/** * OpenAL cross platform audio library * Copyright (C) 2013 by Mike Gorchak * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include #include #include "alc/effects/base.h" #include "alnumbers.h" #include "alnumeric.h" #include "alspan.h" #include "core/ambidefs.h" #include "core/bufferline.h" #include "core/context.h" #include "core/cubic_tables.h" #include "core/device.h" #include "core/effects/base.h" #include "core/effectslot.h" #include "core/mixer.h" #include "core/mixer/defs.h" #include "core/resampler_limits.h" #include "intrusive_ptr.h" #include "opthelpers.h" struct BufferStorage; namespace { using uint = unsigned int; constexpr auto inv_sqrt2 = static_cast(1.0 / al::numbers::sqrt2); constexpr auto lcoeffs_pw = CalcDirectionCoeffs(std::array{-1.0f, 0.0f, 0.0f}); constexpr auto rcoeffs_pw = CalcDirectionCoeffs(std::array{ 1.0f, 0.0f, 0.0f}); constexpr auto lcoeffs_nrml = CalcDirectionCoeffs(std::array{-inv_sqrt2, 0.0f, inv_sqrt2}); constexpr auto rcoeffs_nrml = CalcDirectionCoeffs(std::array{ inv_sqrt2, 0.0f, inv_sqrt2}); struct ChorusState final : public EffectState { std::vector mDelayBuffer; uint mOffset{0}; uint mLfoOffset{0}; uint mLfoRange{1}; float mLfoScale{0.0f}; uint mLfoDisp{0}; /* Calculated delays to apply to the left and right outputs. */ std::array,2> mModDelays{}; /* Temp storage for the modulated left and right outputs. */ alignas(16) std::array mBuffer{}; /* Gains for left and right outputs. */ struct OutGains { std::array Current{}; std::array Target{}; }; std::array mGains; /* effect parameters */ ChorusWaveform mWaveform{}; int mDelay{0}; float mDepth{0.0f}; float mFeedback{0.0f}; void calcTriangleDelays(const size_t todo); void calcSinusoidDelays(const size_t todo); void deviceUpdate(const DeviceBase *device, const float MaxDelay); void update(const ContextBase *context, const EffectSlot *slot, const ChorusWaveform waveform, const float delay, const float depth, const float feedback, const float rate, int phase, const EffectTarget target); void deviceUpdate(const DeviceBase *device, const BufferStorage*) final; void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props_, const EffectTarget target) final; void process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) final; }; void ChorusState::deviceUpdate(const DeviceBase *Device, const BufferStorage*) { constexpr auto MaxDelay = std::max(ChorusMaxDelay, FlangerMaxDelay); const auto frequency = static_cast(Device->Frequency); const size_t maxlen{NextPowerOf2(float2uint(MaxDelay*2.0f*frequency) + 1u)}; if(maxlen != mDelayBuffer.size()) decltype(mDelayBuffer)(maxlen).swap(mDelayBuffer); std::fill(mDelayBuffer.begin(), mDelayBuffer.end(), 0.0f); for(auto &e : mGains) { e.Current.fill(0.0f); e.Target.fill(0.0f); } } void ChorusState::update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props_, const EffectTarget target) { static constexpr int mindelay{MaxResamplerEdge << gCubicTable.sTableBits}; auto &props = std::get(*props_); /* The LFO depth is scaled to be relative to the sample delay. Clamp the * delay and depth to allow enough padding for resampling. */ const DeviceBase *device{context->mDevice}; const auto frequency = static_cast(device->Frequency); mWaveform = props.Waveform; const auto stepscale = float{frequency * gCubicTable.sTableSteps}; mDelay = std::max(float2int(std::round(props.Delay * stepscale)), mindelay); mDepth = std::min(static_cast(mDelay) * props.Depth, static_cast(mDelay - mindelay)); mFeedback = props.Feedback; /* Gains for left and right sides */ const bool ispairwise{device->mRenderMode == RenderMode::Pairwise}; const auto lcoeffs = (!ispairwise) ? al::span{lcoeffs_nrml} : al::span{lcoeffs_pw}; const auto rcoeffs = (!ispairwise) ? al::span{rcoeffs_nrml} : al::span{rcoeffs_pw}; /* Attenuate the outputs by -3dB, since we duplicate a single mono input to * separate left/right outputs. */ const auto gain = slot->Gain * (1.0f/al::numbers::sqrt2_v); mOutTarget = target.Main->Buffer; ComputePanGains(target.Main, lcoeffs, gain, mGains[0].Target); ComputePanGains(target.Main, rcoeffs, gain, mGains[1].Target); if(!(props.Rate > 0.0f)) { mLfoOffset = 0; mLfoRange = 1; mLfoScale = 0.0f; mLfoDisp = 0; } else { /* Calculate LFO coefficient (number of samples per cycle). Limit the * max range to avoid overflow when calculating the displacement. */ static constexpr int range_limit{std::numeric_limits::max()/360 - 180}; const auto range = std::round(frequency / props.Rate); const uint lfo_range{float2uint(std::min(range, float{range_limit}))}; mLfoOffset = mLfoOffset * lfo_range / mLfoRange; mLfoRange = lfo_range; switch(mWaveform) { case ChorusWaveform::Triangle: mLfoScale = 4.0f / static_cast(mLfoRange); break; case ChorusWaveform::Sinusoid: mLfoScale = al::numbers::pi_v*2.0f / static_cast(mLfoRange); break; } /* Calculate lfo phase displacement */ auto phase = props.Phase; if(phase < 0) phase += 360; mLfoDisp = (mLfoRange*static_cast(phase) + 180) / 360; } } void ChorusState::calcTriangleDelays(const size_t todo) { const uint lfo_range{mLfoRange}; const float lfo_scale{mLfoScale}; const float depth{mDepth}; const int delay{mDelay}; auto gen_lfo = [lfo_scale,depth,delay](const uint offset) -> uint { const float offset_norm{static_cast(offset) * lfo_scale}; return static_cast(fastf2i((1.0f-std::abs(2.0f-offset_norm)) * depth) + delay); }; uint offset{mLfoOffset}; ASSUME(lfo_range > offset); auto ldelays = mModDelays[0].begin(); for(size_t i{0};i < todo;) { const size_t rem{std::min(todo-i, size_t{lfo_range-offset})}; ldelays = std::generate_n(ldelays, rem, [&offset,gen_lfo] { return gen_lfo(offset++); }); if(offset == lfo_range) offset = 0; i += rem; } offset = (mLfoOffset+mLfoDisp) % lfo_range; auto rdelays = mModDelays[1].begin(); for(size_t i{0};i < todo;) { const size_t rem{std::min(todo-i, size_t{lfo_range-offset})}; rdelays = std::generate_n(rdelays, rem, [&offset,gen_lfo] { return gen_lfo(offset++); }); if(offset == lfo_range) offset = 0; i += rem; } mLfoOffset = static_cast(mLfoOffset+todo) % lfo_range; } void ChorusState::calcSinusoidDelays(const size_t todo) { const uint lfo_range{mLfoRange}; const float lfo_scale{mLfoScale}; const float depth{mDepth}; const int delay{mDelay}; auto gen_lfo = [lfo_scale,depth,delay](const uint offset) -> uint { const float offset_norm{static_cast(offset) * lfo_scale}; return static_cast(fastf2i(std::sin(offset_norm)*depth) + delay); }; uint offset{mLfoOffset}; ASSUME(lfo_range > offset); auto ldelays = mModDelays[0].begin(); for(size_t i{0};i < todo;) { const size_t rem{std::min(todo-i, size_t{lfo_range-offset})}; ldelays = std::generate_n(ldelays, rem, [&offset,gen_lfo] { return gen_lfo(offset++); }); if(offset == lfo_range) offset = 0; i += rem; } offset = (mLfoOffset+mLfoDisp) % lfo_range; auto rdelays = mModDelays[1].begin(); for(size_t i{0};i < todo;) { const size_t rem{std::min(todo-i, size_t{lfo_range-offset})}; rdelays = std::generate_n(rdelays, rem, [&offset,gen_lfo] { return gen_lfo(offset++); }); if(offset == lfo_range) offset = 0; i += rem; } mLfoOffset = static_cast(mLfoOffset+todo) % lfo_range; } void ChorusState::process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) { const auto delaybuf = al::span{mDelayBuffer}; const size_t bufmask{delaybuf.size()-1}; const float feedback{mFeedback}; const uint avgdelay{(static_cast(mDelay) + MixerFracHalf) >> MixerFracBits}; uint offset{mOffset}; if(mWaveform == ChorusWaveform::Sinusoid) calcSinusoidDelays(samplesToDo); else /*if(mWaveform == ChorusWaveform::Triangle)*/ calcTriangleDelays(samplesToDo); const auto ldelays = al::span{mModDelays[0]}; const auto rdelays = al::span{mModDelays[1]}; const auto lbuffer = al::span{mBuffer[0]}; const auto rbuffer = al::span{mBuffer[1]}; for(size_t i{0u};i < samplesToDo;++i) { // Feed the buffer's input first (necessary for delays < 1). delaybuf[offset&bufmask] = samplesIn[0][i]; // Tap for the left output. size_t delay{offset - (ldelays[i] >> gCubicTable.sTableBits)}; size_t phase{ldelays[i] & gCubicTable.sTableMask}; lbuffer[i] = delaybuf[(delay+1) & bufmask]*gCubicTable.getCoeff0(phase) + delaybuf[(delay ) & bufmask]*gCubicTable.getCoeff1(phase) + delaybuf[(delay-1) & bufmask]*gCubicTable.getCoeff2(phase) + delaybuf[(delay-2) & bufmask]*gCubicTable.getCoeff3(phase); // Tap for the right output. delay = offset - (rdelays[i] >> gCubicTable.sTableBits); phase = rdelays[i] & gCubicTable.sTableMask; rbuffer[i] = delaybuf[(delay+1) & bufmask]*gCubicTable.getCoeff0(phase) + delaybuf[(delay ) & bufmask]*gCubicTable.getCoeff1(phase) + delaybuf[(delay-1) & bufmask]*gCubicTable.getCoeff2(phase) + delaybuf[(delay-2) & bufmask]*gCubicTable.getCoeff3(phase); // Accumulate feedback from the average delay of the taps. delaybuf[offset&bufmask] += delaybuf[(offset-avgdelay) & bufmask] * feedback; ++offset; } MixSamples(lbuffer.first(samplesToDo), samplesOut, mGains[0].Current, mGains[0].Target, samplesToDo, 0); MixSamples(rbuffer.first(samplesToDo), samplesOut, mGains[1].Current, mGains[1].Target, samplesToDo, 0); mOffset = offset; } struct ChorusStateFactory final : public EffectStateFactory { al::intrusive_ptr create() override { return al::intrusive_ptr{new ChorusState{}}; } }; } // namespace EffectStateFactory *ChorusStateFactory_getFactory() { static ChorusStateFactory ChorusFactory{}; return &ChorusFactory; }