processedShaderMaterial.cpp 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431
  1. //-----------------------------------------------------------------------------
  2. // Copyright (c) 2012 GarageGames, LLC
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to
  6. // deal in the Software without restriction, including without limitation the
  7. // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
  8. // sell copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  19. // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  20. // IN THE SOFTWARE.
  21. //-----------------------------------------------------------------------------
  22. #include "platform/platform.h"
  23. #include "materials/processedShaderMaterial.h"
  24. #include "core/util/safeDelete.h"
  25. #include "gfx/sim/cubemapData.h"
  26. #include "gfx/gfxShader.h"
  27. #include "gfx/genericConstBuffer.h"
  28. #include "gfx/gfxPrimitiveBuffer.h"
  29. #include "scene/sceneRenderState.h"
  30. #include "shaderGen/shaderFeature.h"
  31. #include "shaderGen/shaderGenVars.h"
  32. #include "shaderGen/featureMgr.h"
  33. #include "shaderGen/shaderGen.h"
  34. #include "materials/sceneData.h"
  35. #include "materials/materialFeatureTypes.h"
  36. #include "materials/materialManager.h"
  37. #include "materials/shaderMaterialParameters.h"
  38. #include "materials/matTextureTarget.h"
  39. #include "gfx/util/screenspace.h"
  40. #include "math/util/matrixSet.h"
  41. #include "renderInstance/renderProbeMgr.h"
  42. // We need to include customMaterialDefinition for ShaderConstHandles::init
  43. #include "materials/customMaterialDefinition.h"
  44. #include "ts/tsShape.h"
  45. ///
  46. /// ShaderConstHandles
  47. ///
  48. void ShaderConstHandles::init( GFXShader *shader, CustomMaterial* mat /*=NULL*/ )
  49. {
  50. mDiffuseColorSC = shader->getShaderConstHandle("$diffuseMaterialColor");
  51. mTexMatSC = shader->getShaderConstHandle(ShaderGenVars::texMat);
  52. mToneMapTexSC = shader->getShaderConstHandle(ShaderGenVars::toneMap);
  53. mSpecularColorSC = shader->getShaderConstHandle(ShaderGenVars::specularColor);
  54. mSmoothnessSC = shader->getShaderConstHandle(ShaderGenVars::smoothness);
  55. mMetalnessSC = shader->getShaderConstHandle(ShaderGenVars::metalness);
  56. mAccuScaleSC = shader->getShaderConstHandle("$accuScale");
  57. mAccuDirectionSC = shader->getShaderConstHandle("$accuDirection");
  58. mAccuStrengthSC = shader->getShaderConstHandle("$accuStrength");
  59. mAccuCoverageSC = shader->getShaderConstHandle("$accuCoverage");
  60. mAccuSpecularSC = shader->getShaderConstHandle("$accuSpecular");
  61. mParallaxInfoSC = shader->getShaderConstHandle("$parallaxInfo");
  62. mFogDataSC = shader->getShaderConstHandle(ShaderGenVars::fogData);
  63. mFogColorSC = shader->getShaderConstHandle(ShaderGenVars::fogColor);
  64. mDetailScaleSC = shader->getShaderConstHandle(ShaderGenVars::detailScale);
  65. mVisiblitySC = shader->getShaderConstHandle(ShaderGenVars::visibility);
  66. mColorMultiplySC = shader->getShaderConstHandle(ShaderGenVars::colorMultiply);
  67. mAlphaTestValueSC = shader->getShaderConstHandle(ShaderGenVars::alphaTestValue);
  68. mModelViewProjSC = shader->getShaderConstHandle(ShaderGenVars::modelview);
  69. mWorldViewOnlySC = shader->getShaderConstHandle(ShaderGenVars::worldViewOnly);
  70. mWorldToCameraSC = shader->getShaderConstHandle(ShaderGenVars::worldToCamera);
  71. mCameraToWorldSC = shader->getShaderConstHandle(ShaderGenVars::cameraToWorld);
  72. mWorldToObjSC = shader->getShaderConstHandle(ShaderGenVars::worldToObj);
  73. mViewToObjSC = shader->getShaderConstHandle(ShaderGenVars::viewToObj);
  74. mCubeTransSC = shader->getShaderConstHandle(ShaderGenVars::cubeTrans);
  75. mCubeMipsSC = shader->getShaderConstHandle(ShaderGenVars::cubeMips);
  76. mObjTransSC = shader->getShaderConstHandle(ShaderGenVars::objTrans);
  77. mCubeEyePosSC = shader->getShaderConstHandle(ShaderGenVars::cubeEyePos);
  78. mEyePosSC = shader->getShaderConstHandle(ShaderGenVars::eyePos);
  79. mEyePosWorldSC = shader->getShaderConstHandle(ShaderGenVars::eyePosWorld);
  80. m_vEyeSC = shader->getShaderConstHandle(ShaderGenVars::vEye);
  81. mEyeMatSC = shader->getShaderConstHandle(ShaderGenVars::eyeMat);
  82. mOneOverFarplane = shader->getShaderConstHandle(ShaderGenVars::oneOverFarplane);
  83. mAccumTimeSC = shader->getShaderConstHandle(ShaderGenVars::accumTime);
  84. mMinnaertConstantSC = shader->getShaderConstHandle(ShaderGenVars::minnaertConstant);
  85. mSubSurfaceParamsSC = shader->getShaderConstHandle(ShaderGenVars::subSurfaceParams);
  86. mDiffuseAtlasParamsSC = shader->getShaderConstHandle(ShaderGenVars::diffuseAtlasParams);
  87. mDiffuseAtlasTileSC = shader->getShaderConstHandle(ShaderGenVars::diffuseAtlasTileParams);
  88. mBumpAtlasParamsSC = shader->getShaderConstHandle(ShaderGenVars::bumpAtlasParams);
  89. mBumpAtlasTileSC = shader->getShaderConstHandle(ShaderGenVars::bumpAtlasTileParams);
  90. mRTSizeSC = shader->getShaderConstHandle( "$targetSize" );
  91. mOneOverRTSizeSC = shader->getShaderConstHandle( "$oneOverTargetSize" );
  92. mDetailBumpStrength = shader->getShaderConstHandle( "$detailBumpStrength" );
  93. mViewProjSC = shader->getShaderConstHandle( "$viewProj" );
  94. // MFT_ImposterVert
  95. mImposterUVs = shader->getShaderConstHandle( "$imposterUVs" );
  96. mImposterLimits = shader->getShaderConstHandle( "$imposterLimits" );
  97. for (S32 i = 0; i < TEXTURE_STAGE_COUNT; ++i)
  98. mRTParamsSC[i] = shader->getShaderConstHandle( String::ToString( "$rtParams%d", i ) );
  99. // MFT_HardwareSkinning
  100. mNodeTransforms = shader->getShaderConstHandle( "$nodeTransforms" );
  101. // Clear any existing texture handles.
  102. dMemset( mTexHandlesSC, 0, sizeof( mTexHandlesSC ) );
  103. if(mat)
  104. {
  105. for (S32 i = 0; i < Material::MAX_TEX_PER_PASS; ++i)
  106. mTexHandlesSC[i] = shader->getShaderConstHandle(mat->mSamplerNames[i]);
  107. }
  108. // Deferred Shading
  109. mMatInfoFlagsSC = shader->getShaderConstHandle(ShaderGenVars::matInfoFlags);
  110. }
  111. ///
  112. /// ShaderRenderPassData
  113. ///
  114. void ShaderRenderPassData::reset()
  115. {
  116. Parent::reset();
  117. shader = NULL;
  118. for ( U32 i=0; i < featureShaderHandles.size(); i++ )
  119. delete featureShaderHandles[i];
  120. featureShaderHandles.clear();
  121. }
  122. String ShaderRenderPassData::describeSelf() const
  123. {
  124. // First write the shader identification.
  125. String desc = String::ToString( "%s\n", shader->describeSelf().c_str() );
  126. // Let the parent get the rest.
  127. desc += Parent::describeSelf();
  128. return desc;
  129. }
  130. ///
  131. /// ProcessedShaderMaterial
  132. ///
  133. ProcessedShaderMaterial::ProcessedShaderMaterial()
  134. : mDefaultParameters( NULL ),
  135. mInstancingState( NULL )
  136. {
  137. VECTOR_SET_ASSOCIATION( mShaderConstDesc );
  138. VECTOR_SET_ASSOCIATION( mParameterHandles );
  139. }
  140. ProcessedShaderMaterial::ProcessedShaderMaterial(Material &mat)
  141. : mDefaultParameters( NULL ),
  142. mInstancingState( NULL )
  143. {
  144. VECTOR_SET_ASSOCIATION( mShaderConstDesc );
  145. VECTOR_SET_ASSOCIATION( mParameterHandles );
  146. mMaterial = &mat;
  147. }
  148. ProcessedShaderMaterial::~ProcessedShaderMaterial()
  149. {
  150. SAFE_DELETE(mInstancingState);
  151. SAFE_DELETE(mDefaultParameters);
  152. for (U32 i = 0; i < mParameterHandles.size(); i++)
  153. SAFE_DELETE(mParameterHandles[i]);
  154. }
  155. //
  156. // Material init
  157. //
  158. bool ProcessedShaderMaterial::init( const FeatureSet &features,
  159. const GFXVertexFormat *vertexFormat,
  160. const MatFeaturesDelegate &featuresDelegate )
  161. {
  162. // Load our textures
  163. _setStageData();
  164. // Determine how many stages we use
  165. mMaxStages = getNumStages();
  166. mVertexFormat = vertexFormat;
  167. mFeatures.clear();
  168. mStateHint.clear();
  169. SAFE_DELETE(mInstancingState);
  170. for( U32 i=0; i<mMaxStages; i++ )
  171. {
  172. MaterialFeatureData fd;
  173. // Determine the features of this stage
  174. _determineFeatures( i, fd, features );
  175. // Let the delegate poke at the features.
  176. if ( featuresDelegate )
  177. featuresDelegate( this, i, fd, features );
  178. // Create the passes for this stage
  179. if ( fd.features.isNotEmpty() )
  180. if( !_createPasses( fd, i, features ) )
  181. return false;
  182. }
  183. _initRenderPassDataStateBlocks();
  184. _initMaterialParameters();
  185. mDefaultParameters = allocMaterialParameters();
  186. setMaterialParameters( mDefaultParameters, 0 );
  187. mStateHint.init( this );
  188. // Enable instancing if we have it.
  189. if ( mFeatures.hasFeature( MFT_UseInstancing ) )
  190. {
  191. mInstancingState = new InstancingState();
  192. mInstancingState->setFormat( _getRPD( 0 )->shader->getInstancingFormat(), mVertexFormat );
  193. }
  194. if (mMaterial && mMaterial->mDiffuseMapFilename[0].isNotEmpty() && mMaterial->mDiffuseMapFilename[0].substr(0, 1).equal("#"))
  195. {
  196. String texTargetBufferName = mMaterial->mDiffuseMapFilename[0].substr(1, mMaterial->mDiffuseMapFilename[0].length() - 1);
  197. NamedTexTarget *texTarget = NamedTexTarget::find(texTargetBufferName);
  198. RenderPassData* rpd = getPass(0);
  199. if (rpd)
  200. {
  201. rpd->mTexSlot[0].texTarget = texTarget;
  202. rpd->mTexType[0] = Material::TexTarget;
  203. rpd->mSamplerNames[0] = "diffuseMap";
  204. }
  205. }
  206. return true;
  207. }
  208. U32 ProcessedShaderMaterial::getNumStages()
  209. {
  210. // Loops through all stages to determine how many
  211. // stages we actually use.
  212. //
  213. // The first stage is always active else we shouldn't be
  214. // creating the material to begin with.
  215. U32 numStages = 1;
  216. U32 i;
  217. for( i=1; i<Material::MAX_STAGES; i++ )
  218. {
  219. // Assume stage is inactive
  220. bool stageActive = false;
  221. // Cubemaps only on first stage
  222. if( i == 0 )
  223. {
  224. // If we have a cubemap the stage is active
  225. if( mMaterial->mCubemapData || mMaterial->mDynamicCubemap )
  226. {
  227. numStages++;
  228. continue;
  229. }
  230. }
  231. // If we have a texture for the a feature the
  232. // stage is active.
  233. if ( mStages[i].hasValidTex() )
  234. stageActive = true;
  235. // If this stage has diffuse color, it's active
  236. if ( mMaterial->mDiffuse[i].alpha > 0 &&
  237. mMaterial->mDiffuse[i] != LinearColorF::WHITE )
  238. stageActive = true;
  239. // If we have a Material that is vertex lit
  240. // then it may not have a texture
  241. if( mMaterial->mVertLit[i] )
  242. stageActive = true;
  243. // Increment the number of active stages
  244. numStages += stageActive;
  245. }
  246. return numStages;
  247. }
  248. void ProcessedShaderMaterial::_determineFeatures( U32 stageNum,
  249. MaterialFeatureData &fd,
  250. const FeatureSet &features )
  251. {
  252. PROFILE_SCOPE( ProcessedShaderMaterial_DetermineFeatures );
  253. const F32 shaderVersion = GFX->getPixelShaderVersion();
  254. AssertFatal(shaderVersion > 0.0 , "Cannot create a shader material if we don't support shaders");
  255. bool lastStage = stageNum == (mMaxStages-1);
  256. // First we add all the features which the
  257. // material has defined.
  258. if (mMaterial->mInvertSmoothness[stageNum])
  259. fd.features.addFeature(MFT_InvertSmoothness);
  260. if ( mMaterial->isTranslucent() )
  261. {
  262. // Note: This is for decal blending into the deferred
  263. // for AL... it probably needs to be made clearer.
  264. if ( mMaterial->mTranslucentBlendOp == Material::LerpAlpha &&
  265. mMaterial->mTranslucentZWrite )
  266. fd.features.addFeature( MFT_IsTranslucentZWrite );
  267. else
  268. {
  269. fd.features.addFeature( MFT_IsTranslucent );
  270. fd.features.addFeature( MFT_ForwardShading );
  271. }
  272. }
  273. // TODO: This sort of sucks... BL should somehow force this
  274. // feature on from the outside and not this way.
  275. if ( dStrcmp( LIGHTMGR->getId(), "BLM" ) == 0 )
  276. fd.features.addFeature( MFT_ForwardShading );
  277. // Disabling the InterlacedDeferred feature for now. It is not ready for prime-time
  278. // and it should not be triggered off of the DoubleSided parameter. [2/5/2010 Pat]
  279. /*if ( mMaterial->isDoubleSided() )
  280. {
  281. fd.features.addFeature( MFT_InterlacedDeferred );
  282. }*/
  283. // Allow instancing if it was requested and the card supports
  284. // SM 3.0 or above.
  285. //
  286. // We also disable instancing for non-single pass materials
  287. // and glowing materials because its untested/unimplemented.
  288. //
  289. if ( features.hasFeature( MFT_UseInstancing ) &&
  290. mMaxStages == 1 &&
  291. !mMaterial->mGlow[0] &&
  292. shaderVersion >= 3.0f )
  293. fd.features.addFeature( MFT_UseInstancing );
  294. if ( mMaterial->mAlphaTest )
  295. fd.features.addFeature( MFT_AlphaTest );
  296. if (mMaterial->mEmissive[stageNum])
  297. {
  298. fd.features.addFeature(MFT_IsEmissive);
  299. }
  300. else
  301. {
  302. fd.features.addFeature(MFT_RTLighting);
  303. if (mMaterial->isTranslucent())
  304. fd.features.addFeature(MFT_ReflectionProbes);
  305. }
  306. if ( mMaterial->mAnimFlags[stageNum] )
  307. fd.features.addFeature( MFT_TexAnim );
  308. if ( mMaterial->mVertLit[stageNum] )
  309. fd.features.addFeature( MFT_VertLit );
  310. // cubemaps only available on stage 0 for now - bramage
  311. if ( stageNum < 1 && mMaterial->isTranslucent() &&
  312. ( ( mMaterial->mCubemapData && mMaterial->mCubemapData->mCubemap ) ||
  313. mMaterial->mDynamicCubemap ) && !features.hasFeature(MFT_ReflectionProbes))
  314. {
  315. fd.features.addFeature( MFT_CubeMap );
  316. }
  317. if (features.hasFeature(MFT_SkyBox))
  318. {
  319. fd.features.addFeature(MFT_StaticCubemap);
  320. fd.features.addFeature(MFT_CubeMap);
  321. fd.features.addFeature(MFT_SkyBox);
  322. fd.features.removeFeature(MFT_ReflectionProbes);
  323. }
  324. fd.features.addFeature( MFT_Visibility );
  325. if ( lastStage &&
  326. ( !gClientSceneGraph->usePostEffectFog() ||
  327. fd.features.hasFeature( MFT_IsTranslucent ) ||
  328. fd.features.hasFeature( MFT_ForwardShading )) )
  329. fd.features.addFeature( MFT_Fog );
  330. if ( mMaterial->mMinnaertConstant[stageNum] > 0.0f )
  331. fd.features.addFeature( MFT_MinnaertShading );
  332. if ( mMaterial->mSubSurface[stageNum] )
  333. fd.features.addFeature( MFT_SubSurface );
  334. if ( !mMaterial->mCellLayout[stageNum].isZero() )
  335. {
  336. fd.features.addFeature( MFT_DiffuseMapAtlas );
  337. if ( mMaterial->mNormalMapAtlas )
  338. fd.features.addFeature( MFT_NormalMapAtlas );
  339. }
  340. // Grab other features like normal maps, base texture, etc.
  341. FeatureSet mergeFeatures;
  342. mStages[stageNum].getFeatureSet( &mergeFeatures );
  343. fd.features.merge( mergeFeatures );
  344. if ( fd.features[ MFT_NormalMap ] )
  345. {
  346. if ( mStages[stageNum].getTex( MFT_NormalMap )->mFormat == GFXFormatBC3 &&
  347. !mStages[stageNum].getTex( MFT_NormalMap )->mHasTransparency )
  348. fd.features.addFeature( MFT_IsBC3nm );
  349. else if ( mStages[stageNum].getTex(MFT_NormalMap)->mFormat == GFXFormatBC5 &&
  350. !mStages[stageNum].getTex(MFT_NormalMap)->mHasTransparency )
  351. fd.features.addFeature( MFT_IsBC5nm );
  352. }
  353. // Now for some more advanced features that we
  354. // cannot do on SM 2.0 and below.
  355. if ( shaderVersion > 2.0f )
  356. {
  357. if ( mMaterial->mParallaxScale[stageNum] > 0.0f &&
  358. fd.features[ MFT_NormalMap ] )
  359. fd.features.addFeature( MFT_Parallax );
  360. }
  361. // Without realtime lighting and on lower end
  362. // shader models disable the specular map.
  363. if ( !fd.features[ MFT_RTLighting ] || shaderVersion == 2.0 )
  364. fd.features.removeFeature( MFT_SpecularMap );
  365. // If we have a specular map then make sure we
  366. // have per-pixel specular enabled.
  367. if( fd.features[ MFT_SpecularMap ] )
  368. {
  369. // Check for an alpha channel on the specular map. If it has one (and it
  370. // has values less than 255) than the artist has put the gloss map into
  371. // the alpha channel.
  372. if( mStages[stageNum].getTex( MFT_SpecularMap )->mHasTransparency )
  373. fd.features.addFeature( MFT_GlossMap );
  374. }
  375. if ( mMaterial->mAccuEnabled[stageNum] )
  376. {
  377. mHasAccumulation = true;
  378. }
  379. // we need both diffuse and normal maps + sm3 to have an accu map
  380. if( fd.features[ MFT_AccuMap ] &&
  381. ( !fd.features[ MFT_DiffuseMap ] ||
  382. !fd.features[ MFT_NormalMap ] ||
  383. GFX->getPixelShaderVersion() < 3.0f ) ) {
  384. AssertWarn(false, "SAHARA: Using an Accu Map requires SM 3.0 and a normal map.");
  385. fd.features.removeFeature( MFT_AccuMap );
  386. mHasAccumulation = false;
  387. }
  388. // Without a base texture use the diffuse color
  389. // feature to ensure some sort of output.
  390. if (!fd.features[MFT_DiffuseMap])
  391. {
  392. fd.features.addFeature( MFT_DiffuseColor );
  393. // No texture coords... no overlay.
  394. fd.features.removeFeature( MFT_OverlayMap );
  395. }
  396. // If we have a diffuse map and the alpha on the diffuse isn't
  397. // zero and the color isn't pure white then multiply the color.
  398. else if ( mMaterial->mDiffuse[stageNum].alpha > 0.0f &&
  399. mMaterial->mDiffuse[stageNum] != LinearColorF::WHITE )
  400. fd.features.addFeature( MFT_DiffuseColor );
  401. // If lightmaps or tonemaps are enabled or we
  402. // don't have a second UV set then we cannot
  403. // use the overlay texture.
  404. if ( fd.features[MFT_LightMap] ||
  405. fd.features[MFT_ToneMap] ||
  406. mVertexFormat->getTexCoordCount() < 2 )
  407. fd.features.removeFeature( MFT_OverlayMap );
  408. // If tonemaps are enabled don't use lightmap
  409. if ( fd.features[MFT_ToneMap] || mVertexFormat->getTexCoordCount() < 2 )
  410. fd.features.removeFeature( MFT_LightMap );
  411. // Don't allow tonemaps if we don't have a second UV set
  412. if ( mVertexFormat->getTexCoordCount() < 2 )
  413. fd.features.removeFeature( MFT_ToneMap );
  414. // Always add the HDR output feature.
  415. //
  416. // It will be filtered out if it was disabled
  417. // for this material creation below.
  418. //
  419. // Also the shader code will evaluate to a nop
  420. // if HDR is not enabled in the scene.
  421. //
  422. fd.features.addFeature( MFT_HDROut );
  423. // If vertex color is enabled on the material's stage and
  424. // color is present in vertex format, add diffuse vertex
  425. // color feature.
  426. if ( mMaterial->mVertColor[ stageNum ] &&
  427. mVertexFormat->hasColor() )
  428. fd.features.addFeature( MFT_DiffuseVertColor );
  429. // Allow features to add themselves.
  430. for ( U32 i = 0; i < FEATUREMGR->getFeatureCount(); i++ )
  431. {
  432. const FeatureInfo &info = FEATUREMGR->getAt( i );
  433. info.feature->determineFeature( mMaterial,
  434. mVertexFormat,
  435. stageNum,
  436. *info.type,
  437. features,
  438. &fd );
  439. }
  440. // Need to add the Hardware Skinning feature if its used
  441. if ( features.hasFeature( MFT_HardwareSkinning ) )
  442. {
  443. fd.features.addFeature( MFT_HardwareSkinning );
  444. }
  445. // Now disable any features that were
  446. // not part of the input feature handle.
  447. fd.features.filter( features );
  448. }
  449. bool ProcessedShaderMaterial::_createPasses( MaterialFeatureData &stageFeatures, U32 stageNum, const FeatureSet &features )
  450. {
  451. // Creates passes for the given stage
  452. ShaderRenderPassData passData;
  453. U32 texIndex = 0;
  454. for( U32 featureIDx=0; featureIDx < FEATUREMGR->getFeatureCount(); featureIDx++ )
  455. {
  456. const FeatureInfo &info = FEATUREMGR->getAt(featureIDx);
  457. if ( !stageFeatures.features.hasFeature( *info.type ) )
  458. continue;
  459. U32 numTexReg = info.feature->getResources( stageFeatures ).numTexReg;
  460. // adds pass if blend op changes for feature
  461. _setPassBlendOp( info.feature, passData, texIndex, stageFeatures, stageNum, features );
  462. // Add pass if num tex reg is going to be too high
  463. if( passData.mNumTexReg + numTexReg > GFX->getNumSamplers() )
  464. {
  465. if( !_addPass( passData, texIndex, stageFeatures, stageNum, features ) )
  466. return false;
  467. _setPassBlendOp( info.feature, passData, texIndex, stageFeatures, stageNum, features );
  468. }
  469. passData.mNumTexReg += numTexReg;
  470. passData.mFeatureData.features.addFeature( *info.type );
  471. #if defined(TORQUE_DEBUG) && defined( TORQUE_OPENGL)
  472. U32 oldTexNumber = texIndex;
  473. #endif
  474. info.feature->setTexData( mStages[stageNum], stageFeatures, passData, texIndex );
  475. #if defined(TORQUE_DEBUG) && defined( TORQUE_OPENGL)
  476. if(oldTexNumber != texIndex)
  477. {
  478. for(int texNum = oldTexNumber; texNum < texIndex; texNum++)
  479. {
  480. AssertFatal(passData.mSamplerNames[ oldTexNumber ].isNotEmpty(), avar( "ERROR: ShaderGen feature %s don't set used sampler name", info.feature->getName().c_str()) );
  481. }
  482. }
  483. #endif
  484. // Add pass if tex units are maxed out
  485. if( texIndex > GFX->getNumSamplers() )
  486. {
  487. if( !_addPass( passData, texIndex, stageFeatures, stageNum, features ) )
  488. return false;
  489. _setPassBlendOp( info.feature, passData, texIndex, stageFeatures, stageNum, features );
  490. }
  491. }
  492. #if defined(TORQUE_DEBUG) && defined( TORQUE_OPENGL)
  493. for(int samplerIDx = 0; samplerIDx < texIndex; samplerIDx++)
  494. {
  495. AssertFatal(passData.mSamplerNames[samplerIDx].isNotEmpty(),"");
  496. }
  497. #endif
  498. const FeatureSet &passFeatures = passData.mFeatureData.codify();
  499. if ( passFeatures.isNotEmpty() )
  500. {
  501. mFeatures.merge( passFeatures );
  502. if( !_addPass( passData, texIndex, stageFeatures, stageNum, features ) )
  503. {
  504. mFeatures.clear();
  505. return false;
  506. }
  507. }
  508. return true;
  509. }
  510. void ProcessedShaderMaterial::_initMaterialParameters()
  511. {
  512. // Cleanup anything left first.
  513. SAFE_DELETE( mDefaultParameters );
  514. for ( U32 i = 0; i < mParameterHandles.size(); i++ )
  515. SAFE_DELETE( mParameterHandles[i] );
  516. // Gather the shaders as they all need to be
  517. // passed to the ShaderMaterialParameterHandles.
  518. Vector<GFXShader*> shaders;
  519. shaders.setSize( mPasses.size() );
  520. for ( U32 i = 0; i < mPasses.size(); i++ )
  521. shaders[i] = _getRPD(i)->shader;
  522. // Run through each shader and prepare its constants.
  523. for ( U32 i = 0; i < mPasses.size(); i++ )
  524. {
  525. const Vector<GFXShaderConstDesc>& desc = shaders[i]->getShaderConstDesc();
  526. Vector<GFXShaderConstDesc>::const_iterator p = desc.begin();
  527. for ( ; p != desc.end(); p++ )
  528. {
  529. // Add this to our list of shader constants
  530. GFXShaderConstDesc d(*p);
  531. mShaderConstDesc.push_back(d);
  532. ShaderMaterialParameterHandle* smph = new ShaderMaterialParameterHandle(d.name, shaders);
  533. mParameterHandles.push_back(smph);
  534. }
  535. }
  536. }
  537. bool ProcessedShaderMaterial::_addPass( ShaderRenderPassData &rpd,
  538. U32 &texIndex,
  539. MaterialFeatureData &fd,
  540. U32 stageNum,
  541. const FeatureSet &features )
  542. {
  543. // Set number of textures, stage, glow, etc.
  544. rpd.mNumTex = texIndex;
  545. rpd.mStageNum = stageNum;
  546. rpd.mGlow |= mMaterial->mGlow[stageNum];
  547. // Copy over features
  548. rpd.mFeatureData.materialFeatures = fd.features;
  549. Vector<String> samplers;
  550. samplers.setSize(Material::MAX_TEX_PER_PASS);
  551. for(int i = 0; i < Material::MAX_TEX_PER_PASS; ++i)
  552. {
  553. samplers[i] = (rpd.mSamplerNames[i].isEmpty() || rpd.mSamplerNames[i][0] == '$') ? rpd.mSamplerNames[i] : "$" + rpd.mSamplerNames[i];
  554. }
  555. // Generate shader
  556. GFXShader::setLogging( true, true );
  557. rpd.shader = SHADERGEN->getShader( rpd.mFeatureData, mVertexFormat, &mUserMacros, samplers );
  558. if( !rpd.shader )
  559. return false;
  560. rpd.shaderHandles.init( rpd.shader );
  561. // If a pass glows, we glow
  562. if( rpd.mGlow )
  563. mHasGlow = true;
  564. ShaderRenderPassData *newPass = new ShaderRenderPassData( rpd );
  565. mPasses.push_back( newPass );
  566. //initSamplerHandles
  567. ShaderConstHandles *handles = _getShaderConstHandles( mPasses.size()-1 );
  568. AssertFatal(handles,"");
  569. for(int i = 0; i < rpd.mNumTex; i++)
  570. {
  571. if(rpd.mSamplerNames[i].isEmpty())
  572. {
  573. handles->mTexHandlesSC[i] = newPass->shader->getShaderConstHandle( String::EmptyString );
  574. handles->mRTParamsSC[i] = newPass->shader->getShaderConstHandle( String::EmptyString );
  575. continue;
  576. }
  577. String samplerName = rpd.mSamplerNames[i];
  578. if( !samplerName.startsWith("$"))
  579. samplerName.insert(0, "$");
  580. GFXShaderConstHandle *handle = newPass->shader->getShaderConstHandle( samplerName );
  581. handles->mTexHandlesSC[i] = handle;
  582. handles->mRTParamsSC[i] = newPass->shader->getShaderConstHandle( String::ToString( "$rtParams%s", samplerName.c_str()+1 ) );
  583. AssertFatal( handle,"");
  584. }
  585. // Give each active feature a chance to create specialized shader consts.
  586. for( U32 i=0; i < FEATUREMGR->getFeatureCount(); i++ )
  587. {
  588. const FeatureInfo &info = FEATUREMGR->getAt( i );
  589. if ( !fd.features.hasFeature( *info.type ) )
  590. continue;
  591. ShaderFeatureConstHandles *fh = info.feature->createConstHandles( rpd.shader, mUserObject );
  592. if ( fh )
  593. newPass->featureShaderHandles.push_back( fh );
  594. }
  595. rpd.reset();
  596. texIndex = 0;
  597. return true;
  598. }
  599. void ProcessedShaderMaterial::_setPassBlendOp( ShaderFeature *sf,
  600. ShaderRenderPassData &passData,
  601. U32 &texIndex,
  602. MaterialFeatureData &stageFeatures,
  603. U32 stageNum,
  604. const FeatureSet &features )
  605. {
  606. if( sf->getBlendOp() == Material::None )
  607. {
  608. return;
  609. }
  610. // set up the current blend operation for multi-pass materials
  611. if( mPasses.size() > 0)
  612. {
  613. // If passData.numTexReg is 0, this is a brand new pass, so set the
  614. // blend operation to the first feature.
  615. if( passData.mNumTexReg == 0 )
  616. {
  617. passData.mBlendOp = sf->getBlendOp();
  618. }
  619. else
  620. {
  621. // numTegReg is more than zero, if this feature
  622. // doesn't have the same blend operation, then
  623. // we need to create yet another pass
  624. if( sf->getBlendOp() != passData.mBlendOp && mPasses[mPasses.size()-1]->mStageNum == stageNum)
  625. {
  626. _addPass( passData, texIndex, stageFeatures, stageNum, features );
  627. passData.mBlendOp = sf->getBlendOp();
  628. }
  629. }
  630. }
  631. }
  632. //
  633. // Runtime / rendering
  634. //
  635. bool ProcessedShaderMaterial::setupPass( SceneRenderState *state, const SceneData &sgData, U32 pass )
  636. {
  637. PROFILE_SCOPE( ProcessedShaderMaterial_SetupPass );
  638. // Make sure we have the pass
  639. if(pass >= mPasses.size())
  640. {
  641. // If we were rendering instanced data tell
  642. // the device to reset that vb stream.
  643. if ( mInstancingState )
  644. GFX->setVertexBuffer( NULL, 1 );
  645. return false;
  646. }
  647. _setRenderState( state, sgData, pass );
  648. // Set shaders
  649. ShaderRenderPassData* rpd = _getRPD(pass);
  650. if( rpd->shader )
  651. {
  652. GFX->setShader( rpd->shader );
  653. GFX->setShaderConstBuffer(_getShaderConstBuffer(pass));
  654. _setShaderConstants(state, sgData, pass);
  655. // If we're instancing then do the initial step to get
  656. // set the vb pointer to the const buffer.
  657. if ( mInstancingState )
  658. stepInstance();
  659. }
  660. else
  661. {
  662. GFX->setupGenericShaders();
  663. GFX->setShaderConstBuffer(NULL);
  664. }
  665. // Set our textures
  666. setTextureStages( state, sgData, pass );
  667. _setTextureTransforms(pass);
  668. return true;
  669. }
  670. void ProcessedShaderMaterial::setTextureStages( SceneRenderState *state, const SceneData &sgData, U32 pass )
  671. {
  672. PROFILE_SCOPE( ProcessedShaderMaterial_SetTextureStages );
  673. ShaderConstHandles *handles = _getShaderConstHandles(pass);
  674. AssertFatal(handles,"");
  675. // Set all of the textures we need to render the give pass.
  676. #ifdef TORQUE_DEBUG
  677. AssertFatal( pass<mPasses.size(), "Pass out of bounds" );
  678. #endif
  679. RenderPassData *rpd = mPasses[pass];
  680. GFXShaderConstBuffer* shaderConsts = _getShaderConstBuffer(pass);
  681. NamedTexTarget *texTarget;
  682. GFXTextureObject *texObject;
  683. for( U32 i=0; i<rpd->mNumTex; i++ )
  684. {
  685. U32 currTexFlag = rpd->mTexType[i];
  686. if (!LIGHTMGR || !LIGHTMGR->setTextureStage(sgData, currTexFlag, i, shaderConsts, handles))
  687. {
  688. switch( currTexFlag )
  689. {
  690. // If the flag is unset then assume its just
  691. // a regular texture to set... nothing special.
  692. case 0:
  693. default:
  694. GFX->setTexture(i, rpd->mTexSlot[i].texObject);
  695. break;
  696. case Material::NormalizeCube:
  697. GFX->setCubeTexture(i, Material::GetNormalizeCube());
  698. break;
  699. case Material::Lightmap:
  700. GFX->setTexture( i, sgData.lightmap );
  701. break;
  702. case Material::ToneMapTex:
  703. shaderConsts->setSafe(handles->mToneMapTexSC, (S32)i);
  704. GFX->setTexture(i, rpd->mTexSlot[i].texObject);
  705. break;
  706. case Material::Cube:
  707. GFX->setCubeTexture( i, rpd->mCubeMap );
  708. break;
  709. case Material::SGCube:
  710. GFX->setCubeTexture( i, sgData.cubemap );
  711. break;
  712. case Material::BackBuff:
  713. GFX->setTexture( i, sgData.backBuffTex );
  714. break;
  715. case Material::AccuMap:
  716. if ( sgData.accuTex )
  717. GFX->setTexture( i, sgData.accuTex );
  718. else
  719. GFX->setTexture( i, GFXTexHandle::ZERO );
  720. break;
  721. case Material::TexTarget:
  722. {
  723. texTarget = rpd->mTexSlot[i].texTarget;
  724. if ( !texTarget )
  725. {
  726. GFX->setTexture( i, NULL );
  727. break;
  728. }
  729. texObject = texTarget->getTexture();
  730. // If no texture is available then map the default 2x2
  731. // black texture to it. This at least will ensure that
  732. // we get consistant behavior across GPUs and platforms.
  733. if ( !texObject )
  734. texObject = GFXTexHandle::ZERO;
  735. if ( handles->mRTParamsSC[i]->isValid() && texObject )
  736. {
  737. const Point3I &targetSz = texObject->getSize();
  738. const RectI &targetVp = texTarget->getViewport();
  739. Point4F rtParams;
  740. ScreenSpace::RenderTargetParameters(targetSz, targetVp, rtParams);
  741. shaderConsts->set(handles->mRTParamsSC[i], rtParams);
  742. }
  743. GFX->setTexture( i, texObject );
  744. break;
  745. }
  746. }
  747. }
  748. }
  749. }
  750. void ProcessedShaderMaterial::_setTextureTransforms(const U32 pass)
  751. {
  752. PROFILE_SCOPE( ProcessedShaderMaterial_SetTextureTransforms );
  753. ShaderConstHandles* handles = _getShaderConstHandles(pass);
  754. if (handles->mTexMatSC->isValid())
  755. {
  756. MatrixF texMat( true );
  757. mMaterial->updateTimeBasedParams();
  758. F32 waveOffset = _getWaveOffset( pass ); // offset is between 0.0 and 1.0
  759. // handle scroll anim type
  760. if( mMaterial->mAnimFlags[pass] & Material::Scroll )
  761. {
  762. if( mMaterial->mAnimFlags[pass] & Material::Wave )
  763. {
  764. Point3F scrollOffset;
  765. scrollOffset.x = mMaterial->mScrollDir[pass].x * waveOffset;
  766. scrollOffset.y = mMaterial->mScrollDir[pass].y * waveOffset;
  767. scrollOffset.z = 1.0;
  768. texMat.setColumn( 3, scrollOffset );
  769. }
  770. else
  771. {
  772. Point3F offset( mMaterial->mScrollOffset[pass].x,
  773. mMaterial->mScrollOffset[pass].y,
  774. 1.0 );
  775. texMat.setColumn( 3, offset );
  776. }
  777. }
  778. // handle rotation
  779. if( mMaterial->mAnimFlags[pass] & Material::Rotate )
  780. {
  781. if( mMaterial->mAnimFlags[pass] & Material::Wave )
  782. {
  783. F32 rotPos = waveOffset * M_2PI;
  784. texMat.set( EulerF( 0.0, 0.0, rotPos ) );
  785. texMat.setColumn( 3, Point3F( 0.5, 0.5, 0.0 ) );
  786. MatrixF test( true );
  787. test.setColumn( 3, Point3F( mMaterial->mRotPivotOffset[pass].x,
  788. mMaterial->mRotPivotOffset[pass].y,
  789. 0.0 ) );
  790. texMat.mul( test );
  791. }
  792. else
  793. {
  794. texMat.set( EulerF( 0.0, 0.0, mMaterial->mRotPos[pass] ) );
  795. texMat.setColumn( 3, Point3F( 0.5, 0.5, 0.0 ) );
  796. MatrixF test( true );
  797. test.setColumn( 3, Point3F( mMaterial->mRotPivotOffset[pass].x,
  798. mMaterial->mRotPivotOffset[pass].y,
  799. 0.0 ) );
  800. texMat.mul( test );
  801. }
  802. }
  803. // Handle scale + wave offset
  804. if( mMaterial->mAnimFlags[pass] & Material::Scale &&
  805. mMaterial->mAnimFlags[pass] & Material::Wave )
  806. {
  807. F32 wOffset = fabs( waveOffset );
  808. texMat.setColumn( 3, Point3F( 0.5, 0.5, 0.0 ) );
  809. MatrixF temp( true );
  810. temp.setRow( 0, Point3F( wOffset, 0.0, 0.0 ) );
  811. temp.setRow( 1, Point3F( 0.0, wOffset, 0.0 ) );
  812. temp.setRow( 2, Point3F( 0.0, 0.0, wOffset ) );
  813. temp.setColumn( 3, Point3F( -wOffset * 0.5, -wOffset * 0.5, 0.0 ) );
  814. texMat.mul( temp );
  815. }
  816. // handle sequence
  817. if( mMaterial->mAnimFlags[pass] & Material::Sequence )
  818. {
  819. U32 frameNum = (U32)(MATMGR->getTotalTime() * mMaterial->mSeqFramePerSec[pass]);
  820. F32 offset = frameNum * mMaterial->mSeqSegSize[pass];
  821. if ( mMaterial->mAnimFlags[pass] & Material::Scale )
  822. texMat.scale( Point3F( mMaterial->mSeqSegSize[pass], 1.0f, 1.0f ) );
  823. Point3F texOffset = texMat.getPosition();
  824. texOffset.x += offset;
  825. texMat.setPosition( texOffset );
  826. }
  827. GFXShaderConstBuffer* shaderConsts = _getShaderConstBuffer(pass);
  828. shaderConsts->setSafe(handles->mTexMatSC, texMat);
  829. }
  830. }
  831. //--------------------------------------------------------------------------
  832. // Get wave offset for texture animations using a wave transform
  833. //--------------------------------------------------------------------------
  834. F32 ProcessedShaderMaterial::_getWaveOffset( U32 stage )
  835. {
  836. switch( mMaterial->mWaveType[stage] )
  837. {
  838. case Material::Sin:
  839. {
  840. return mMaterial->mWaveAmp[stage] * mSin( M_2PI * mMaterial->mWavePos[stage] );
  841. break;
  842. }
  843. case Material::Triangle:
  844. {
  845. F32 frac = mMaterial->mWavePos[stage] - mFloor( mMaterial->mWavePos[stage] );
  846. if( frac > 0.0 && frac <= 0.25 )
  847. {
  848. return mMaterial->mWaveAmp[stage] * frac * 4.0;
  849. }
  850. if( frac > 0.25 && frac <= 0.5 )
  851. {
  852. return mMaterial->mWaveAmp[stage] * ( 1.0 - ((frac-0.25)*4.0) );
  853. }
  854. if( frac > 0.5 && frac <= 0.75 )
  855. {
  856. return mMaterial->mWaveAmp[stage] * (frac-0.5) * -4.0;
  857. }
  858. if( frac > 0.75 && frac <= 1.0 )
  859. {
  860. return -mMaterial->mWaveAmp[stage] * ( 1.0 - ((frac-0.75)*4.0) );
  861. }
  862. break;
  863. }
  864. case Material::Square:
  865. {
  866. F32 frac = mMaterial->mWavePos[stage] - mFloor( mMaterial->mWavePos[stage] );
  867. if( frac > 0.0 && frac <= 0.5 )
  868. {
  869. return 0.0;
  870. }
  871. else
  872. {
  873. return mMaterial->mWaveAmp[stage];
  874. }
  875. break;
  876. }
  877. }
  878. return 0.0;
  879. }
  880. void ProcessedShaderMaterial::_setShaderConstants(SceneRenderState * state, const SceneData &sgData, U32 pass)
  881. {
  882. PROFILE_SCOPE( ProcessedShaderMaterial_SetShaderConstants );
  883. GFXShaderConstBuffer* shaderConsts = _getShaderConstBuffer(pass);
  884. ShaderConstHandles* handles = _getShaderConstHandles(pass);
  885. U32 stageNum = getStageFromPass(pass);
  886. // First we do all the constants which are not
  887. // controlled via the material... we have to
  888. // set these all the time as they could change.
  889. if ( handles->mFogDataSC->isValid() )
  890. {
  891. Point3F fogData;
  892. fogData.x = sgData.fogDensity;
  893. fogData.y = sgData.fogDensityOffset;
  894. fogData.z = sgData.fogHeightFalloff;
  895. shaderConsts->set( handles->mFogDataSC, fogData );
  896. }
  897. shaderConsts->setSafe(handles->mFogColorSC, sgData.fogColor);
  898. if( handles->mOneOverFarplane->isValid() )
  899. {
  900. const F32 &invfp = 1.0f / state->getFarPlane();
  901. Point4F oneOverFP(invfp, invfp, invfp, invfp);
  902. shaderConsts->set( handles->mOneOverFarplane, oneOverFP );
  903. }
  904. shaderConsts->setSafe( handles->mAccumTimeSC, MATMGR->getTotalTime() );
  905. // If the shader constants have not been lost then
  906. // they contain the content from a previous render pass.
  907. //
  908. // In this case we can skip updating the material constants
  909. // which do not change frame to frame.
  910. //
  911. // NOTE: This assumes we're not animating material parameters
  912. // in a way that doesn't cause a shader reload... this isn't
  913. // being done now, but it could change in the future.
  914. //
  915. if ( !shaderConsts->wasLost() )
  916. return;
  917. shaderConsts->setSafe(handles->mSmoothnessSC, mMaterial->mSmoothness[stageNum]);
  918. shaderConsts->setSafe(handles->mMetalnessSC, mMaterial->mMetalness[stageNum]);
  919. shaderConsts->setSafe(handles->mParallaxInfoSC, mMaterial->mParallaxScale[stageNum]);
  920. shaderConsts->setSafe(handles->mMinnaertConstantSC, mMaterial->mMinnaertConstant[stageNum]);
  921. if ( handles->mSubSurfaceParamsSC->isValid() )
  922. {
  923. Point4F subSurfParams;
  924. dMemcpy( &subSurfParams, &mMaterial->mSubSurfaceColor[stageNum], sizeof(LinearColorF) );
  925. subSurfParams.w = mMaterial->mSubSurfaceRolloff[stageNum];
  926. shaderConsts->set(handles->mSubSurfaceParamsSC, subSurfParams);
  927. }
  928. if ( handles->mRTSizeSC->isValid() )
  929. {
  930. const Point2I &resolution = GFX->getActiveRenderTarget()->getSize();
  931. Point2F pixelShaderConstantData;
  932. pixelShaderConstantData.x = resolution.x;
  933. pixelShaderConstantData.y = resolution.y;
  934. shaderConsts->set( handles->mRTSizeSC, pixelShaderConstantData );
  935. }
  936. if ( handles->mOneOverRTSizeSC->isValid() )
  937. {
  938. const Point2I &resolution = GFX->getActiveRenderTarget()->getSize();
  939. Point2F oneOverTargetSize( 1.0f / (F32)resolution.x, 1.0f / (F32)resolution.y );
  940. shaderConsts->set( handles->mOneOverRTSizeSC, oneOverTargetSize );
  941. }
  942. // set detail scale
  943. shaderConsts->setSafe(handles->mDetailScaleSC, mMaterial->mDetailScale[stageNum]);
  944. shaderConsts->setSafe(handles->mDetailBumpStrength, mMaterial->mDetailNormalMapStrength[stageNum]);
  945. // MFT_ImposterVert
  946. if ( handles->mImposterUVs->isValid() )
  947. {
  948. U32 uvCount = getMin( mMaterial->mImposterUVs.size(), 64 ); // See imposter.hlsl
  949. AlignedArray<Point4F> imposterUVs( uvCount, sizeof( Point4F ), (U8*)mMaterial->mImposterUVs.address(), false );
  950. shaderConsts->set( handles->mImposterUVs, imposterUVs );
  951. }
  952. shaderConsts->setSafe( handles->mImposterLimits, mMaterial->mImposterLimits );
  953. // Diffuse
  954. shaderConsts->setSafe(handles->mDiffuseColorSC, mMaterial->mDiffuse[stageNum]);
  955. shaderConsts->setSafe( handles->mAlphaTestValueSC, mClampF( (F32)mMaterial->mAlphaRef / 255.0f, 0.0f, 1.0f ) );
  956. if(handles->mDiffuseAtlasParamsSC)
  957. {
  958. Point4F atlasParams(1.0f / mMaterial->mCellLayout[stageNum].x, // 1 / num_horizontal
  959. 1.0f / mMaterial->mCellLayout[stageNum].y, // 1 / num_vertical
  960. mMaterial->mCellSize[stageNum], // tile size in pixels
  961. getBinLog2(mMaterial->mCellSize[stageNum]) ); // pow of 2 of tile size in pixels 2^9 = 512, 2^10=1024 etc
  962. shaderConsts->setSafe(handles->mDiffuseAtlasParamsSC, atlasParams);
  963. }
  964. if(handles->mBumpAtlasParamsSC)
  965. {
  966. Point4F atlasParams(1.0f / mMaterial->mCellLayout[stageNum].x, // 1 / num_horizontal
  967. 1.0f / mMaterial->mCellLayout[stageNum].y, // 1 / num_vertical
  968. mMaterial->mCellSize[stageNum], // tile size in pixels
  969. getBinLog2(mMaterial->mCellSize[stageNum]) ); // pow of 2 of tile size in pixels 2^9 = 512, 2^10=1024 etc
  970. shaderConsts->setSafe(handles->mBumpAtlasParamsSC, atlasParams);
  971. }
  972. if(handles->mDiffuseAtlasTileSC)
  973. {
  974. // Sanity check the wrap flags
  975. //AssertWarn(mMaterial->mTextureAddressModeU == mMaterial->mTextureAddressModeV, "Addresing mode mismatch, texture atlasing will be confused");
  976. Point4F atlasTileParams( mMaterial->mCellIndex[stageNum].x, // Tile co-ordinate, ie: [0, 3]
  977. mMaterial->mCellIndex[stageNum].y,
  978. 0.0f, 0.0f ); // TODO: Wrap mode flags?
  979. shaderConsts->setSafe(handles->mDiffuseAtlasTileSC, atlasTileParams);
  980. }
  981. if(handles->mBumpAtlasTileSC)
  982. {
  983. // Sanity check the wrap flags
  984. //AssertWarn(mMaterial->mTextureAddressModeU == mMaterial->mTextureAddressModeV, "Addresing mode mismatch, texture atlasing will be confused");
  985. Point4F atlasTileParams( mMaterial->mCellIndex[stageNum].x, // Tile co-ordinate, ie: [0, 3]
  986. mMaterial->mCellIndex[stageNum].y,
  987. 0.0f, 0.0f ); // TODO: Wrap mode flags?
  988. shaderConsts->setSafe(handles->mBumpAtlasTileSC, atlasTileParams);
  989. }
  990. // Deferred Shading: Determine Material Info Flags
  991. S32 matInfoFlags =
  992. (mMaterial->mEmissive[stageNum] ? 1 : 0) | //emissive
  993. (mMaterial->mSubSurface[stageNum] ? 2 : 0); //subsurface
  994. mMaterial->mMatInfoFlags[stageNum] = matInfoFlags / 255.0f;
  995. shaderConsts->setSafe(handles->mMatInfoFlagsSC, mMaterial->mMatInfoFlags[stageNum]);
  996. if( handles->mAccuScaleSC->isValid() )
  997. shaderConsts->set( handles->mAccuScaleSC, mMaterial->mAccuScale[stageNum] );
  998. if( handles->mAccuDirectionSC->isValid() )
  999. shaderConsts->set( handles->mAccuDirectionSC, mMaterial->mAccuDirection[stageNum] );
  1000. if( handles->mAccuStrengthSC->isValid() )
  1001. shaderConsts->set( handles->mAccuStrengthSC, mMaterial->mAccuStrength[stageNum] );
  1002. if( handles->mAccuCoverageSC->isValid() )
  1003. shaderConsts->set( handles->mAccuCoverageSC, mMaterial->mAccuCoverage[stageNum] );
  1004. if( handles->mAccuSpecularSC->isValid() )
  1005. shaderConsts->set( handles->mAccuSpecularSC, mMaterial->mAccuSpecular[stageNum] );
  1006. }
  1007. bool ProcessedShaderMaterial::_hasCubemap(U32 pass)
  1008. {
  1009. // Only support cubemap on the first stage
  1010. if( mPasses[pass]->mStageNum > 0 )
  1011. return false;
  1012. if( mPasses[pass]->mCubeMap )
  1013. return true;
  1014. return false;
  1015. }
  1016. void ProcessedShaderMaterial::setTransforms(const MatrixSet &matrixSet, SceneRenderState *state, const U32 pass)
  1017. {
  1018. PROFILE_SCOPE( ProcessedShaderMaterial_setTransforms );
  1019. GFXShaderConstBuffer* shaderConsts = _getShaderConstBuffer(pass);
  1020. ShaderConstHandles* handles = _getShaderConstHandles(pass);
  1021. // The MatrixSet will lazily generate a matrix under the
  1022. // various 'get' methods, so inline the test for a valid
  1023. // shader constant handle to avoid that work when we can.
  1024. if ( handles->mModelViewProjSC->isValid() )
  1025. shaderConsts->set( handles->mModelViewProjSC, matrixSet.getWorldViewProjection() );
  1026. if ( handles->mObjTransSC->isValid() )
  1027. shaderConsts->set( handles->mObjTransSC, matrixSet.getObjectToWorld() );
  1028. if ( handles->mWorldToObjSC->isValid() )
  1029. shaderConsts->set( handles->mWorldToObjSC, matrixSet.getWorldToObject() );
  1030. if ( handles->mWorldToCameraSC->isValid() )
  1031. shaderConsts->set( handles->mWorldToCameraSC, matrixSet.getWorldToCamera() );
  1032. if (handles->mCameraToWorldSC->isValid())
  1033. shaderConsts->set(handles->mCameraToWorldSC, matrixSet.getCameraToWorld());
  1034. if ( handles->mWorldViewOnlySC->isValid() )
  1035. shaderConsts->set( handles->mWorldViewOnlySC, matrixSet.getObjectToCamera() );
  1036. if ( handles->mViewToObjSC->isValid() )
  1037. shaderConsts->set( handles->mViewToObjSC, matrixSet.getCameraToObject() );
  1038. if ( handles->mViewProjSC->isValid() )
  1039. shaderConsts->set( handles->mViewProjSC, matrixSet.getWorldToScreen() );
  1040. if ( handles->mCubeTransSC->isValid() &&
  1041. ( _hasCubemap(pass) || mMaterial->mDynamicCubemap ) )
  1042. {
  1043. // TODO: Could we not remove this constant? Use mObjTransSC and cast to float3x3 instead?
  1044. shaderConsts->set(handles->mCubeTransSC, matrixSet.getObjectToWorld(), GFXSCT_Float3x3);
  1045. }
  1046. if ( handles->m_vEyeSC->isValid() )
  1047. shaderConsts->set( handles->m_vEyeSC, state->getVectorEye() );
  1048. }
  1049. void ProcessedShaderMaterial::setNodeTransforms(const MatrixF *transforms, const U32 transformCount, const U32 pass)
  1050. {
  1051. PROFILE_SCOPE( ProcessedShaderMaterial_setNodeTransforms );
  1052. GFXShaderConstBuffer* shaderConsts = _getShaderConstBuffer(pass);
  1053. ShaderConstHandles* handles = _getShaderConstHandles(pass);
  1054. if ( handles->mNodeTransforms->isValid() )
  1055. {
  1056. S32 realTransformCount = getMin( transformCount, TSShape::smMaxSkinBones );
  1057. shaderConsts->set( handles->mNodeTransforms, transforms, realTransformCount, GFXSCT_Float4x3 );
  1058. }
  1059. }
  1060. void ProcessedShaderMaterial::setSceneInfo(SceneRenderState * state, const SceneData& sgData, U32 pass)
  1061. {
  1062. PROFILE_SCOPE(ProcessedShaderMaterial_setSceneInfo);
  1063. GFXShaderConstBuffer* shaderConsts = _getShaderConstBuffer(pass);
  1064. ShaderConstHandles* handles = _getShaderConstHandles(pass);
  1065. // Set cubemap stuff here (it's convenient!)
  1066. const Point3F &eyePosWorld = state->getCameraPosition();
  1067. if (_hasCubemap(pass) || mMaterial->mDynamicCubemap)
  1068. {
  1069. if (handles->mCubeEyePosSC->isValid())
  1070. {
  1071. Point3F cubeEyePos = eyePosWorld - sgData.objTrans->getPosition();
  1072. shaderConsts->set(handles->mCubeEyePosSC, cubeEyePos);
  1073. }
  1074. }
  1075. if (sgData.cubemap)
  1076. shaderConsts->setSafe(handles->mCubeMipsSC, (F32)sgData.cubemap->getMipMapLevels());
  1077. else
  1078. shaderConsts->setSafe(handles->mCubeMipsSC, 1.0f);
  1079. shaderConsts->setSafe(handles->mVisiblitySC, sgData.visibility);
  1080. shaderConsts->setSafe(handles->mEyePosWorldSC, eyePosWorld);
  1081. if ( handles->mEyePosSC->isValid() )
  1082. {
  1083. MatrixF tempMat( *sgData.objTrans );
  1084. tempMat.inverse();
  1085. Point3F eyepos;
  1086. tempMat.mulP( eyePosWorld, &eyepos );
  1087. shaderConsts->set(handles->mEyePosSC, eyepos);
  1088. }
  1089. shaderConsts->setSafe(handles->mEyeMatSC, state->getCameraTransform());
  1090. ShaderRenderPassData *rpd = _getRPD(pass);
  1091. for (U32 i = 0; i < rpd->featureShaderHandles.size(); i++)
  1092. rpd->featureShaderHandles[i]->setConsts(state, sgData, shaderConsts);
  1093. LIGHTMGR->setLightInfo(this, mMaterial, sgData, state, pass, shaderConsts);
  1094. PROBEMGR->setProbeInfo(this, mMaterial, sgData, state, pass, shaderConsts);
  1095. }
  1096. void ProcessedShaderMaterial::setBuffers( GFXVertexBufferHandleBase *vertBuffer, GFXPrimitiveBufferHandle *primBuffer )
  1097. {
  1098. PROFILE_SCOPE(ProcessedShaderMaterial_setBuffers);
  1099. // If we're not instanced then just call the parent.
  1100. if ( !mInstancingState )
  1101. {
  1102. Parent::setBuffers( vertBuffer, primBuffer );
  1103. return;
  1104. }
  1105. PROFILE_SCOPE(ProcessedShaderMaterial_setBuffers_instancing);
  1106. const S32 instCount = mInstancingState->getCount();
  1107. AssertFatal( instCount > 0,
  1108. "ProcessedShaderMaterial::setBuffers - No instances rendered!" );
  1109. // Nothing special here.
  1110. GFX->setPrimitiveBuffer( *primBuffer );
  1111. // Set the first stream the the normal VB and set the
  1112. // correct frequency for the number of instances to render.
  1113. GFX->setVertexBuffer( *vertBuffer, 0, instCount );
  1114. // Get a volatile VB and fill it with the vertex data.
  1115. const GFXVertexFormat *instFormat = mInstancingState->getFormat();
  1116. GFXVertexBufferDataHandle instVB;
  1117. instVB.set( GFX, instFormat->getSizeInBytes(), instFormat, instCount, GFXBufferTypeVolatile );
  1118. U8 *dest = instVB.lock();
  1119. if(!dest) return;
  1120. dMemcpy( dest, mInstancingState->getBuffer(), instFormat->getSizeInBytes() * instCount );
  1121. instVB.unlock();
  1122. // Set the instance vb for streaming.
  1123. GFX->setVertexBuffer( instVB, 1, 1 );
  1124. // Finally set the vertex format which defines
  1125. // both of the streams.
  1126. GFX->setVertexFormat( mInstancingState->getDeclFormat() );
  1127. // Done... reset the count.
  1128. mInstancingState->resetStep();
  1129. }
  1130. bool ProcessedShaderMaterial::stepInstance()
  1131. {
  1132. PROFILE_SCOPE(ProcessedShaderMaterial_stepInstance);
  1133. AssertFatal( mInstancingState, "ProcessedShaderMaterial::stepInstance - This material isn't instanced!" );
  1134. return mInstancingState->step( &_getShaderConstBuffer( 0 )->mInstPtr );
  1135. }
  1136. MaterialParameters* ProcessedShaderMaterial::allocMaterialParameters()
  1137. {
  1138. ShaderMaterialParameters* smp = new ShaderMaterialParameters();
  1139. Vector<GFXShaderConstBufferRef> buffers( __FILE__, __LINE__ );
  1140. buffers.setSize(mPasses.size());
  1141. for (U32 i = 0; i < mPasses.size(); i++)
  1142. buffers[i] = _getRPD(i)->shader->allocConstBuffer();
  1143. // smp now owns these buffers.
  1144. smp->setBuffers(mShaderConstDesc, buffers);
  1145. return smp;
  1146. }
  1147. MaterialParameterHandle* ProcessedShaderMaterial::getMaterialParameterHandle(const String& name)
  1148. {
  1149. // Search our list
  1150. for (U32 i = 0; i < mParameterHandles.size(); i++)
  1151. {
  1152. if (mParameterHandles[i]->getName().equal(name))
  1153. return mParameterHandles[i];
  1154. }
  1155. // If we didn't find it, we have to add it to support shader reloading.
  1156. Vector<GFXShader*> shaders;
  1157. shaders.setSize(mPasses.size());
  1158. for (U32 i = 0; i < mPasses.size(); i++)
  1159. shaders[i] = _getRPD(i)->shader;
  1160. ShaderMaterialParameterHandle* smph = new ShaderMaterialParameterHandle( name, shaders );
  1161. mParameterHandles.push_back(smph);
  1162. return smph;
  1163. }
  1164. /// This is here to deal with the differences between ProcessedCustomMaterials and ProcessedShaderMaterials.
  1165. GFXShaderConstBuffer* ProcessedShaderMaterial::_getShaderConstBuffer( const U32 pass )
  1166. {
  1167. if (mCurrentParams && pass < mPasses.size())
  1168. {
  1169. return static_cast<ShaderMaterialParameters*>(mCurrentParams)->getBuffer(pass);
  1170. }
  1171. return NULL;
  1172. }
  1173. ShaderConstHandles* ProcessedShaderMaterial::_getShaderConstHandles(const U32 pass)
  1174. {
  1175. if (pass < mPasses.size())
  1176. {
  1177. return &_getRPD(pass)->shaderHandles;
  1178. }
  1179. return NULL;
  1180. }
  1181. void ProcessedShaderMaterial::dumpMaterialInfo()
  1182. {
  1183. for ( U32 i = 0; i < getNumPasses(); i++ )
  1184. {
  1185. const ShaderRenderPassData *passData = _getRPD( i );
  1186. if ( passData == NULL )
  1187. continue;
  1188. const GFXShader *shader = passData->shader;
  1189. if ( shader == NULL )
  1190. Con::printf( " [%i] [NULL shader]", i );
  1191. else
  1192. Con::printf( " [%i] %s", i, shader->describeSelf().c_str() );
  1193. }
  1194. }