/** * Ambisonic reverb engine for the OpenAL cross platform audio library * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include "alc/effects/base.h" #include "alnumbers.h" #include "alnumeric.h" #include "alspan.h" #include "core/ambidefs.h" #include "core/bufferline.h" #include "core/context.h" #include "core/cubic_tables.h" #include "core/device.h" #include "core/effects/base.h" #include "core/effectslot.h" #include "core/filters/biquad.h" #include "core/filters/splitter.h" #include "core/mixer.h" #include "core/mixer/defs.h" #include "intrusive_ptr.h" #include "opthelpers.h" #include "vector.h" struct BufferStorage; namespace { using uint = unsigned int; constexpr float MaxModulationTime{4.0f}; constexpr float DefaultModulationTime{0.25f}; #define MOD_FRACBITS 24 #define MOD_FRACONE (1<,NUM_LINES> B2A{{ /* W Y Z X */ {{ 0.5f, 0.5f, 0.5f, 0.5f }}, /* A0 */ {{ 0.5f, -0.5f, -0.5f, 0.5f }}, /* A1 */ {{ 0.5f, 0.5f, -0.5f, -0.5f }}, /* A2 */ {{ 0.5f, -0.5f, 0.5f, -0.5f }} /* A3 */ }}; /* Converts (W-normalized) A-Format to B-Format for early reflections (scaled * by 1/sqrt(3) to compensate for the boost in the B2A matrix). */ alignas(16) constexpr std::array,NUM_LINES> EarlyA2B{{ /* A0 A1 A2 A3 */ {{ 0.5f, 0.5f, 0.5f, 0.5f }}, /* W */ {{ 0.5f, -0.5f, 0.5f, -0.5f }}, /* Y */ {{ 0.5f, -0.5f, -0.5f, 0.5f }}, /* Z */ {{ 0.5f, 0.5f, -0.5f, -0.5f }} /* X */ }}; /* Converts (W-normalized) A-Format to B-Format for late reverb (scaled * by 1/sqrt(3) to compensate for the boost in the B2A matrix). The response * is rotated around Z (ambisonic X) so that the front lines are placed * horizontally in front, and the rear lines are placed vertically in back. */ constexpr auto InvSqrt2 = static_cast(1.0/al::numbers::sqrt2); alignas(16) constexpr std::array,NUM_LINES> LateA2B{{ /* A0 A1 A2 A3 */ {{ 0.5f, 0.5f, 0.5f, 0.5f }}, /* W */ {{ InvSqrt2, -InvSqrt2, 0.0f, 0.0f }}, /* Y */ {{ 0.0f, 0.0f, -InvSqrt2, InvSqrt2 }}, /* Z */ {{ 0.5f, 0.5f, -0.5f, -0.5f }} /* X */ }}; /* The all-pass and delay lines have a variable length dependent on the * effect's density parameter, which helps alter the perceived environment * size. The size-to-density conversion is a cubed scale: * * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE); * * The line lengths scale linearly with room size, so the inverse density * conversion is needed, taking the cube root of the re-scaled density to * calculate the line length multiplier: * * length_mult = max(5.0, cbrt(density*DENSITY_SCALE)); * * The density scale below will result in a max line multiplier of 50, for an * effective size range of 5m to 50m. */ constexpr float DENSITY_SCALE{125000.0f}; /* All delay line lengths are specified in seconds. * * To approximate early reflections, we break them up into primary (those * arriving from the same direction as the source) and secondary (those * arriving from the opposite direction). * * The early taps decorrelate the 4-channel signal to approximate an average * room response for the primary reflections after the initial early delay. * * Given an average room dimension (d_a) and the speed of sound (c) we can * calculate the average reflection delay (r_a) regardless of listener and * source positions as: * * r_a = d_a / c * c = 343.3 * * This can extended to finding the average difference (r_d) between the * maximum (r_1) and minimum (r_0) reflection delays: * * r_0 = 2 / 3 r_a * = r_a - r_d / 2 * = r_d * r_1 = 4 / 3 r_a * = r_a + r_d / 2 * = 2 r_d * r_d = 2 / 3 r_a * = r_1 - r_0 * * As can be determined by integrating the 1D model with a source (s) and * listener (l) positioned across the dimension of length (d_a): * * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c * * The initial taps (T_(i=0)^N) are then specified by taking a power series * that ranges between r_0 and half of r_1 less r_0: * * R_i = 2^(i / (2 N - 1)) r_d * = r_0 + (2^(i / (2 N - 1)) - 1) r_d * = r_0 + T_i * T_i = R_i - r_0 * = (2^(i / (2 N - 1)) - 1) r_d * * Assuming an average of 1m, we get the following taps: */ constexpr std::array EARLY_TAP_LENGTHS{{ 0.0000000e+0f, 2.0213520e-4f, 4.2531060e-4f, 6.7171600e-4f }}; /* The early all-pass filter lengths are based on the early tap lengths: * * A_i = R_i / a * * Where a is the approximate maximum all-pass cycle limit (20). */ constexpr std::array EARLY_ALLPASS_LENGTHS{{ 9.7096800e-5f, 1.0720356e-4f, 1.1836234e-4f, 1.3068260e-4f }}; /* The early delay lines are used to transform the primary reflections into * the secondary reflections. The A-format is arranged in such a way that * the channels/lines are spatially opposite: * * C_i is opposite C_(N-i-1) * * The delays of the two opposing reflections (R_i and O_i) from a source * anywhere along a particular dimension always sum to twice its full delay: * * 2 r_a = R_i + O_i * * With that in mind we can determine the delay between the two reflections * and thus specify our early line lengths (L_(i=0)^N) using: * * O_i = 2 r_a - R_(N-i-1) * L_i = O_i - R_(N-i-1) * = 2 (r_a - R_(N-i-1)) * = 2 (r_a - T_(N-i-1) - r_0) * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1))) * * Using an average dimension of 1m, we get: */ constexpr std::array EARLY_LINE_LENGTHS{{ 0.0000000e+0f, 4.9281100e-4f, 9.3916180e-4f, 1.3434322e-3f }}; /* The late all-pass filter lengths are based on the late line lengths: * * A_i = (5 / 3) L_i / r_1 */ constexpr std::array LATE_ALLPASS_LENGTHS{{ 1.6182800e-4f, 2.0389060e-4f, 2.8159360e-4f, 3.2365600e-4f }}; /* The late lines are used to approximate the decaying cycle of recursive * late reflections. * * Splitting the lines in half, we start with the shortest reflection paths * (L_(i=0)^(N/2)): * * L_i = 2^(i / (N - 1)) r_d * * Then for the opposite (longest) reflection paths (L_(i=N/2)^N): * * L_i = 2 r_a - L_(i-N/2) * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d * * For our 1m average room, we get: */ constexpr std::array LATE_LINE_LENGTHS{{ 1.9419362e-3f, 2.4466860e-3f, 3.3791220e-3f, 3.8838720e-3f }}; using ReverbUpdateLine = std::array; struct DelayLineI { /* The delay lines use interleaved samples, with the lengths being powers * of 2 to allow the use of bit-masking instead of a modulus for wrapping. */ al::span mLine; /* Given the allocated sample buffer, this function updates each delay line * offset. */ void realizeLineOffset(al::span sampleBuffer) noexcept { mLine = sampleBuffer; } /* Calculate the length of a delay line and store its mask and offset. */ static auto calcLineLength(const float length, const float frequency, const uint extra) -> size_t { /* All line lengths are powers of 2, calculated from their lengths in * seconds, rounded up. */ uint samples{float2uint(std::ceil(length*frequency))}; samples = NextPowerOf2(samples + extra); /* Return the sample count for accumulation. */ return samples*NUM_LINES; } }; struct DelayLineU { al::span mLine; void realizeLineOffset(al::span sampleBuffer) noexcept { assert(sampleBuffer.size() > 4 && !(sampleBuffer.size() & (sampleBuffer.size()-1))); mLine = sampleBuffer; } static auto calcLineLength(const float length, const float frequency, const uint extra) -> size_t { uint samples{float2uint(std::ceil(length*frequency))}; samples = NextPowerOf2(samples + extra); return samples*NUM_LINES; } [[nodiscard]] auto get(size_t chan) const noexcept { const size_t stride{mLine.size() / NUM_LINES}; return mLine.subspan(chan*stride, stride); } void write(size_t offset, const size_t c, al::span in) const noexcept { const size_t stride{mLine.size() / NUM_LINES}; const auto output = mLine.subspan(c*stride); while(!in.empty()) { offset &= stride-1; const size_t td{std::min(stride - offset, in.size())}; std::copy_n(in.begin(), td, output.begin() + ptrdiff_t(offset)); offset += td; in = in.subspan(td); } } /* Writes the given input lines to the delay buffer, applying a geometric * reflection. This effectively applies the matrix * * [ +1/2 -1/2 -1/2 -1/2 ] * [ -1/2 +1/2 -1/2 -1/2 ] * [ -1/2 -1/2 +1/2 -1/2 ] * [ -1/2 -1/2 -1/2 +1/2 ] * * to the four input lines when writing to the delay buffer. The effect on * the B-Format signal is negating W, applying a 180-degree phase shift and * moving each response to its spatially opposite location. */ void writeReflected(size_t offset, const al::span in, const size_t count) const noexcept { const size_t stride{mLine.size() / NUM_LINES}; for(size_t i{0u};i < count;) { offset &= stride-1; size_t td{std::min(stride - offset, count - i)}; do { const std::array src{in[0][i], in[1][i], in[2][i], in[3][i]}; ++i; const std::array f{ (src[0] - src[1] - src[2] - src[3]) * 0.5f, (src[1] - src[0] - src[2] - src[3]) * 0.5f, (src[2] - src[0] - src[1] - src[3]) * 0.5f, (src[3] - src[0] - src[1] - src[2] ) * 0.5f }; mLine[0*stride + offset] = f[0]; mLine[1*stride + offset] = f[1]; mLine[2*stride + offset] = f[2]; mLine[3*stride + offset] = f[3]; ++offset; } while(--td); } } }; struct VecAllpass { DelayLineI Delay; float Coeff{0.0f}; std::array Offset{}; void process(const al::span samples, size_t offset, const float xCoeff, const float yCoeff, const size_t todo) const noexcept; }; struct Allpass4 { DelayLineU Delay; float Coeff{0.0f}; std::array Offset{}; void process(const al::span samples, const size_t offset, const size_t todo) const noexcept; }; struct T60Filter { /* Two filters are used to adjust the signal. One to control the low * frequencies, and one to control the high frequencies. */ float MidGain{0.0f}; BiquadFilter HFFilter, LFFilter; void calcCoeffs(const float length, const float lfDecayTime, const float mfDecayTime, const float hfDecayTime, const float lf0norm, const float hf0norm); /* Applies the two T60 damping filter sections. */ void process(const al::span samples) { DualBiquad{HFFilter, LFFilter}.process(samples, samples); } void clear() noexcept { HFFilter.clear(); LFFilter.clear(); } }; struct EarlyReflections { Allpass4 VecAp; /* An echo line is used to complete the second half of the early * reflections. */ DelayLineU Delay; std::array Offset{}; std::array Coeff{}; /* The gain for each output channel based on 3D panning. */ struct OutGains { std::array Current{}; std::array Target{}; void clear() { Current.fill(0.0f); Target.fill(0.0); } }; std::array Gains{}; void updateLines(const float density_mult, const float diffusion, const float decayTime, const float frequency); void clear() { std::for_each(Gains.begin(), Gains.end(), std::mem_fn(&OutGains::clear)); } }; struct Modulation { /* The vibrato time is tracked with an index over a (MOD_FRACONE) * normalized range. */ uint Index{0u}, Step{1u}; /* The depth of frequency change, in samples. */ float Depth{0.0f}; std::array ModDelays{}; void updateModulator(float modTime, float modDepth, float frequency); auto calcDelays(size_t todo) -> al::span; void clear() noexcept { Index = 0u; Step = 1u; Depth = 0.0f; } }; struct LateReverb { /* A recursive delay line is used fill in the reverb tail. */ DelayLineU Delay; std::array Offset{}; /* Attenuation to compensate for the modal density and decay rate of the * late lines. */ float DensityGain{0.0f}; /* T60 decay filters are used to simulate absorption. */ std::array T60; Modulation Mod; /* A Gerzon vector all-pass filter is used to simulate diffusion. */ VecAllpass VecAp; /* The gain for each output channel based on 3D panning. */ struct OutGains { std::array Current{}; std::array Target{}; void clear() { Current.fill(0.0f); Target.fill(0.0); } }; std::array Gains{}; void updateLines(const float density_mult, const float diffusion, const float lfDecayTime, const float mfDecayTime, const float hfDecayTime, const float lf0norm, const float hf0norm, const float frequency); void clear() { std::for_each(T60.begin(), T60.end(), std::mem_fn(&T60Filter::clear)); Mod.clear(); std::for_each(Gains.begin(), Gains.end(), std::mem_fn(&OutGains::clear)); } }; struct ReverbPipeline { /* Master effect filters */ struct FilterPair { BiquadFilter Lp; BiquadFilter Hp; void clear() noexcept { Lp.clear(); Hp.clear(); } }; std::array mFilter; /* Late reverb input delay line (early reflections feed this, and late * reverb taps from it). */ DelayLineU mLateDelayIn; /* Tap points for early reflection input delay. */ std::array,NUM_LINES> mEarlyDelayTap{}; std::array,NUM_LINES> mEarlyDelayCoeff{}; /* Tap points for late reverb feed and delay. */ std::array,NUM_LINES> mLateDelayTap{}; /* Coefficients for the all-pass and line scattering matrices. */ float mMixX{1.0f}; float mMixY{0.0f}; EarlyReflections mEarly; LateReverb mLate; std::array,2> mAmbiSplitter; size_t mFadeSampleCount{1}; void updateDelayLine(const float gain, const float earlyDelay, const float lateDelay, const float density_mult, const float decayTime, const float frequency); void update3DPanning(const al::span ReflectionsPan, const al::span LateReverbPan, const float earlyGain, const float lateGain, const bool doUpmix, const MixParams *mainMix); void processEarly(const DelayLineU &main_delay, size_t offset, const size_t samplesToDo, const al::span tempSamples, const al::span outSamples); void processLate(size_t offset, const size_t samplesToDo, const al::span tempSamples, const al::span outSamples); void clear() noexcept { std::for_each(mFilter.begin(), mFilter.end(), std::mem_fn(&FilterPair::clear)); mEarlyDelayTap = {}; mEarlyDelayCoeff = {}; mLateDelayTap = {}; mEarly.clear(); mLate.clear(); auto clear_filters = [](const al::span filters) { std::for_each(filters.begin(), filters.end(), std::mem_fn(&BandSplitter::clear)); }; std::for_each(mAmbiSplitter.begin(), mAmbiSplitter.end(), clear_filters); } }; struct ReverbState final : public EffectState { /* All delay lines are allocated as a single buffer to reduce memory * fragmentation and management code. */ al::vector mSampleBuffer; struct Params { /* Calculated parameters which indicate if cross-fading is needed after * an update. */ float Density{1.0f}; float Diffusion{1.0f}; float DecayTime{1.49f}; float HFDecayTime{0.83f * 1.49f}; float LFDecayTime{1.0f * 1.49f}; float ModulationTime{0.25f}; float ModulationDepth{0.0f}; float HFReference{5000.0f}; float LFReference{250.0f}; }; Params mParams; enum PipelineState : uint8_t { DeviceClear, StartFade, Fading, Cleanup, Normal, }; PipelineState mPipelineState{DeviceClear}; bool mCurrentPipeline{false}; /* Core delay line (early reflections tap from this). */ DelayLineU mMainDelay; std::array mPipelines; /* The current write offset for all delay lines. */ size_t mOffset{}; /* Temporary storage used when processing. */ alignas(16) FloatBufferLine mTempLine{}; alignas(16) std::array mTempSamples{}; alignas(16) std::array mEarlySamples{}; alignas(16) std::array mLateSamples{}; std::array mOrderScales{}; bool mUpmixOutput{false}; void MixOutPlain(ReverbPipeline &pipeline, const al::span samplesOut, const size_t todo) const { /* When not upsampling, the panning gains convert to B-Format and pan * at the same time. */ auto inBuffer = mEarlySamples.cbegin(); for(auto &gains : pipeline.mEarly.Gains) { MixSamples(al::span{*inBuffer++}.first(todo), samplesOut, gains.Current, gains.Target, todo, 0); } inBuffer = mLateSamples.cbegin(); for(auto &gains : pipeline.mLate.Gains) { MixSamples(al::span{*inBuffer++}.first(todo), samplesOut, gains.Current, gains.Target, todo, 0); } } void MixOutAmbiUp(ReverbPipeline &pipeline, const al::span samplesOut, const size_t todo) { auto DoMixRow = [](const al::span OutBuffer, const al::span Gains, const al::span InSamples) { auto inBuffer = InSamples.cbegin(); std::fill(OutBuffer.begin(), OutBuffer.end(), 0.0f); for(const float gain : Gains) { if(std::fabs(gain) > GainSilenceThreshold) { auto mix_sample = [gain](const float sample, const float in) noexcept -> float { return sample + in*gain; }; std::transform(OutBuffer.begin(), OutBuffer.end(), inBuffer->cbegin(), OutBuffer.begin(), mix_sample); } ++inBuffer; } }; /* When upsampling, the B-Format conversion needs to be done separately * so the proper HF scaling can be applied to each B-Format channel. * The panning gains then pan and upsample the B-Format channels. */ const auto tmpspan = al::span{mTempLine}.first(todo); auto hfscale = float{mOrderScales[0]}; auto splitter = pipeline.mAmbiSplitter[0].begin(); auto a2bcoeffs = EarlyA2B.cbegin(); for(auto &gains : pipeline.mEarly.Gains) { DoMixRow(tmpspan, *(a2bcoeffs++), mEarlySamples); /* Apply scaling to the B-Format's HF response to "upsample" it to * higher-order output. */ (splitter++)->processHfScale(tmpspan, hfscale); hfscale = mOrderScales[1]; MixSamples(tmpspan, samplesOut, gains.Current, gains.Target, todo, 0); } hfscale = mOrderScales[0]; splitter = pipeline.mAmbiSplitter[1].begin(); a2bcoeffs = LateA2B.cbegin(); for(auto &gains : pipeline.mLate.Gains) { DoMixRow(tmpspan, *(a2bcoeffs++), mLateSamples); (splitter++)->processHfScale(tmpspan, hfscale); hfscale = mOrderScales[1]; MixSamples(tmpspan, samplesOut, gains.Current, gains.Target, todo, 0); } } void mixOut(ReverbPipeline &pipeline, const al::span samplesOut, const size_t todo) { if(mUpmixOutput) MixOutAmbiUp(pipeline, samplesOut, todo); else MixOutPlain(pipeline, samplesOut, todo); } void allocLines(const float frequency); void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override; void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props, const EffectTarget target) override; void process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) override; }; /************************************** * Device Update * **************************************/ inline float CalcDelayLengthMult(float density) { return std::max(5.0f, std::cbrt(density*DENSITY_SCALE)); } /* Calculates the delay line metrics and allocates the shared sample buffer * for all lines given the sample rate (frequency). */ void ReverbState::allocLines(const float frequency) { /* Multiplier for the maximum density value, i.e. density=1, which is * actually the least density... */ const float multiplier{CalcDelayLengthMult(1.0f)}; /* The modulator's line length is calculated from the maximum modulation * time and depth coefficient, and halfed for the low-to-high frequency * swing. */ static constexpr float max_mod_delay{MaxModulationTime*MODULATION_DEPTH_COEFF / 2.0f}; std::array linelengths{}; size_t oidx{0}; size_t totalSamples{0u}; /* The main delay length includes the maximum early reflection delay and * the largest early tap width. It must also be extended by the update size * (BufferLineSize) for block processing. */ float length{ReverbMaxReflectionsDelay + EARLY_TAP_LENGTHS.back()*multiplier}; size_t count{mMainDelay.calcLineLength(length, frequency, BufferLineSize)}; linelengths[oidx++] = count; totalSamples += count; for(auto &pipeline : mPipelines) { static constexpr float LateDiffAvg{(LATE_LINE_LENGTHS.back()-LATE_LINE_LENGTHS.front()) / float{NUM_LINES}}; length = ReverbMaxLateReverbDelay + LateDiffAvg*multiplier; count = pipeline.mLateDelayIn.calcLineLength(length, frequency, BufferLineSize); linelengths[oidx++] = count; totalSamples += count; /* The early vector all-pass line. */ length = EARLY_ALLPASS_LENGTHS.back() * multiplier; count = pipeline.mEarly.VecAp.Delay.calcLineLength(length, frequency, 0); linelengths[oidx++] = count; totalSamples += count; /* The early reflection line. */ length = EARLY_LINE_LENGTHS.back() * multiplier; count = pipeline.mEarly.Delay.calcLineLength(length, frequency, MAX_UPDATE_SAMPLES); linelengths[oidx++] = count; totalSamples += count; /* The late vector all-pass line. */ length = LATE_ALLPASS_LENGTHS.back() * multiplier; count = pipeline.mLate.VecAp.Delay.calcLineLength(length, frequency, 0); linelengths[oidx++] = count; totalSamples += count; /* The late delay lines are calculated from the largest maximum density * line length, and the maximum modulation delay. Four additional * samples are needed for resampling the modulator delay. */ length = LATE_LINE_LENGTHS.back()*multiplier + max_mod_delay; count = pipeline.mLate.Delay.calcLineLength(length, frequency, 4); linelengths[oidx++] = count; totalSamples += count; } assert(oidx == linelengths.size()); if(totalSamples != mSampleBuffer.size()) decltype(mSampleBuffer)(totalSamples).swap(mSampleBuffer); /* Clear the sample buffer. */ std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f); /* Update all delays to reflect the new sample buffer. */ auto bufferspan = al::span{mSampleBuffer}; oidx = 0; mMainDelay.realizeLineOffset(bufferspan.first(linelengths[oidx])); bufferspan = bufferspan.subspan(linelengths[oidx++]); for(auto &pipeline : mPipelines) { pipeline.mLateDelayIn.realizeLineOffset(bufferspan.first(linelengths[oidx])); bufferspan = bufferspan.subspan(linelengths[oidx++]); pipeline.mEarly.VecAp.Delay.realizeLineOffset(bufferspan.first(linelengths[oidx])); bufferspan = bufferspan.subspan(linelengths[oidx++]); pipeline.mEarly.Delay.realizeLineOffset(bufferspan.first(linelengths[oidx])); bufferspan = bufferspan.subspan(linelengths[oidx++]); pipeline.mLate.VecAp.Delay.realizeLineOffset(bufferspan.first(linelengths[oidx])); bufferspan = bufferspan.subspan(linelengths[oidx++]); pipeline.mLate.Delay.realizeLineOffset(bufferspan.first(linelengths[oidx])); bufferspan = bufferspan.subspan(linelengths[oidx++]); } assert(oidx == linelengths.size()); } void ReverbState::deviceUpdate(const DeviceBase *device, const BufferStorage*) { const auto frequency = static_cast(device->Frequency); /* Allocate the delay lines. */ allocLines(frequency); std::for_each(mPipelines.begin(), mPipelines.end(), std::mem_fn(&ReverbPipeline::clear)); mPipelineState = DeviceClear; /* Reset offset base. */ mOffset = 0; if(device->mAmbiOrder > 1) { mUpmixOutput = true; mOrderScales = AmbiScale::GetHFOrderScales(1, device->mAmbiOrder, device->m2DMixing); } else { mUpmixOutput = false; mOrderScales.fill(1.0f); } auto splitter = BandSplitter{device->mXOverFreq / frequency}; auto set_splitters = [&splitter](ReverbPipeline &pipeline) { std::fill(pipeline.mAmbiSplitter[0].begin(), pipeline.mAmbiSplitter[0].end(), splitter); std::fill(pipeline.mAmbiSplitter[1].begin(), pipeline.mAmbiSplitter[1].end(), splitter); }; std::for_each(mPipelines.begin(), mPipelines.end(), set_splitters); } /************************************** * Effect Update * **************************************/ /* Calculate a decay coefficient given the length of each cycle and the time * until the decay reaches -60 dB. */ inline float CalcDecayCoeff(const float length, const float decayTime) { return std::pow(ReverbDecayGain, length/decayTime); } /* Calculate a decay length from a coefficient and the time until the decay * reaches -60 dB. */ inline float CalcDecayLength(const float coeff, const float decayTime) { constexpr float log10_decaygain{-3.0f/*std::log10(ReverbDecayGain)*/}; return std::log10(coeff) * decayTime / log10_decaygain; } /* Calculate an attenuation to be applied to the input of any echo models to * compensate for modal density and decay time. */ inline float CalcDensityGain(const float a) { /* The energy of a signal can be obtained by finding the area under the * squared signal. This takes the form of Sum(x_n^2), where x is the * amplitude for the sample n. * * Decaying feedback matches exponential decay of the form Sum(a^n), * where a is the attenuation coefficient, and n is the sample. The area * under this decay curve can be calculated as: 1 / (1 - a). * * Modifying the above equation to find the area under the squared curve * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be * calculated by inverting the square root of this approximation, * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2). */ return std::sqrt(1.0f - a*a); } /* Calculate the scattering matrix coefficients given a diffusion factor. */ inline void CalcMatrixCoeffs(const float diffusion, float *x, float *y) { /* The matrix is of order 4, so n is sqrt(4 - 1). */ constexpr float n{al::numbers::sqrt3_v}; const float t{diffusion * std::atan(n)}; /* Calculate the first mixing matrix coefficient. */ *x = std::cos(t); /* Calculate the second mixing matrix coefficient. */ *y = std::sin(t) / n; } /* Calculate the limited HF ratio for use with the late reverb low-pass * filters. */ float CalcLimitedHfRatio(const float hfRatio, const float airAbsorptionGainHF, const float decayTime) { /* Find the attenuation due to air absorption in dB (converting delay * time to meters using the speed of sound). Then reversing the decay * equation, solve for HF ratio. The delay length is cancelled out of * the equation, so it can be calculated once for all lines. */ float limitRatio{1.0f / SpeedOfSoundMetersPerSec / CalcDecayLength(airAbsorptionGainHF, decayTime)}; /* Using the limit calculated above, apply the upper bound to the HF ratio. */ return std::min(limitRatio, hfRatio); } /* Calculates the 3-band T60 damping coefficients for a particular delay line * of specified length, using a combination of two shelf filter sections given * decay times for each band split at two reference frequencies. */ void T60Filter::calcCoeffs(const float length, const float lfDecayTime, const float mfDecayTime, const float hfDecayTime, const float lf0norm, const float hf0norm) { const float mfGain{CalcDecayCoeff(length, mfDecayTime)}; const float lfGain{CalcDecayCoeff(length, lfDecayTime) / mfGain}; const float hfGain{CalcDecayCoeff(length, hfDecayTime) / mfGain}; MidGain = mfGain; LFFilter.setParamsFromSlope(BiquadType::LowShelf, lf0norm, lfGain, 1.0f); HFFilter.setParamsFromSlope(BiquadType::HighShelf, hf0norm, hfGain, 1.0f); } /* Update the early reflection line lengths and gain coefficients. */ void EarlyReflections::updateLines(const float density_mult, const float diffusion, const float decayTime, const float frequency) { /* Calculate the all-pass feed-back/forward coefficient. */ VecAp.Coeff = diffusion*diffusion * InvSqrt2; for(size_t i{0u};i < NUM_LINES;i++) { /* Calculate the delay length of each all-pass line. */ float length{EARLY_ALLPASS_LENGTHS[i] * density_mult}; VecAp.Offset[i] = float2uint(length * frequency); /* Calculate the delay length of each delay line. */ length = EARLY_LINE_LENGTHS[i] * density_mult; Offset[i] = float2uint(length * frequency); /* Calculate the gain (coefficient) for each line. */ Coeff[i] = CalcDecayCoeff(length, decayTime); } } /* Update the EAX modulation step and depth. Keep in mind that this kind of * vibrato is additive and not multiplicative as one may expect. The downswing * will sound stronger than the upswing. */ void Modulation::updateModulator(float modTime, float modDepth, float frequency) { /* Modulation is calculated in two parts. * * The modulation time effects the sinus rate, altering the speed of * frequency changes. An index is incremented for each sample with an * appropriate step size to generate an LFO, which will vary the feedback * delay over time. */ Step = std::max(fastf2u(MOD_FRACONE / (frequency * modTime)), 1u); /* The modulation depth effects the amount of frequency change over the * range of the sinus. It needs to be scaled by the modulation time so that * a given depth produces a consistent change in frequency over all ranges * of time. Since the depth is applied to a sinus value, it needs to be * halved once for the sinus range and again for the sinus swing in time * (half of it is spent decreasing the frequency, half is spent increasing * it). */ if(modTime >= DefaultModulationTime) { /* To cancel the effects of a long period modulation on the late * reverberation, the amount of pitch should be varied (decreased) * according to the modulation time. The natural form is varying * inversely, in fact resulting in an invariant. */ Depth = MODULATION_DEPTH_COEFF / 4.0f * DefaultModulationTime * modDepth * frequency; } else Depth = MODULATION_DEPTH_COEFF / 4.0f * modTime * modDepth * frequency; } /* Update the late reverb line lengths and T60 coefficients. */ void LateReverb::updateLines(const float density_mult, const float diffusion, const float lfDecayTime, const float mfDecayTime, const float hfDecayTime, const float lf0norm, const float hf0norm, const float frequency) { /* Scaling factor to convert the normalized reference frequencies from * representing 0...freq to 0...max_reference. */ constexpr float MaxHFReference{20000.0f}; const float norm_weight_factor{frequency / MaxHFReference}; const float late_allpass_avg{ std::accumulate(LATE_ALLPASS_LENGTHS.begin(), LATE_ALLPASS_LENGTHS.end(), 0.0f) / float{NUM_LINES}}; /* To compensate for changes in modal density and decay time of the late * reverb signal, the input is attenuated based on the maximal energy of * the outgoing signal. This approximation is used to keep the apparent * energy of the signal equal for all ranges of density and decay time. * * The average length of the delay lines is used to calculate the * attenuation coefficient. */ float length{std::accumulate(LATE_LINE_LENGTHS.begin(), LATE_LINE_LENGTHS.end(), 0.0f) / float{NUM_LINES} + late_allpass_avg}; length *= density_mult; /* The density gain calculation uses an average decay time weighted by * approximate bandwidth. This attempts to compensate for losses of energy * that reduce decay time due to scattering into highly attenuated bands. */ const float decayTimeWeighted{ lf0norm*norm_weight_factor*lfDecayTime + (hf0norm - lf0norm)*norm_weight_factor*mfDecayTime + (1.0f - hf0norm*norm_weight_factor)*hfDecayTime}; DensityGain = CalcDensityGain(CalcDecayCoeff(length, decayTimeWeighted)); /* Calculate the all-pass feed-back/forward coefficient. */ VecAp.Coeff = diffusion*diffusion * InvSqrt2; for(size_t i{0u};i < NUM_LINES;i++) { /* Calculate the delay length of each all-pass line. */ length = LATE_ALLPASS_LENGTHS[i] * density_mult; VecAp.Offset[i] = float2uint(length * frequency); /* Calculate the delay length of each feedback delay line. A cubic * resampler is used for modulation on the feedback delay, which * includes one sample of delay. Reduce by one to compensate. */ length = LATE_LINE_LENGTHS[i] * density_mult; Offset[i] = std::max(float2uint(length*frequency + 0.5f), 1u) - 1u; /* Approximate the absorption that the vector all-pass would exhibit * given the current diffusion so we don't have to process a full T60 * filter for each of its four lines. Also include the average * modulation delay (depth is half the max delay in samples). */ length += lerpf(LATE_ALLPASS_LENGTHS[i], late_allpass_avg, diffusion)*density_mult + Mod.Depth/frequency; /* Calculate the T60 damping coefficients for each line. */ T60[i].calcCoeffs(length, lfDecayTime, mfDecayTime, hfDecayTime, lf0norm, hf0norm); } } /* Update the offsets for the main effect delay line. */ void ReverbPipeline::updateDelayLine(const float gain, const float earlyDelay, const float lateDelay, const float density_mult, const float decayTime, const float frequency) { /* Early reflection taps are decorrelated by means of an average room * reflection approximation described above the definition of the taps. * This approximation is linear and so the above density multiplier can * be applied to adjust the width of the taps. A single-band decay * coefficient is applied to simulate initial attenuation and absorption. * * Late reverb taps are based on the late line lengths to allow a zero- * delay path and offsets that would continue the propagation naturally * into the late lines. */ for(size_t i{0u};i < NUM_LINES;i++) { float length{EARLY_TAP_LENGTHS[i]*density_mult}; mEarlyDelayTap[i][1] = float2uint((earlyDelay+length) * frequency); mEarlyDelayCoeff[i][1] = CalcDecayCoeff(length, decayTime) * gain; /* Reduce the late delay tap by the shortest early delay line length to * compensate for the late line input being fed by the delayed early * output. */ length = (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS.front())/float{NUM_LINES}*density_mult + lateDelay; mLateDelayTap[i][1] = float2uint(length * frequency); } } /* Creates a transform matrix given a reverb vector. The vector pans the reverb * reflections toward the given direction, using its magnitude (up to 1) as a * focal strength. This function results in a B-Format transformation matrix * that spatially focuses the signal in the desired direction. */ std::array,4> GetTransformFromVector(const al::span vec) { /* Normalize the panning vector according to the N3D scale, which has an * extra sqrt(3) term on the directional components. Converting from OpenAL * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however * that the reverb panning vectors use left-handed coordinates, unlike the * rest of OpenAL which use right-handed. This is fixed by negating Z, * which cancels out with the B-Format Z negation. */ std::array norm{{vec[0], vec[1], vec[2]}}; float mag{std::sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2])}; if(mag > 1.0f) { const float scale{al::numbers::sqrt3_v / mag}; norm[0] *= -scale; norm[1] *= scale; norm[2] *= scale; mag = 1.0f; } else { /* If the magnitude is less than or equal to 1, just apply the sqrt(3) * term. There's no need to renormalize the magnitude since it would * just be reapplied in the matrix. */ norm[0] *= -al::numbers::sqrt3_v; norm[1] *= al::numbers::sqrt3_v; norm[2] *= al::numbers::sqrt3_v; } return std::array,4>{{ {{1.0f, 0.0f, 0.0f, 0.0f}}, {{norm[0], 1.0f-mag, 0.0f, 0.0f}}, {{norm[1], 0.0f, 1.0f-mag, 0.0f}}, {{norm[2], 0.0f, 0.0f, 1.0f-mag}} }}; } /* Update the early and late 3D panning gains. */ void ReverbPipeline::update3DPanning(const al::span ReflectionsPan, const al::span LateReverbPan, const float earlyGain, const float lateGain, const bool doUpmix, const MixParams *mainMix) { /* Create matrices that transform a B-Format signal according to the * panning vectors. */ const auto earlymat = GetTransformFromVector(ReflectionsPan); const auto latemat = GetTransformFromVector(LateReverbPan); const auto [earlycoeffs, latecoeffs] = [&]{ if(doUpmix) { /* When upsampling, combine the early and late transforms with the * first-order upsample matrix. This results in panning gains that * apply the panning transform to first-order B-Format, which is * then upsampled. */ auto mult_matrix = [](const al::span,4> mtx1) { std::array,NUM_LINES> res{}; const auto mtx2 = al::span{AmbiScale::FirstOrderUp}; for(size_t i{0};i < mtx1[0].size();++i) { const al::span dst{res[i]}; static_assert(dst.size() >= std::tuple_size_v); for(size_t k{0};k < mtx1.size();++k) { const float a{mtx1[k][i]}; std::transform(mtx2[k].begin(), mtx2[k].end(), dst.begin(), dst.begin(), [a](const float in, const float out) noexcept -> float { return a*in + out; }); } } return res; }; return std::make_pair(mult_matrix(earlymat), mult_matrix(latemat)); } /* When not upsampling, combine the early and late A-to-B-Format * conversions with their respective transform. This results panning * gains that convert A-Format to B-Format, which is then panned. */ auto mult_matrix = [](const al::span,4> mtx1, const al::span,4> mtx2) { std::array,NUM_LINES> res{}; for(size_t i{0};i < mtx1[0].size();++i) { const al::span dst{res[i]}; static_assert(dst.size() >= std::tuple_size_v); for(size_t k{0};k < mtx1.size();++k) { const float a{mtx1[k][i]}; std::transform(mtx2[k].begin(), mtx2[k].end(), dst.begin(), dst.begin(), [a](const float in, const float out) noexcept -> float { return a*in + out; }); } } return res; }; return std::make_pair(mult_matrix(EarlyA2B, earlymat), mult_matrix(LateA2B, latemat)); }(); auto earlygains = mEarly.Gains.begin(); for(auto &coeffs : earlycoeffs) ComputePanGains(mainMix, coeffs, earlyGain, (earlygains++)->Target); auto lategains = mLate.Gains.begin(); for(auto &coeffs : latecoeffs) ComputePanGains(mainMix, coeffs, lateGain, (lategains++)->Target); } void ReverbState::update(const ContextBase *Context, const EffectSlot *Slot, const EffectProps *props_, const EffectTarget target) { auto &props = std::get(*props_); const DeviceBase *Device{Context->mDevice}; const auto frequency = static_cast(Device->Frequency); /* If the HF limit parameter is flagged, calculate an appropriate limit * based on the air absorption parameter. */ float hfRatio{props.DecayHFRatio}; if(props.DecayHFLimit && props.AirAbsorptionGainHF < 1.0f) hfRatio = CalcLimitedHfRatio(hfRatio, props.AirAbsorptionGainHF, props.DecayTime); /* Calculate the LF/HF decay times. */ constexpr float MinDecayTime{0.1f}, MaxDecayTime{20.0f}; const float lfDecayTime{std::clamp(props.DecayTime*props.DecayLFRatio, MinDecayTime, MaxDecayTime)}; const float hfDecayTime{std::clamp(props.DecayTime*hfRatio, MinDecayTime, MaxDecayTime)}; /* Determine if a full update is required. */ const bool fullUpdate{mPipelineState == DeviceClear || /* Density is essentially a master control for the feedback delays, so * changes the offsets of many delay lines. */ mParams.Density != props.Density || /* Diffusion and decay times influences the decay rate (gain) of the * late reverb T60 filter. */ mParams.Diffusion != props.Diffusion || mParams.DecayTime != props.DecayTime || mParams.HFDecayTime != hfDecayTime || mParams.LFDecayTime != lfDecayTime || /* Modulation time and depth both require fading the modulation delay. */ mParams.ModulationTime != props.ModulationTime || mParams.ModulationDepth != props.ModulationDepth || /* HF/LF References control the weighting used to calculate the density * gain. */ mParams.HFReference != props.HFReference || mParams.LFReference != props.LFReference}; if(fullUpdate) { mParams.Density = props.Density; mParams.Diffusion = props.Diffusion; mParams.DecayTime = props.DecayTime; mParams.HFDecayTime = hfDecayTime; mParams.LFDecayTime = lfDecayTime; mParams.ModulationTime = props.ModulationTime; mParams.ModulationDepth = props.ModulationDepth; mParams.HFReference = props.HFReference; mParams.LFReference = props.LFReference; mPipelineState = (mPipelineState != DeviceClear) ? StartFade : Normal; mCurrentPipeline = !mCurrentPipeline; auto &oldpipeline = mPipelines[!mCurrentPipeline]; for(size_t j{0};j < NUM_LINES;++j) oldpipeline.mEarlyDelayCoeff[j][1] = 0.0f; } auto &pipeline = mPipelines[mCurrentPipeline]; /* The density-based room size (delay length) multiplier. */ const float density_mult{CalcDelayLengthMult(props.Density)}; /* Update the main effect delay and associated taps. */ pipeline.updateDelayLine(props.Gain, props.ReflectionsDelay, props.LateReverbDelay, density_mult, props.DecayTime, frequency); /* Update early and late 3D panning. */ mOutTarget = target.Main->Buffer; const float gain{Slot->Gain * ReverbBoost}; pipeline.update3DPanning(props.ReflectionsPan, props.LateReverbPan, props.ReflectionsGain*gain, props.LateReverbGain*gain, mUpmixOutput, target.Main); /* Calculate the master filters */ float hf0norm{std::min(props.HFReference/frequency, 0.49f)}; pipeline.mFilter[0].Lp.setParamsFromSlope(BiquadType::HighShelf, hf0norm, props.GainHF, 1.0f); float lf0norm{std::min(props.LFReference/frequency, 0.49f)}; pipeline.mFilter[0].Hp.setParamsFromSlope(BiquadType::LowShelf, lf0norm, props.GainLF, 1.0f); for(size_t i{1u};i < NUM_LINES;i++) { pipeline.mFilter[i].Lp.copyParamsFrom(pipeline.mFilter[0].Lp); pipeline.mFilter[i].Hp.copyParamsFrom(pipeline.mFilter[0].Hp); } if(fullUpdate) { /* Update the early lines. */ pipeline.mEarly.updateLines(density_mult, props.Diffusion, props.DecayTime, frequency); /* Get the mixing matrix coefficients. */ CalcMatrixCoeffs(props.Diffusion, &pipeline.mMixX, &pipeline.mMixY); /* Update the modulator rate and depth. */ pipeline.mLate.Mod.updateModulator(props.ModulationTime, props.ModulationDepth, frequency); /* Update the late lines. */ pipeline.mLate.updateLines(density_mult, props.Diffusion, lfDecayTime, props.DecayTime, hfDecayTime, lf0norm, hf0norm, frequency); } /* Calculate the gain at the start of the late reverb stage, and the gain * difference from the decay target (0.001, or -60dB). */ const float decayBase{props.ReflectionsGain * props.LateReverbGain}; const float decayDiff{ReverbDecayGain / decayBase}; /* Given the DecayTime (the amount of time for the late reverb to decay by * -60dB), calculate the time to decay to -60dB from the start of the late * reverb. * * Otherwise, if the late reverb already starts at -60dB or less, only * include the time to get to the late reverb. */ const float diffTime{!(decayDiff < 1.0f) ? 0.0f : (std::log10(decayDiff)*(20.0f / -60.0f) * props.DecayTime)}; const float decaySamples{(props.ReflectionsDelay+props.LateReverbDelay+diffTime) * frequency}; /* Limit to 100,000 samples (a touch over 2 seconds at 48khz) to avoid * excessive double-processing. */ pipeline.mFadeSampleCount = static_cast(std::min(decaySamples, 100'000.0f)); } /************************************** * Effect Processing * **************************************/ /* Applies a scattering matrix to the 4-line (vector) input. This is used * for both the below vector all-pass model and to perform modal feed-back * delay network (FDN) mixing. * * The matrix is derived from a skew-symmetric matrix to form a 4D rotation * matrix with a single unitary rotational parameter: * * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2 * [ -a, d, c, -b ] * [ -b, -c, d, a ] * [ -c, b, -a, d ] * * The rotation is constructed from the effect's diffusion parameter, * yielding: * * 1 = x^2 + 3 y^2 * * Where a, b, and c are the coefficient y with differing signs, and d is the * coefficient x. The final matrix is thus: * * [ x, y, -y, y ] n = sqrt(matrix_order - 1) * [ -y, x, y, y ] t = diffusion_parameter * atan(n) * [ y, -y, x, y ] x = cos(t) * [ -y, -y, -y, x ] y = sin(t) / n * * Any square orthogonal matrix with an order that is a power of two will * work (where ^T is transpose, ^-1 is inverse): * * M^T = M^-1 * * Using that knowledge, finding an appropriate matrix can be accomplished * naively by searching all combinations of: * * M = D + S - S^T * * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y) * whose combination of signs are being iterated. */ inline auto VectorPartialScatter(const std::array &in, const float xCoeff, const float yCoeff) noexcept -> std::array { return std::array{ xCoeff*in[0] + yCoeff*( in[1] + -in[2] + in[3]), xCoeff*in[1] + yCoeff*(-in[0] + in[2] + in[3]), xCoeff*in[2] + yCoeff*( in[0] + -in[1] + in[3]), xCoeff*in[3] + yCoeff*(-in[0] + -in[1] + -in[2] ) }; } /* Utilizes the above, but also applies a line-based reflection on the input * channels (swapping 0<->3 and 1<->2). */ void VectorScatterRev(const float xCoeff, const float yCoeff, const al::span samples, const size_t count) noexcept { ASSUME(count > 0); for(size_t i{0u};i < count;++i) { std::array src{samples[0][i], samples[1][i], samples[2][i], samples[3][i]}; src = VectorPartialScatter(std::array{src[3], src[2], src[1], src[0]}, xCoeff, yCoeff); samples[0][i] = src[0]; samples[1][i] = src[1]; samples[2][i] = src[2]; samples[3][i] = src[3]; } } /* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass * filter to the 4-line input. * * It works by vectorizing a regular all-pass filter and replacing the delay * element with a scattering matrix (like the one above) and a diagonal * matrix of delay elements. */ void VecAllpass::process(const al::span samples, size_t main_offset, const float xCoeff, const float yCoeff, const size_t todo) const noexcept { const auto linelen = size_t{Delay.mLine.size()/NUM_LINES}; const float feedCoeff{Coeff}; ASSUME(todo > 0); for(size_t i{0u};i < todo;) { std::array vap_offset{}; std::transform(Offset.cbegin(), Offset.cend(), vap_offset.begin(), [main_offset,mask=linelen-1](const size_t delay) noexcept -> size_t { return (main_offset-delay) & mask; }); main_offset &= linelen-1; const auto maxoff = std::accumulate(vap_offset.cbegin(), vap_offset.cend(), main_offset, [](const size_t offset, const size_t apoffset) { return std::max(offset, apoffset); }); size_t td{std::min(linelen - maxoff, todo - i)}; auto delayIn = Delay.mLine.begin(); auto delayOut = Delay.mLine.begin() + ptrdiff_t(main_offset*NUM_LINES); main_offset += td; do { std::array f{}; for(size_t j{0u};j < NUM_LINES;j++) { const float input{samples[j][i]}; const float out{delayIn[vap_offset[j]*NUM_LINES + j] - feedCoeff*input}; f[j] = input + feedCoeff*out; samples[j][i] = out; } delayIn += NUM_LINES; ++i; f = VectorPartialScatter(f, xCoeff, yCoeff); delayOut = std::copy_n(f.cbegin(), f.size(), delayOut); } while(--td); } } /* This applies a more typical all-pass to each line, without the scattering * matrix. */ void Allpass4::process(const al::span samples, const size_t offset, const size_t todo) const noexcept { const DelayLineU delay{Delay}; const float feedCoeff{Coeff}; ASSUME(todo > 0); for(size_t j{0u};j < NUM_LINES;j++) { auto smpiter = samples[j].begin(); const auto buffer = delay.get(j); size_t dstoffset{offset}; size_t vap_offset{offset - Offset[j]}; for(size_t i{0u};i < todo;) { vap_offset &= buffer.size()-1; dstoffset &= buffer.size()-1; const size_t maxoff{std::max(dstoffset, vap_offset)}; const size_t td{std::min(buffer.size() - maxoff, todo - i)}; auto proc_sample = [buffer,feedCoeff,&vap_offset,&dstoffset](const float x) -> float { const float y{buffer[vap_offset++] - feedCoeff*x}; buffer[dstoffset++] = x + feedCoeff*y; return y; }; smpiter = std::transform(smpiter, smpiter+td, smpiter, proc_sample); i += td; } } } /* This generates early reflections. * * This is done by obtaining the primary reflections (those arriving from the * same direction as the source) from the main delay line. These are * attenuated and all-pass filtered (based on the diffusion parameter). * * The early lines are then reflected about the origin to create the secondary * reflections (those arriving from the opposite direction as the source). * * The early response is then completed by combining the primary reflections * with the delayed and attenuated output from the early lines. * * Finally, the early response is reflected, scattered (based on diffusion), * and fed into the late reverb section of the main delay line. */ void ReverbPipeline::processEarly(const DelayLineU &main_delay, size_t offset, const size_t samplesToDo, const al::span tempSamples, const al::span outSamples) { const DelayLineU early_delay{mEarly.Delay}; const DelayLineU in_delay{main_delay}; const float mixX{mMixX}; const float mixY{mMixY}; ASSUME(samplesToDo <= BufferLineSize); for(size_t base{0};base < samplesToDo;) { const size_t todo{std::min(samplesToDo-base, MAX_UPDATE_SAMPLES)}; /* First, load decorrelated samples from the main delay line as the * primary reflections. */ const auto fadeStep = float{1.0f / static_cast(todo)}; for(size_t j{0_uz};j < NUM_LINES;j++) { const auto input = in_delay.get(j); auto early_delay_tap0 = size_t{offset - mEarlyDelayTap[j][0]}; auto early_delay_tap1 = size_t{offset - mEarlyDelayTap[j][1]}; mEarlyDelayTap[j][0] = mEarlyDelayTap[j][1]; const auto coeff0 = float{mEarlyDelayCoeff[j][0]}; const auto coeff1 = float{mEarlyDelayCoeff[j][1]}; mEarlyDelayCoeff[j][0] = mEarlyDelayCoeff[j][1]; auto fadeCount = float{0.0f}; auto tmp = tempSamples[j].begin(); for(size_t i{0_uz};i < todo;) { early_delay_tap0 &= input.size()-1; early_delay_tap1 &= input.size()-1; const auto max_tap = size_t{std::max(early_delay_tap0, early_delay_tap1)}; const auto td = size_t{std::min(input.size()-max_tap, todo-i)}; const auto intap0 = input.subspan(early_delay_tap0, td); const auto intap1 = input.subspan(early_delay_tap1, td); auto do_blend = [coeff0,coeff1,fadeStep,&fadeCount](const float in0, const float in1) noexcept -> float { const auto ret = lerpf(in0*coeff0, in1*coeff1, fadeStep*fadeCount); fadeCount += 1.0f; return ret; }; tmp = std::transform(intap0.begin(), intap0.end(), intap1.begin(), tmp, do_blend); early_delay_tap0 += td; early_delay_tap1 += td; i += td; } /* Band-pass the incoming samples. */ auto&& filter = DualBiquad{mFilter[j].Lp, mFilter[j].Hp}; filter.process(al::span{tempSamples[j]}.first(todo), tempSamples[j]); } /* Apply an all-pass, to help color the initial reflections. */ mEarly.VecAp.process(tempSamples, offset, todo); /* Apply a delay and bounce to generate secondary reflections. */ early_delay.writeReflected(offset, tempSamples, todo); for(size_t j{0_uz};j < NUM_LINES;j++) { const auto input = early_delay.get(j); auto feedb_tap = size_t{offset - mEarly.Offset[j]}; const auto feedb_coeff = float{mEarly.Coeff[j]}; auto out = outSamples[j].begin() + base; auto tmp = tempSamples[j].begin(); for(size_t i{0_uz};i < todo;) { feedb_tap &= input.size()-1; const auto td = size_t{std::min(input.size() - feedb_tap, todo - i)}; const auto delaySrc = input.subspan(feedb_tap, td); /* Combine the main input with the attenuated delayed echo for * the early output. */ out = std::transform(delaySrc.begin(), delaySrc.end(), tmp, out, [feedb_coeff](const float delayspl, const float mainspl) noexcept -> float { return delayspl*feedb_coeff + mainspl; }); /* Move the (non-attenuated) delayed echo to the temp buffer * for feeding the late reverb. */ tmp = std::copy_n(delaySrc.begin(), delaySrc.size(), tmp); feedb_tap += td; i += td; } } /* Finally, apply a scatter and bounce to improve the initial diffusion * in the late reverb, writing the result to the late delay line input. */ VectorScatterRev(mixX, mixY, tempSamples, todo); for(size_t j{0_uz};j < NUM_LINES;j++) mLateDelayIn.write(offset, j, al::span{tempSamples[j]}.first(todo)); base += todo; offset += todo; } } auto Modulation::calcDelays(size_t todo) -> al::span { auto idx = uint{Index}; const auto step = uint{Step}; const auto depth = float{Depth * float{gCubicTable.sTableSteps}}; const auto delays = al::span{ModDelays}.first(todo); std::generate(delays.begin(), delays.end(), [step,depth,&idx] { idx += step; const auto x = float{static_cast(idx&MOD_FRACMASK) * (1.0f/MOD_FRACONE)}; /* Approximate sin(x*2pi). As long as it roughly fits a sinusoid shape * and stays within [-1...+1], it needn't be perfect. */ const auto lfo = float{!(idx&(MOD_FRACONE>>1)) ? ((-16.0f * x * x) + (8.0f * x)) : ((16.0f * x * x) + (-8.0f * x) + (-16.0f * x) + 8.0f)}; return float2uint((lfo+1.0f) * depth); }); Index = idx; return delays; } /* This generates the reverb tail using a modified feed-back delay network * (FDN). * * Results from the early reflections are mixed with the output from the * modulated late delay lines. * * The late response is then completed by T60 and all-pass filtering the mix. * * Finally, the lines are reversed (so they feed their opposite directions) * and scattered with the FDN matrix before re-feeding the delay lines. */ void ReverbPipeline::processLate(size_t offset, const size_t samplesToDo, const al::span tempSamples, const al::span outSamples) { const DelayLineU late_delay{mLate.Delay}; const DelayLineU in_delay{mLateDelayIn}; const float mixX{mMixX}; const float mixY{mMixY}; ASSUME(samplesToDo <= BufferLineSize); for(size_t base{0};base < samplesToDo;) { const size_t todo{std::min(std::min(mLate.Offset[0], MAX_UPDATE_SAMPLES), samplesToDo-base)}; ASSUME(todo > 0); /* First, calculate the modulated delays for the late feedback. */ const auto delays = mLate.Mod.calcDelays(todo); /* Now load samples from the feedback delay lines. Filter the signal to * apply its frequency-dependent decay. */ for(size_t j{0_uz};j < NUM_LINES;++j) { const auto input = late_delay.get(j); const auto midGain = float{mLate.T60[j].MidGain}; auto late_feedb_tap = size_t{offset - mLate.Offset[j]}; auto proc_sample = [input,midGain,&late_feedb_tap](const size_t idelay) -> float { /* Calculate the read sample offset and sub-sample offset * between it and the next sample. */ const auto delay = size_t{late_feedb_tap - (idelay>>gCubicTable.sTableBits)}; const auto delayoffset = size_t{idelay & gCubicTable.sTableMask}; ++late_feedb_tap; /* Get the samples around the delayed offset, interpolated for * output. */ const auto out0 = float{input[(delay ) & (input.size()-1)]}; const auto out1 = float{input[(delay-1) & (input.size()-1)]}; const auto out2 = float{input[(delay-2) & (input.size()-1)]}; const auto out3 = float{input[(delay-3) & (input.size()-1)]}; const auto out = float{out0*gCubicTable.getCoeff0(delayoffset) + out1*gCubicTable.getCoeff1(delayoffset) + out2*gCubicTable.getCoeff2(delayoffset) + out3*gCubicTable.getCoeff3(delayoffset)}; return out * midGain; }; std::transform(delays.begin(), delays.end(), tempSamples[j].begin(), proc_sample); mLate.T60[j].process(al::span{tempSamples[j]}.first(todo)); } /* Next load decorrelated samples from the main delay lines. */ const float fadeStep{1.0f / static_cast(todo)}; for(size_t j{0_uz};j < NUM_LINES;++j) { const auto input = in_delay.get(j); auto late_delay_tap0 = size_t{offset - mLateDelayTap[j][0]}; auto late_delay_tap1 = size_t{offset - mLateDelayTap[j][1]}; mLateDelayTap[j][0] = mLateDelayTap[j][1]; const auto densityGain = float{mLate.DensityGain}; const auto densityStep = float{late_delay_tap0 != late_delay_tap1 ? densityGain*fadeStep : 0.0f}; auto fadeCount = float{0.0f}; auto samples = tempSamples[j].begin(); for(size_t i{0u};i < todo;) { late_delay_tap0 &= input.size()-1; late_delay_tap1 &= input.size()-1; const auto td = size_t{std::min(todo - i, input.size() - std::max(late_delay_tap0, late_delay_tap1))}; auto proc_sample = [input,densityGain,densityStep,&late_delay_tap0, &late_delay_tap1,&fadeCount](const float sample) noexcept -> float { const auto fade0 = float{densityGain - densityStep*fadeCount}; const auto fade1 = float{densityStep*fadeCount}; fadeCount += 1.0f; return input[late_delay_tap0++]*fade0 + input[late_delay_tap1++]*fade1 + sample; }; samples = std::transform(samples, samples+ptrdiff_t(td), samples, proc_sample); i += td; } } /* Apply a vector all-pass to improve micro-surface diffusion, and * write out the results for mixing. */ mLate.VecAp.process(tempSamples, offset, mixX, mixY, todo); for(size_t j{0_uz};j < NUM_LINES;++j) std::copy_n(tempSamples[j].begin(), todo, outSamples[j].begin()+base); /* Finally, scatter and bounce the results to refeed the feedback buffer. */ VectorScatterRev(mixX, mixY, tempSamples, todo); for(size_t j{0_uz};j < NUM_LINES;++j) late_delay.write(offset, j, al::span{tempSamples[j]}.first(todo)); base += todo; offset += todo; } } void ReverbState::process(const size_t samplesToDo, const al::span samplesIn, const al::span samplesOut) { const size_t offset{mOffset}; ASSUME(samplesToDo <= BufferLineSize); auto &oldpipeline = mPipelines[!mCurrentPipeline]; auto &pipeline = mPipelines[mCurrentPipeline]; /* Convert B-Format to A-Format for processing. */ const size_t numInput{std::min(samplesIn.size(), NUM_LINES)}; const al::span tmpspan{al::assume_aligned<16>(mTempLine.data()), samplesToDo}; for(size_t c{0u};c < NUM_LINES;++c) { std::fill(tmpspan.begin(), tmpspan.end(), 0.0f); for(size_t i{0};i < numInput;++i) { const float gain{B2A[c][i]}; auto mix_sample = [gain](const float sample, const float in) noexcept -> float { return sample + in*gain; }; std::transform(tmpspan.begin(), tmpspan.end(), samplesIn[i].begin(), tmpspan.begin(), mix_sample); } mMainDelay.write(offset, c, tmpspan); } if(mPipelineState < Fading) mPipelineState = Fading; /* Process reverb for these samples. and mix them to the output. */ pipeline.processEarly(mMainDelay, offset, samplesToDo, mTempSamples, mEarlySamples); pipeline.processLate(offset, samplesToDo, mTempSamples, mLateSamples); mixOut(pipeline, samplesOut, samplesToDo); if(mPipelineState != Normal) { if(mPipelineState == Cleanup) { size_t numSamples{mSampleBuffer.size()/2}; const auto bufferspan = al::span{mSampleBuffer}.subspan(numSamples * !mCurrentPipeline, numSamples); std::fill_n(bufferspan.begin(), bufferspan.size(), 0.0f); oldpipeline.clear(); mPipelineState = Normal; } else { /* If this is the final mix for this old pipeline, set the target * gains to 0 to ensure a complete fade out, and set the state to * Cleanup so the next invocation cleans up the delay buffers and * filters. */ if(samplesToDo >= oldpipeline.mFadeSampleCount) { for(auto &gains : oldpipeline.mEarly.Gains) std::fill(gains.Target.begin(), gains.Target.end(), 0.0f); for(auto &gains : oldpipeline.mLate.Gains) std::fill(gains.Target.begin(), gains.Target.end(), 0.0f); oldpipeline.mFadeSampleCount = 0; mPipelineState = Cleanup; } else oldpipeline.mFadeSampleCount -= samplesToDo; /* Process the old reverb for these samples. */ oldpipeline.processEarly(mMainDelay, offset, samplesToDo, mTempSamples, mEarlySamples); oldpipeline.processLate(offset, samplesToDo, mTempSamples, mLateSamples); mixOut(oldpipeline, samplesOut, samplesToDo); } } mOffset = offset + samplesToDo; } struct ReverbStateFactory final : public EffectStateFactory { al::intrusive_ptr create() override { return al::intrusive_ptr{new ReverbState{}}; } }; } // namespace EffectStateFactory *ReverbStateFactory_getFactory() { static ReverbStateFactory ReverbFactory{}; return &ReverbFactory; }