mixer_c.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176
  1. #include "config.h"
  2. #include <assert.h>
  3. #include "alMain.h"
  4. #include "alu.h"
  5. #include "alSource.h"
  6. #include "alAuxEffectSlot.h"
  7. #include "defs.h"
  8. static inline ALfloat do_point(const ALfloat *restrict vals, ALsizei UNUSED(frac))
  9. { return vals[0]; }
  10. static inline ALfloat do_lerp(const ALfloat *restrict vals, ALsizei frac)
  11. { return lerp(vals[0], vals[1], frac * (1.0f/FRACTIONONE)); }
  12. static inline ALfloat do_cubic(const ALfloat *restrict vals, ALsizei frac)
  13. { return cubic(vals[0], vals[1], vals[2], vals[3], frac * (1.0f/FRACTIONONE)); }
  14. const ALfloat *Resample_copy_C(const InterpState* UNUSED(state),
  15. const ALfloat *restrict src, ALsizei UNUSED(frac), ALint UNUSED(increment),
  16. ALfloat *restrict dst, ALsizei numsamples)
  17. {
  18. #if defined(HAVE_SSE) || defined(HAVE_NEON)
  19. /* Avoid copying the source data if it's aligned like the destination. */
  20. if((((intptr_t)src)&15) == (((intptr_t)dst)&15))
  21. return src;
  22. #endif
  23. memcpy(dst, src, numsamples*sizeof(ALfloat));
  24. return dst;
  25. }
  26. #define DECL_TEMPLATE(Tag, Sampler, O) \
  27. const ALfloat *Resample_##Tag##_C(const InterpState* UNUSED(state), \
  28. const ALfloat *restrict src, ALsizei frac, ALint increment, \
  29. ALfloat *restrict dst, ALsizei numsamples) \
  30. { \
  31. ALsizei i; \
  32. \
  33. src -= O; \
  34. for(i = 0;i < numsamples;i++) \
  35. { \
  36. dst[i] = Sampler(src, frac); \
  37. \
  38. frac += increment; \
  39. src += frac>>FRACTIONBITS; \
  40. frac &= FRACTIONMASK; \
  41. } \
  42. return dst; \
  43. }
  44. DECL_TEMPLATE(point, do_point, 0)
  45. DECL_TEMPLATE(lerp, do_lerp, 0)
  46. DECL_TEMPLATE(cubic, do_cubic, 1)
  47. #undef DECL_TEMPLATE
  48. const ALfloat *Resample_bsinc_C(const InterpState *state, const ALfloat *restrict src,
  49. ALsizei frac, ALint increment, ALfloat *restrict dst,
  50. ALsizei dstlen)
  51. {
  52. const ALfloat *fil, *scd, *phd, *spd;
  53. const ALfloat *const filter = state->bsinc.filter;
  54. const ALfloat sf = state->bsinc.sf;
  55. const ALsizei m = state->bsinc.m;
  56. ALsizei j_f, pi, i;
  57. ALfloat pf, r;
  58. ASSUME(m > 0);
  59. src += state->bsinc.l;
  60. for(i = 0;i < dstlen;i++)
  61. {
  62. // Calculate the phase index and factor.
  63. #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
  64. pi = frac >> FRAC_PHASE_BITDIFF;
  65. pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
  66. #undef FRAC_PHASE_BITDIFF
  67. fil = ASSUME_ALIGNED(filter + m*pi*4, 16);
  68. scd = ASSUME_ALIGNED(fil + m, 16);
  69. phd = ASSUME_ALIGNED(scd + m, 16);
  70. spd = ASSUME_ALIGNED(phd + m, 16);
  71. // Apply the scale and phase interpolated filter.
  72. r = 0.0f;
  73. for(j_f = 0;j_f < m;j_f++)
  74. r += (fil[j_f] + sf*scd[j_f] + pf*(phd[j_f] + sf*spd[j_f])) * src[j_f];
  75. dst[i] = r;
  76. frac += increment;
  77. src += frac>>FRACTIONBITS;
  78. frac &= FRACTIONMASK;
  79. }
  80. return dst;
  81. }
  82. static inline void ApplyCoeffs(ALsizei Offset, ALfloat (*restrict Values)[2],
  83. const ALsizei IrSize,
  84. const ALfloat (*restrict Coeffs)[2],
  85. ALfloat left, ALfloat right)
  86. {
  87. ALsizei c;
  88. for(c = 0;c < IrSize;c++)
  89. {
  90. const ALsizei off = (Offset+c)&HRIR_MASK;
  91. Values[off][0] += Coeffs[c][0] * left;
  92. Values[off][1] += Coeffs[c][1] * right;
  93. }
  94. }
  95. #define MixHrtf MixHrtf_C
  96. #define MixHrtfBlend MixHrtfBlend_C
  97. #define MixDirectHrtf MixDirectHrtf_C
  98. #include "hrtf_inc.c"
  99. void Mix_C(const ALfloat *data, ALsizei OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE],
  100. ALfloat *CurrentGains, const ALfloat *TargetGains, ALsizei Counter, ALsizei OutPos,
  101. ALsizei BufferSize)
  102. {
  103. ALfloat gain, delta, step;
  104. ALsizei c;
  105. ASSUME(OutChans > 0);
  106. ASSUME(BufferSize > 0);
  107. delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f;
  108. for(c = 0;c < OutChans;c++)
  109. {
  110. ALsizei pos = 0;
  111. gain = CurrentGains[c];
  112. step = (TargetGains[c] - gain) * delta;
  113. if(fabsf(step) > FLT_EPSILON)
  114. {
  115. ALsizei minsize = mini(BufferSize, Counter);
  116. for(;pos < minsize;pos++)
  117. {
  118. OutBuffer[c][OutPos+pos] += data[pos]*gain;
  119. gain += step;
  120. }
  121. if(pos == Counter)
  122. gain = TargetGains[c];
  123. CurrentGains[c] = gain;
  124. }
  125. if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
  126. continue;
  127. for(;pos < BufferSize;pos++)
  128. OutBuffer[c][OutPos+pos] += data[pos]*gain;
  129. }
  130. }
  131. /* Basically the inverse of the above. Rather than one input going to multiple
  132. * outputs (each with its own gain), it's multiple inputs (each with its own
  133. * gain) going to one output. This applies one row (vs one column) of a matrix
  134. * transform. And as the matrices are more or less static once set up, no
  135. * stepping is necessary.
  136. */
  137. void MixRow_C(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*restrict data)[BUFFERSIZE], ALsizei InChans, ALsizei InPos, ALsizei BufferSize)
  138. {
  139. ALsizei c, i;
  140. ASSUME(InChans > 0);
  141. ASSUME(BufferSize > 0);
  142. for(c = 0;c < InChans;c++)
  143. {
  144. ALfloat gain = Gains[c];
  145. if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
  146. continue;
  147. for(i = 0;i < BufferSize;i++)
  148. OutBuffer[i] += data[c][InPos+i] * gain;
  149. }
  150. }