg = callExpr->getArg(0);
- const auto argType = arg->getType();
- const auto returnType = callExpr->getType();
- const auto loc = callExpr->getExprLoc();
- auto *argInstr = doExpr(arg);
- auto *expInstr = doExpr(callExpr->getArg(1));
- // For scalar and vector argument types.
- {
- uint32_t elemCount = 1;
- if (isScalarType(argType) || isVectorType(argType, nullptr, &elemCount)) {
- const QualType expType =
- elemCount == 1
- ? astContext.IntTy
- : astContext.getExtVectorType(astContext.IntTy, elemCount);
- const auto *frexpStructType = spvContext.getHybridStructType(
- {HybridStructType::FieldInfo(argType, "mantissa"),
- HybridStructType::FieldInfo(expType, "exponent")},
- "FrexpStructType");
- auto *frexp = spvBuilder.createGLSLExtInst(
- frexpStructType, GLSLstd450::GLSLstd450FrexpStruct, {argInstr}, loc);
- auto *exponentInt =
- spvBuilder.createCompositeExtract(expType, frexp, {1}, loc);
- // Since the SPIR-V instruction returns an int, and the intrinsic HLSL
- // expects a float, an conversion must take place before writing the
- // results.
- auto *exponentFloat = spvBuilder.createUnaryOp(
- spv::Op::OpConvertSToF, returnType, exponentInt, loc);
- spvBuilder.createStore(expInstr, exponentFloat, loc);
- return spvBuilder.createCompositeExtract(argType, frexp, {0}, loc);
- }
- }
- // For matrix argument types.
- {
- uint32_t rowCount = 0, colCount = 0;
- if (isMxNMatrix(argType, nullptr, &rowCount, &colCount)) {
- const auto expType =
- astContext.getExtVectorType(astContext.IntTy, colCount);
- const auto colType =
- astContext.getExtVectorType(astContext.FloatTy, colCount);
- const auto *frexpStructType = spvContext.getHybridStructType(
- {HybridStructType::FieldInfo(colType, "mantissa"),
- HybridStructType::FieldInfo(expType, "exponent")},
- "FrexpStructType");
- llvm::SmallVector<SpirvInstruction *, 4> exponents;
- llvm::SmallVector<SpirvInstruction *, 4> mantissas;
- for (uint32_t i = 0; i < rowCount; ++i) {
- auto *curRow = spvBuilder.createCompositeExtract(colType, argInstr, {i},
- arg->getLocStart());
- auto *frexp = spvBuilder.createGLSLExtInst(
- frexpStructType, GLSLstd450::GLSLstd450FrexpStruct, {curRow}, loc);
- auto *exponentInt =
- spvBuilder.createCompositeExtract(expType, frexp, {1}, loc);
- // Since the SPIR-V instruction returns an int, and the intrinsic HLSL
- // expects a float, an conversion must take place before writing the
- // results.
- auto *exponentFloat = spvBuilder.createUnaryOp(
- spv::Op::OpConvertSToF, colType, exponentInt, loc);
- exponents.push_back(exponentFloat);
- mantissas.push_back(
- spvBuilder.createCompositeExtract(colType, frexp, {0}, loc));
- }
- auto *exponentsResult =
- spvBuilder.createCompositeConstruct(returnType, exponents, loc);
- spvBuilder.createStore(expInstr, exponentsResult, loc);
- return spvBuilder.createCompositeConstruct(returnType, mantissas,
- callExpr->getLocEnd());
- }
- }
- emitError("invalid argument type passed to Frexp intrinsic function",
- callExpr->getExprLoc());
- return nullptr;
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicLdexp(const CallExpr *callExpr) {
- // Signature: ret ldexp(x, exp)
- // This function uses the following formula: x * 2^exp.
- // Note that we cannot use GLSL extended instruction Ldexp since it requires
- // the exponent to be an integer (vector) but HLSL takes an float (vector)
- // exponent. So we must calculate the result manually.
- const Expr *x = callExpr->getArg(0);
- const auto paramType = x->getType();
- auto *xInstr = doExpr(x);
- auto *expInstr = doExpr(callExpr->getArg(1));
- const auto loc = callExpr->getLocStart();
- const auto arg1Loc = callExpr->getArg(1)->getLocStart();
- // For scalar and vector argument types.
- if (isScalarType(paramType) || isVectorType(paramType)) {
- const auto twoExp = spvBuilder.createGLSLExtInst(
- paramType, GLSLstd450::GLSLstd450Exp2, {expInstr}, loc);
- return spvBuilder.createBinaryOp(spv::Op::OpFMul, paramType, xInstr, twoExp,
- loc);
- }
- // For matrix argument types.
- {
- uint32_t rowCount = 0, colCount = 0;
- if (isMxNMatrix(paramType, nullptr, &rowCount, &colCount)) {
- const auto actOnEachVec = [this, loc, expInstr,
- arg1Loc](uint32_t index, QualType vecType,
- SpirvInstruction *xRowInstr) {
- auto *expRowInstr = spvBuilder.createCompositeExtract(vecType, expInstr,
- {index}, arg1Loc);
- auto *twoExp = spvBuilder.createGLSLExtInst(
- vecType, GLSLstd450::GLSLstd450Exp2, {expRowInstr}, loc);
- return spvBuilder.createBinaryOp(spv::Op::OpFMul, vecType, xRowInstr,
- twoExp, loc);
- };
- return processEachVectorInMatrix(x, xInstr, actOnEachVec, loc);
- }
- }
- emitError("invalid argument type passed to ldexp intrinsic function",
- callExpr->getExprLoc());
- return nullptr;
- }
- SpirvInstruction *SpirvEmitter::processIntrinsicDst(const CallExpr *callExpr) {
- // Signature is float4 dst(float4 src0, float4 src1)
- // result.x = 1;
- // result.y = src0.y * src1.y;
- // result.z = src0.z;
- // result.w = src1.w;
- const QualType f32 = astContext.FloatTy;
- auto *arg0Id = doExpr(callExpr->getArg(0));
- auto *arg1Id = doExpr(callExpr->getArg(1));
- auto arg0Loc = callExpr->getArg(0)->getLocStart();
- auto arg1Loc = callExpr->getArg(1)->getLocStart();
- auto *arg0y = spvBuilder.createCompositeExtract(f32, arg0Id, {1}, arg0Loc);
- auto *arg1y = spvBuilder.createCompositeExtract(f32, arg1Id, {1}, arg1Loc);
- auto *arg0z = spvBuilder.createCompositeExtract(f32, arg0Id, {2}, arg0Loc);
- auto *arg1w = spvBuilder.createCompositeExtract(f32, arg1Id, {3}, arg1Loc);
- auto loc = callExpr->getLocEnd();
- auto *arg0yMularg1y =
- spvBuilder.createBinaryOp(spv::Op::OpFMul, f32, arg0y, arg1y, loc);
- return spvBuilder.createCompositeConstruct(
- callExpr->getType(),
- {spvBuilder.getConstantFloat(astContext.FloatTy, llvm::APFloat(1.0f)),
- arg0yMularg1y, arg0z, arg1w},
- loc);
- }
- SpirvInstruction *SpirvEmitter::processIntrinsicClip(const CallExpr *callExpr) {
- // Discards the current pixel if the specified value is less than zero.
- // TODO: If the argument can be const folded and evaluated, we could
- // potentially avoid creating a branch. This would be a bit challenging for
- // matrix/vector arguments.
- assert(callExpr->getNumArgs() == 1u);
- const Expr *arg = callExpr->getArg(0);
- const auto loc = callExpr->getExprLoc();
- const auto argType = arg->getType();
- const auto boolType = astContext.BoolTy;
- SpirvInstruction *condition = nullptr;
- // Could not determine the argument as a constant. We need to branch based on
- // the argument. If the argument is a vector/matrix, clipping is done if *any*
- // element of the vector/matrix is less than zero.
- auto *argInstr = doExpr(arg);
- QualType elemType = {};
- uint32_t elemCount = 0, rowCount = 0, colCount = 0;
- if (isScalarType(argType)) {
- auto *zero = getValueZero(argType);
- condition = spvBuilder.createBinaryOp(spv::Op::OpFOrdLessThan, boolType,
- argInstr, zero, loc);
- } else if (isVectorType(argType, nullptr, &elemCount)) {
- auto *zero = getValueZero(argType);
- const QualType boolVecType =
- astContext.getExtVectorType(boolType, elemCount);
- auto *cmp = spvBuilder.createBinaryOp(spv::Op::OpFOrdLessThan, boolVecType,
- argInstr, zero, loc);
- condition = spvBuilder.createUnaryOp(spv::Op::OpAny, boolType, cmp, loc);
- } else if (isMxNMatrix(argType, &elemType, &rowCount, &colCount)) {
- const auto floatVecType = astContext.getExtVectorType(elemType, colCount);
- auto *elemZero = getValueZero(elemType);
- llvm::SmallVector<SpirvConstant *, 4> elements(size_t(colCount), elemZero);
- auto *zero = spvBuilder.getConstantComposite(floatVecType, elements);
- llvm::SmallVector<SpirvInstruction *, 4> cmpResults;
- for (uint32_t i = 0; i < rowCount; ++i) {
- auto *lhsVec =
- spvBuilder.createCompositeExtract(floatVecType, argInstr, {i}, loc);
- const auto boolColType = astContext.getExtVectorType(boolType, colCount);
- auto *cmp = spvBuilder.createBinaryOp(spv::Op::OpFOrdLessThan,
- boolColType, lhsVec, zero, loc);
- auto *any = spvBuilder.createUnaryOp(spv::Op::OpAny, boolType, cmp, loc);
- cmpResults.push_back(any);
- }
- const auto boolRowType = astContext.getExtVectorType(boolType, rowCount);
- auto *results =
- spvBuilder.createCompositeConstruct(boolRowType, cmpResults, loc);
- condition =
- spvBuilder.createUnaryOp(spv::Op::OpAny, boolType, results, loc);
- } else {
- emitError("invalid argument type passed to clip intrinsic function", loc);
- return nullptr;
- }
- // Then we need to emit the instruction for the conditional branch.
- auto *thenBB = spvBuilder.createBasicBlock("if.true");
- auto *mergeBB = spvBuilder.createBasicBlock("if.merge");
- // Create the branch instruction. This will end the current basic block.
- spvBuilder.createConditionalBranch(condition, thenBB, mergeBB, loc, mergeBB);
- spvBuilder.addSuccessor(thenBB);
- spvBuilder.addSuccessor(mergeBB);
- spvBuilder.setMergeTarget(mergeBB);
- // Handle the then branch
- spvBuilder.setInsertPoint(thenBB);
- spvBuilder.createKill(loc);
- spvBuilder.addSuccessor(mergeBB);
- // From now on, we'll emit instructions into the merge block.
- spvBuilder.setInsertPoint(mergeBB);
- return nullptr;
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicClamp(const CallExpr *callExpr) {
- // According the HLSL reference: clamp(X, Min, Max) takes 3 arguments. Each
- // one may be int, uint, or float.
- const QualType returnType = callExpr->getType();
- GLSLstd450 glslOpcode = GLSLstd450::GLSLstd450UClamp;
- if (isFloatOrVecMatOfFloatType(returnType))
- glslOpcode = GLSLstd450::GLSLstd450FClamp;
- else if (isSintOrVecMatOfSintType(returnType))
- glslOpcode = GLSLstd450::GLSLstd450SClamp;
- // Get the function parameters. Expect 3 parameters.
- assert(callExpr->getNumArgs() == 3u);
- const Expr *argX = callExpr->getArg(0);
- const Expr *argMin = callExpr->getArg(1);
- const Expr *argMax = callExpr->getArg(2);
- const auto loc = callExpr->getExprLoc();
- auto *argXInstr = doExpr(argX);
- auto *argMinInstr = doExpr(argMin);
- auto *argMaxInstr = doExpr(argMax);
- const auto argMinLoc = argMin->getLocStart();
- const auto argMaxLoc = argMax->getLocStart();
- // FClamp, UClamp, and SClamp do not operate on matrices, so we should perform
- // the operation on each vector of the matrix.
- if (isMxNMatrix(argX->getType())) {
- const auto actOnEachVec =
- [this, loc, glslOpcode, argMinInstr, argMaxInstr, argMinLoc, argMaxLoc](
- uint32_t index, QualType vecType, SpirvInstruction *curRow) {
- auto *minRowInstr = spvBuilder.createCompositeExtract(
- vecType, argMinInstr, {index}, argMinLoc);
- auto *maxRowInstr = spvBuilder.createCompositeExtract(
- vecType, argMaxInstr, {index}, argMaxLoc);
- return spvBuilder.createGLSLExtInst(
- vecType, glslOpcode, {curRow, minRowInstr, maxRowInstr}, loc);
- };
- return processEachVectorInMatrix(argX, argXInstr, actOnEachVec, loc);
- }
- return spvBuilder.createGLSLExtInst(
- returnType, glslOpcode, {argXInstr, argMinInstr, argMaxInstr}, loc);
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicMemoryBarrier(const CallExpr *callExpr,
- bool isDevice, bool groupSync,
- bool isAllBarrier) {
- // * DeviceMemoryBarrier =
- // OpMemoryBarrier (memScope=Device,
- // sem=Image|Uniform|AcquireRelease)
- //
- // * DeviceMemoryBarrierWithGroupSync =
- // OpControlBarrier(execScope = Workgroup,
- // memScope=Device,
- // sem=Image|Uniform|AcquireRelease)
- const spv::MemorySemanticsMask deviceMemoryBarrierSema =
- spv::MemorySemanticsMask::ImageMemory |
- spv::MemorySemanticsMask::UniformMemory |
- spv::MemorySemanticsMask::AcquireRelease;
- // * GroupMemoryBarrier =
- // OpMemoryBarrier (memScope=Workgroup,
- // sem = Workgroup|AcquireRelease)
- //
- // * GroupMemoryBarrierWithGroupSync =
- // OpControlBarrier (execScope = Workgroup,
- // memScope = Workgroup,
- // sem = Workgroup|AcquireRelease)
- const spv::MemorySemanticsMask groupMemoryBarrierSema =
- spv::MemorySemanticsMask::WorkgroupMemory |
- spv::MemorySemanticsMask::AcquireRelease;
- // * AllMemoryBarrier =
- // OpMemoryBarrier(memScope = Device,
- // sem = Image|Uniform|Workgroup|AcquireRelease)
- //
- // * AllMemoryBarrierWithGroupSync =
- // OpControlBarrier(execScope = Workgroup,
- // memScope = Device,
- // sem = Image|Uniform|Workgroup|AcquireRelease)
- const spv::MemorySemanticsMask allMemoryBarrierSema =
- spv::MemorySemanticsMask::ImageMemory |
- spv::MemorySemanticsMask::UniformMemory |
- spv::MemorySemanticsMask::WorkgroupMemory |
- spv::MemorySemanticsMask::AcquireRelease;
- // Get <result-id> for execution scope.
- // If present, execution scope is always Workgroup!
- llvm::Optional<spv::Scope> execScope = llvm::None;
- if (groupSync) {
- execScope = spv::Scope::Workgroup;
- }
- // Get <result-id> for memory scope
- const spv::Scope memScope =
- (isDevice || isAllBarrier) ? spv::Scope::Device : spv::Scope::Workgroup;
- // Get <result-id> for memory semantics
- const auto memSemaMask = isAllBarrier ? allMemoryBarrierSema
- : isDevice ? deviceMemoryBarrierSema
- : groupMemoryBarrierSema;
- spvBuilder.createBarrier(memScope, memSemaMask, execScope,
- callExpr->getExprLoc());
- return nullptr;
- }
- SpirvInstruction *SpirvEmitter::processNonFpMatrixTranspose(
- QualType matType, SpirvInstruction *matrix, SourceLocation loc) {
- // Simplest way is to flatten the matrix construct a new matrix from the
- // flattened elements. (for a mat4x4).
- QualType elemType = {};
- uint32_t numRows = 0, numCols = 0;
- const bool isMat = isMxNMatrix(matType, &elemType, &numRows, &numCols);
- assert(isMat && !elemType->isFloatingType());
- (void)isMat;
- const auto colQualType = astContext.getExtVectorType(elemType, numRows);
- // You cannot perform a composite construct of an array using a few vectors.
- // The number of constutients passed to OpCompositeConstruct must be equal to
- // the number of array elements.
- llvm::SmallVector<SpirvInstruction *, 4> elems;
- for (uint32_t i = 0; i < numRows; ++i)
- for (uint32_t j = 0; j < numCols; ++j)
- elems.push_back(
- spvBuilder.createCompositeExtract(elemType, matrix, {i, j}, loc));
- llvm::SmallVector<SpirvInstruction *, 4> cols;
- for (uint32_t i = 0; i < numCols; ++i) {
- // The elements in the ith vector of the "transposed" array are at offset i,
- // i + <original-vector-size>, ...
- llvm::SmallVector<SpirvInstruction *, 4> indexes;
- for (uint32_t j = 0; j < numRows; ++j)
- indexes.push_back(elems[i + (j * numCols)]);
- cols.push_back(
- spvBuilder.createCompositeConstruct(colQualType, indexes, loc));
- }
- auto transposeType = astContext.getConstantArrayType(
- colQualType, llvm::APInt(32, numCols), clang::ArrayType::Normal, 0);
- return spvBuilder.createCompositeConstruct(transposeType, cols, loc);
- }
- SpirvInstruction *SpirvEmitter::processNonFpDot(SpirvInstruction *vec1Id,
- SpirvInstruction *vec2Id,
- uint32_t vecSize,
- QualType elemType,
- SourceLocation loc) {
- llvm::SmallVector<SpirvInstruction *, 4> muls;
- for (uint32_t i = 0; i < vecSize; ++i) {
- auto *elem1 = spvBuilder.createCompositeExtract(elemType, vec1Id, {i}, loc);
- auto *elem2 = spvBuilder.createCompositeExtract(elemType, vec2Id, {i}, loc);
- muls.push_back(spvBuilder.createBinaryOp(translateOp(BO_Mul, elemType),
- elemType, elem1, elem2, loc));
- }
- SpirvInstruction *sum = muls[0];
- for (uint32_t i = 1; i < vecSize; ++i) {
- sum = spvBuilder.createBinaryOp(translateOp(BO_Add, elemType), elemType,
- sum, muls[i], loc);
- }
- return sum;
- }
- SpirvInstruction *SpirvEmitter::processNonFpScalarTimesMatrix(
- QualType scalarType, SpirvInstruction *scalar, QualType matrixType,
- SpirvInstruction *matrix, SourceLocation loc) {
- assert(isScalarType(scalarType));
- QualType elemType = {};
- uint32_t numRows = 0, numCols = 0;
- const bool isMat = isMxNMatrix(matrixType, &elemType, &numRows, &numCols);
- assert(isMat);
- assert(isSameType(astContext, scalarType, elemType));
- (void)isMat;
- // We need to multiply the scalar by each vector of the matrix.
- // The front-end guarantees that the scalar and matrix element type are
- // the same. For example, if the scalar is a float, the matrix is casted
- // to a float matrix before being passed to mul(). It is also guaranteed
- // that types such as bool are casted to float or int before being
- // passed to mul().
- const auto rowType = astContext.getExtVectorType(elemType, numCols);
- llvm::SmallVector<SpirvInstruction *, 4> splat(size_t(numCols), scalar);
- auto *scalarSplat = spvBuilder.createCompositeConstruct(rowType, splat, loc);
- llvm::SmallVector<SpirvInstruction *, 4> mulRows;
- for (uint32_t row = 0; row < numRows; ++row) {
- auto *rowInstr =
- spvBuilder.createCompositeExtract(rowType, matrix, {row}, loc);
- mulRows.push_back(spvBuilder.createBinaryOp(
- translateOp(BO_Mul, scalarType), rowType, rowInstr, scalarSplat, loc));
- }
- return spvBuilder.createCompositeConstruct(matrixType, mulRows, loc);
- }
- SpirvInstruction *SpirvEmitter::processNonFpVectorTimesMatrix(
- QualType vecType, SpirvInstruction *vector, QualType matType,
- SpirvInstruction *matrix, SourceLocation loc,
- SpirvInstruction *matrixTranspose) {
- // This function assumes that the vector element type and matrix elemet type
- // are the same.
- QualType vecElemType = {}, matElemType = {};
- uint32_t vecSize = 0, numRows = 0, numCols = 0;
- const bool isVec = isVectorType(vecType, &vecElemType, &vecSize);
- const bool isMat = isMxNMatrix(matType, &matElemType, &numRows, &numCols);
- assert(isSameType(astContext, vecElemType, matElemType));
- assert(isVec);
- assert(isMat);
- assert(vecSize == numRows);
- (void)isVec;
- (void)isMat;
- // When processing vector times matrix, the vector is a row vector, and it
- // should be multiplied by the matrix *columns*. The most efficient way to
- // handle this in SPIR-V would be to first transpose the matrix, and then use
- // OpAccessChain.
- if (!matrixTranspose)
- matrixTranspose = processNonFpMatrixTranspose(matType, matrix, loc);
- llvm::SmallVector<SpirvInstruction *, 4> resultElems;
- for (uint32_t col = 0; col < numCols; ++col) {
- auto *colInstr =
- spvBuilder.createCompositeExtract(vecType, matrixTranspose, {col}, loc);
- resultElems.push_back(
- processNonFpDot(vector, colInstr, vecSize, vecElemType, loc));
- }
- return spvBuilder.createCompositeConstruct(
- astContext.getExtVectorType(vecElemType, numCols), resultElems, loc);
- }
- SpirvInstruction *SpirvEmitter::processNonFpMatrixTimesVector(
- QualType matType, SpirvInstruction *matrix, QualType vecType,
- SpirvInstruction *vector, SourceLocation loc) {
- // This function assumes that the vector element type and matrix elemet type
- // are the same.
- QualType vecElemType = {}, matElemType = {};
- uint32_t vecSize = 0, numRows = 0, numCols = 0;
- const bool isVec = isVectorType(vecType, &vecElemType, &vecSize);
- const bool isMat = isMxNMatrix(matType, &matElemType, &numRows, &numCols);
- assert(isSameType(astContext, vecElemType, matElemType));
- assert(isVec);
- assert(isMat);
- assert(vecSize == numCols);
- (void)isVec;
- (void)isMat;
- // When processing matrix times vector, the vector is a column vector. So we
- // simply get each row of the matrix and perform a dot product with the
- // vector.
- llvm::SmallVector<SpirvInstruction *, 4> resultElems;
- for (uint32_t row = 0; row < numRows; ++row) {
- auto *rowInstr =
- spvBuilder.createCompositeExtract(vecType, matrix, {row}, loc);
- resultElems.push_back(
- processNonFpDot(rowInstr, vector, vecSize, vecElemType, loc));
- }
- return spvBuilder.createCompositeConstruct(
- astContext.getExtVectorType(vecElemType, numRows), resultElems, loc);
- }
- SpirvInstruction *SpirvEmitter::processNonFpMatrixTimesMatrix(
- QualType lhsType, SpirvInstruction *lhs, QualType rhsType,
- SpirvInstruction *rhs, SourceLocation loc) {
- // This function assumes that the vector element type and matrix elemet type
- // are the same.
- QualType lhsElemType = {}, rhsElemType = {};
- uint32_t lhsNumRows = 0, lhsNumCols = 0;
- uint32_t rhsNumRows = 0, rhsNumCols = 0;
- const bool lhsIsMat =
- isMxNMatrix(lhsType, &lhsElemType, &lhsNumRows, &lhsNumCols);
- const bool rhsIsMat =
- isMxNMatrix(rhsType, &rhsElemType, &rhsNumRows, &rhsNumCols);
- assert(isSameType(astContext, lhsElemType, rhsElemType));
- assert(lhsIsMat && rhsIsMat);
- assert(lhsNumCols == rhsNumRows);
- (void)rhsIsMat;
- (void)lhsIsMat;
- auto *rhsTranspose = processNonFpMatrixTranspose(rhsType, rhs, loc);
- const auto vecType = astContext.getExtVectorType(lhsElemType, lhsNumCols);
- llvm::SmallVector<SpirvInstruction *, 4> resultRows;
- for (uint32_t row = 0; row < lhsNumRows; ++row) {
- auto *rowInstr =
- spvBuilder.createCompositeExtract(vecType, lhs, {row}, loc);
- resultRows.push_back(processNonFpVectorTimesMatrix(
- vecType, rowInstr, rhsType, rhs, loc, rhsTranspose));
- }
- // The resulting matrix will have 'lhsNumRows' rows and 'rhsNumCols' columns.
- const auto resultColType =
- astContext.getExtVectorType(lhsElemType, rhsNumCols);
- const auto resultType = astContext.getConstantArrayType(
- resultColType, llvm::APInt(32, lhsNumRows), clang::ArrayType::Normal, 0);
- return spvBuilder.createCompositeConstruct(resultType, resultRows, loc);
- }
- SpirvInstruction *SpirvEmitter::processIntrinsicMul(const CallExpr *callExpr) {
- const QualType returnType = callExpr->getType();
- // Get the function parameters. Expect 2 parameters.
- assert(callExpr->getNumArgs() == 2u);
- const Expr *arg0 = callExpr->getArg(0);
- const Expr *arg1 = callExpr->getArg(1);
- const QualType arg0Type = arg0->getType();
- const QualType arg1Type = arg1->getType();
- auto loc = callExpr->getExprLoc();
- // The HLSL mul() function takes 2 arguments. Each argument may be a scalar,
- // vector, or matrix. The frontend ensures that the two arguments have the
- // same component type. The only allowed component types are int and float.
- // mul(scalar, vector)
- {
- uint32_t elemCount = 0;
- if (isScalarType(arg0Type) && isVectorType(arg1Type, nullptr, &elemCount)) {
- auto *arg1Id = doExpr(arg1);
- // We can use OpVectorTimesScalar if arguments are floats.
- if (arg0Type->isFloatingType())
- return spvBuilder.createBinaryOp(spv::Op::OpVectorTimesScalar,
- returnType, arg1Id, doExpr(arg0), loc);
- // Use OpIMul for integers
- return spvBuilder.createBinaryOp(spv::Op::OpIMul, returnType,
- createVectorSplat(arg0, elemCount),
- arg1Id, loc);
- }
- }
- // mul(vector, scalar)
- {
- uint32_t elemCount = 0;
- if (isVectorType(arg0Type, nullptr, &elemCount) && isScalarType(arg1Type)) {
- auto *arg0Id = doExpr(arg0);
- // We can use OpVectorTimesScalar if arguments are floats.
- if (arg1Type->isFloatingType())
- return spvBuilder.createBinaryOp(spv::Op::OpVectorTimesScalar,
- returnType, arg0Id, doExpr(arg1), loc);
- // Use OpIMul for integers
- return spvBuilder.createBinaryOp(spv::Op::OpIMul, returnType, arg0Id,
- createVectorSplat(arg1, elemCount), loc);
- }
- }
- // mul(vector, vector)
- if (isVectorType(arg0Type) && isVectorType(arg1Type))
- return processIntrinsicDot(callExpr);
- // All the following cases require handling arg0 and arg1 expressions first.
- auto *arg0Id = doExpr(arg0);
- auto *arg1Id = doExpr(arg1);
- // mul(scalar, scalar)
- if (isScalarType(arg0Type) && isScalarType(arg1Type))
- return spvBuilder.createBinaryOp(translateOp(BO_Mul, arg0Type), returnType,
- arg0Id, arg1Id, loc);
- // mul(scalar, matrix)
- {
- QualType elemType = {};
- if (isScalarType(arg0Type) && isMxNMatrix(arg1Type, &elemType)) {
- // OpMatrixTimesScalar can only be used if *both* the matrix element type
- // and the scalar type are float.
- if (arg0Type->isFloatingType() && elemType->isFloatingType())
- return spvBuilder.createBinaryOp(spv::Op::OpMatrixTimesScalar,
- returnType, arg1Id, arg0Id, loc);
- else
- return processNonFpScalarTimesMatrix(arg0Type, arg0Id, arg1Type, arg1Id,
- callExpr->getExprLoc());
- }
- }
- // mul(matrix, scalar)
- {
- QualType elemType = {};
- if (isScalarType(arg1Type) && isMxNMatrix(arg0Type, &elemType)) {
- // OpMatrixTimesScalar can only be used if *both* the matrix element type
- // and the scalar type are float.
- if (arg1Type->isFloatingType() && elemType->isFloatingType())
- return spvBuilder.createBinaryOp(spv::Op::OpMatrixTimesScalar,
- returnType, arg0Id, arg1Id, loc);
- else
- return processNonFpScalarTimesMatrix(arg1Type, arg1Id, arg0Type, arg0Id,
- callExpr->getExprLoc());
- }
- }
- // mul(vector, matrix)
- {
- QualType vecElemType = {}, matElemType = {};
- uint32_t elemCount = 0, numRows = 0;
- if (isVectorType(arg0Type, &vecElemType, &elemCount) &&
- isMxNMatrix(arg1Type, &matElemType, &numRows)) {
- assert(elemCount == numRows);
- if (vecElemType->isFloatingType() && matElemType->isFloatingType())
- return spvBuilder.createBinaryOp(spv::Op::OpMatrixTimesVector,
- returnType, arg1Id, arg0Id, loc);
- else
- return processNonFpVectorTimesMatrix(arg0Type, arg0Id, arg1Type, arg1Id,
- callExpr->getExprLoc());
- }
- }
- // mul(matrix, vector)
- {
- QualType vecElemType = {}, matElemType = {};
- uint32_t elemCount = 0, numCols = 0;
- if (isMxNMatrix(arg0Type, &matElemType, nullptr, &numCols) &&
- isVectorType(arg1Type, &vecElemType, &elemCount)) {
- assert(elemCount == numCols);
- if (vecElemType->isFloatingType() && matElemType->isFloatingType())
- return spvBuilder.createBinaryOp(spv::Op::OpVectorTimesMatrix,
- returnType, arg1Id, arg0Id, loc);
- else
- return processNonFpMatrixTimesVector(arg0Type, arg0Id, arg1Type, arg1Id,
- callExpr->getExprLoc());
- }
- }
- // mul(matrix, matrix)
- {
- // The front-end ensures that the two matrix element types match.
- QualType elemType = {};
- uint32_t lhsCols = 0, rhsRows = 0;
- if (isMxNMatrix(arg0Type, &elemType, nullptr, &lhsCols) &&
- isMxNMatrix(arg1Type, nullptr, &rhsRows, nullptr)) {
- assert(lhsCols == rhsRows);
- if (elemType->isFloatingType())
- return spvBuilder.createBinaryOp(spv::Op::OpMatrixTimesMatrix,
- returnType, arg1Id, arg0Id, loc);
- else
- return processNonFpMatrixTimesMatrix(arg0Type, arg0Id, arg1Type, arg1Id,
- callExpr->getExprLoc());
- }
- }
- emitError("invalid argument type passed to mul intrinsic function",
- callExpr->getExprLoc());
- return nullptr;
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicPrintf(const CallExpr *callExpr) {
- // C99, s6.5.2.2/6: "If the expression that denotes the called function has a
- // type that does not include a prototype, the integer promotions are
- // performed on each argument, and arguments that have type float are promoted
- // to double. These are called the default argument promotions."
- // C++: All the variadic parameters undergo default promotions before they're
- // received by the function.
- //
- // Therefore by default floating point arguments will be evaluated as double
- // by this function.
- //
- // TODO: We may want to change this behavior for SPIR-V.
- const auto returnType = callExpr->getType();
- const auto numArgs = callExpr->getNumArgs();
- const auto loc = callExpr->getExprLoc();
- assert(numArgs >= 1u);
- llvm::SmallVector<SpirvInstruction *, 4> args;
- for (uint32_t argIndex = 0; argIndex < numArgs; ++argIndex)
- args.push_back(doExpr(callExpr->getArg(argIndex)));
- return spvBuilder.createNonSemanticDebugPrintfExtInst(
- returnType, NonSemanticDebugPrintfDebugPrintf, args, loc);
- }
- SpirvInstruction *SpirvEmitter::processIntrinsicDot(const CallExpr *callExpr) {
- const QualType returnType = callExpr->getType();
- // Get the function parameters. Expect 2 vectors as parameters.
- assert(callExpr->getNumArgs() == 2u);
- const Expr *arg0 = callExpr->getArg(0);
- const Expr *arg1 = callExpr->getArg(1);
- auto *arg0Id = doExpr(arg0);
- auto *arg1Id = doExpr(arg1);
- QualType arg0Type = arg0->getType();
- QualType arg1Type = arg1->getType();
- const size_t vec0Size = hlsl::GetHLSLVecSize(arg0Type);
- const size_t vec1Size = hlsl::GetHLSLVecSize(arg1Type);
- const QualType vec0ComponentType = hlsl::GetHLSLVecElementType(arg0Type);
- const QualType vec1ComponentType = hlsl::GetHLSLVecElementType(arg1Type);
- assert(returnType == vec1ComponentType);
- assert(vec0ComponentType == vec1ComponentType);
- assert(vec0Size == vec1Size);
- assert(vec0Size >= 1 && vec0Size <= 4);
- (void)vec0ComponentType;
- (void)vec1ComponentType;
- (void)vec1Size;
- auto loc = callExpr->getLocStart();
- // According to HLSL reference, the dot function only works on integers
- // and floats.
- assert(returnType->isFloatingType() || returnType->isIntegerType());
- // Special case: dot product of two vectors, each of size 1. That is
- // basically the same as regular multiplication of 2 scalars.
- if (vec0Size == 1) {
- const spv::Op spvOp = translateOp(BO_Mul, arg0Type);
- return spvBuilder.createBinaryOp(spvOp, returnType, arg0Id, arg1Id, loc);
- }
- // If the vectors are of type Float, we can use OpDot.
- if (returnType->isFloatingType()) {
- return spvBuilder.createBinaryOp(spv::Op::OpDot, returnType, arg0Id, arg1Id,
- loc);
- }
- // Vector component type is Integer (signed or unsigned).
- // Create all instructions necessary to perform a dot product on
- // two integer vectors. SPIR-V OpDot does not support integer vectors.
- // Therefore, we use other SPIR-V instructions (addition and
- // multiplication).
- else {
- SpirvInstruction *result = nullptr;
- llvm::SmallVector<SpirvInstruction *, 4> multIds;
- const spv::Op multSpvOp = translateOp(BO_Mul, arg0Type);
- const spv::Op addSpvOp = translateOp(BO_Add, arg0Type);
- // Extract members from the two vectors and multiply them.
- for (unsigned int i = 0; i < vec0Size; ++i) {
- auto *vec0member = spvBuilder.createCompositeExtract(
- returnType, arg0Id, {i}, arg0->getLocStart());
- auto *vec1member = spvBuilder.createCompositeExtract(
- returnType, arg1Id, {i}, arg1->getLocStart());
- auto *multId = spvBuilder.createBinaryOp(multSpvOp, returnType,
- vec0member, vec1member, loc);
- multIds.push_back(multId);
- }
- // Add all the multiplications.
- result = multIds[0];
- for (unsigned int i = 1; i < vec0Size; ++i) {
- auto *additionId = spvBuilder.createBinaryOp(addSpvOp, returnType, result,
- multIds[i], loc);
- result = additionId;
- }
- return result;
- }
- }
- SpirvInstruction *SpirvEmitter::processIntrinsicRcp(const CallExpr *callExpr) {
- // 'rcp' takes only 1 argument that is a scalar, vector, or matrix of type
- // float or double.
- assert(callExpr->getNumArgs() == 1u);
- const QualType returnType = callExpr->getType();
- const Expr *arg = callExpr->getArg(0);
- auto *argId = doExpr(arg);
- const QualType argType = arg->getType();
- auto loc = callExpr->getLocStart();
- // For cases with matrix argument.
- QualType elemType = {};
- uint32_t numRows = 0, numCols = 0;
- if (isMxNMatrix(argType, &elemType, &numRows, &numCols)) {
- auto *vecOne = getVecValueOne(elemType, numCols);
- const auto actOnEachVec = [this, vecOne, loc](uint32_t /*index*/,
- QualType vecType,
- SpirvInstruction *curRow) {
- return spvBuilder.createBinaryOp(spv::Op::OpFDiv, vecType, vecOne, curRow,
- loc);
- };
- return processEachVectorInMatrix(arg, argId, actOnEachVec, loc);
- }
- // For cases with scalar or vector arguments.
- return spvBuilder.createBinaryOp(spv::Op::OpFDiv, returnType,
- getValueOne(argType), argId, loc);
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicAllOrAny(const CallExpr *callExpr,
- spv::Op spvOp) {
- // 'all' and 'any' take only 1 parameter.
- assert(callExpr->getNumArgs() == 1u);
- const QualType returnType = callExpr->getType();
- const Expr *arg = callExpr->getArg(0);
- const QualType argType = arg->getType();
- const auto loc = callExpr->getExprLoc();
- // Handle scalars, vectors of size 1, and 1x1 matrices as arguments.
- // Optimization: can directly cast them to boolean. No need for OpAny/OpAll.
- {
- QualType scalarType = {};
- if (isScalarType(argType, &scalarType) &&
- (scalarType->isBooleanType() || scalarType->isFloatingType() ||
- scalarType->isIntegerType()))
- return castToBool(doExpr(arg), argType, returnType, loc);
- }
- // Handle vectors larger than 1, Mx1 matrices, and 1xN matrices as arguments.
- // Cast the vector to a boolean vector, then run OpAny/OpAll on it.
- {
- QualType elemType = {};
- uint32_t size = 0;
- if (isVectorType(argType, &elemType, &size)) {
- const QualType castToBoolType =
- astContext.getExtVectorType(returnType, size);
- auto *castedToBool =
- castToBool(doExpr(arg), argType, castToBoolType, loc);
- return spvBuilder.createUnaryOp(spvOp, returnType, castedToBool, loc);
- }
- }
- // Handle MxN matrices as arguments.
- {
- QualType elemType = {};
- uint32_t matRowCount = 0, matColCount = 0;
- if (isMxNMatrix(argType, &elemType, &matRowCount, &matColCount)) {
- auto *matrix = doExpr(arg);
- const QualType vecType = getComponentVectorType(astContext, argType);
- llvm::SmallVector<SpirvInstruction *, 4> rowResults;
- for (uint32_t i = 0; i < matRowCount; ++i) {
- // Extract the row which is a float vector of size matColCount.
- auto *rowFloatVec = spvBuilder.createCompositeExtract(
- vecType, matrix, {i}, arg->getLocStart());
- // Cast the float vector to boolean vector.
- const auto rowFloatQualType =
- astContext.getExtVectorType(elemType, matColCount);
- const auto rowBoolQualType =
- astContext.getExtVectorType(returnType, matColCount);
- auto *rowBoolVec = castToBool(rowFloatVec, rowFloatQualType,
- rowBoolQualType, arg->getLocStart());
- // Perform OpAny/OpAll on the boolean vector.
- rowResults.push_back(
- spvBuilder.createUnaryOp(spvOp, returnType, rowBoolVec, loc));
- }
- // Create a new vector that is the concatenation of results of all rows.
- const QualType vecOfBools =
- astContext.getExtVectorType(astContext.BoolTy, matRowCount);
- auto *row =
- spvBuilder.createCompositeConstruct(vecOfBools, rowResults, loc);
- // Run OpAny/OpAll on the newly-created vector.
- return spvBuilder.createUnaryOp(spvOp, returnType, row, loc);
- }
- }
- // All types should be handled already.
- llvm_unreachable("Unknown argument type passed to all()/any().");
- return nullptr;
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicAsType(const CallExpr *callExpr) {
- // This function handles 'asint', 'asuint', 'asfloat', and 'asdouble'.
- // Method 1: ret asint(arg)
- // arg component type = {float, uint}
- // arg template type = {scalar, vector, matrix}
- // ret template type = same as arg template type.
- // ret component type = int
- // Method 2: ret asuint(arg)
- // arg component type = {float, int}
- // arg template type = {scalar, vector, matrix}
- // ret template type = same as arg template type.
- // ret component type = uint
- // Method 3: ret asfloat(arg)
- // arg component type = {float, uint, int}
- // arg template type = {scalar, vector, matrix}
- // ret template type = same as arg template type.
- // ret component type = float
- // Method 4: double asdouble(uint lowbits, uint highbits)
- // Method 5: double2 asdouble(uint2 lowbits, uint2 highbits)
- // Method 6:
- // void asuint(
- // in double value,
- // out uint lowbits,
- // out uint highbits
- // );
- const QualType returnType = callExpr->getType();
- const uint32_t numArgs = callExpr->getNumArgs();
- const Expr *arg0 = callExpr->getArg(0);
- const QualType argType = arg0->getType();
- const auto loc = callExpr->getExprLoc();
- // Method 3 return type may be the same as arg type, so it would be a no-op.
- if (isSameType(astContext, returnType, argType))
- return doExpr(arg0);
- switch (numArgs) {
- case 1: {
- // Handling Method 1, 2, and 3.
- auto *argInstr = doExpr(arg0);
- QualType fromElemType = {};
- uint32_t numRows = 0, numCols = 0;
- // For non-matrix arguments (scalar or vector), just do an OpBitCast.
- if (!isMxNMatrix(argType, &fromElemType, &numRows, &numCols)) {
- return spvBuilder.createUnaryOp(spv::Op::OpBitcast, returnType, argInstr,
- loc);
- }
- // Input or output type is a matrix.
- const QualType toElemType = hlsl::GetHLSLMatElementType(returnType);
- llvm::SmallVector<SpirvInstruction *, 4> castedRows;
- const auto fromVecType = astContext.getExtVectorType(fromElemType, numCols);
- const auto toVecType = astContext.getExtVectorType(toElemType, numCols);
- for (uint32_t row = 0; row < numRows; ++row) {
- auto *rowInstr = spvBuilder.createCompositeExtract(
- fromVecType, argInstr, {row}, arg0->getLocStart());
- castedRows.push_back(spvBuilder.createUnaryOp(spv::Op::OpBitcast,
- toVecType, rowInstr, loc));
- }
- return spvBuilder.createCompositeConstruct(returnType, castedRows, loc);
- }
- case 2: {
- auto *lowbits = doExpr(arg0);
- auto *highbits = doExpr(callExpr->getArg(1));
- const auto uintType = astContext.UnsignedIntTy;
- const auto doubleType = astContext.DoubleTy;
- // Handling Method 4
- if (argType->isUnsignedIntegerType()) {
- const auto uintVec2Type = astContext.getExtVectorType(uintType, 2);
- auto *operand = spvBuilder.createCompositeConstruct(
- uintVec2Type, {lowbits, highbits}, loc);
- return spvBuilder.createUnaryOp(spv::Op::OpBitcast, doubleType, operand,
- loc);
- }
- // Handling Method 5
- else {
- const auto uintVec4Type = astContext.getExtVectorType(uintType, 4);
- const auto doubleVec2Type = astContext.getExtVectorType(doubleType, 2);
- auto *operand = spvBuilder.createVectorShuffle(
- uintVec4Type, lowbits, highbits, {0, 2, 1, 3}, loc);
- return spvBuilder.createUnaryOp(spv::Op::OpBitcast, doubleVec2Type,
- operand, loc);
- }
- }
- case 3: {
- // Handling Method 6.
- auto *value = doExpr(arg0);
- auto *lowbits = doExpr(callExpr->getArg(1));
- auto *highbits = doExpr(callExpr->getArg(2));
- const auto uintType = astContext.UnsignedIntTy;
- const auto uintVec2Type = astContext.getExtVectorType(uintType, 2);
- auto *vecResult =
- spvBuilder.createUnaryOp(spv::Op::OpBitcast, uintVec2Type, value, loc);
- spvBuilder.createStore(lowbits,
- spvBuilder.createCompositeExtract(
- uintType, vecResult, {0}, arg0->getLocStart()),
- loc);
- spvBuilder.createStore(highbits,
- spvBuilder.createCompositeExtract(
- uintType, vecResult, {1}, arg0->getLocStart()),
- loc);
- return nullptr;
- }
- default:
- emitError("unrecognized signature for %0 intrinsic function", loc)
- << callExpr->getDirectCallee()->getName();
- return nullptr;
- }
- }
- SpirvInstruction *
- SpirvEmitter::processD3DCOLORtoUBYTE4(const CallExpr *callExpr) {
- // Should take a float4 and return an int4 by doing:
- // int4 result = input.zyxw * 255.001953;
- // Maximum float precision makes the scaling factor 255.002.
- const auto arg = callExpr->getArg(0);
- auto *argId = doExpr(arg);
- const auto argType = arg->getType();
- auto loc = callExpr->getLocStart();
- auto *swizzle =
- spvBuilder.createVectorShuffle(argType, argId, argId, {2, 1, 0, 3}, loc);
- auto *scaled = spvBuilder.createBinaryOp(
- spv::Op::OpVectorTimesScalar, argType, swizzle,
- spvBuilder.getConstantFloat(astContext.FloatTy, llvm::APFloat(255.002f)),
- loc);
- return castToInt(scaled, arg->getType(), callExpr->getType(), loc);
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicIsFinite(const CallExpr *callExpr) {
- // Since OpIsFinite needs the Kernel capability, translation is instead done
- // using OpIsNan and OpIsInf:
- // isFinite = !(isNan || isInf)
- const auto arg = doExpr(callExpr->getArg(0));
- const auto returnType = callExpr->getType();
- const auto loc = callExpr->getExprLoc();
- const auto isNan =
- spvBuilder.createUnaryOp(spv::Op::OpIsNan, returnType, arg, loc);
- const auto isInf =
- spvBuilder.createUnaryOp(spv::Op::OpIsInf, returnType, arg, loc);
- const auto isNanOrInf = spvBuilder.createBinaryOp(
- spv::Op::OpLogicalOr, returnType, isNan, isInf, loc);
- return spvBuilder.createUnaryOp(spv::Op::OpLogicalNot, returnType, isNanOrInf,
- loc);
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicSinCos(const CallExpr *callExpr) {
- // Since there is no sincos equivalent in SPIR-V, we need to perform Sin
- // once and Cos once. We can reuse existing Sine/Cosine handling functions.
- CallExpr *sincosExpr =
- new (astContext) CallExpr(astContext, Stmt::StmtClass::NoStmtClass, {});
- sincosExpr->setType(callExpr->getArg(0)->getType());
- sincosExpr->setNumArgs(astContext, 1);
- sincosExpr->setArg(0, const_cast<Expr *>(callExpr->getArg(0)));
- const auto srcLoc = callExpr->getExprLoc();
- // Perform Sin and store results in argument 1.
- auto *sin =
- processIntrinsicUsingGLSLInst(sincosExpr, GLSLstd450::GLSLstd450Sin,
- /*actPerRowForMatrices*/ true, srcLoc);
- spvBuilder.createStore(doExpr(callExpr->getArg(1)), sin, srcLoc);
- // Perform Cos and store results in argument 2.
- auto *cos =
- processIntrinsicUsingGLSLInst(sincosExpr, GLSLstd450::GLSLstd450Cos,
- /*actPerRowForMatrices*/ true, srcLoc);
- spvBuilder.createStore(doExpr(callExpr->getArg(2)), cos, srcLoc);
- return nullptr;
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicSaturate(const CallExpr *callExpr) {
- const auto *arg = callExpr->getArg(0);
- const auto loc = callExpr->getExprLoc();
- auto *argId = doExpr(arg);
- const auto argType = arg->getType();
- const QualType returnType = callExpr->getType();
- QualType elemType = {};
- uint32_t vecSize = 0;
- if (isScalarType(argType, &elemType)) {
- auto *floatZero = getValueZero(elemType);
- auto *floatOne = getValueOne(elemType);
- return spvBuilder.createGLSLExtInst(returnType,
- GLSLstd450::GLSLstd450FClamp,
- {argId, floatZero, floatOne}, loc);
- }
- if (isVectorType(argType, &elemType, &vecSize)) {
- auto *vecZero = getVecValueZero(elemType, vecSize);
- auto *vecOne = getVecValueOne(elemType, vecSize);
- return spvBuilder.createGLSLExtInst(returnType,
- GLSLstd450::GLSLstd450FClamp,
- {argId, vecZero, vecOne}, loc);
- }
- uint32_t numRows = 0, numCols = 0;
- if (isMxNMatrix(argType, &elemType, &numRows, &numCols)) {
- auto *vecZero = getVecValueZero(elemType, numCols);
- auto *vecOne = getVecValueOne(elemType, numCols);
- const auto actOnEachVec = [this, loc, vecZero,
- vecOne](uint32_t /*index*/, QualType vecType,
- SpirvInstruction *curRow) {
- return spvBuilder.createGLSLExtInst(vecType, GLSLstd450::GLSLstd450FClamp,
- {curRow, vecZero, vecOne}, loc);
- };
- return processEachVectorInMatrix(arg, argId, actOnEachVec, loc);
- }
- emitError("invalid argument type passed to saturate intrinsic function",
- callExpr->getExprLoc());
- return nullptr;
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicFloatSign(const CallExpr *callExpr) {
- // Import the GLSL.std.450 extended instruction set.
- const Expr *arg = callExpr->getArg(0);
- const auto loc = callExpr->getExprLoc();
- const QualType returnType = callExpr->getType();
- const QualType argType = arg->getType();
- assert(isFloatOrVecMatOfFloatType(argType));
- auto *argId = doExpr(arg);
- SpirvInstruction *floatSign = nullptr;
- // For matrices, we can perform the instruction on each vector of the matrix.
- if (isMxNMatrix(argType)) {
- const auto actOnEachVec = [this, loc](uint32_t /*index*/, QualType vecType,
- SpirvInstruction *curRow) {
- return spvBuilder.createGLSLExtInst(vecType, GLSLstd450::GLSLstd450FSign,
- {curRow}, loc);
- };
- floatSign = processEachVectorInMatrix(arg, argId, actOnEachVec, loc);
- } else {
- floatSign = spvBuilder.createGLSLExtInst(
- argType, GLSLstd450::GLSLstd450FSign, {argId}, loc);
- }
- return castToInt(floatSign, arg->getType(), returnType, arg->getLocStart());
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicF16ToF32(const CallExpr *callExpr) {
- // f16tof32() takes in (vector of) uint and returns (vector of) float.
- // The frontend should guarantee that by inserting implicit casts.
- const QualType f32Type = astContext.FloatTy;
- const QualType u32Type = astContext.UnsignedIntTy;
- const QualType v2f32Type = astContext.getExtVectorType(f32Type, 2);
- const auto loc = callExpr->getExprLoc();
- const auto *arg = callExpr->getArg(0);
- auto *argId = doExpr(arg);
- uint32_t elemCount = {};
- if (isVectorType(arg->getType(), nullptr, &elemCount)) {
- // The input is a vector. We need to handle each element separately.
- llvm::SmallVector<SpirvInstruction *, 4> elements;
- for (uint32_t i = 0; i < elemCount; ++i) {
- auto *srcElem = spvBuilder.createCompositeExtract(u32Type, argId, {i},
- arg->getLocStart());
- auto *convert = spvBuilder.createGLSLExtInst(
- v2f32Type, GLSLstd450::GLSLstd450UnpackHalf2x16, srcElem, loc);
- elements.push_back(
- spvBuilder.createCompositeExtract(f32Type, convert, {0}, loc));
- }
- return spvBuilder.createCompositeConstruct(
- astContext.getExtVectorType(f32Type, elemCount), elements, loc);
- }
- auto *convert = spvBuilder.createGLSLExtInst(
- v2f32Type, GLSLstd450::GLSLstd450UnpackHalf2x16, argId, loc);
- // f16tof32() converts the float16 stored in the low-half of the uint to
- // a float. So just need to return the first component.
- return spvBuilder.createCompositeExtract(f32Type, convert, {0}, loc);
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicF32ToF16(const CallExpr *callExpr) {
- // f32tof16() takes in (vector of) float and returns (vector of) uint.
- // The frontend should guarantee that by inserting implicit casts.
- const QualType f32Type = astContext.FloatTy;
- const QualType u32Type = astContext.UnsignedIntTy;
- const QualType v2f32Type = astContext.getExtVectorType(f32Type, 2);
- auto *zero = spvBuilder.getConstantFloat(f32Type, llvm::APFloat(0.0f));
- const auto loc = callExpr->getExprLoc();
- const auto *arg = callExpr->getArg(0);
- auto *argId = doExpr(arg);
- uint32_t elemCount = {};
- if (isVectorType(arg->getType(), nullptr, &elemCount)) {
- // The input is a vector. We need to handle each element separately.
- llvm::SmallVector<SpirvInstruction *, 4> elements;
- for (uint32_t i = 0; i < elemCount; ++i) {
- auto *srcElem = spvBuilder.createCompositeExtract(f32Type, argId, {i},
- arg->getLocStart());
- auto *srcVec =
- spvBuilder.createCompositeConstruct(v2f32Type, {srcElem, zero}, loc);
- elements.push_back(spvBuilder.createGLSLExtInst(
- u32Type, GLSLstd450::GLSLstd450PackHalf2x16, srcVec, loc));
- }
- return spvBuilder.createCompositeConstruct(
- astContext.getExtVectorType(u32Type, elemCount), elements, loc);
- }
- // f16tof32() stores the float into the low-half of the uint. So we need
- // to supply another zero to take the other half.
- auto *srcVec =
- spvBuilder.createCompositeConstruct(v2f32Type, {argId, zero}, loc);
- return spvBuilder.createGLSLExtInst(
- u32Type, GLSLstd450::GLSLstd450PackHalf2x16, srcVec, loc);
- }
- SpirvInstruction *SpirvEmitter::processIntrinsicUsingSpirvInst(
- const CallExpr *callExpr, spv::Op opcode, bool actPerRowForMatrices) {
- // Certain opcodes are only allowed in pixel shader
- if (!spvContext.isPS())
- switch (opcode) {
- case spv::Op::OpDPdx:
- case spv::Op::OpDPdy:
- case spv::Op::OpDPdxFine:
- case spv::Op::OpDPdyFine:
- case spv::Op::OpDPdxCoarse:
- case spv::Op::OpDPdyCoarse:
- case spv::Op::OpFwidth:
- case spv::Op::OpFwidthFine:
- case spv::Op::OpFwidthCoarse:
- needsLegalization = true;
- break;
- default:
- // Only the given opcodes need legalization. Anything else should preserve
- // previous.
- break;
- }
- const auto loc = callExpr->getExprLoc();
- const QualType returnType = callExpr->getType();
- if (callExpr->getNumArgs() == 1u) {
- const Expr *arg = callExpr->getArg(0);
- auto *argId = doExpr(arg);
- // If the instruction does not operate on matrices, we can perform the
- // instruction on each vector of the matrix.
- if (actPerRowForMatrices && isMxNMatrix(arg->getType())) {
- const auto actOnEachVec = [this, opcode, loc](uint32_t /*index*/,
- QualType vecType,
- SpirvInstruction *curRow) {
- return spvBuilder.createUnaryOp(opcode, vecType, curRow, loc);
- };
- return processEachVectorInMatrix(arg, argId, actOnEachVec, loc);
- }
- return spvBuilder.createUnaryOp(opcode, returnType, argId, loc);
- } else if (callExpr->getNumArgs() == 2u) {
- const Expr *arg0 = callExpr->getArg(0);
- auto *arg0Id = doExpr(arg0);
- auto *arg1Id = doExpr(callExpr->getArg(1));
- const auto arg1Loc = callExpr->getArg(1)->getLocStart();
- // If the instruction does not operate on matrices, we can perform the
- // instruction on each vector of the matrix.
- if (actPerRowForMatrices && isMxNMatrix(arg0->getType())) {
- const auto actOnEachVec = [this, opcode, arg1Id, loc,
- arg1Loc](uint32_t index, QualType vecType,
- SpirvInstruction *arg0Row) {
- auto *arg1Row = spvBuilder.createCompositeExtract(vecType, arg1Id,
- {index}, arg1Loc);
- return spvBuilder.createBinaryOp(opcode, vecType, arg0Row, arg1Row,
- loc);
- };
- return processEachVectorInMatrix(arg0, arg0Id, actOnEachVec, loc);
- }
- return spvBuilder.createBinaryOp(opcode, returnType, arg0Id, arg1Id, loc);
- }
- emitError("unsupported %0 intrinsic function", loc)
- << cast<DeclRefExpr>(callExpr->getCallee())->getNameInfo().getAsString();
- return nullptr;
- }
- SpirvInstruction *SpirvEmitter::processIntrinsicUsingGLSLInst(
- const CallExpr *callExpr, GLSLstd450 opcode, bool actPerRowForMatrices,
- SourceLocation loc) {
- // Import the GLSL.std.450 extended instruction set.
- const QualType returnType = callExpr->getType();
- if (callExpr->getNumArgs() == 1u) {
- const Expr *arg = callExpr->getArg(0);
- auto *argInstr = doExpr(arg);
- // If the instruction does not operate on matrices, we can perform the
- // instruction on each vector of the matrix.
- if (actPerRowForMatrices && isMxNMatrix(arg->getType())) {
- const auto actOnEachVec = [this, loc,
- opcode](uint32_t /*index*/, QualType vecType,
- SpirvInstruction *curRowInstr) {
- return spvBuilder.createGLSLExtInst(vecType, opcode, {curRowInstr},
- loc);
- };
- return processEachVectorInMatrix(arg, argInstr, actOnEachVec, loc);
- }
- return spvBuilder.createGLSLExtInst(returnType, opcode, {argInstr}, loc);
- } else if (callExpr->getNumArgs() == 2u) {
- const Expr *arg0 = callExpr->getArg(0);
- auto *arg0Instr = doExpr(arg0);
- auto *arg1Instr = doExpr(callExpr->getArg(1));
- const auto arg1Loc = callExpr->getArg(1)->getLocStart();
- // If the instruction does not operate on matrices, we can perform the
- // instruction on each vector of the matrix.
- if (actPerRowForMatrices && isMxNMatrix(arg0->getType())) {
- const auto actOnEachVec = [this, loc, opcode, arg1Instr,
- arg1Loc](uint32_t index, QualType vecType,
- SpirvInstruction *arg0RowInstr) {
- auto *arg1RowInstr = spvBuilder.createCompositeExtract(
- vecType, arg1Instr, {index}, arg1Loc);
- return spvBuilder.createGLSLExtInst(vecType, opcode,
- {arg0RowInstr, arg1RowInstr}, loc);
- };
- return processEachVectorInMatrix(arg0, arg0Instr, actOnEachVec, loc);
- }
- return spvBuilder.createGLSLExtInst(returnType, opcode,
- {arg0Instr, arg1Instr}, loc);
- } else if (callExpr->getNumArgs() == 3u) {
- const Expr *arg0 = callExpr->getArg(0);
- auto *arg0Instr = doExpr(arg0);
- auto *arg1Instr = doExpr(callExpr->getArg(1));
- auto *arg2Instr = doExpr(callExpr->getArg(2));
- auto arg1Loc = callExpr->getArg(1)->getLocStart();
- auto arg2Loc = callExpr->getArg(2)->getLocStart();
- // If the instruction does not operate on matrices, we can perform the
- // instruction on each vector of the matrix.
- if (actPerRowForMatrices && isMxNMatrix(arg0->getType())) {
- const auto actOnEachVec = [this, loc, opcode, arg1Instr, arg2Instr,
- arg1Loc,
- arg2Loc](uint32_t index, QualType vecType,
- SpirvInstruction *arg0RowInstr) {
- auto *arg1RowInstr = spvBuilder.createCompositeExtract(
- vecType, arg1Instr, {index}, arg1Loc);
- auto *arg2RowInstr = spvBuilder.createCompositeExtract(
- vecType, arg2Instr, {index}, arg2Loc);
- return spvBuilder.createGLSLExtInst(
- vecType, opcode, {arg0RowInstr, arg1RowInstr, arg2RowInstr}, loc);
- };
- return processEachVectorInMatrix(arg0, arg0Instr, actOnEachVec, loc);
- }
- return spvBuilder.createGLSLExtInst(returnType, opcode,
- {arg0Instr, arg1Instr, arg2Instr}, loc);
- }
- emitError("unsupported %0 intrinsic function", callExpr->getExprLoc())
- << cast<DeclRefExpr>(callExpr->getCallee())->getNameInfo().getAsString();
- return nullptr;
- }
- SpirvInstruction *
- SpirvEmitter::processIntrinsicLog10(const CallExpr *callExpr) {
- // Since there is no log10 instruction in SPIR-V, we can use:
- // log10(x) = log2(x) * ( 1 / log2(10) )
- // 1 / log2(10) = 0.30103
- auto loc = callExpr->getExprLoc();
- auto *scale =
- spvBuilder.getConstantFloat(astContext.FloatTy, llvm::APFloat(0.30103f));
- auto *log2 = processIntrinsicUsingGLSLInst(
- callExpr, GLSLstd450::GLSLstd450Log2, true, loc);
- const auto returnType = callExpr->getType();
- spv::Op scaleOp = isScalarType(returnType)
- ? spv::Op::OpFMul
- : isVectorType(returnType)
- ? spv::Op::OpVectorTimesScalar
- : spv::Op::OpMatrixTimesScalar;
- return spvBuilder.createBinaryOp(scaleOp, returnType, log2, scale, loc);
- }
- SpirvInstruction *SpirvEmitter::processRayBuiltins(const CallExpr *callExpr,
- hlsl::IntrinsicOp op) {
- spv::BuiltIn builtin = spv::BuiltIn::Max;
- bool transposeMatrix = false;
- const auto loc = callExpr->getExprLoc();
- switch (op) {
- case hlsl::IntrinsicOp::IOP_DispatchRaysDimensions:
- builtin = spv::BuiltIn::LaunchSizeNV;
- break;
- case hlsl::IntrinsicOp::IOP_DispatchRaysIndex:
- builtin = spv::BuiltIn::LaunchIdNV;
- break;
- case hlsl::IntrinsicOp::IOP_RayTCurrent:
- builtin = spv::BuiltIn::HitTNV;
- break;
- case hlsl::IntrinsicOp::IOP_RayTMin:
- builtin = spv::BuiltIn::RayTminNV;
- break;
- case hlsl::IntrinsicOp::IOP_HitKind:
- builtin = spv::BuiltIn::HitKindNV;
- break;
- case hlsl::IntrinsicOp::IOP_WorldRayDirection:
- builtin = spv::BuiltIn::WorldRayDirectionNV;
- break;
- case hlsl::IntrinsicOp::IOP_WorldRayOrigin:
- builtin = spv::BuiltIn::WorldRayOriginNV;
- break;
- case hlsl::IntrinsicOp::IOP_ObjectRayDirection:
- builtin = spv::BuiltIn::ObjectRayDirectionNV;
- break;
- case hlsl::IntrinsicOp::IOP_ObjectRayOrigin:
- builtin = spv::BuiltIn::ObjectRayOriginNV;
- break;
- case hlsl::IntrinsicOp::IOP_GeometryIndex:
- featureManager.requestExtension(Extension::KHR_ray_tracing,
- "GeometryIndex()", loc);
- builtin = spv::BuiltIn::RayGeometryIndexKHR;
- break;
- case hlsl::IntrinsicOp::IOP_InstanceIndex:
- builtin = spv::BuiltIn::InstanceId;
- break;
- case hlsl::IntrinsicOp::IOP_PrimitiveIndex:
- builtin = spv::BuiltIn::PrimitiveId;
- break;
- case hlsl::IntrinsicOp::IOP_InstanceID:
- builtin = spv::BuiltIn::InstanceCustomIndexNV;
- break;
- case hlsl::IntrinsicOp::IOP_RayFlags:
- builtin = spv::BuiltIn::IncomingRayFlagsNV;
- break;
- case hlsl::IntrinsicOp::IOP_ObjectToWorld3x4:
- transposeMatrix = true;
- case hlsl::IntrinsicOp::IOP_ObjectToWorld4x3:
- builtin = spv::BuiltIn::ObjectToWorldNV;
- break;
- case hlsl::IntrinsicOp::IOP_WorldToObject3x4:
- transposeMatrix = true;
- case hlsl::IntrinsicOp::IOP_WorldToObject4x3:
- builtin = spv::BuiltIn::WorldToObjectNV;
- break;
- default:
- emitError("ray intrinsic function unimplemented", loc);
- return nullptr;
- }
- QualType builtinType = callExpr->getType();
- if (transposeMatrix) {
- // DXR defines ObjectToWorld3x4, WorldToObject3x4 as transposed matrices.
- // SPIR-V has only non tranposed variant defined as a builtin
- // So perform read of original non transposed builtin and perform transpose.
- assert(hlsl::IsHLSLMatType(builtinType) && "Builtin should be matrix");
- const clang::Type *type = builtinType.getCanonicalType().getTypePtr();
- const RecordType *RT = cast<RecordType>(type);
- const ClassTemplateSpecializationDecl *templateSpecDecl =
- cast<ClassTemplateSpecializationDecl>(RT->getDecl());
- ClassTemplateDecl *templateDecl =
- templateSpecDecl->getSpecializedTemplate();
- builtinType = getHLSLMatrixType(astContext, theCompilerInstance.getSema(),
- templateDecl, astContext.FloatTy, 4, 3);
- }
- SpirvInstruction *retVal =
- declIdMapper.getBuiltinVar(builtin, builtinType, loc);
- retVal = spvBuilder.createLoad(builtinType, retVal, loc);
- if (transposeMatrix)
- retVal = spvBuilder.createUnaryOp(spv::Op::OpTranspose, callExpr->getType(),
- retVal, loc);
- return retVal;
- }
- SpirvInstruction *SpirvEmitter::processReportHit(const CallExpr *callExpr) {
- SpirvInstruction *hitAttributeStageVar = nullptr;
- const VarDecl *hitAttributeArg = nullptr;
- QualType hitAttributeType;
- const auto args = callExpr->getArgs();
- if (callExpr->getNumArgs() != 3) {
- emitError("invalid number of arguments to ReportHit",
- callExpr->getExprLoc());
- }
- // HLSL Function :
- // template<typename hitAttr>
- // ReportHit(in float, in uint, in hitAttr)
- if (const auto *implCastExpr = dyn_cast<CastExpr>(callExpr->getArg(2))) {
- if (const auto *arg = dyn_cast<DeclRefExpr>(implCastExpr->getSubExpr())) {
- if (const auto *varDecl = dyn_cast<VarDecl>(arg->getDecl())) {
- hitAttributeType = varDecl->getType();
- hitAttributeArg = varDecl;
- // Check if same type of hit attribute stage variable was already
- // created, if so re-use
- const auto iter = hitAttributeMap.find(hitAttributeType);
- if (iter == hitAttributeMap.end()) {
- hitAttributeStageVar = declIdMapper.createRayTracingNVStageVar(
- spv::StorageClass::HitAttributeNV, varDecl);
- hitAttributeMap[hitAttributeType] = hitAttributeStageVar;
- } else {
- hitAttributeStageVar = iter->second;
- }
- }
- }
- }
- assert(hitAttributeStageVar && hitAttributeArg);
- // Copy argument to stage variable
- const auto hitAttributeArgInst =
- declIdMapper.getDeclEvalInfo(hitAttributeArg, callExpr->getExprLoc());
- auto tempLoad =
- spvBuilder.createLoad(hitAttributeArg->getType(), hitAttributeArgInst,
- hitAttributeArg->getLocStart());
- spvBuilder.createStore(hitAttributeStageVar, tempLoad,
- callExpr->getExprLoc());
- // SPIR-V Instruction :
- // bool OpReportIntersection(<id> float Hit, <id> uint HitKind)
- llvm::SmallVector<SpirvInstruction *, 4> reportHitArgs;
- reportHitArgs.push_back(doExpr(args[0])); // Hit
- reportHitArgs.push_back(doExpr(args[1])); // HitKind
- return spvBuilder.createRayTracingOpsNV(spv::Op::OpReportIntersectionNV,
- astContext.BoolTy, reportHitArgs,
- callExpr->getExprLoc());
- }
- void SpirvEmitter::processCallShader(const CallExpr *callExpr) {
- SpirvInstruction *callDataLocInst = nullptr;
- SpirvInstruction *callDataStageVar = nullptr;
- const VarDecl *callDataArg = nullptr;
- QualType callDataType;
- const auto args = callExpr->getArgs();
- if (callExpr->getNumArgs() != 2) {
- emitError("invalid number of arguments to CallShader",
- callExpr->getExprLoc());
- }
- // HLSL Func :
- // template<typename CallData>
- // void CallShader(in int sbtIndex, inout CallData arg)
- if (const auto *implCastExpr = dyn_cast<CastExpr>(args[1])) {
- if (const auto *arg = dyn_cast<DeclRefExpr>(implCastExpr->getSubExpr())) {
- if (const auto *varDecl = dyn_cast<VarDecl>(arg->getDecl())) {
- callDataType = varDecl->getType();
- callDataArg = varDecl;
- // Check if same type of callable data stage variable was already
- // created, if so re-use
- const auto callDataPair = callDataMap.find(callDataType);
- if (callDataPair == callDataMap.end()) {
- int numCallDataVars = callDataMap.size();
- callDataStageVar = declIdMapper.createRayTracingNVStageVar(
- spv::StorageClass::CallableDataNV, varDecl);
- // Decorate unique location id for each created stage var
- spvBuilder.decorateLocation(callDataStageVar, numCallDataVars);
- callDataLocInst = spvBuilder.getConstantInt(
- astContext.UnsignedIntTy, llvm::APInt(32, numCallDataVars));
- callDataMap[callDataType] =
- std::make_pair(callDataStageVar, callDataLocInst);
- } else {
- callDataStageVar = callDataPair->second.first;
- callDataLocInst = callDataPair->second.second;
- }
- }
- }
- }
- assert(callDataStageVar && callDataArg);
- // Copy argument to stage variable
- const auto callDataArgInst =
- declIdMapper.getDeclEvalInfo(callDataArg, callExpr->getExprLoc());
- auto tempLoad = spvBuilder.createLoad(callDataArg->getType(), callDataArgInst,
- callDataArg->getLocStart());
- spvBuilder.createStore(callDataStageVar, tempLoad, callExpr->getExprLoc());
- // SPIR-V Instruction
- // void OpExecuteCallable(<id> int SBT Index, <id> uint Callable Data Location
- // Id)
- llvm::SmallVector<SpirvInstruction *, 2> callShaderArgs;
- callShaderArgs.push_back(doExpr(args[0]));
- callShaderArgs.push_back(callDataLocInst);
- spvBuilder.createRayTracingOpsNV(spv::Op::OpExecuteCallableNV, QualType(),
- callShaderArgs, callExpr->getExprLoc());
- // Copy data back to argument
- tempLoad = spvBuilder.createLoad(callDataArg->getType(), callDataStageVar,
- callDataArg->getLocStart());
- spvBuilder.createStore(callDataArgInst, tempLoad, callExpr->getExprLoc());
- return;
- }
- void SpirvEmitter::processTraceRay(const CallExpr *callExpr) {
- SpirvInstruction *rayPayloadLocInst = nullptr;
- SpirvInstruction *rayPayloadStageVar = nullptr;
- const VarDecl *rayPayloadArg = nullptr;
- QualType rayPayloadType;
- const auto args = callExpr->getArgs();
- if (callExpr->getNumArgs() != 8) {
- emitError("invalid number of arguments to TraceRay",
- callExpr->getExprLoc());
- }
- // HLSL Func
- // template<typename RayPayload>
- // void TraceRay(RaytracingAccelerationStructure rs,
- // uint rayflags,
- // uint InstanceInclusionMask
- // uint RayContributionToHitGroupIndex,
- // uint MultiplierForGeometryContributionToHitGroupIndex,
- // uint MissShaderIndex,
- // RayDesc ray,
- // inout RayPayload p)
- // where RayDesc = {float3 origin, float tMin, float3 direction, float tMax}
- if (const auto *implCastExpr = dyn_cast<CastExpr>(args[7])) {
- if (const auto *arg = dyn_cast<DeclRefExpr>(implCastExpr->getSubExpr())) {
- if (const auto *varDecl = dyn_cast<VarDecl>(arg->getDecl())) {
- rayPayloadType = varDecl->getType();
- rayPayloadArg = varDecl;
- const auto rayPayloadPair = rayPayloadMap.find(rayPayloadType);
- // Check if same type of rayPayload stage variable was already
- // created, if so re-use
- if (rayPayloadPair == rayPayloadMap.end()) {
- int numPayloadVars = rayPayloadMap.size();
- rayPayloadStageVar = declIdMapper.createRayTracingNVStageVar(
- spv::StorageClass::RayPayloadNV, varDecl);
- // Decorate unique location id for each created stage var
- spvBuilder.decorateLocation(rayPayloadStageVar, numPayloadVars);
- rayPayloadLocInst = spvBuilder.getConstantInt(
- astContext.UnsignedIntTy, llvm::APInt(32, numPayloadVars));
- rayPayloadMap[rayPayloadType] =
- std::make_pair(rayPayloadStageVar, rayPayloadLocInst);
- } else {
- rayPayloadStageVar = rayPayloadPair->second.first;
- rayPayloadLocInst = rayPayloadPair->second.second;
- }
- }
- }
- }
- assert(rayPayloadStageVar && rayPayloadArg);
- const auto floatType = astContext.FloatTy;
- const auto vecType = astContext.getExtVectorType(astContext.FloatTy, 3);
- // Extract the ray description to match SPIR-V
- SpirvInstruction *rayDescArg = doExpr(args[6]);
- const auto loc = args[6]->getLocStart();
- const auto origin =
- spvBuilder.createCompositeExtract(vecType, rayDescArg, {0}, loc);
- const auto tMin =
- spvBuilder.createCompositeExtract(floatType, rayDescArg, {1}, loc);
- const auto direction =
- spvBuilder.createCompositeExtract(vecType, rayDescArg, {2}, loc);
- const auto tMax =
- spvBuilder.createCompositeExtract(floatType, rayDescArg, {3}, loc);
- // Copy argument to stage variable
- const auto rayPayloadArgInst =
- declIdMapper.getDeclEvalInfo(rayPayloadArg, rayPayloadArg->getLocStart());
- auto tempLoad =
- spvBuilder.createLoad(rayPayloadArg->getType(), rayPayloadArgInst,
- rayPayloadArg->getLocStart());
- spvBuilder.createStore(rayPayloadStageVar, tempLoad, callExpr->getExprLoc());
- // SPIR-V Instruction
- // void OpTraceNV ( <id> AccelerationStructureNV acStruct,
- // <id> uint Ray Flags,
- // <id> uint Cull Mask,
- // <id> uint SBT Offset,
- // <id> uint SBT Stride,
- // <id> uint Miss Index,
- // <id> vec4 Ray Origin,
- // <id> float Ray Tmin,
- // <id> vec3 Ray Direction,
- // <id> float Ray Tmax,
- // <id> uint RayPayload number)
- llvm::SmallVector<SpirvInstruction *, 8> traceArgs;
- for (int ii = 0; ii < 6; ii++) {
- traceArgs.push_back(doExpr(args[ii]));
- }
- traceArgs.push_back(origin);
- traceArgs.push_back(tMin);
- traceArgs.push_back(direction);
- traceArgs.push_back(tMax);
- traceArgs.push_back(rayPayloadLocInst);
- spvBuilder.createRayTracingOpsNV(spv::Op::OpTraceNV, QualType(), traceArgs,
- callExpr->getExprLoc());
- // Copy arguments back to stage variable
- tempLoad = spvBuilder.createLoad(rayPayloadArg->getType(), rayPayloadStageVar,
- rayPayloadArg->getLocStart());
- spvBuilder.createStore(rayPayloadArgInst, tempLoad, callExpr->getExprLoc());
- return;
- }
- void SpirvEmitter::processDispatchMesh(const CallExpr *callExpr) {
- // HLSL Func - void DispatchMesh(uint ThreadGroupCountX,
- // uint ThreadGroupCountY,
- // uint ThreadGroupCountZ,
- // groupshared <structType> MeshPayload);
- assert(callExpr->getNumArgs() == 4);
- const auto args = callExpr->getArgs();
- const auto loc = callExpr->getExprLoc();
- // 1) create a barrier GroupMemoryBarrierWithGroupSync().
- processIntrinsicMemoryBarrier(callExpr,
- /*isDevice*/ false,
- /*groupSync*/ true,
- /*isAllBarrier*/ false);
- // 2) set TaskCountNV = threadX * threadY * threadZ.
- auto *threadX = doExpr(args[0]);
- auto *threadY = doExpr(args[1]);
- auto *threadZ = doExpr(args[2]);
- auto *var = declIdMapper.getBuiltinVar(spv::BuiltIn::TaskCountNV,
- astContext.UnsignedIntTy, loc);
- auto *taskCount = spvBuilder.createBinaryOp(
- spv::Op::OpIMul, astContext.UnsignedIntTy, threadX,
- spvBuilder.createBinaryOp(spv::Op::OpIMul, astContext.UnsignedIntTy,
- threadY, threadZ, loc),
- loc);
- spvBuilder.createStore(var, taskCount, loc);
- // 3) create PerTaskNV out attribute block and store MeshPayload info.
- const auto *sigPoint =
- hlsl::SigPoint::GetSigPoint(hlsl::DXIL::SigPointKind::MSOut);
- spv::StorageClass sc = spv::StorageClass::Output;
- auto *payloadArg = doExpr(args[3]);
- bool isValid = false;
- if (const auto *implCastExpr = dyn_cast<CastExpr>(args[3])) {
- if (const auto *arg = dyn_cast<DeclRefExpr>(implCastExpr->getSubExpr())) {
- if (const auto *paramDecl = dyn_cast<VarDecl>(arg->getDecl())) {
- if (paramDecl->hasAttr<HLSLGroupSharedAttr>()) {
- isValid = declIdMapper.createPayloadStageVars(
- sigPoint, sc, paramDecl, /*asInput=*/false, paramDecl->getType(),
- "out.var", &payloadArg);
- }
- }
- }
- }
- if (!isValid) {
- emitError("expected groupshared object as argument to DispatchMesh()",
- args[3]->getExprLoc());
- }
- }
- void SpirvEmitter::processMeshOutputCounts(const CallExpr *callExpr) {
- // HLSL Func - void SetMeshOutputCounts(uint numVertices, uint numPrimitives);
- assert(callExpr->getNumArgs() == 2);
- const auto args = callExpr->getArgs();
- const auto loc = callExpr->getExprLoc();
- auto *var = declIdMapper.getBuiltinVar(spv::BuiltIn::PrimitiveCountNV,
- astContext.UnsignedIntTy, loc);
- spvBuilder.createStore(var, doExpr(args[1]), loc);
- }
- SpirvConstant *SpirvEmitter::getValueZero(QualType type) {
- {
- QualType scalarType = {};
- if (isScalarType(type, &scalarType)) {
- if (scalarType->isBooleanType()) {
- return spvBuilder.getConstantBool(false);
- }
- if (scalarType->isIntegerType()) {
- return spvBuilder.getConstantInt(scalarType, llvm::APInt(32, 0));
- }
- if (scalarType->isFloatingType()) {
- return spvBuilder.getConstantFloat(scalarType, llvm::APFloat(0.0f));
- }
- }
- }
- {
- QualType elemType = {};
- uint32_t size = {};
- if (isVectorType(type, &elemType, &size)) {
- return getVecValueZero(elemType, size);
- }
- }
- {
- QualType elemType = {};
- uint32_t rowCount = 0, colCount = 0;
- if (isMxNMatrix(type, &elemType, &rowCount, &colCount)) {
- auto *row = getVecValueZero(elemType, colCount);
- llvm::SmallVector<SpirvConstant *, 4> rows((size_t)rowCount, row);
- return spvBuilder.getConstantComposite(type, rows);
- }
- }
- emitError("getting value 0 for type %0 unimplemented", {})
- << type.getAsString();
- return nullptr;
- }
- SpirvConstant *SpirvEmitter::getVecValueZero(QualType elemType, uint32_t size) {
- auto *elemZeroId = getValueZero(elemType);
- if (size == 1)
- return elemZeroId;
- llvm::SmallVector<SpirvConstant *, 4> elements(size_t(size), elemZeroId);
- const QualType vecType = astContext.getExtVectorType(elemType, size);
- return spvBuilder.getConstantComposite(vecType, elements);
- }
- SpirvConstant *SpirvEmitter::getValueOne(QualType type) {
- {
- QualType scalarType = {};
- if (isScalarType(type, &scalarType)) {
- if (scalarType->isBooleanType()) {
- return spvBuilder.getConstantBool(true);
- }
- if (scalarType->isIntegerType()) {
- return spvBuilder.getConstantInt(scalarType, llvm::APInt(32, 1));
- }
- if (scalarType->isFloatingType()) {
- return spvBuilder.getConstantFloat(scalarType, llvm::APFloat(1.0f));
- }
- }
- }
- {
- QualType elemType = {};
- uint32_t size = {};
- if (isVectorType(type, &elemType, &size)) {
- return getVecValueOne(elemType, size);
- }
- }
- emitError("getting value 1 for type %0 unimplemented", {}) << type;
- return 0;
- }
- SpirvConstant *SpirvEmitter::getVecValueOne(QualType elemType, uint32_t size) {
- auto *elemOne = getValueOne(elemType);
- if (size == 1)
- return elemOne;
- llvm::SmallVector<SpirvConstant *, 4> elements(size_t(size), elemOne);
- const QualType vecType = astContext.getExtVectorType(elemType, size);
- return spvBuilder.getConstantComposite(vecType, elements);
- }
- SpirvConstant *SpirvEmitter::getMatElemValueOne(QualType type) {
- assert(hlsl::IsHLSLMatType(type));
- const auto elemType = hlsl::GetHLSLMatElementType(type);
- uint32_t rowCount = 0, colCount = 0;
- hlsl::GetHLSLMatRowColCount(type, rowCount, colCount);
- if (rowCount == 1 && colCount == 1)
- return getValueOne(elemType);
- if (colCount == 1)
- return getVecValueOne(elemType, rowCount);
- return getVecValueOne(elemType, colCount);
- }
- SpirvConstant *SpirvEmitter::getMaskForBitwidthValue(QualType type) {
- QualType elemType = {};
- uint32_t count = 1;
- if (isScalarType(type, &elemType) || isVectorType(type, &elemType, &count)) {
- const auto bitwidth = getElementSpirvBitwidth(
- astContext, elemType, spirvOptions.enable16BitTypes);
- SpirvConstant *mask = spvBuilder.getConstantInt(
- elemType,
- llvm::APInt(bitwidth, bitwidth - 1, elemType->isSignedIntegerType()));
- if (count == 1)
- return mask;
- const QualType resultType = astContext.getExtVectorType(elemType, count);
- llvm::SmallVector<SpirvConstant *, 4> elements(size_t(count), mask);
- return spvBuilder.getConstantComposite(resultType, elements);
- }
- assert(false && "this method only supports scalars and vectors");
- return nullptr;
- }
- SpirvConstant *SpirvEmitter::translateAPValue(const APValue &value,
- const QualType targetType) {
- SpirvConstant *result = nullptr;
- if (targetType->isBooleanType()) {
- result = spvBuilder.getConstantBool(value.getInt().getBoolValue(),
- isSpecConstantMode);
- } else if (targetType->isIntegerType()) {
- result = translateAPInt(value.getInt(), targetType);
- } else if (targetType->isFloatingType()) {
- result = translateAPFloat(value.getFloat(), targetType);
- } else if (hlsl::IsHLSLVecType(targetType)) {
- const QualType elemType = hlsl::GetHLSLVecElementType(targetType);
- const auto numElements = value.getVectorLength();
- // Special case for vectors of size 1. SPIR-V doesn't support this vector
- // size so we need to translate it to scalar values.
- if (numElements == 1) {
- result = translateAPValue(value.getVectorElt(0), elemType);
- } else {
- llvm::SmallVector<SpirvConstant *, 4> elements;
- for (uint32_t i = 0; i < numElements; ++i) {
- elements.push_back(translateAPValue(value.getVectorElt(i), elemType));
- }
- result = spvBuilder.getConstantComposite(targetType, elements);
- }
- }
- if (result)
- return result;
- emitError("APValue of type %0 unimplemented", {}) << value.getKind();
- value.dump();
- return 0;
- }
- SpirvConstant *SpirvEmitter::translateAPInt(const llvm::APInt &intValue,
- QualType targetType) {
- return spvBuilder.getConstantInt(targetType, intValue, isSpecConstantMode);
- }
- bool SpirvEmitter::isLiteralLargerThan32Bits(const Expr *expr) {
- if (const auto *intLiteral = dyn_cast<IntegerLiteral>(expr)) {
- const bool isSigned = expr->getType()->isSignedIntegerType();
- const llvm::APInt &value = intLiteral->getValue();
- return (isSigned && !value.isSignedIntN(32)) ||
- (!isSigned && !value.isIntN(32));
- }
- if (const auto *floatLiteral = dyn_cast<FloatingLiteral>(expr)) {
- llvm::APFloat value = floatLiteral->getValue();
- const auto &semantics = value.getSemantics();
- // regular 'half' and 'float' can be represented in 32 bits.
- if (&semantics == &llvm::APFloat::IEEEsingle ||
- &semantics == &llvm::APFloat::IEEEhalf)
- return true;
- // See if 'double' value can be represented in 32 bits without losing info.
- bool losesInfo = false;
- const auto convertStatus =
- value.convert(llvm::APFloat::IEEEsingle,
- llvm::APFloat::rmNearestTiesToEven, &losesInfo);
- if (convertStatus != llvm::APFloat::opOK &&
- convertStatus != llvm::APFloat::opInexact)
- return true;
- }
- return false;
- }
- SpirvConstant *SpirvEmitter::tryToEvaluateAsInt32(const llvm::APInt &intValue,
- bool isSigned) {
- if (isSigned && intValue.isSignedIntN(32)) {
- return spvBuilder.getConstantInt(astContext.IntTy, intValue);
- }
- if (!isSigned && intValue.isIntN(32)) {
- return spvBuilder.getConstantInt(astContext.UnsignedIntTy, intValue);
- }
- // Couldn't evaluate as a 32-bit int without losing information.
- return nullptr;
- }
- SpirvConstant *
- SpirvEmitter::tryToEvaluateAsFloat32(const llvm::APFloat &floatValue) {
- const auto &semantics = floatValue.getSemantics();
- // If the given value is already a 32-bit float, there is no need to convert.
- if (&semantics == &llvm::APFloat::IEEEsingle) {
- return spvBuilder.getConstantFloat(astContext.FloatTy, floatValue,
- isSpecConstantMode);
- }
- // Try to see if this literal float can be represented in 32-bit.
- // Since the convert function below may modify the fp value, we call it on a
- // temporary copy.
- llvm::APFloat eval = floatValue;
- bool losesInfo = false;
- const auto convertStatus =
- eval.convert(llvm::APFloat::IEEEsingle,
- llvm::APFloat::rmNearestTiesToEven, &losesInfo);
- if (convertStatus == llvm::APFloat::opOK && !losesInfo)
- return spvBuilder.getConstantFloat(astContext.FloatTy,
- llvm::APFloat(eval.convertToFloat()));
- // Couldn't evaluate as a 32-bit float without losing information.
- return nullptr;
- }
- SpirvConstant *SpirvEmitter::translateAPFloat(llvm::APFloat floatValue,
- QualType targetType) {
- return spvBuilder.getConstantFloat(targetType, floatValue,
- isSpecConstantMode);
- }
- SpirvConstant *SpirvEmitter::tryToEvaluateAsConst(const Expr *expr) {
- Expr::EvalResult evalResult;
- if (expr->EvaluateAsRValue(evalResult, astContext) &&
- !evalResult.HasSideEffects) {
- return translateAPValue(evalResult.Val, expr->getType());
- }
- return nullptr;
- }
- hlsl::ShaderModel::Kind SpirvEmitter::getShaderModelKind(StringRef stageName) {
- hlsl::ShaderModel::Kind smk;
- switch (stageName[0]) {
- case 'c':
- switch (stageName[1]) {
- case 'o':
- smk = hlsl::ShaderModel::Kind::Compute;
- break;
- case 'l':
- smk = hlsl::ShaderModel::Kind::ClosestHit;
- break;
- case 'a':
- smk = hlsl::ShaderModel::Kind::Callable;
- break;
- default:
- smk = hlsl::ShaderModel::Kind::Invalid;
- break;
- }
- break;
- case 'v':
- smk = hlsl::ShaderModel::Kind::Vertex;
- break;
- case 'h':
- smk = hlsl::ShaderModel::Kind::Hull;
- break;
- case 'd':
- smk = hlsl::ShaderModel::Kind::Domain;
- break;
- case 'g':
- smk = hlsl::ShaderModel::Kind::Geometry;
- break;
- case 'p':
- smk = hlsl::ShaderModel::Kind::Pixel;
- break;
- case 'r':
- smk = hlsl::ShaderModel::Kind::RayGeneration;
- break;
- case 'i':
- smk = hlsl::ShaderModel::Kind::Intersection;
- break;
- case 'a':
- switch (stageName[1]) {
- case 'm':
- smk = hlsl::ShaderModel::Kind::Amplification;
- break;
- case 'n':
- smk = hlsl::ShaderModel::Kind::AnyHit;
- break;
- }
- break;
- case 'm':
- switch (stageName[1]) {
- case 'e':
- smk = hlsl::ShaderModel::Kind::Mesh;
- break;
- case 'i':
- smk = hlsl::ShaderModel::Kind::Miss;
- break;
- }
- break;
- default:
- smk = hlsl::ShaderModel::Kind::Invalid;
- break;
- }
- if (smk == hlsl::ShaderModel::Kind::Invalid) {
- llvm_unreachable("unknown stage name");
- }
- return smk;
- }
- spv::ExecutionModel
- SpirvEmitter::getSpirvShaderStage(hlsl::ShaderModel::Kind smk) {
- switch (smk) {
- case hlsl::ShaderModel::Kind::Vertex:
- return spv::ExecutionModel::Vertex;
- case hlsl::ShaderModel::Kind::Hull:
- return spv::ExecutionModel::TessellationControl;
- case hlsl::ShaderModel::Kind::Domain:
- return spv::ExecutionModel::TessellationEvaluation;
- case hlsl::ShaderModel::Kind::Geometry:
- return spv::ExecutionModel::Geometry;
- case hlsl::ShaderModel::Kind::Pixel:
- return spv::ExecutionModel::Fragment;
- case hlsl::ShaderModel::Kind::Compute:
- return spv::ExecutionModel::GLCompute;
- case hlsl::ShaderModel::Kind::RayGeneration:
- return spv::ExecutionModel::RayGenerationNV;
- case hlsl::ShaderModel::Kind::Intersection:
- return spv::ExecutionModel::IntersectionNV;
- case hlsl::ShaderModel::Kind::AnyHit:
- return spv::ExecutionModel::AnyHitNV;
- case hlsl::ShaderModel::Kind::ClosestHit:
- return spv::ExecutionModel::ClosestHitNV;
- case hlsl::ShaderModel::Kind::Miss:
- return spv::ExecutionModel::MissNV;
- case hlsl::ShaderModel::Kind::Callable:
- return spv::ExecutionModel::CallableNV;
- case hlsl::ShaderModel::Kind::Mesh:
- return spv::ExecutionModel::MeshNV;
- case hlsl::ShaderModel::Kind::Amplification:
- return spv::ExecutionModel::TaskNV;
- default:
- llvm_unreachable("invalid shader model kind");
- break;
- }
- }
- bool SpirvEmitter::processGeometryShaderAttributes(const FunctionDecl *decl,
- uint32_t *arraySize) {
- bool success = true;
- assert(spvContext.isGS());
- if (auto *vcAttr = decl->getAttr<HLSLMaxVertexCountAttr>()) {
- spvBuilder.addExecutionMode(
- entryFunction, spv::ExecutionMode::OutputVertices,
- {static_cast<uint32_t>(vcAttr->getCount())}, decl->getLocation());
- }
- uint32_t invocations = 1;
- if (auto *instanceAttr = decl->getAttr<HLSLInstanceAttr>()) {
- invocations = static_cast<uint32_t>(instanceAttr->getCount());
- }
- spvBuilder.addExecutionMode(entryFunction, spv::ExecutionMode::Invocations,
- {invocations}, decl->getLocation());
- // Only one primitive type is permitted for the geometry shader.
- bool outPoint = false, outLine = false, outTriangle = false, inPoint = false,
- inLine = false, inTriangle = false, inLineAdj = false,
- inTriangleAdj = false;
- for (const auto *param : decl->params()) {
- // Add an execution mode based on the output stream type. Do not an
- // execution mode more than once.
- if (param->hasAttr<HLSLInOutAttr>()) {
- const auto paramType = param->getType();
- if (hlsl::IsHLSLTriangleStreamType(paramType) && !outTriangle) {
- spvBuilder.addExecutionMode(entryFunction,
- spv::ExecutionMode::OutputTriangleStrip, {},
- param->getLocation());
- outTriangle = true;
- } else if (hlsl::IsHLSLLineStreamType(paramType) && !outLine) {
- spvBuilder.addExecutionMode(entryFunction,
- spv::ExecutionMode::OutputLineStrip, {},
- param->getLocation());
- outLine = true;
- } else if (hlsl::IsHLSLPointStreamType(paramType) && !outPoint) {
- spvBuilder.addExecutionMode(entryFunction,
- spv::ExecutionMode::OutputPoints, {},
- param->getLocation());
- outPoint = true;
- }
- // An output stream parameter will not have the input primitive type
- // attributes, so we can continue to the next parameter.
- continue;
- }
- // Add an execution mode based on the input primitive type. Do not add an
- // execution mode more than once.
- if (param->hasAttr<HLSLPointAttr>() && !inPoint) {
- spvBuilder.addExecutionMode(entryFunction,
- spv::ExecutionMode::InputPoints, {},
- param->getLocation());
- *arraySize = 1;
- inPoint = true;
- } else if (param->hasAttr<HLSLLineAttr>() && !inLine) {
- spvBuilder.addExecutionMode(entryFunction, spv::ExecutionMode::InputLines,
- {}, param->getLocation());
- *arraySize = 2;
- inLine = true;
- } else if (param->hasAttr<HLSLTriangleAttr>() && !inTriangle) {
- spvBuilder.addExecutionMode(entryFunction, spv::ExecutionMode::Triangles,
- {}, param->getLocation());
- *arraySize = 3;
- inTriangle = true;
- } else if (param->hasAttr<HLSLLineAdjAttr>() && !inLineAdj) {
- spvBuilder.addExecutionMode(entryFunction,
- spv::ExecutionMode::InputLinesAdjacency, {},
- param->getLocation());
- *arraySize = 4;
- inLineAdj = true;
- } else if (param->hasAttr<HLSLTriangleAdjAttr>() && !inTriangleAdj) {
- spvBuilder.addExecutionMode(entryFunction,
- spv::ExecutionMode::InputTrianglesAdjacency,
- {}, param->getLocation());
- *arraySize = 6;
- inTriangleAdj = true;
- }
- }
- if (inPoint + inLine + inLineAdj + inTriangle + inTriangleAdj > 1) {
- emitError("only one input primitive type can be specified in the geometry "
- "shader",
- {});
- success = false;
- }
- if (outPoint + outTriangle + outLine > 1) {
- emitError("only one output primitive type can be specified in the geometry "
- "shader",
- {});
- success = false;
- }
- return success;
- }
- void SpirvEmitter::processPixelShaderAttributes(const FunctionDecl *decl) {
- spvBuilder.addExecutionMode(entryFunction,
- spv::ExecutionMode::OriginUpperLeft, {},
- decl->getLocation());
- if (decl->getAttr<HLSLEarlyDepthStencilAttr>()) {
- spvBuilder.addExecutionMode(entryFunction,
- spv::ExecutionMode::EarlyFragmentTests, {},
- decl->getLocation());
- }
- if (decl->getAttr<VKPostDepthCoverageAttr>()) {
- spvBuilder.addExecutionMode(entryFunction,
- spv::ExecutionMode::PostDepthCoverage, {},
- decl->getLocation());
- }
- }
- void SpirvEmitter::processComputeShaderAttributes(const FunctionDecl *decl) {
- // If not explicitly specified, x, y, and z should be defaulted to 1.
- uint32_t x = 1, y = 1, z = 1;
- if (auto *numThreadsAttr = decl->getAttr<HLSLNumThreadsAttr>()) {
- x = static_cast<uint32_t>(numThreadsAttr->getX());
- y = static_cast<uint32_t>(numThreadsAttr->getY());
- z = static_cast<uint32_t>(numThreadsAttr->getZ());
- } else {
- emitError("thread group size [numthreads(x,y,z)] is missing from the "
- "entry-point function",
- decl->getLocation());
- return;
- }
- spvBuilder.addExecutionMode(entryFunction, spv::ExecutionMode::LocalSize,
- {x, y, z}, decl->getLocation());
- }
- bool SpirvEmitter::processTessellationShaderAttributes(
- const FunctionDecl *decl, uint32_t *numOutputControlPoints) {
- assert(spvContext.isHS() || spvContext.isDS());
- using namespace spv;
- if (auto *domain = decl->getAttr<HLSLDomainAttr>()) {
- const auto domainType = domain->getDomainType().lower();
- const ExecutionMode hsExecMode =
- llvm::StringSwitch<ExecutionMode>(domainType)
- .Case("tri", ExecutionMode::Triangles)
- .Case("quad", ExecutionMode::Quads)
- .Case("isoline", ExecutionMode::Isolines)
- .Default(ExecutionMode::Max);
- if (hsExecMode == ExecutionMode::Max) {
- emitError("unknown domain type specified for entry function",
- domain->getLocation());
- return false;
- }
- spvBuilder.addExecutionMode(entryFunction, hsExecMode, {},
- decl->getLocation());
- }
- // Early return for domain shaders as domain shaders only takes the 'domain'
- // attribute.
- if (spvContext.isDS())
- return true;
- if (auto *partitioning = decl->getAttr<HLSLPartitioningAttr>()) {
- const auto scheme = partitioning->getScheme().lower();
- if (scheme == "pow2") {
- emitError("pow2 partitioning scheme is not supported since there is no "
- "equivalent in Vulkan",
- partitioning->getLocation());
- return false;
- }
- const ExecutionMode hsExecMode =
- llvm::StringSwitch<ExecutionMode>(scheme)
- .Case("fractional_even", ExecutionMode::SpacingFractionalEven)
- .Case("fractional_odd", ExecutionMode::SpacingFractionalOdd)
- .Case("integer", ExecutionMode::SpacingEqual)
- .Default(ExecutionMode::Max);
- if (hsExecMode == ExecutionMode::Max) {
- emitError("unknown partitioning scheme in hull shader",
- partitioning->getLocation());
- return false;
- }
- spvBuilder.addExecutionMode(entryFunction, hsExecMode, {},
- decl->getLocation());
- }
- if (auto *outputTopology = decl->getAttr<HLSLOutputTopologyAttr>()) {
- const auto topology = outputTopology->getTopology().lower();
- const ExecutionMode hsExecMode =
- llvm::StringSwitch<ExecutionMode>(topology)
- .Case("point", ExecutionMode::PointMode)
- .Case("triangle_cw", ExecutionMode::VertexOrderCw)
- .Case("triangle_ccw", ExecutionMode::VertexOrderCcw)
- .Default(ExecutionMode::Max);
- // TODO: There is no SPIR-V equivalent for "line" topology. Is it the
- // default?
- if (topology != "line") {
- if (hsExecMode != spv::ExecutionMode::Max) {
- spvBuilder.addExecutionMode(entryFunction, hsExecMode, {},
- decl->getLocation());
- } else {
- emitError("unknown output topology in hull shader",
- outputTopology->getLocation());
- return false;
- }
- }
- }
- if (auto *controlPoints = decl->getAttr<HLSLOutputControlPointsAttr>()) {
- *numOutputControlPoints = controlPoints->getCount();
- spvBuilder.addExecutionMode(entryFunction,
- spv::ExecutionMode::OutputVertices,
- {*numOutputControlPoints}, decl->getLocation());
- }
- if (auto *pcf = decl->getAttr<HLSLPatchConstantFuncAttr>()) {
- llvm::StringRef pcf_name = pcf->getFunctionName();
- for (auto *decl : astContext.getTranslationUnitDecl()->decls())
- if (auto *funcDecl = dyn_cast<FunctionDecl>(decl))
- if (astContext.IsPatchConstantFunctionDecl(funcDecl) &&
- funcDecl->getName() == pcf_name)
- patchConstFunc = funcDecl;
- }
- return true;
- }
- bool SpirvEmitter::emitEntryFunctionWrapperForRayTracing(
- const FunctionDecl *decl, SpirvFunction *entryFuncInstr) {
- // The entry basic block.
- auto *entryLabel = spvBuilder.createBasicBlock();
- spvBuilder.setInsertPoint(entryLabel);
- // Initialize all global variables at the beginning of the wrapper
- for (const VarDecl *varDecl : toInitGloalVars) {
- const auto varInfo =
- declIdMapper.getDeclEvalInfo(varDecl, varDecl->getLocation());
- if (const auto *init = varDecl->getInit()) {
- storeValue(varInfo, loadIfGLValue(init), varDecl->getType(),
- init->getLocStart());
- // Update counter variable associated with global variables
- tryToAssignCounterVar(varDecl, init);
- }
- // If not explicitly initialized, initialize with their zero values if not
- // resource objects
- else if (!hlsl::IsHLSLResourceType(varDecl->getType())) {
- auto *nullValue = spvBuilder.getConstantNull(varDecl->getType());
- spvBuilder.createStore(varInfo, nullValue, varDecl->getLocation());
- }
- }
- // Create temporary variables for holding function call arguments
- llvm::SmallVector<SpirvInstruction *, 4> params;
- llvm::SmallVector<QualType, 4> paramTypes;
- llvm::SmallVector<SpirvInstruction *, 4> stageVars;
- hlsl::ShaderModel::Kind sKind = spvContext.getCurrentShaderModelKind();
- for (uint32_t i = 0; i < decl->getNumParams(); i++) {
- const auto param = decl->getParamDecl(i);
- const auto paramType = param->getType();
- std::string tempVarName = "param.var." + param->getNameAsString();
- auto *tempVar =
- spvBuilder.addFnVar(paramType, param->getLocation(), tempVarName,
- param->hasAttr<HLSLPreciseAttr>());
- SpirvVariable *curStageVar = nullptr;
- params.push_back(tempVar);
- paramTypes.push_back(paramType);
- // Order of arguments is fixed
- // Any-Hit/Closest-Hit : Arg 0 = rayPayload(inout), Arg1 = attribute(in)
- // Miss : Arg 0 = rayPayload(inout)
- // Callable : Arg 0 = callable data(inout)
- // Raygeneration/Intersection : No Args allowed
- if (sKind == hlsl::ShaderModel::Kind::RayGeneration) {
- assert("Raygeneration shaders have no arguments of entry function");
- } else if (sKind == hlsl::ShaderModel::Kind::Intersection) {
- assert("Intersection shaders have no arguments of entry function");
- } else if (sKind == hlsl::ShaderModel::Kind::ClosestHit ||
- sKind == hlsl::ShaderModel::Kind::AnyHit) {
- // Generate rayPayloadInNV and hitAttributeNV stage variables
- if (i == 0) {
- // First argument is always rayPayload
- curStageVar = declIdMapper.createRayTracingNVStageVar(
- spv::StorageClass::IncomingRayPayloadNV, param);
- currentRayPayload = curStageVar;
- } else {
- // Second argument is always attribute
- curStageVar = declIdMapper.createRayTracingNVStageVar(
- spv::StorageClass::HitAttributeNV, param);
- }
- } else if (sKind == hlsl::ShaderModel::Kind::Miss) {
- // Generate rayPayloadInNV stage variable
- // First and only argument is rayPayload
- curStageVar = declIdMapper.createRayTracingNVStageVar(
- spv::StorageClass::IncomingRayPayloadNV, param);
- } else if (sKind == hlsl::ShaderModel::Kind::Callable) {
- curStageVar = declIdMapper.createRayTracingNVStageVar(
- spv::StorageClass::IncomingCallableDataNV, param);
- }
- if (curStageVar != nullptr) {
- stageVars.push_back(curStageVar);
- // Copy data to temporary
- auto *tempLoadInst =
- spvBuilder.createLoad(paramType, curStageVar, param->getLocation());
- spvBuilder.createStore(tempVar, tempLoadInst, param->getLocation());
- }
- }
- // Call the original entry function
- const QualType retType = decl->getReturnType();
- spvBuilder.createFunctionCall(retType, entryFuncInstr, params,
- decl->getLocStart());
- // Write certain output variables back
- if (sKind == hlsl::ShaderModel::Kind::ClosestHit ||
- sKind == hlsl::ShaderModel::Kind::AnyHit ||
- sKind == hlsl::ShaderModel::Kind::Miss ||
- sKind == hlsl::ShaderModel::Kind::Callable) {
- // Write back results to IncomingRayPayloadNV/IncomingCallableDataNV
- auto *tempLoad = spvBuilder.createLoad(paramTypes[0], params[0],
- decl->getBody()->getLocEnd());
- spvBuilder.createStore(stageVars[0], tempLoad,
- decl->getBody()->getLocEnd());
- }
- spvBuilder.createReturn(decl->getBody()->getLocEnd());
- spvBuilder.endFunction();
- return true;
- }
- bool SpirvEmitter::processMeshOrAmplificationShaderAttributes(
- const FunctionDecl *decl, uint32_t *outVerticesArraySize) {
- if (auto *numThreadsAttr = decl->getAttr<HLSLNumThreadsAttr>()) {
- uint32_t x, y, z;
- x = static_cast<uint32_t>(numThreadsAttr->getX());
- y = static_cast<uint32_t>(numThreadsAttr->getY());
- z = static_cast<uint32_t>(numThreadsAttr->getZ());
- spvBuilder.addExecutionMode(entryFunction, spv::ExecutionMode::LocalSize,
- {x, y, z}, decl->getLocation());
- }
- // Early return for amplification shaders as they only take the 'numthreads'
- // attribute.
- if (spvContext.isAS())
- return true;
- spv::ExecutionMode outputPrimitive = spv::ExecutionMode::Max;
- if (auto *outputTopology = decl->getAttr<HLSLOutputTopologyAttr>()) {
- const auto topology = outputTopology->getTopology().lower();
- outputPrimitive =
- llvm::StringSwitch<spv::ExecutionMode>(topology)
- .Case("point", spv::ExecutionMode::OutputPoints)
- .Case("line", spv::ExecutionMode::OutputLinesNV)
- .Case("triangle", spv::ExecutionMode::OutputTrianglesNV);
- if (outputPrimitive != spv::ExecutionMode::Max) {
- spvBuilder.addExecutionMode(entryFunction, outputPrimitive, {},
- decl->getLocation());
- } else {
- emitError("unknown output topology in mesh shader",
- outputTopology->getLocation());
- return false;
- }
- }
- uint32_t numVertices = 0;
- uint32_t numIndices = 0;
- uint32_t numPrimitives = 0;
- bool payloadDeclSeen = false;
- for (uint32_t i = 0; i < decl->getNumParams(); i++) {
- const auto param = decl->getParamDecl(i);
- const auto paramType = param->getType();
- const auto paramLoc = param->getLocation();
- if (param->hasAttr<HLSLVerticesAttr>() ||
- param->hasAttr<HLSLIndicesAttr>() ||
- param->hasAttr<HLSLPrimitivesAttr>()) {
- uint32_t arraySize = 0;
- if (const auto *arrayType =
- astContext.getAsConstantArrayType(paramType)) {
- const auto eleType =
- arrayType->getElementType()->getCanonicalTypeUnqualified();
- if (param->hasAttr<HLSLIndicesAttr>()) {
- switch (outputPrimitive) {
- case spv::ExecutionMode::OutputPoints:
- if (eleType != astContext.UnsignedIntTy) {
- emitError("expected 1D array of uint type", paramLoc);
- return false;
- }
- break;
- case spv::ExecutionMode::OutputLinesNV: {
- QualType baseType;
- uint32_t length;
- if (!isVectorType(eleType, &baseType, &length) ||
- baseType != astContext.UnsignedIntTy || length != 2) {
- emitError("expected 1D array of uint2 type", paramLoc);
- return false;
- }
- break;
- }
- case spv::ExecutionMode::OutputTrianglesNV: {
- QualType baseType;
- uint32_t length;
- if (!isVectorType(eleType, &baseType, &length) ||
- baseType != astContext.UnsignedIntTy || length != 3) {
- emitError("expected 1D array of uint3 type", paramLoc);
- return false;
- }
- break;
- }
- default:
- assert(false && "unexpected spirv execution mode");
- }
- } else if (!eleType->isStructureType()) {
- // vertices/primitives objects
- emitError("expected 1D array of struct type", paramLoc);
- return false;
- }
- arraySize = static_cast<uint32_t>(arrayType->getSize().getZExtValue());
- } else {
- emitError("expected 1D array of indices/vertices/primitives object",
- paramLoc);
- return false;
- }
- if (param->hasAttr<HLSLVerticesAttr>()) {
- if (numVertices != 0) {
- emitError("only one object with 'vertices' modifier is allowed",
- paramLoc);
- return false;
- }
- numVertices = arraySize;
- } else if (param->hasAttr<HLSLIndicesAttr>()) {
- if (numIndices != 0) {
- emitError("only one object with 'indices' modifier is allowed",
- paramLoc);
- return false;
- }
- numIndices = arraySize;
- } else if (param->hasAttr<HLSLPrimitivesAttr>()) {
- if (numPrimitives != 0) {
- emitError("only one object with 'primitives' modifier is allowed",
- paramLoc);
- return false;
- }
- numPrimitives = arraySize;
- }
- } else if (param->hasAttr<HLSLPayloadAttr>()) {
- if (payloadDeclSeen) {
- emitError("only one object with 'payload' modifier is allowed",
- paramLoc);
- return false;
- }
- payloadDeclSeen = true;
- if (!paramType->isStructureType()) {
- emitError("expected payload of struct type", paramLoc);
- return false;
- }
- }
- }
- // Vertex attribute array is a mandatory param to mesh entry function.
- if (numVertices != 0) {
- *outVerticesArraySize = numVertices;
- spvBuilder.addExecutionMode(
- entryFunction, spv::ExecutionMode::OutputVertices,
- {static_cast<uint32_t>(numVertices)}, decl->getLocation());
- } else {
- emitError("expected vertices object declaration", decl->getLocation());
- return false;
- }
- // Vertex indices array is a mandatory param to mesh entry function.
- if (numIndices != 0) {
- spvBuilder.addExecutionMode(
- entryFunction, spv::ExecutionMode::OutputPrimitivesNV,
- {static_cast<uint32_t>(numIndices)}, decl->getLocation());
- // Primitive attribute array is an optional param to mesh entry function,
- // but the array size should match the indices array.
- if (numPrimitives != 0 && numPrimitives != numIndices) {
- emitError("array size of primitives object should match 'indices' object",
- decl->getLocation());
- return false;
- }
- } else {
- emitError("expected indices object declaration", decl->getLocation());
- return false;
- }
- return true;
- }
- bool SpirvEmitter::emitEntryFunctionWrapper(const FunctionDecl *decl,
- SpirvFunction *entryFuncInstr) {
- // HS specific attributes
- uint32_t numOutputControlPoints = 0;
- SpirvInstruction *outputControlPointIdVal =
- nullptr; // SV_OutputControlPointID value
- SpirvInstruction *primitiveIdVar = nullptr; // SV_PrimitiveID variable
- SpirvInstruction *viewIdVar = nullptr; // SV_ViewID variable
- SpirvInstruction *hullMainInputPatchParam =
- nullptr; // Temporary parameter for InputPatch<>
- // The array size of per-vertex input/output variables
- // Used by HS/DS/GS for the additional arrayness, zero means not an array.
- uint32_t inputArraySize = 0;
- uint32_t outputArraySize = 0;
- // The wrapper entry function surely does not have pre-assigned <result-id>
- // for it like other functions that got added to the work queue following
- // function calls. And the wrapper is the entry function.
- entryFunction =
- spvBuilder.beginFunction(astContext.VoidTy, /* param QualTypes */ {},
- decl->getLocStart(), decl->getName());
- // Note this should happen before using declIdMapper for other tasks.
- declIdMapper.setEntryFunction(entryFunction);
- // Set entryFunction for current entry point.
- auto iter = functionInfoMap.find(decl);
- assert(iter != functionInfoMap.end());
- auto &entryInfo = iter->second;
- assert(entryInfo->isEntryFunction);
- entryInfo->entryFunction = entryFunction;
- if (spvContext.isRay()) {
- return emitEntryFunctionWrapperForRayTracing(decl, entryFuncInstr);
- }
- // Handle attributes specific to each shader stage
- if (spvContext.isPS()) {
- processPixelShaderAttributes(decl);
- } else if (spvContext.isCS()) {
- processComputeShaderAttributes(decl);
- } else if (spvContext.isHS()) {
- if (!processTessellationShaderAttributes(decl, &numOutputControlPoints))
- return false;
- // The input array size for HS is specified in the InputPatch parameter.
- for (const auto *param : decl->params())
- if (hlsl::IsHLSLInputPatchType(param->getType())) {
- inputArraySize = hlsl::GetHLSLInputPatchCount(param->getType());
- break;
- }
- outputArraySize = numOutputControlPoints;
- } else if (spvContext.isDS()) {
- if (!processTessellationShaderAttributes(decl, &numOutputControlPoints))
- return false;
- // The input array size for HS is specified in the OutputPatch parameter.
- for (const auto *param : decl->params())
- if (hlsl::IsHLSLOutputPatchType(param->getType())) {
- inputArraySize = hlsl::GetHLSLOutputPatchCount(param->getType());
- break;
- }
- // The per-vertex output of DS is not an array.
- } else if (spvContext.isGS()) {
- if (!processGeometryShaderAttributes(decl, &inputArraySize))
- return false;
- // The per-vertex output of GS is not an array.
- } else if (spvContext.isMS() || spvContext.isAS()) {
- if (!processMeshOrAmplificationShaderAttributes(decl, &outputArraySize))
- return false;
- }
- // Go through all parameters and record the declaration of SV_ClipDistance
- // and SV_CullDistance. We need to do this extra step because in HLSL we
- // can declare multiple SV_ClipDistance/SV_CullDistance variables of float
- // or vector of float types, but we can only have one single float array
- // for the ClipDistance/CullDistance builtin. So we need to group all
- // SV_ClipDistance/SV_CullDistance variables into one float array, thus we
- // need to calculate the total size of the array and the offset of each
- // variable within that array.
- // Also go through all parameters to record the semantic strings provided for
- // the builtins in gl_PerVertex.
- for (const auto *param : decl->params()) {
- if (canActAsInParmVar(param))
- if (!declIdMapper.glPerVertex.recordGlPerVertexDeclFacts(param, true))
- return false;
- if (canActAsOutParmVar(param))
- if (!declIdMapper.glPerVertex.recordGlPerVertexDeclFacts(param, false))
- return false;
- }
- // Also consider the SV_ClipDistance/SV_CullDistance in the return type
- if (!declIdMapper.glPerVertex.recordGlPerVertexDeclFacts(decl, false))
- return false;
- // Calculate the total size of the ClipDistance/CullDistance array and the
- // offset of SV_ClipDistance/SV_CullDistance variables within the array.
- declIdMapper.glPerVertex.calculateClipCullDistanceArraySize();
- if (!spvContext.isCS() && !spvContext.isAS()) {
- // Generate stand-alone builtins of Position, ClipDistance, and
- // CullDistance, which belongs to gl_PerVertex.
- declIdMapper.glPerVertex.generateVars(inputArraySize, outputArraySize);
- }
- // The entry basic block.
- auto *entryLabel = spvBuilder.createBasicBlock();
- spvBuilder.setInsertPoint(entryLabel);
- // Initialize all global variables at the beginning of the wrapper
- for (const VarDecl *varDecl : toInitGloalVars) {
- // SPIR-V does not have string variables
- if (isStringType(varDecl->getType()))
- continue;
- const auto varInfo =
- declIdMapper.getDeclEvalInfo(varDecl, varDecl->getLocation());
- if (const auto *init = varDecl->getInit()) {
- storeValue(varInfo, loadIfGLValue(init), varDecl->getType(),
- init->getLocStart());
- // Update counter variable associated with global variables
- tryToAssignCounterVar(varDecl, init);
- }
- // If not explicitly initialized, initialize with their zero values if not
- // resource objects
- else if (!hlsl::IsHLSLResourceType(varDecl->getType())) {
- auto *nullValue = spvBuilder.getConstantNull(varDecl->getType());
- spvBuilder.createStore(varInfo, nullValue, varDecl->getLocation());
- }
- }
- // Create temporary variables for holding function call arguments
- llvm::SmallVector<SpirvInstruction *, 4> params;
- for (const auto *param : decl->params()) {
- const auto paramType = param->getType();
- std::string tempVarName = "param.var." + param->getNameAsString();
- auto *tempVar =
- spvBuilder.addFnVar(paramType, param->getLocation(), tempVarName,
- param->hasAttr<HLSLPreciseAttr>());
- params.push_back(tempVar);
- // Create the stage input variable for parameter not marked as pure out and
- // initialize the corresponding temporary variable
- // Also do not create input variables for output stream objects of geometry
- // shaders (e.g. TriangleStream) which are required to be marked as 'inout'.
- if (canActAsInParmVar(param)) {
- if (spvContext.isHS() && hlsl::IsHLSLInputPatchType(paramType)) {
- // Record the temporary variable holding InputPatch. It may be used
- // later in the patch constant function.
- hullMainInputPatchParam = tempVar;
- }
- SpirvInstruction *loadedValue = nullptr;
- if (!declIdMapper.createStageInputVar(param, &loadedValue, false))
- return false;
- // Only initialize the temporary variable if the parameter is indeed used.
- if (param->isUsed()) {
- spvBuilder.createStore(tempVar, loadedValue, param->getLocation());
- }
- // Record the temporary variable holding SV_OutputControlPointID,
- // SV_PrimitiveID, and SV_ViewID. It may be used later in the patch
- // constant function.
- if (hasSemantic(param, hlsl::DXIL::SemanticKind::OutputControlPointID))
- outputControlPointIdVal = loadedValue;
- else if (hasSemantic(param, hlsl::DXIL::SemanticKind::PrimitiveID))
- primitiveIdVar = tempVar;
- else if (hasSemantic(param, hlsl::DXIL::SemanticKind::ViewID))
- viewIdVar = tempVar;
- }
- }
- // Call the original entry function
- const QualType retType = decl->getReturnType();
- auto *retVal = spvBuilder.createFunctionCall(retType, entryFuncInstr, params,
- decl->getLocStart());
- // Create and write stage output variables for return value. Special case for
- // Hull shaders since they operate differently in 2 ways:
- // 1- Their return value is in fact an array and each invocation should write
- // to the proper offset in the array.
- // 2- The patch constant function must be called *once* after all invocations
- // of the main entry point function is done.
- if (spvContext.isHS()) {
- // Create stage output variables out of the return type.
- if (!declIdMapper.createStageOutputVar(decl, numOutputControlPoints,
- outputControlPointIdVal, retVal))
- return false;
- if (!processHSEntryPointOutputAndPCF(
- decl, retType, retVal, numOutputControlPoints,
- outputControlPointIdVal, primitiveIdVar, viewIdVar,
- hullMainInputPatchParam))
- return false;
- } else {
- if (!declIdMapper.createStageOutputVar(decl, retVal, /*forPCF*/ false))
- return false;
- }
- // Create and write stage output variables for parameters marked as
- // out/inout
- for (uint32_t i = 0; i < decl->getNumParams(); ++i) {
- const auto *param = decl->getParamDecl(i);
- if (canActAsOutParmVar(param)) {
- // Load the value from the parameter after function call
- SpirvInstruction *loadedParam = nullptr;
- // No need to write back the value if the parameter is not used at all in
- // the original entry function.
- //
- // Write back of stage output variables in GS is manually controlled by
- // .Append() intrinsic method. No need to load the parameter since we
- // won't need to write back here.
- if (param->isUsed() && !spvContext.isGS())
- loadedParam = spvBuilder.createLoad(param->getType(), params[i],
- param->getLocStart());
- if (!declIdMapper.createStageOutputVar(param, loadedParam, false))
- return false;
- }
- }
- // For wrapper of entry point, it is better not to specify SourceLocation
- // for return statement, because it is not the location of the actual
- // return and emitting the location of the end of entry function makes
- // us confused. It is better to emit debug line just before OpFunctionEnd.
- spvBuilder.createReturn(/* SourceLocation */ {});
- spvBuilder.endFunction();
- // For Hull shaders, there is no explicit call to the PCF in the HLSL source.
- // We should invoke a translation of the PCF manually.
- if (spvContext.isHS())
- doDecl(patchConstFunc);
- return true;
- }
- bool SpirvEmitter::processHSEntryPointOutputAndPCF(
- const FunctionDecl *hullMainFuncDecl, QualType retType,
- SpirvInstruction *retVal, uint32_t numOutputControlPoints,
- SpirvInstruction *outputControlPointId, SpirvInstruction *primitiveId,
- SpirvInstruction *viewId, SpirvInstruction *hullMainInputPatch) {
- // This method may only be called for Hull shaders.
- assert(spvContext.isHS());
- auto loc = hullMainFuncDecl->getLocation();
- auto locEnd = hullMainFuncDecl->getLocEnd();
- // For Hull shaders, the real output is an array of size
- // numOutputControlPoints. The results of the main should be written to the
- // correct offset in the array (based on InvocationID).
- if (!numOutputControlPoints) {
- emitError("number of output control points cannot be zero", loc);
- return false;
- }
- // TODO: We should be able to handle cases where the SV_OutputControlPointID
- // is not provided.
- if (!outputControlPointId) {
- emitError(
- "SV_OutputControlPointID semantic must be provided in hull shader",
- loc);
- return false;
- }
- if (!patchConstFunc) {
- emitError("patch constant function not defined in hull shader", loc);
- return false;
- }
- SpirvInstruction *hullMainOutputPatch = nullptr;
- // If the patch constant function (PCF) takes the result of the Hull main
- // entry point, create a temporary function-scope variable and write the
- // results to it, so it can be passed to the PCF.
- if (patchConstFuncTakesHullOutputPatch(patchConstFunc)) {
- const QualType hullMainRetType = astContext.getConstantArrayType(
- retType, llvm::APInt(32, numOutputControlPoints),
- clang::ArrayType::Normal, 0);
- hullMainOutputPatch =
- spvBuilder.addFnVar(hullMainRetType, locEnd, "temp.var.hullMainRetVal");
- auto *tempLocation = spvBuilder.createAccessChain(
- retType, hullMainOutputPatch, {outputControlPointId}, locEnd);
- spvBuilder.createStore(tempLocation, retVal, locEnd);
- }
- // Now create a barrier before calling the Patch Constant Function (PCF).
- // Flags are:
- // Execution Barrier scope = Workgroup (2)
- // Memory Barrier scope = Invocation (4)
- // Memory Semantics Barrier scope = None (0)
- spvBuilder.createBarrier(spv::Scope::Invocation,
- spv::MemorySemanticsMask::MaskNone,
- spv::Scope::Workgroup, {});
- // The PCF should be called only once. Therefore, we check the invocationID,
- // and we only allow ID 0 to call the PCF.
- auto *condition = spvBuilder.createBinaryOp(
- spv::Op::OpIEqual, astContext.BoolTy, outputControlPointId,
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 0)),
- loc);
- auto *thenBB = spvBuilder.createBasicBlock("if.true");
- auto *mergeBB = spvBuilder.createBasicBlock("if.merge");
- spvBuilder.createConditionalBranch(condition, thenBB, mergeBB, loc, mergeBB);
- spvBuilder.addSuccessor(thenBB);
- spvBuilder.addSuccessor(mergeBB);
- spvBuilder.setMergeTarget(mergeBB);
- spvBuilder.setInsertPoint(thenBB);
- // Call the PCF. Since the function is not explicitly called, we must first
- // register an ID for it.
- SpirvFunction *pcfId = declIdMapper.getOrRegisterFn(patchConstFunc);
- const QualType pcfRetType = patchConstFunc->getReturnType();
- std::vector<SpirvInstruction *> pcfParams;
- // A lambda for creating a stage input variable and its associated temporary
- // variable for function call. Also initializes the temporary variable using
- // the contents loaded from the stage input variable. Returns the <result-id>
- // of the temporary variable.
- const auto createParmVarAndInitFromStageInputVar =
- [this](const ParmVarDecl *param) {
- const QualType type = param->getType();
- std::string tempVarName = "param.var." + param->getNameAsString();
- auto paramLoc = param->getLocation();
- auto *tempVar = spvBuilder.addFnVar(type, paramLoc, tempVarName,
- param->hasAttr<HLSLPreciseAttr>());
- SpirvInstruction *loadedValue = nullptr;
- declIdMapper.createStageInputVar(param, &loadedValue, /*forPCF*/ true);
- spvBuilder.createStore(tempVar, loadedValue, paramLoc);
- return tempVar;
- };
- for (const auto *param : patchConstFunc->parameters()) {
- // Note: According to the HLSL reference, the PCF takes an InputPatch of
- // ControlPoints as well as the PatchID (PrimitiveID). This does not
- // necessarily mean that they are present. There is also no requirement
- // for the order of parameters passed to PCF.
- if (hlsl::IsHLSLInputPatchType(param->getType())) {
- pcfParams.push_back(hullMainInputPatch);
- } else if (hlsl::IsHLSLOutputPatchType(param->getType())) {
- pcfParams.push_back(hullMainOutputPatch);
- } else if (hasSemantic(param, hlsl::DXIL::SemanticKind::PrimitiveID)) {
- if (!primitiveId) {
- primitiveId = createParmVarAndInitFromStageInputVar(param);
- }
- pcfParams.push_back(primitiveId);
- } else if (hasSemantic(param, hlsl::DXIL::SemanticKind::ViewID)) {
- if (!viewId) {
- viewId = createParmVarAndInitFromStageInputVar(param);
- }
- pcfParams.push_back(viewId);
- } else {
- emitError("patch constant function parameter '%0' unknown",
- param->getLocation())
- << param->getName();
- }
- }
- auto *pcfResultId = spvBuilder.createFunctionCall(
- pcfRetType, pcfId, {pcfParams}, hullMainFuncDecl->getLocStart());
- if (!declIdMapper.createStageOutputVar(patchConstFunc, pcfResultId,
- /*forPCF*/ true))
- return false;
- spvBuilder.createBranch(mergeBB, locEnd);
- spvBuilder.addSuccessor(mergeBB);
- spvBuilder.setInsertPoint(mergeBB);
- return true;
- }
- bool SpirvEmitter::allSwitchCasesAreIntegerLiterals(const Stmt *root) {
- if (!root)
- return false;
- const auto *caseStmt = dyn_cast<CaseStmt>(root);
- const auto *compoundStmt = dyn_cast<CompoundStmt>(root);
- if (!caseStmt && !compoundStmt)
- return true;
- if (caseStmt) {
- const Expr *caseExpr = caseStmt->getLHS();
- return caseExpr && caseExpr->isEvaluatable(astContext);
- }
- // Recurse down if facing a compound statement.
- for (auto *st : compoundStmt->body())
- if (!allSwitchCasesAreIntegerLiterals(st))
- return false;
- return true;
- }
- void SpirvEmitter::discoverAllCaseStmtInSwitchStmt(
- const Stmt *root, SpirvBasicBlock **defaultBB,
- std::vector<std::pair<uint32_t, SpirvBasicBlock *>> *targets) {
- if (!root)
- return;
- // A switch case can only appear in DefaultStmt, CaseStmt, or
- // CompoundStmt. For the rest, we can just return.
- const auto *defaultStmt = dyn_cast<DefaultStmt>(root);
- const auto *caseStmt = dyn_cast<CaseStmt>(root);
- const auto *compoundStmt = dyn_cast<CompoundStmt>(root);
- if (!defaultStmt && !caseStmt && !compoundStmt)
- return;
- // Recurse down if facing a compound statement.
- if (compoundStmt) {
- for (auto *st : compoundStmt->body())
- discoverAllCaseStmtInSwitchStmt(st, defaultBB, targets);
- return;
- }
- std::string caseLabel;
- uint32_t caseValue = 0;
- if (defaultStmt) {
- // This is the default branch.
- caseLabel = "switch.default";
- } else if (caseStmt) {
- // This is a non-default case.
- // When using OpSwitch, we only allow integer literal cases. e.g:
- // case <literal_integer>: {...; break;}
- const Expr *caseExpr = caseStmt->getLHS();
- assert(caseExpr && caseExpr->isEvaluatable(astContext));
- auto bitWidth = astContext.getIntWidth(caseExpr->getType());
- if (bitWidth != 32)
- emitError(
- "non-32bit integer case value in switch statement unimplemented",
- caseExpr->getExprLoc());
- Expr::EvalResult evalResult;
- caseExpr->EvaluateAsRValue(evalResult, astContext);
- const int64_t value = evalResult.Val.getInt().getSExtValue();
- caseValue = static_cast<uint32_t>(value);
- caseLabel = "switch." + std::string(value < 0 ? "n" : "") +
- llvm::itostr(std::abs(value));
- }
- auto *caseBB = spvBuilder.createBasicBlock(caseLabel);
- spvBuilder.addSuccessor(caseBB);
- stmtBasicBlock[root] = caseBB;
- // Add all cases to the 'targets' vector.
- if (caseStmt)
- targets->emplace_back(caseValue, caseBB);
- // The default label is not part of the 'targets' vector that is passed
- // to the OpSwitch instruction.
- // If default statement was discovered, return its label via defaultBB.
- if (defaultStmt)
- *defaultBB = caseBB;
- // Process cases nested in other cases. It happens when we have fall through
- // cases. For example:
- // case 1: case 2: ...; break;
- // will result in the CaseSmt for case 2 nested in the one for case 1.
- discoverAllCaseStmtInSwitchStmt(caseStmt ? caseStmt->getSubStmt()
- : defaultStmt->getSubStmt(),
- defaultBB, targets);
- }
- void SpirvEmitter::flattenSwitchStmtAST(const Stmt *root,
- std::vector<const Stmt *> *flatSwitch) {
- const auto *caseStmt = dyn_cast<CaseStmt>(root);
- const auto *compoundStmt = dyn_cast<CompoundStmt>(root);
- const auto *defaultStmt = dyn_cast<DefaultStmt>(root);
- if (!compoundStmt) {
- flatSwitch->push_back(root);
- }
- if (compoundStmt) {
- for (const auto *st : compoundStmt->body())
- flattenSwitchStmtAST(st, flatSwitch);
- } else if (caseStmt) {
- flattenSwitchStmtAST(caseStmt->getSubStmt(), flatSwitch);
- } else if (defaultStmt) {
- flattenSwitchStmtAST(defaultStmt->getSubStmt(), flatSwitch);
- }
- }
- void SpirvEmitter::processCaseStmtOrDefaultStmt(const Stmt *stmt) {
- auto *caseStmt = dyn_cast<CaseStmt>(stmt);
- auto *defaultStmt = dyn_cast<DefaultStmt>(stmt);
- assert(caseStmt || defaultStmt);
- auto *caseBB = stmtBasicBlock[stmt];
- if (!spvBuilder.isCurrentBasicBlockTerminated()) {
- // We are about to handle the case passed in as parameter. If the current
- // basic block is not terminated, it means the previous case is a fall
- // through case. We need to link it to the case to be processed.
- spvBuilder.createBranch(caseBB, stmt->getLocStart());
- spvBuilder.addSuccessor(caseBB);
- }
- spvBuilder.setInsertPoint(caseBB);
- doStmt(caseStmt ? caseStmt->getSubStmt() : defaultStmt->getSubStmt());
- }
- void SpirvEmitter::processSwitchStmtUsingSpirvOpSwitch(
- const SwitchStmt *switchStmt) {
- const SourceLocation srcLoc = switchStmt->getSwitchLoc();
- // First handle the condition variable DeclStmt if one exists.
- // For example: handle 'int a = b' in the following:
- // switch (int a = b) {...}
- if (const auto *condVarDeclStmt = switchStmt->getConditionVariableDeclStmt())
- doDeclStmt(condVarDeclStmt);
- auto *selector = doExpr(switchStmt->getCond());
- // We need a merge block regardless of the number of switch cases.
- // Since OpSwitch always requires a default label, if the switch statement
- // does not have a default branch, we use the merge block as the default
- // target.
- auto *mergeBB = spvBuilder.createBasicBlock("switch.merge");
- spvBuilder.setMergeTarget(mergeBB);
- breakStack.push(mergeBB);
- auto *defaultBB = mergeBB;
- // (literal, labelId) pairs to pass to the OpSwitch instruction.
- std::vector<std::pair<uint32_t, SpirvBasicBlock *>> targets;
- discoverAllCaseStmtInSwitchStmt(switchStmt->getBody(), &defaultBB, &targets);
- // Create the OpSelectionMerge and OpSwitch.
- spvBuilder.createSwitch(mergeBB, selector, defaultBB, targets, srcLoc);
- // Handle the switch body.
- doStmt(switchStmt->getBody());
- if (!spvBuilder.isCurrentBasicBlockTerminated())
- spvBuilder.createBranch(mergeBB, switchStmt->getLocEnd());
- spvBuilder.setInsertPoint(mergeBB);
- breakStack.pop();
- }
- void SpirvEmitter::processSwitchStmtUsingIfStmts(const SwitchStmt *switchStmt) {
- std::vector<const Stmt *> flatSwitch;
- flattenSwitchStmtAST(switchStmt->getBody(), &flatSwitch);
- // First handle the condition variable DeclStmt if one exists.
- // For example: handle 'int a = b' in the following:
- // switch (int a = b) {...}
- if (const auto *condVarDeclStmt = switchStmt->getConditionVariableDeclStmt())
- doDeclStmt(condVarDeclStmt);
- // Figure out the indexes of CaseStmts (and DefaultStmt if it exists) in
- // the flattened switch AST.
- // For instance, for the following flat vector:
- // +-----+-----+-----+-----+-----+-----+-----+-----+-----+-------+-----+
- // |Case1|Stmt1|Case2|Stmt2|Break|Case3|Case4|Stmt4|Break|Default|Stmt5|
- // +-----+-----+-----+-----+-----+-----+-----+-----+-----+-------+-----+
- // The indexes are: {0, 2, 5, 6, 9}
- std::vector<uint32_t> caseStmtLocs;
- for (uint32_t i = 0; i < flatSwitch.size(); ++i)
- if (isa<CaseStmt>(flatSwitch[i]) || isa<DefaultStmt>(flatSwitch[i]))
- caseStmtLocs.push_back(i);
- IfStmt *prevIfStmt = nullptr;
- IfStmt *rootIfStmt = nullptr;
- CompoundStmt *defaultBody = nullptr;
- // For each case, start at its index in the vector, and go forward
- // accumulating statements until BreakStmt or end of vector is reached.
- for (auto curCaseIndex : caseStmtLocs) {
- const Stmt *curCase = flatSwitch[curCaseIndex];
- // CompoundStmt to hold all statements for this case.
- CompoundStmt *cs = new (astContext) CompoundStmt(Stmt::EmptyShell());
- // Accumulate all non-case/default/break statements as the body for the
- // current case.
- std::vector<Stmt *> statements;
- for (unsigned i = curCaseIndex + 1;
- i < flatSwitch.size() && !isa<BreakStmt>(flatSwitch[i]); ++i) {
- if (!isa<CaseStmt>(flatSwitch[i]) && !isa<DefaultStmt>(flatSwitch[i]))
- statements.push_back(const_cast<Stmt *>(flatSwitch[i]));
- }
- if (!statements.empty())
- cs->setStmts(astContext, statements.data(), statements.size());
- // For non-default cases, generate the IfStmt that compares the switch
- // value to the case value.
- if (auto *caseStmt = dyn_cast<CaseStmt>(curCase)) {
- IfStmt *curIf = new (astContext) IfStmt(Stmt::EmptyShell());
- BinaryOperator *bo = new (astContext) BinaryOperator(Stmt::EmptyShell());
- bo->setLHS(const_cast<Expr *>(switchStmt->getCond()));
- bo->setRHS(const_cast<Expr *>(caseStmt->getLHS()));
- bo->setOpcode(BO_EQ);
- bo->setType(astContext.getLogicalOperationType());
- curIf->setCond(bo);
- curIf->setThen(cs);
- // No conditional variable associated with this faux if statement.
- curIf->setConditionVariable(astContext, nullptr);
- // Each If statement is the "else" of the previous if statement.
- if (prevIfStmt)
- prevIfStmt->setElse(curIf);
- else
- rootIfStmt = curIf;
- prevIfStmt = curIf;
- } else {
- // Record the DefaultStmt body as it will be used as the body of the
- // "else" block in the if-elseif-...-else pattern.
- defaultBody = cs;
- }
- }
- // If a default case exists, it is the "else" of the last if statement.
- if (prevIfStmt)
- prevIfStmt->setElse(defaultBody);
- // Since all else-if and else statements are the child nodes of the first
- // IfStmt, we only need to call doStmt for the first IfStmt.
- if (rootIfStmt)
- doStmt(rootIfStmt);
- // If there are no CaseStmt and there is only 1 DefaultStmt, there will be
- // no if statements. The switch in that case only executes the body of the
- // default case.
- else if (defaultBody)
- doStmt(defaultBody);
- }
- SpirvInstruction *SpirvEmitter::extractVecFromVec4(SpirvInstruction *from,
- uint32_t targetVecSize,
- QualType targetElemType,
- SourceLocation loc) {
- assert(targetVecSize > 0 && targetVecSize < 5);
- const QualType retType =
- targetVecSize == 1
- ? targetElemType
- : astContext.getExtVectorType(targetElemType, targetVecSize);
- switch (targetVecSize) {
- case 1:
- return spvBuilder.createCompositeExtract(retType, from, {0}, loc);
- break;
- case 2:
- return spvBuilder.createVectorShuffle(retType, from, from, {0, 1}, loc);
- break;
- case 3:
- return spvBuilder.createVectorShuffle(retType, from, from, {0, 1, 2}, loc);
- break;
- case 4:
- return from;
- default:
- llvm_unreachable("vector element count must be 1, 2, 3, or 4");
- }
- }
- void SpirvEmitter::addFunctionToWorkQueue(hlsl::DXIL::ShaderKind shaderKind,
- const clang::FunctionDecl *fnDecl,
- bool isEntryFunction) {
- // Only update the workQueue and the function info map if the given
- // FunctionDecl hasn't been added already.
- if (functionInfoMap.find(fnDecl) == functionInfoMap.end()) {
- // Note: The function is just discovered and is being added to the
- // workQueue, therefore it does not have the entryFunction SPIR-V
- // instruction yet (use nullptr).
- auto *fnInfo = new (spvContext) FunctionInfo(
- shaderKind, fnDecl, /*entryFunction*/ nullptr, isEntryFunction);
- functionInfoMap[fnDecl] = fnInfo;
- workQueue.push_back(fnInfo);
- }
- }
- SpirvInstruction *
- SpirvEmitter::processTraceRayInline(const CXXMemberCallExpr *expr) {
- emitWarning("SPV_KHR_ray_query is currently a provisional extension and might"
- "change in ways that are not backwards compatible",
- expr->getExprLoc());
- const auto object = expr->getImplicitObjectArgument();
- uint32_t templateFlags = hlsl::GetHLSLResourceTemplateUInt(object->getType());
- const auto constFlags = spvBuilder.getConstantInt(
- astContext.UnsignedIntTy, llvm::APInt(32, templateFlags));
- SpirvInstruction *rayqueryObj = loadIfAliasVarRef(object);
- const auto args = expr->getArgs();
- if (expr->getNumArgs() != 4) {
- emitError("invalid number of arguments to RayQueryInitialize",
- expr->getExprLoc());
- }
- // HLSL Func
- // void RayQuery::TraceRayInline(
- // RaytracingAccelerationStructure AccelerationStructure,
- // uint RayFlags,
- // uint InstanceInclusionMask,
- // RayDesc Ray);
- // void OpRayQueryInitializeKHR ( <id> RayQuery,
- // <id> Acceleration Structure
- // <id> RayFlags
- // <id> CullMask
- // <id> RayOrigin
- // <id> RayTmin
- // <id> RayDirection
- // <id> Ray Tmax)
- const auto accelStructure = doExpr(args[0]);
- SpirvInstruction *rayFlags = nullptr;
- if (rayFlags = tryToEvaluateAsConst(args[1])) {
- rayFlags->setRValue();
- } else {
- rayFlags = doExpr(args[1]);
- }
- if (auto constFlags = dyn_cast<SpirvConstantInteger>(rayFlags)) {
- auto interRayFlags = constFlags->getValue().getZExtValue();
- templateFlags |= interRayFlags;
- }
- bool hasCullFlags =
- templateFlags & (uint32_t(hlsl::DXIL::RayFlag::SkipTriangles) |
- uint32_t(hlsl::DXIL::RayFlag::SkipProceduralPrimitives));
- auto loc = args[1]->getLocStart();
- rayFlags =
- spvBuilder.createBinaryOp(spv::Op::OpBitwiseOr, astContext.UnsignedIntTy,
- constFlags, rayFlags, loc);
- const auto cullMask = doExpr(args[2]);
- // Extract the ray description to match SPIR-V
- const auto floatType = astContext.FloatTy;
- const auto vecType = astContext.getExtVectorType(astContext.FloatTy, 3);
- SpirvInstruction *rayDescArg = doExpr(args[3]);
- loc = args[3]->getLocStart();
- const auto origin =
- spvBuilder.createCompositeExtract(vecType, rayDescArg, {0}, loc);
- const auto tMin =
- spvBuilder.createCompositeExtract(floatType, rayDescArg, {1}, loc);
- const auto direction =
- spvBuilder.createCompositeExtract(vecType, rayDescArg, {2}, loc);
- const auto tMax =
- spvBuilder.createCompositeExtract(floatType, rayDescArg, {3}, loc);
- llvm::SmallVector<SpirvInstruction *, 8> traceArgs = {
- rayqueryObj, accelStructure, rayFlags, cullMask,
- origin, tMin, direction, tMax};
- return spvBuilder.createRayQueryOpsKHR(spv::Op::OpRayQueryInitializeKHR,
- QualType(), traceArgs, hasCullFlags,
- expr->getExprLoc());
- }
- SpirvInstruction *
- SpirvEmitter::processRayQueryIntrinsics(const CXXMemberCallExpr *expr,
- hlsl::IntrinsicOp opcode) {
- emitWarning("SPV_KHR_ray_query is currently a provisional extension and might"
- "change in ways that are not backwards compatible",
- expr->getExprLoc());
- const auto object = expr->getImplicitObjectArgument();
- SpirvInstruction *rayqueryObj = loadIfAliasVarRef(object);
- const auto args = expr->getArgs();
- llvm::SmallVector<SpirvInstruction *, 8> traceArgs;
- traceArgs.push_back(rayqueryObj);
- for (uint32_t i = 0; i < expr->getNumArgs(); ++i) {
- traceArgs.push_back(doExpr(args[i]));
- }
- spv::Op spvCode = spv::Op::Max;
- QualType exprType = expr->getType();
- exprType = exprType->isVoidType() ? QualType() : exprType;
- const auto candidateIntersection =
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 0));
- const auto committedIntersection =
- spvBuilder.getConstantInt(astContext.UnsignedIntTy, llvm::APInt(32, 1));
- bool transposeMatrix = false;
- bool logicalNot = false;
- using namespace hlsl;
- switch (opcode) {
- case IntrinsicOp::MOP_Proceed:
- spvCode = spv::Op::OpRayQueryProceedKHR;
- break;
- case IntrinsicOp::MOP_Abort:
- spvCode = spv::Op::OpRayQueryTerminateKHR;
- exprType = QualType();
- break;
- case IntrinsicOp::MOP_CandidateGeometryIndex:
- traceArgs.push_back(candidateIntersection);
- spvCode = spv::Op::OpRayQueryGetIntersectionGeometryIndexKHR;
- break;
- case IntrinsicOp::MOP_CandidateInstanceContributionToHitGroupIndex:
- traceArgs.push_back(candidateIntersection);
- spvCode = spv::Op::
- OpRayQueryGetIntersectionInstanceShaderBindingTableRecordOffsetKHR;
- break;
- case IntrinsicOp::MOP_CandidateInstanceID:
- traceArgs.push_back(candidateIntersection);
- spvCode = spv::Op::OpRayQueryGetIntersectionInstanceCustomIndexKHR;
- break;
- case IntrinsicOp::MOP_CandidateInstanceIndex:
- traceArgs.push_back(candidateIntersection);
- spvCode = spv::Op::OpRayQueryGetIntersectionInstanceIdKHR;
- break;
- case IntrinsicOp::MOP_CandidateObjectRayDirection:
- traceArgs.push_back(candidateIntersection);
- spvCode = spv::Op::OpRayQueryGetIntersectionObjectRayDirectionKHR;
- break;
- case IntrinsicOp::MOP_CandidateObjectRayOrigin:
- traceArgs.push_back(candidateIntersection);
- spvCode = spv::Op::OpRayQueryGetIntersectionObjectRayOriginKHR;
- break;
- case IntrinsicOp::MOP_CandidateObjectToWorld3x4:
- spvCode = spv::Op::OpRayQueryGetIntersectionObjectToWorldKHR;
- traceArgs.push_back(candidateIntersection);
- transposeMatrix = true;
- break;
- case IntrinsicOp::MOP_CandidateObjectToWorld4x3:
- spvCode = spv::Op::OpRayQueryGetIntersectionObjectToWorldKHR;
- traceArgs.push_back(candidateIntersection);
- break;
- case IntrinsicOp::MOP_CandidatePrimitiveIndex:
- traceArgs.push_back(candidateIntersection);
- spvCode = spv::Op::OpRayQueryGetIntersectionPrimitiveIndexKHR;
- break;
- case IntrinsicOp::MOP_CandidateProceduralPrimitiveNonOpaque:
- spvCode = spv::Op::OpRayQueryGetIntersectionCandidateAABBOpaqueKHR;
- logicalNot = true;
- break;
- case IntrinsicOp::MOP_CandidateTriangleBarycentrics:
- traceArgs.push_back(candidateIntersection);
- spvCode = spv::Op::OpRayQueryGetIntersectionBarycentricsKHR;
- break;
- case IntrinsicOp::MOP_CandidateTriangleFrontFace:
- traceArgs.push_back(candidateIntersection);
- spvCode = spv::Op::OpRayQueryGetIntersectionFrontFaceKHR;
- break;
- case IntrinsicOp::MOP_CandidateTriangleRayT:
- traceArgs.push_back(candidateIntersection);
- spvCode = spv::Op::OpRayQueryGetIntersectionTKHR;
- break;
- case IntrinsicOp::MOP_CandidateType:
- spvCode = spv::Op::OpRayQueryGetIntersectionTypeKHR;
- traceArgs.push_back(candidateIntersection);
- break;
- case IntrinsicOp::MOP_CandidateWorldToObject4x3:
- spvCode = spv::Op::OpRayQueryGetIntersectionWorldToObjectKHR;
- traceArgs.push_back(candidateIntersection);
- break;
- case IntrinsicOp::MOP_CandidateWorldToObject3x4:
- spvCode = spv::Op::OpRayQueryGetIntersectionWorldToObjectKHR;
- traceArgs.push_back(candidateIntersection);
- transposeMatrix = true;
- break;
- case IntrinsicOp::MOP_CommitNonOpaqueTriangleHit:
- spvCode = spv::Op::OpRayQueryConfirmIntersectionKHR;
- exprType = QualType();
- break;
- case IntrinsicOp::MOP_CommitProceduralPrimitiveHit:
- spvCode = spv::Op::OpRayQueryGenerateIntersectionKHR;
- exprType = QualType();
- break;
- case IntrinsicOp::MOP_CommittedGeometryIndex:
- spvCode = spv::Op::OpRayQueryGetIntersectionGeometryIndexKHR;
- traceArgs.push_back(committedIntersection);
- break;
- case IntrinsicOp::MOP_CommittedInstanceContributionToHitGroupIndex:
- spvCode = spv::Op::
- OpRayQueryGetIntersectionInstanceShaderBindingTableRecordOffsetKHR;
- traceArgs.push_back(committedIntersection);
- break;
- case IntrinsicOp::MOP_CommittedInstanceID:
- spvCode = spv::Op::OpRayQueryGetIntersectionInstanceCustomIndexKHR;
- traceArgs.push_back(committedIntersection);
- break;
- case IntrinsicOp::MOP_CommittedInstanceIndex:
- spvCode = spv::Op::OpRayQueryGetIntersectionInstanceIdKHR;
- traceArgs.push_back(committedIntersection);
- break;
- case IntrinsicOp::MOP_CommittedObjectRayDirection:
- spvCode = spv::Op::OpRayQueryGetIntersectionObjectRayDirectionKHR;
- traceArgs.push_back(committedIntersection);
- break;
- case IntrinsicOp::MOP_CommittedObjectRayOrigin:
- spvCode = spv::Op::OpRayQueryGetIntersectionObjectRayOriginKHR;
- traceArgs.push_back(committedIntersection);
- break;
- case IntrinsicOp::MOP_CommittedObjectToWorld3x4:
- spvCode = spv::Op::OpRayQueryGetIntersectionObjectToWorldKHR;
- traceArgs.push_back(committedIntersection);
- transposeMatrix = true;
- break;
- case IntrinsicOp::MOP_CommittedObjectToWorld4x3:
- spvCode = spv::Op::OpRayQueryGetIntersectionObjectToWorldKHR;
- traceArgs.push_back(committedIntersection);
- break;
- case IntrinsicOp::MOP_CommittedPrimitiveIndex:
- spvCode = spv::Op::OpRayQueryGetIntersectionPrimitiveIndexKHR;
- traceArgs.push_back(committedIntersection);
- break;
- case IntrinsicOp::MOP_CommittedRayT:
- spvCode = spv::Op::OpRayQueryGetIntersectionTKHR;
- traceArgs.push_back(committedIntersection);
- break;
- case IntrinsicOp::MOP_CommittedStatus:
- spvCode = spv::Op::OpRayQueryGetIntersectionTypeKHR;
- traceArgs.push_back(committedIntersection);
- break;
- case IntrinsicOp::MOP_CommittedTriangleBarycentrics:
- spvCode = spv::Op::OpRayQueryGetIntersectionBarycentricsKHR;
- traceArgs.push_back(committedIntersection);
- break;
- case IntrinsicOp::MOP_CommittedTriangleFrontFace:
- spvCode = spv::Op::OpRayQueryGetIntersectionFrontFaceKHR;
- traceArgs.push_back(committedIntersection);
- break;
- case IntrinsicOp::MOP_CommittedWorldToObject3x4:
- spvCode = spv::Op::OpRayQueryGetIntersectionWorldToObjectKHR;
- traceArgs.push_back(committedIntersection);
- transposeMatrix = true;
- break;
- case IntrinsicOp::MOP_CommittedWorldToObject4x3:
- spvCode = spv::Op::OpRayQueryGetIntersectionWorldToObjectKHR;
- traceArgs.push_back(committedIntersection);
- break;
- case IntrinsicOp::MOP_RayFlags:
- spvCode = spv::Op::OpRayQueryGetRayFlagsKHR;
- break;
- case IntrinsicOp::MOP_RayTMin:
- spvCode = spv::Op::OpRayQueryGetRayTMinKHR;
- break;
- case IntrinsicOp::MOP_WorldRayDirection:
- spvCode = spv::Op::OpRayQueryGetWorldRayDirectionKHR;
- break;
- case IntrinsicOp::MOP_WorldRayOrigin:
- spvCode = spv::Op::OpRayQueryGetWorldRayOriginKHR;
- break;
- default:
- emitError("intrinsic '%0' method unimplemented",
- expr->getCallee()->getExprLoc())
- << expr->getDirectCallee()->getName();
- return nullptr;
- }
- if (transposeMatrix) {
- assert(hlsl::IsHLSLMatType(exprType) && "intrinsic should be matrix");
- const clang::Type *type = exprType.getCanonicalType().getTypePtr();
- const RecordType *RT = cast<RecordType>(type);
- const ClassTemplateSpecializationDecl *templateSpecDecl =
- cast<ClassTemplateSpecializationDecl>(RT->getDecl());
- ClassTemplateDecl *templateDecl =
- templateSpecDecl->getSpecializedTemplate();
- const auto retType = exprType;
- exprType = getHLSLMatrixType(astContext, theCompilerInstance.getSema(),
- templateDecl, astContext.FloatTy, 4, 3);
- }
- const auto loc = expr->getExprLoc();
- SpirvInstruction *retVal =
- spvBuilder.createRayQueryOpsKHR(spvCode, exprType, traceArgs, false, loc);
- if (transposeMatrix) {
- retVal = spvBuilder.createUnaryOp(spv::Op::OpTranspose, expr->getType(),
- retVal, loc);
- }
- if (logicalNot) {
- retVal = spvBuilder.createUnaryOp(spv::Op::OpLogicalNot, expr->getType(),
- retVal, loc);
- }
- retVal->setRValue();
- return retVal;
- }
- } // end namespace spirv
- } // end namespace clang
|