| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- #include "config.h"
- #include <assert.h>
- #include "alMain.h"
- #include "alu.h"
- #include "alSource.h"
- #include "alAuxEffectSlot.h"
- #include "defs.h"
- static inline ALfloat do_point(const ALfloat *restrict vals, ALsizei UNUSED(frac))
- { return vals[0]; }
- static inline ALfloat do_lerp(const ALfloat *restrict vals, ALsizei frac)
- { return lerp(vals[0], vals[1], frac * (1.0f/FRACTIONONE)); }
- static inline ALfloat do_cubic(const ALfloat *restrict vals, ALsizei frac)
- { return cubic(vals[0], vals[1], vals[2], vals[3], frac * (1.0f/FRACTIONONE)); }
- const ALfloat *Resample_copy_C(const InterpState* UNUSED(state),
- const ALfloat *restrict src, ALsizei UNUSED(frac), ALint UNUSED(increment),
- ALfloat *restrict dst, ALsizei numsamples)
- {
- #if defined(HAVE_SSE) || defined(HAVE_NEON)
- /* Avoid copying the source data if it's aligned like the destination. */
- if((((intptr_t)src)&15) == (((intptr_t)dst)&15))
- return src;
- #endif
- memcpy(dst, src, numsamples*sizeof(ALfloat));
- return dst;
- }
- #define DECL_TEMPLATE(Tag, Sampler, O) \
- const ALfloat *Resample_##Tag##_C(const InterpState* UNUSED(state), \
- const ALfloat *restrict src, ALsizei frac, ALint increment, \
- ALfloat *restrict dst, ALsizei numsamples) \
- { \
- ALsizei i; \
- \
- src -= O; \
- for(i = 0;i < numsamples;i++) \
- { \
- dst[i] = Sampler(src, frac); \
- \
- frac += increment; \
- src += frac>>FRACTIONBITS; \
- frac &= FRACTIONMASK; \
- } \
- return dst; \
- }
- DECL_TEMPLATE(point, do_point, 0)
- DECL_TEMPLATE(lerp, do_lerp, 0)
- DECL_TEMPLATE(cubic, do_cubic, 1)
- #undef DECL_TEMPLATE
- const ALfloat *Resample_bsinc_C(const InterpState *state, const ALfloat *restrict src,
- ALsizei frac, ALint increment, ALfloat *restrict dst,
- ALsizei dstlen)
- {
- const ALfloat *fil, *scd, *phd, *spd;
- const ALfloat *const filter = state->bsinc.filter;
- const ALfloat sf = state->bsinc.sf;
- const ALsizei m = state->bsinc.m;
- ALsizei j_f, pi, i;
- ALfloat pf, r;
- ASSUME(m > 0);
- src += state->bsinc.l;
- for(i = 0;i < dstlen;i++)
- {
- // Calculate the phase index and factor.
- #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
- pi = frac >> FRAC_PHASE_BITDIFF;
- pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
- #undef FRAC_PHASE_BITDIFF
- fil = ASSUME_ALIGNED(filter + m*pi*4, 16);
- scd = ASSUME_ALIGNED(fil + m, 16);
- phd = ASSUME_ALIGNED(scd + m, 16);
- spd = ASSUME_ALIGNED(phd + m, 16);
- // Apply the scale and phase interpolated filter.
- r = 0.0f;
- for(j_f = 0;j_f < m;j_f++)
- r += (fil[j_f] + sf*scd[j_f] + pf*(phd[j_f] + sf*spd[j_f])) * src[j_f];
- dst[i] = r;
- frac += increment;
- src += frac>>FRACTIONBITS;
- frac &= FRACTIONMASK;
- }
- return dst;
- }
- static inline void ApplyCoeffs(ALsizei Offset, ALfloat (*restrict Values)[2],
- const ALsizei IrSize,
- const ALfloat (*restrict Coeffs)[2],
- ALfloat left, ALfloat right)
- {
- ALsizei c;
- for(c = 0;c < IrSize;c++)
- {
- const ALsizei off = (Offset+c)&HRIR_MASK;
- Values[off][0] += Coeffs[c][0] * left;
- Values[off][1] += Coeffs[c][1] * right;
- }
- }
- #define MixHrtf MixHrtf_C
- #define MixHrtfBlend MixHrtfBlend_C
- #define MixDirectHrtf MixDirectHrtf_C
- #include "hrtf_inc.c"
- void Mix_C(const ALfloat *data, ALsizei OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE],
- ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos,
- ALsizei BufferSize)
- {
- ALfloat gain, delta, step;
- ALsizei c;
- ASSUME(OutChans > 0);
- ASSUME(BufferSize > 0);
- delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f;
- for(c = 0;c < OutChans;c++)
- {
- ALsizei pos = 0;
- gain = CurrentGains[c];
- step = (TargetGains[c] - gain) * delta;
- if(fabsf(step) > FLT_EPSILON)
- {
- ALsizei minsize = mini(BufferSize, Counter);
- for(;pos < minsize;pos++)
- {
- OutBuffer[c][OutPos+pos] += data[pos]*gain;
- gain += step;
- }
- if(pos == Counter)
- gain = TargetGains[c];
- CurrentGains[c] = gain;
- }
- if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
- continue;
- for(;pos < BufferSize;pos++)
- OutBuffer[c][OutPos+pos] += data[pos]*gain;
- }
- }
- /* Basically the inverse of the above. Rather than one input going to multiple
- * outputs (each with its own gain), it's multiple inputs (each with its own
- * gain) going to one output. This applies one row (vs one column) of a matrix
- * transform. And as the matrices are more or less static once set up, no
- * stepping is necessary.
- */
- void MixRow_C(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*restrict data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize)
- {
- ALsizei c, i;
- ASSUME(InChans > 0);
- ASSUME(BufferSize > 0);
- for(c = 0;c < InChans;c++)
- {
- ALfloat gain = Gains[c];
- if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
- continue;
- for(i = 0;i < BufferSize;i++)
- OutBuffer[i] += data[c][InPos+i] * gain;
- }
- }
|