//----------------------------------------------------------------------------- // Copyright (c) 2013 GarageGames, LLC // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. //----------------------------------------------------------------------------- #ifndef _BUOYANCY_CONTROLLER_H_ #include "2d/controllers/BuoyancyController.h" #endif // Script bindings. #include "BuoyancyController_ScriptBinding.h" //------------------------------------------------------------------------------ IMPLEMENT_CONOBJECT(BuoyancyController); //------------------------------------------------------------------------------ BuoyancyController::BuoyancyController() : mFlowVelocity( 0.0f, 0.0f ), mFluidDensity( 2.0f ), mLinearDrag( 0.0f ), mAngularDrag( 0.0f ), mFluidGravity( 0.0f, -9.8f ), mUseShapeDensity( true ), mSurfaceNormal( 0.0f, 1.0f ) { } //------------------------------------------------------------------------------ BuoyancyController::~BuoyancyController() { } //------------------------------------------------------------------------------ void BuoyancyController::initPersistFields() { // Call parent. Parent::initPersistFields(); addField( "FluidArea", Typeb2AABB, Offset(mFluidArea, BuoyancyController), "The fluid area." ); addField( "FluidDensity", TypeF32, Offset(mFluidDensity, BuoyancyController), "The fluid density." ); addField( "FlowVelocity", TypeVector2, Offset(mFlowVelocity, BuoyancyController), "The fluid flow velocity for drag calculations." ); addField( "LinearDrag", TypeF32, Offset(mLinearDrag, BuoyancyController), "The linear drag co-efficient for the fluid." ); addField( "AngularDrag", TypeF32, Offset(mAngularDrag, BuoyancyController), "The angular drag co-efficient for the fluid." ); addField( "FluidGravity", TypeVector2, Offset(mFluidGravity, BuoyancyController), "The gravity to use inside the fluid." ); addField( "UseShapeDensity", TypeBool, Offset(mUseShapeDensity, BuoyancyController), "Whether to use the collision shape densities or assume a uniform density." ); } //------------------------------------------------------------------------------ void BuoyancyController::copyTo(SimObject* object) { // Call to parent. Parent::copyTo(object); // Cast to controller. BuoyancyController* pController; pController = static_cast(object); // Sanity! AssertFatal(pController != NULL, "BuoyancyController::copyTo() - Object is not the correct type."); } //------------------------------------------------------------------------------ /* * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ //------------------------------------------------------------------------------ void BuoyancyController::integrate( Scene* pScene, const F32 totalTime, const F32 elapsedTime, DebugStats* pDebugStats ) { // Prepare query filter. WorldQuery* pWorldQuery = prepareQueryFilter( pScene ); // Query for candidate objects. pWorldQuery->anyQueryAABB( mFluidArea ); // Fetch results. typeWorldQueryResultVector& queryResults = pWorldQuery->getQueryResults(); // Iterate the results. for ( U32 n = 0; n < (U32)queryResults.size(); n++ ) { // Fetch the scene object. SceneObject* pSceneObject = queryResults[n].mpSceneObject; // Skip if asleep. if ( !pSceneObject->getAwake() ) continue; // Ignore if it's a static body. if ( pSceneObject->getBodyType() == b2_staticBody ) continue; // Fetch the shape count. const U32 shapeCount = pSceneObject->getCollisionShapeCount(); // Skip if no collision shapes. if ( shapeCount == 0 ) continue; // Fetch the body transform. const b2Transform& bodyTransform = pSceneObject->getBody()->GetTransform();; Vector2 areaCenter(0.0f, 0.0f); Vector2 massCenter(0.0f, 0.0f); F32 area = 0.0f; F32 mass = 0.0f; // Yes, so iterate them. for( U32 i = 0; i < shapeCount; ++i ) { // Fetch the fixture definition. const b2FixtureDef fixtureDef = pSceneObject->getCollisionShapeDefinition( i ); // Fetch the shape. const b2Shape* pShape = fixtureDef.shape; Vector2 shapeCenter(0.0f, 0.0f); F32 shapeArea = 0.0f; // Calculate the area for the shape type. if ( pShape->GetType() == b2Shape::e_circle ) { shapeArea = ComputeCircleSubmergedArea( bodyTransform, dynamic_cast(pShape), shapeCenter ); } else if ( pShape->GetType() == b2Shape::e_polygon) { shapeArea = ComputePolygonSubmergedArea( bodyTransform, dynamic_cast(pShape), shapeCenter ); } else if ( pShape->GetType() == b2Shape::e_edge || pShape->GetType() == b2Shape::e_chain ) { shapeArea = 0.0f; } else { // Skip if unknown shape type. continue; } // Calculate area. area += shapeArea; areaCenter.x += shapeArea * shapeCenter.x; areaCenter.y += shapeArea * shapeCenter.y; // Calculate mass. const F32 shapeDensity = mUseShapeDensity ? fixtureDef.density : 1.0f; mass += shapeArea*shapeDensity; massCenter.x += shapeArea * shapeCenter.x * shapeDensity; massCenter.y += shapeArea * shapeCenter.y * shapeDensity; } // Skip not in water. if( area < b2_epsilon ) continue; // Calculate area/mass centers. areaCenter.x /= area; areaCenter.y /= area; massCenter.x /= mass; massCenter.y /= mass; // Buoyancy const Vector2 buoyancyForce = -mFluidDensity * area * mFluidGravity; pSceneObject->applyForce(buoyancyForce, massCenter); // Linear drag const Vector2 dragForce = (pSceneObject->getLinearVelocityFromWorldPoint(areaCenter) - mFlowVelocity) * (-mLinearDrag * area); pSceneObject->applyForce(dragForce, areaCenter ); // Angular drag pSceneObject->applyTorque( -pSceneObject->getInertia() / pSceneObject->getMass() * area * pSceneObject->getAngularVelocity()*mAngularDrag ); } } //------------------------------------------------------------------------------ F32 BuoyancyController::ComputeCircleSubmergedArea( const b2Transform& bodyTransform, const b2CircleShape* pShape, Vector2& center ) { // Sanity! AssertFatal( pShape != NULL, "BuoyancyController::ComputeCircleSubmergedArea() - Invalid shape." ); // Calculate the world shape center. const b2Vec2 worldShapeCenter = b2Mul( bodyTransform, pShape->m_p ); const F32 l = -(b2Dot( mSurfaceNormal, worldShapeCenter ) - mFluidArea.upperBound.y); // Fetch the circle radius. const F32 radius = pShape->m_radius; // Submerged? if (l < - radius + FLT_MIN) { // No, so return zero area submerged. return 0.0f; } // Completely wet? if (l > pShape->m_radius) { // Yes! center = worldShapeCenter; return b2_pi * radius * radius; } // Partial submersion. const F32 r2 = radius * radius; const F32 l2 = l * l; const F32 area = r2 *( mAsin(l / radius) + b2_pi / 2.0f) + l * mSqrt( r2 - l2 ); const F32 com = -2.0f / 3.0f * mPow(r2 - l2, 1.5f) / area; // Calculate center. center.x = worldShapeCenter.x + mSurfaceNormal.x * com; center.y = worldShapeCenter.y + mSurfaceNormal.y * com; return area; } //------------------------------------------------------------------------------ F32 BuoyancyController::ComputePolygonSubmergedArea( const b2Transform& bodyTransform, const b2PolygonShape* pShape, Vector2& center ) { // Sanity! AssertFatal( pShape != NULL, "BuoyancyController::ComputePolygonSubmergedArea() - Invalid shape." ); // Transform plane into shape co-ordinates b2Vec2 normalL = b2MulT( bodyTransform.q, mSurfaceNormal); F32 offsetL = mFluidArea.upperBound.y - b2Dot(mSurfaceNormal, bodyTransform.p); F32 depths[b2_maxPolygonVertices]; S32 diveCount = 0; S32 intoIndex = -1; S32 outoIndex = -1; const S32 vertexCount = pShape->GetVertexCount(); const b2Vec2* pVertices = pShape->m_vertices; bool lastSubmerged = false; for ( S32 i = 0; i < vertexCount; ++i ) { depths[i] = b2Dot(normalL, pVertices[i]) - offsetL; const bool isSubmerged = depths[i]<-FLT_EPSILON; if (i > 0) { if (isSubmerged) { if (!lastSubmerged) { intoIndex = i-1; diveCount++; } } else { if (lastSubmerged) { outoIndex = i-1; diveCount++; } } } lastSubmerged = isSubmerged; } switch(diveCount) { case 0: if (lastSubmerged) { // Completely submerged b2MassData md; pShape->ComputeMass(&md, 1.0f); center = b2Mul(bodyTransform, md.center); return md.mass; } else { // Completely dry return 0.0; } break; case 1: if( intoIndex==-1 ) { intoIndex = vertexCount-1; } else { outoIndex = vertexCount-1; } break; } const S32 intoIndex2 = (intoIndex+1) % vertexCount; const S32 outoIndex2 = (outoIndex+1) % vertexCount; const F32 intoLambda = (0 - depths[intoIndex]) / (depths[intoIndex2] - depths[intoIndex]); const F32 outoLambda = (0 - depths[outoIndex]) / (depths[outoIndex2] - depths[outoIndex]); const b2Vec2 intoVec( pVertices[intoIndex].x*(1-intoLambda)+pVertices[intoIndex2].x*intoLambda, pVertices[intoIndex].y*(1-intoLambda)+pVertices[intoIndex2].y*intoLambda); const b2Vec2 outoVec( pVertices[outoIndex].x*(1-outoLambda)+pVertices[outoIndex2].x*outoLambda, pVertices[outoIndex].y*(1-outoLambda)+pVertices[outoIndex2].y*outoLambda); // Initialize accumulator F32 area = 0.0f; center.SetZero(); b2Vec2 p2 = pVertices[intoIndex2]; b2Vec2 p3; const F32 k_inv3 = 1.0f / 3.0f; // An awkward loop from intoIndex2+1 to outIndex2 S32 i = intoIndex2; while (i != outoIndex2) { i = (i+1) % vertexCount; if (i == outoIndex2) p3 = outoVec; else p3 = pVertices[i]; // Add the triangle formed by intoVec,p2,p3 const b2Vec2 e1 = p2 - intoVec; const b2Vec2 e2 = p3 - intoVec; const F32 D = b2Cross(e1, e2); const F32 triangleArea = 0.5f * D; area += triangleArea; // Area weighted centroid center += triangleArea * k_inv3 * (intoVec + p2 + p3); p2 = p3; } // Normalize and transform centroid center *= 1.0f / area; center = b2Mul(bodyTransform, center); return area; } //------------------------------------------------------------------------------ void BuoyancyController::renderOverlay( Scene* pScene, const SceneRenderState* pSceneRenderState, BatchRender* pBatchRenderer ) { // Call parent. Parent::renderOverlay( pScene, pSceneRenderState, pBatchRenderer ); // Draw fluid area. pScene->mDebugDraw.DrawAABB( mFluidArea, ColorF(0.7f, 0.7f, 0.9f) ); }