/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include "ringbuffer.h" #include #include #include #include #include #include "alnumeric.h" auto RingBuffer::Create(std::size_t sz, std::size_t elem_sz, bool limit_writes) -> RingBufferPtr { std::size_t power_of_two{0u}; if(sz > 0) { power_of_two = sz - 1; power_of_two |= power_of_two>>1; power_of_two |= power_of_two>>2; power_of_two |= power_of_two>>4; power_of_two |= power_of_two>>8; power_of_two |= power_of_two>>16; if constexpr(sizeof(size_t) > sizeof(uint32_t)) power_of_two |= power_of_two>>32; } ++power_of_two; if(power_of_two < sz || power_of_two > std::numeric_limits::max()>>1 || power_of_two > std::numeric_limits::max()/elem_sz) throw std::overflow_error{"Ring buffer size overflow"}; const std::size_t bufbytes{power_of_two * elem_sz}; RingBufferPtr rb{new(FamCount(bufbytes)) RingBuffer{limit_writes ? sz : power_of_two, power_of_two-1, elem_sz, bufbytes}}; return rb; } void RingBuffer::reset() noexcept { mWriteCount.store(0, std::memory_order_relaxed); mReadCount.store(0, std::memory_order_relaxed); std::fill_n(mBuffer.begin(), (mSizeMask+1)*mElemSize, std::byte{}); } auto RingBuffer::read(void *dest, std::size_t count) noexcept -> std::size_t { const std::size_t w{mWriteCount.load(std::memory_order_acquire)}; const std::size_t r{mReadCount.load(std::memory_order_relaxed)}; const std::size_t readable{w - r}; if(readable == 0) return 0; const std::size_t to_read{std::min(count, readable)}; const std::size_t read_idx{r & mSizeMask}; const std::size_t rdend{read_idx + to_read}; const auto [n1, n2] = (rdend <= mSizeMask+1) ? std::make_tuple(to_read, 0_uz) : std::make_tuple(mSizeMask+1 - read_idx, rdend&mSizeMask); auto dstbytes = al::span{static_cast(dest), count*mElemSize}; auto outiter = std::copy_n(mBuffer.begin() + ptrdiff_t(read_idx*mElemSize), n1*mElemSize, dstbytes.begin()); if(n2 > 0) std::copy_n(mBuffer.begin(), n2*mElemSize, outiter); mReadCount.store(r+n1+n2, std::memory_order_release); return to_read; } auto RingBuffer::peek(void *dest, std::size_t count) const noexcept -> std::size_t { const std::size_t w{mWriteCount.load(std::memory_order_acquire)}; const std::size_t r{mReadCount.load(std::memory_order_relaxed)}; const std::size_t readable{w - r}; if(readable == 0) return 0; const std::size_t to_read{std::min(count, readable)}; const std::size_t read_idx{r & mSizeMask}; const std::size_t rdend{read_idx + to_read}; const auto [n1, n2] = (rdend <= mSizeMask+1) ? std::make_tuple(to_read, 0_uz) : std::make_tuple(mSizeMask+1 - read_idx, rdend&mSizeMask); auto dstbytes = al::span{static_cast(dest), count*mElemSize}; auto outiter = std::copy_n(mBuffer.begin() + ptrdiff_t(read_idx*mElemSize), n1*mElemSize, dstbytes.begin()); if(n2 > 0) std::copy_n(mBuffer.begin(), n2*mElemSize, outiter); return to_read; } auto RingBuffer::write(const void *src, std::size_t count) noexcept -> std::size_t { const std::size_t w{mWriteCount.load(std::memory_order_relaxed)}; const std::size_t r{mReadCount.load(std::memory_order_acquire)}; const std::size_t writable{mWriteSize - (w - r)}; if(writable == 0) return 0; const std::size_t to_write{std::min(count, writable)}; const std::size_t write_idx{w & mSizeMask}; const std::size_t wrend{write_idx + to_write}; const auto [n1, n2] = (wrend <= mSizeMask+1) ? std::make_tuple(to_write, 0_uz) : std::make_tuple(mSizeMask+1 - write_idx, wrend&mSizeMask); auto srcbytes = al::span{static_cast(src), count*mElemSize}; std::copy_n(srcbytes.cbegin(), n1*mElemSize, mBuffer.begin() + ptrdiff_t(write_idx*mElemSize)); if(n2 > 0) std::copy_n(srcbytes.cbegin() + ptrdiff_t(n1*mElemSize), n2*mElemSize, mBuffer.begin()); mWriteCount.store(w+n1+n2, std::memory_order_release); return to_write; } auto RingBuffer::getReadVector() noexcept -> DataPair { const std::size_t w{mWriteCount.load(std::memory_order_acquire)}; const std::size_t r{mReadCount.load(std::memory_order_relaxed)}; const std::size_t readable{w - r}; const std::size_t read_idx{r & mSizeMask}; const std::size_t rdend{read_idx + readable}; if(rdend > mSizeMask+1) { /* Two part vector: the rest of the buffer after the current read ptr, * plus some from the start of the buffer. */ return DataPair{{mBuffer.data() + read_idx*mElemSize, mSizeMask+1 - read_idx}, {mBuffer.data(), rdend&mSizeMask}}; } return DataPair{{mBuffer.data() + read_idx*mElemSize, readable}, {}}; } auto RingBuffer::getWriteVector() noexcept -> DataPair { const std::size_t w{mWriteCount.load(std::memory_order_relaxed)}; const std::size_t r{mReadCount.load(std::memory_order_acquire)}; const std::size_t writable{mWriteSize - (w - r)}; const std::size_t write_idx{w & mSizeMask}; const std::size_t wrend{write_idx + writable}; if(wrend > mSizeMask+1) { /* Two part vector: the rest of the buffer after the current write ptr, * plus some from the start of the buffer. */ return DataPair{{mBuffer.data() + write_idx*mElemSize, mSizeMask+1 - write_idx}, {mBuffer.data(), wrend&mSizeMask}}; } return DataPair{{mBuffer.data() + write_idx*mElemSize, writable}, {}}; }