mixer_sse2.c 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384
  1. /**
  2. * OpenAL cross platform audio library
  3. * Copyright (C) 2014 by Timothy Arceri <[email protected]>.
  4. * This library is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Library General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 2 of the License, or (at your option) any later version.
  8. *
  9. * This library is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Library General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Library General Public
  15. * License along with this library; if not, write to the
  16. * Free Software Foundation, Inc.,
  17. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  18. * Or go to http://www.gnu.org/copyleft/lgpl.html
  19. */
  20. #include "config.h"
  21. #include <xmmintrin.h>
  22. #include <emmintrin.h>
  23. #include "alu.h"
  24. #include "defs.h"
  25. const ALfloat *Resample_lerp_SSE2(const InterpState* UNUSED(state),
  26. const ALfloat *restrict src, ALsizei frac, ALint increment,
  27. ALfloat *restrict dst, ALsizei numsamples)
  28. {
  29. const __m128i increment4 = _mm_set1_epi32(increment*4);
  30. const __m128 fracOne4 = _mm_set1_ps(1.0f/FRACTIONONE);
  31. const __m128i fracMask4 = _mm_set1_epi32(FRACTIONMASK);
  32. union { alignas(16) ALint i[4]; float f[4]; } pos_;
  33. union { alignas(16) ALsizei i[4]; float f[4]; } frac_;
  34. __m128i frac4, pos4;
  35. ALint pos;
  36. ALsizei i;
  37. ASSUME(numsamples > 0);
  38. InitiatePositionArrays(frac, increment, frac_.i, pos_.i, 4);
  39. frac4 = _mm_castps_si128(_mm_load_ps(frac_.f));
  40. pos4 = _mm_castps_si128(_mm_load_ps(pos_.f));
  41. for(i = 0;numsamples-i > 3;i += 4)
  42. {
  43. const __m128 val1 = _mm_setr_ps(src[pos_.i[0]], src[pos_.i[1]], src[pos_.i[2]], src[pos_.i[3]]);
  44. const __m128 val2 = _mm_setr_ps(src[pos_.i[0]+1], src[pos_.i[1]+1], src[pos_.i[2]+1], src[pos_.i[3]+1]);
  45. /* val1 + (val2-val1)*mu */
  46. const __m128 r0 = _mm_sub_ps(val2, val1);
  47. const __m128 mu = _mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4);
  48. const __m128 out = _mm_add_ps(val1, _mm_mul_ps(mu, r0));
  49. _mm_store_ps(&dst[i], out);
  50. frac4 = _mm_add_epi32(frac4, increment4);
  51. pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS));
  52. frac4 = _mm_and_si128(frac4, fracMask4);
  53. _mm_store_ps(pos_.f, _mm_castsi128_ps(pos4));
  54. }
  55. /* NOTE: These four elements represent the position *after* the last four
  56. * samples, so the lowest element is the next position to resample.
  57. */
  58. pos = pos_.i[0];
  59. frac = _mm_cvtsi128_si32(frac4);
  60. for(;i < numsamples;i++)
  61. {
  62. dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE));
  63. frac += increment;
  64. pos += frac>>FRACTIONBITS;
  65. frac &= FRACTIONMASK;
  66. }
  67. return dst;
  68. }