assimpAppNode.cpp 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. //-----------------------------------------------------------------------------
  2. // Copyright (c) 2012 GarageGames, LLC
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to
  6. // deal in the Software without restriction, including without limitation the
  7. // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
  8. // sell copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  19. // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  20. // IN THE SOFTWARE.
  21. //-----------------------------------------------------------------------------
  22. #include "platform/platform.h"
  23. #include "ts/loader/appSequence.h"
  24. #include "ts/assimp/assimpAppNode.h"
  25. #include "ts/assimp/assimpAppMesh.h"
  26. // assimp include files.
  27. #include <assimp/cimport.h>
  28. #include <assimp/scene.h>
  29. #include <assimp/postprocess.h>
  30. #include <assimp/types.h>
  31. aiAnimation* AssimpAppNode::sActiveSequence = NULL;
  32. F32 AssimpAppNode::sTimeMultiplier = 1.0f;
  33. AssimpAppNode::AssimpAppNode(const aiScene* scene, const aiNode* node, AssimpAppNode* parentNode)
  34. : mScene(scene),
  35. mNode(node ? node : scene->mRootNode),
  36. mInvertMeshes(false),
  37. mLastTransformTime(TSShapeLoader::DefaultTime - 1),
  38. mDefaultTransformValid(false)
  39. {
  40. appParent = parentNode;
  41. // Initialize node and parent names.
  42. mName = dStrdup(mNode->mName.C_Str());
  43. if ( dStrlen(mName) == 0 )
  44. {
  45. const char* defaultName = "null";
  46. mName = dStrdup(defaultName);
  47. }
  48. mParentName = dStrdup(parentNode ? parentNode->mName : "ROOT");
  49. // Convert transformation matrix
  50. assimpToTorqueMat(node->mTransformation, mNodeTransform);
  51. Con::printf("[ASSIMP] Node Created: %s, Parent: %s", mName, mParentName);
  52. }
  53. MatrixF AssimpAppNode::getTransform(F32 time)
  54. {
  55. // Check if we can use the last computed transform
  56. if (time == mLastTransformTime)
  57. {
  58. return mLastTransform;
  59. }
  60. if (appParent) {
  61. // Get parent node's transform
  62. mLastTransform = appParent->getTransform(time);
  63. }
  64. else {
  65. // no parent (ie. root level) => scale by global shape <unit>
  66. mLastTransform.identity();
  67. mLastTransform.scale(ColladaUtils::getOptions().unit * ColladaUtils::getOptions().formatScaleFactor);
  68. /*if (!isBounds())
  69. convertMat(mLastTransform);*/
  70. }
  71. // If this node is animated in the active sequence, fetch the animated transform
  72. MatrixF mat(true);
  73. if (sActiveSequence)
  74. getAnimatedTransform(mat, time, sActiveSequence);
  75. else
  76. mat = mNodeTransform;
  77. // Remove node scaling?
  78. Point3F nodeScale = mat.getScale();
  79. if (nodeScale != Point3F::One && appParent && ColladaUtils::getOptions().ignoreNodeScale)
  80. {
  81. nodeScale.x = nodeScale.x ? (1.0f / nodeScale.x) : 0;
  82. nodeScale.y = nodeScale.y ? (1.0f / nodeScale.y) : 0;
  83. nodeScale.z = nodeScale.z ? (1.0f / nodeScale.z) : 0;
  84. mat.scale(nodeScale);
  85. }
  86. mLastTransform.mul(mat);
  87. mLastTransformTime = time;
  88. return mLastTransform;
  89. }
  90. void AssimpAppNode::getAnimatedTransform(MatrixF& mat, F32 t, aiAnimation* animSeq)
  91. {
  92. // Convert time `t` (in seconds) to a frame index
  93. const F32 frameTime = (t * animSeq->mTicksPerSecond + 0.5f) + 1.0f;
  94. // Loop through animation channels to find the matching node
  95. for (U32 k = 0; k < animSeq->mNumChannels; ++k)
  96. {
  97. const aiNodeAnim* nodeAnim = animSeq->mChannels[k];
  98. if (dStrcmp(mName, nodeAnim->mNodeName.C_Str()) != 0)
  99. continue;
  100. Point3F translation(Point3F::Zero);
  101. QuatF rotation(QuatF::Identity);
  102. Point3F scale(Point3F::One);
  103. // Interpolate Translation Keys
  104. if (nodeAnim->mNumPositionKeys > 0)
  105. {
  106. translation = interpolateVectorKey(nodeAnim->mPositionKeys, nodeAnim->mNumPositionKeys, frameTime);
  107. }
  108. // Interpolate Rotation Keys
  109. if (nodeAnim->mNumRotationKeys > 0)
  110. {
  111. rotation = interpolateQuaternionKey(nodeAnim->mRotationKeys, nodeAnim->mNumRotationKeys, frameTime);
  112. }
  113. // Interpolate Scaling Keys
  114. if (nodeAnim->mNumScalingKeys > 0)
  115. {
  116. scale = interpolateVectorKey(nodeAnim->mScalingKeys, nodeAnim->mNumScalingKeys, frameTime);
  117. }
  118. // Apply the interpolated transform components to the matrix
  119. rotation.setMatrix(&mat);
  120. mat.inverse();
  121. mat.setPosition(translation);
  122. mat.scale(scale);
  123. return; // Exit after processing the matching node
  124. }
  125. // Default to the static node transformation if no animation data is found
  126. mat = mNodeTransform;
  127. }
  128. Point3F AssimpAppNode::interpolateVectorKey(const aiVectorKey* keys, U32 numKeys, F32 frameTime)
  129. {
  130. if (numKeys == 1) // Single keyframe: use it directly
  131. return Point3F(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z);
  132. // Clamp frameTime to the bounds of the keyframes
  133. if (frameTime <= keys[0].mTime) {
  134. // Before the first keyframe, return the first key
  135. return Point3F(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z);
  136. }
  137. if (frameTime >= keys[numKeys - 1].mTime) {
  138. // After the last keyframe, return the last key
  139. return Point3F(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z);
  140. }
  141. // Interpolate between the two nearest keyframes
  142. for (U32 i = 1; i < numKeys; ++i)
  143. {
  144. if (frameTime < keys[i].mTime)
  145. {
  146. const F32 factor = (frameTime - keys[i - 1].mTime) / (keys[i].mTime - keys[i - 1].mTime);
  147. Point3F start(keys[i - 1].mValue.x, keys[i - 1].mValue.y, keys[i - 1].mValue.z);
  148. Point3F end(keys[i].mValue.x, keys[i].mValue.y, keys[i].mValue.z);
  149. Point3F result;
  150. result.interpolate(start, end, factor);
  151. return result;
  152. }
  153. }
  154. // Default to the last keyframe
  155. return Point3F(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z);
  156. }
  157. QuatF AssimpAppNode::interpolateQuaternionKey(const aiQuatKey* keys, U32 numKeys, F32 frameTime)
  158. {
  159. if (numKeys == 1) // Single keyframe: use it directly
  160. return QuatF(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z, keys[0].mValue.w);
  161. for (U32 i = 1; i < numKeys; ++i)
  162. {
  163. if (frameTime < keys[i].mTime)
  164. {
  165. const F32 factor = (frameTime - keys[i - 1].mTime) / (keys[i].mTime - keys[i - 1].mTime);
  166. QuatF start(keys[i - 1].mValue.x, keys[i - 1].mValue.y, keys[i - 1].mValue.z, keys[i - 1].mValue.w);
  167. QuatF end(keys[i].mValue.x, keys[i].mValue.y, keys[i].mValue.z, keys[i].mValue.w);
  168. QuatF result;
  169. result.interpolate(start, end, factor);
  170. return result;
  171. }
  172. }
  173. // Default to the last keyframe
  174. return QuatF(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z, keys[numKeys - 1].mValue.w);
  175. }
  176. bool AssimpAppNode::animatesTransform(const AppSequence* appSeq)
  177. {
  178. return false;
  179. }
  180. /// Get the world transform of the node at the specified time
  181. MatrixF AssimpAppNode::getNodeTransform(F32 time)
  182. {
  183. // Avoid re-computing the default transform if possible
  184. if (mDefaultTransformValid && time == TSShapeLoader::DefaultTime)
  185. {
  186. return mDefaultNodeTransform;
  187. }
  188. else
  189. {
  190. MatrixF nodeTransform = getTransform(time);
  191. // Check for inverted node coordinate spaces => can happen when modelers
  192. // use the 'mirror' tool in their 3d app. Shows up as negative <scale>
  193. // transforms in the collada model.
  194. if (m_matF_determinant(nodeTransform) < 0.0f)
  195. {
  196. // Mark this node as inverted so we can mirror mesh geometry, then
  197. // de-invert the transform matrix
  198. mInvertMeshes = true;
  199. nodeTransform.scale(Point3F(1, 1, -1));
  200. }
  201. // Cache the default transform
  202. if (time == TSShapeLoader::DefaultTime)
  203. {
  204. mDefaultTransformValid = true;
  205. mDefaultNodeTransform = nodeTransform;
  206. }
  207. return nodeTransform;
  208. }
  209. }
  210. void AssimpAppNode::assimpToTorqueMat(const aiMatrix4x4& inAssimpMat, MatrixF& outMat)
  211. {
  212. outMat.setRow(0, Point4F((F32)inAssimpMat.a1, (F32)inAssimpMat.a2,
  213. (F32)inAssimpMat.a3, (F32)inAssimpMat.a4));
  214. outMat.setRow(1, Point4F((F32)inAssimpMat.b1, (F32)inAssimpMat.b2,
  215. (F32)inAssimpMat.b3, (F32)inAssimpMat.b4));
  216. outMat.setRow(2, Point4F((F32)inAssimpMat.c1, (F32)inAssimpMat.c2,
  217. (F32)inAssimpMat.c3, (F32)inAssimpMat.c4));
  218. outMat.setRow(3, Point4F((F32)inAssimpMat.d1, (F32)inAssimpMat.d2,
  219. (F32)inAssimpMat.d3, (F32)inAssimpMat.d4));
  220. }
  221. void AssimpAppNode::convertMat(MatrixF& outMat)
  222. {
  223. MatrixF rot(true);
  224. switch (ColladaUtils::getOptions().upAxis)
  225. {
  226. case UPAXISTYPE_X_UP:
  227. // rotate 90 around Y-axis, then 90 around Z-axis
  228. rot(0, 0) = 0.0f; rot(1, 0) = 1.0f;
  229. rot(1, 1) = 0.0f; rot(2, 1) = 1.0f;
  230. rot(0, 2) = 1.0f; rot(2, 2) = 0.0f;
  231. // pre-multiply the transform by the rotation matrix
  232. outMat.mulL(rot);
  233. break;
  234. case UPAXISTYPE_Y_UP:
  235. // rotate 180 around Y-axis, then 90 around X-axis
  236. rot(0, 0) = 1.0f;
  237. rot(1, 1) = 0.0f;
  238. rot(1, 2) = -1.0f;
  239. rot(2, 1) = 1.0f;
  240. rot(2, 2) = 0.0f;
  241. // pre-multiply the transform by the rotation matrix
  242. outMat.mulL(rot);
  243. break;
  244. case UPAXISTYPE_Z_UP:
  245. default:
  246. // nothing to do
  247. break;
  248. }
  249. }
  250. aiNode* AssimpAppNode::findChildNodeByName(const char* nodeName, aiNode* rootNode)
  251. {
  252. aiNode* retNode = NULL;
  253. if (strcmp(nodeName, rootNode->mName.C_Str()) == 0)
  254. return rootNode;
  255. for (U32 i = 0; i < rootNode->mNumChildren; ++i)
  256. {
  257. retNode = findChildNodeByName(nodeName, rootNode->mChildren[i]);
  258. if (retNode)
  259. return retNode;
  260. }
  261. return nullptr;
  262. }
  263. void AssimpAppNode::addChild(AssimpAppNode* child)
  264. {
  265. mChildNodes.push_back(child);
  266. }
  267. void AssimpAppNode::addMesh(AssimpAppMesh* child)
  268. {
  269. mMeshes.push_back(child);
  270. }