processedMaterial.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480
  1. //-----------------------------------------------------------------------------
  2. // Copyright (c) 2012 GarageGames, LLC
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to
  6. // deal in the Software without restriction, including without limitation the
  7. // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
  8. // sell copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  19. // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  20. // IN THE SOFTWARE.
  21. //-----------------------------------------------------------------------------
  22. #include "platform/platform.h"
  23. #include "materials/processedMaterial.h"
  24. #include "materials/sceneData.h"
  25. #include "materials/materialParameters.h"
  26. #include "materials/matTextureTarget.h"
  27. #include "materials/materialFeatureTypes.h"
  28. #include "materials/materialManager.h"
  29. #include "scene/sceneRenderState.h"
  30. #include "gfx/gfxPrimitiveBuffer.h"
  31. #include "gfx/gfxTextureManager.h"
  32. #include "gfx/sim/cubemapData.h"
  33. RenderPassData::RenderPassData()
  34. {
  35. reset();
  36. }
  37. void RenderPassData::reset()
  38. {
  39. for( U32 i = 0; i < Material::MAX_TEX_PER_PASS; ++ i )
  40. destructInPlace( &mTexSlot[ i ] );
  41. dMemset( &mTexSlot, 0, sizeof(mTexSlot) );
  42. dMemset( &mTexType, 0, sizeof(mTexType) );
  43. mCubeMap = NULL;
  44. mNumTex = mNumTexReg = mStageNum = 0;
  45. mGlow = false;
  46. mBlendOp = Material::None;
  47. mFeatureData.clear();
  48. for (U32 i = 0; i < STATE_MAX; i++)
  49. mRenderStates[i] = NULL;
  50. }
  51. String RenderPassData::describeSelf() const
  52. {
  53. String desc;
  54. // Now write all the textures.
  55. String texName;
  56. for ( U32 i=0; i < Material::MAX_TEX_PER_PASS; i++ )
  57. {
  58. if ( mTexType[i] == Material::TexTarget )
  59. texName = ( mTexSlot[i].texTarget ) ? mTexSlot[i].texTarget->getName() : "null_texTarget";
  60. else if ( mTexType[i] == Material::Cube && mCubeMap )
  61. texName = mCubeMap->getPath();
  62. else if ( mTexSlot[i].texObject )
  63. texName = mTexSlot[i].texObject->getPath();
  64. else
  65. continue;
  66. desc += String::ToString( "TexSlot %d: %d, %s\n", i, mTexType[i], texName.c_str() );
  67. }
  68. // Write out the first render state which is the
  69. // basis for all the other states and shoud be
  70. // enough to define the pass uniquely.
  71. desc += mRenderStates[0]->getDesc().describeSelf();
  72. return desc;
  73. }
  74. ProcessedMaterial::ProcessedMaterial()
  75. : mMaterial( NULL ),
  76. mCurrentParams( NULL ),
  77. mHasSetStageData( false ),
  78. mHasGlow( false ),
  79. mMaxStages( 0 ),
  80. mVertexFormat( NULL ),
  81. mUserObject( NULL )
  82. {
  83. VECTOR_SET_ASSOCIATION( mPasses );
  84. }
  85. ProcessedMaterial::~ProcessedMaterial()
  86. {
  87. for_each( mPasses.begin(), mPasses.end(), delete_pointer() );
  88. }
  89. void ProcessedMaterial::_setBlendState(Material::BlendOp blendOp, GFXStateBlockDesc& desc )
  90. {
  91. switch( blendOp )
  92. {
  93. case Material::Add:
  94. {
  95. desc.blendSrc = GFXBlendOne;
  96. desc.blendDest = GFXBlendOne;
  97. break;
  98. }
  99. case Material::AddAlpha:
  100. {
  101. desc.blendSrc = GFXBlendSrcAlpha;
  102. desc.blendDest = GFXBlendOne;
  103. break;
  104. }
  105. case Material::Mul:
  106. {
  107. desc.blendSrc = GFXBlendDestColor;
  108. desc.blendDest = GFXBlendZero;
  109. break;
  110. }
  111. case Material::LerpAlpha:
  112. {
  113. desc.blendSrc = GFXBlendSrcAlpha;
  114. desc.blendDest = GFXBlendInvSrcAlpha;
  115. break;
  116. }
  117. default:
  118. {
  119. // default to LerpAlpha
  120. desc.blendSrc = GFXBlendSrcAlpha;
  121. desc.blendDest = GFXBlendInvSrcAlpha;
  122. break;
  123. }
  124. }
  125. }
  126. void ProcessedMaterial::setBuffers(GFXVertexBufferHandleBase* vertBuffer, GFXPrimitiveBufferHandle* primBuffer)
  127. {
  128. GFX->setVertexBuffer( *vertBuffer );
  129. GFX->setPrimitiveBuffer( *primBuffer );
  130. }
  131. bool ProcessedMaterial::stepInstance()
  132. {
  133. AssertFatal( false, "ProcessedMaterial::stepInstance() - This type of material doesn't support instancing!" );
  134. return false;
  135. }
  136. String ProcessedMaterial::_getTexturePath(const String& filename)
  137. {
  138. // if '/', then path is specified, use it.
  139. if( filename.find('/') != String::NPos )
  140. {
  141. return filename;
  142. }
  143. // otherwise, construct path
  144. return mMaterial->getPath() + filename;
  145. }
  146. GFXTexHandle ProcessedMaterial::_createTexture( const char* filename, GFXTextureProfile *profile)
  147. {
  148. return GFXTexHandle( _getTexturePath(filename), profile, avar("%s() - NA (line %d)", __FUNCTION__, __LINE__) );
  149. }
  150. void ProcessedMaterial::addStateBlockDesc(const GFXStateBlockDesc& sb)
  151. {
  152. mUserDefined = sb;
  153. }
  154. void ProcessedMaterial::_initStateBlockTemplates(GFXStateBlockDesc& stateTranslucent, GFXStateBlockDesc& stateGlow, GFXStateBlockDesc& stateReflect)
  155. {
  156. // Translucency
  157. stateTranslucent.blendDefined = true;
  158. stateTranslucent.blendEnable = mMaterial->mTranslucentBlendOp != Material::None;
  159. _setBlendState(mMaterial->mTranslucentBlendOp, stateTranslucent);
  160. stateTranslucent.zDefined = true;
  161. stateTranslucent.zWriteEnable = mMaterial->mTranslucentZWrite;
  162. stateTranslucent.alphaDefined = true;
  163. stateTranslucent.alphaTestEnable = mMaterial->mAlphaTest;
  164. stateTranslucent.alphaTestRef = mMaterial->mAlphaRef;
  165. stateTranslucent.alphaTestFunc = GFXCmpGreaterEqual;
  166. stateTranslucent.samplersDefined = true;
  167. stateTranslucent.samplers[0].textureColorOp = GFXTOPModulate;
  168. stateTranslucent.samplers[0].alphaOp = GFXTOPModulate;
  169. stateTranslucent.samplers[0].alphaArg1 = GFXTATexture;
  170. stateTranslucent.samplers[0].alphaArg2 = GFXTADiffuse;
  171. // Glow
  172. stateGlow.zDefined = true;
  173. stateGlow.zWriteEnable = false;
  174. // Reflect
  175. stateReflect.cullDefined = true;
  176. stateReflect.cullMode = mMaterial->mDoubleSided ? GFXCullNone : GFXCullCW;
  177. }
  178. void ProcessedMaterial::_initRenderPassDataStateBlocks()
  179. {
  180. for (U32 pass = 0; pass < mPasses.size(); pass++)
  181. _initRenderStateStateBlocks( mPasses[pass] );
  182. }
  183. void ProcessedMaterial::_initPassStateBlock( RenderPassData *rpd, GFXStateBlockDesc &result )
  184. {
  185. if ( rpd->mBlendOp != Material::None )
  186. {
  187. result.blendDefined = true;
  188. result.blendEnable = true;
  189. _setBlendState( rpd->mBlendOp, result );
  190. }
  191. if (mMaterial && mMaterial->isDoubleSided())
  192. {
  193. result.cullDefined = true;
  194. result.cullMode = GFXCullNone;
  195. }
  196. if(mMaterial && mMaterial->mAlphaTest)
  197. {
  198. result.alphaDefined = true;
  199. result.alphaTestEnable = mMaterial->mAlphaTest;
  200. result.alphaTestRef = mMaterial->mAlphaRef;
  201. result.alphaTestFunc = GFXCmpGreaterEqual;
  202. }
  203. result.samplersDefined = true;
  204. NamedTexTarget *texTarget;
  205. U32 maxAnisotropy = 1;
  206. if (mMaterial && mMaterial->mUseAnisotropic[ rpd->mStageNum ] )
  207. maxAnisotropy = MATMGR->getDefaultAnisotropy();
  208. for( U32 i=0; i < rpd->mNumTex; i++ )
  209. {
  210. U32 currTexFlag = rpd->mTexType[i];
  211. switch( currTexFlag )
  212. {
  213. default:
  214. {
  215. result.samplers[i].textureColorOp = GFXTOPModulate;
  216. result.samplers[i].addressModeU = GFXAddressWrap;
  217. result.samplers[i].addressModeV = GFXAddressWrap;
  218. if ( maxAnisotropy > 1 )
  219. {
  220. result.samplers[i].minFilter = GFXTextureFilterAnisotropic;
  221. result.samplers[i].magFilter = GFXTextureFilterAnisotropic;
  222. result.samplers[i].maxAnisotropy = maxAnisotropy;
  223. }
  224. else
  225. {
  226. result.samplers[i].minFilter = GFXTextureFilterLinear;
  227. result.samplers[i].magFilter = GFXTextureFilterLinear;
  228. }
  229. break;
  230. }
  231. case Material::Cube:
  232. case Material::SGCube:
  233. case Material::NormalizeCube:
  234. {
  235. result.samplers[i].addressModeU = GFXAddressClamp;
  236. result.samplers[i].addressModeV = GFXAddressClamp;
  237. result.samplers[i].addressModeW = GFXAddressClamp;
  238. break;
  239. }
  240. case Material::TexTarget:
  241. {
  242. texTarget = mPasses[0]->mTexSlot[i].texTarget;
  243. if ( texTarget )
  244. texTarget->setupSamplerState( &result.samplers[i] );
  245. break;
  246. }
  247. }
  248. }
  249. // The prepass will take care of writing to the
  250. // zbuffer, so we don't have to by default.
  251. // The prepass can't write to the backbuffer's zbuffer in OpenGL.
  252. if ( MATMGR->getPrePassEnabled() &&
  253. !GFX->getAdapterType() == OpenGL &&
  254. !mFeatures.hasFeature(MFT_ForwardShading))
  255. result.setZReadWrite( result.zEnable, false );
  256. result.addDesc(mUserDefined);
  257. }
  258. /// Creates the default state blocks for a list of render states
  259. void ProcessedMaterial::_initRenderStateStateBlocks( RenderPassData *rpd )
  260. {
  261. GFXStateBlockDesc stateTranslucent;
  262. GFXStateBlockDesc stateGlow;
  263. GFXStateBlockDesc stateReflect;
  264. GFXStateBlockDesc statePass;
  265. _initStateBlockTemplates( stateTranslucent, stateGlow, stateReflect );
  266. _initPassStateBlock( rpd, statePass );
  267. // Ok, we've got our templates set up, let's combine them together based on state and
  268. // create our state blocks.
  269. for (U32 i = 0; i < RenderPassData::STATE_MAX; i++)
  270. {
  271. GFXStateBlockDesc stateFinal;
  272. if (i & RenderPassData::STATE_REFLECT)
  273. stateFinal.addDesc(stateReflect);
  274. if (i & RenderPassData::STATE_TRANSLUCENT)
  275. stateFinal.addDesc(stateTranslucent);
  276. if (i & RenderPassData::STATE_GLOW)
  277. stateFinal.addDesc(stateGlow);
  278. stateFinal.addDesc(statePass);
  279. if (i & RenderPassData::STATE_WIREFRAME)
  280. stateFinal.fillMode = GFXFillWireframe;
  281. GFXStateBlockRef sb = GFX->createStateBlock(stateFinal);
  282. rpd->mRenderStates[i] = sb;
  283. }
  284. }
  285. U32 ProcessedMaterial::_getRenderStateIndex( const SceneRenderState *sceneState,
  286. const SceneData &sgData )
  287. {
  288. // Based on what the state of the world is, get our render state block
  289. U32 currState = 0;
  290. // NOTE: We should only use per-material or per-pass hints to
  291. // change the render state. This is importaint because we
  292. // only change the state blocks between material passes.
  293. //
  294. // For example sgData.visibility would be bad to use
  295. // in here without changing how RenderMeshMgr works.
  296. if ( sgData.binType == SceneData::GlowBin )
  297. currState |= RenderPassData::STATE_GLOW;
  298. if ( sceneState && sceneState->isReflectPass() )
  299. currState |= RenderPassData::STATE_REFLECT;
  300. if ( sgData.binType != SceneData::PrePassBin &&
  301. mMaterial->isTranslucent() )
  302. currState |= RenderPassData::STATE_TRANSLUCENT;
  303. if ( sgData.wireframe )
  304. currState |= RenderPassData::STATE_WIREFRAME;
  305. return currState;
  306. }
  307. void ProcessedMaterial::_setRenderState( const SceneRenderState *state,
  308. const SceneData& sgData,
  309. U32 pass )
  310. {
  311. // Make sure we have the pass
  312. if ( pass >= mPasses.size() )
  313. return;
  314. U32 currState = _getRenderStateIndex( state, sgData );
  315. GFX->setStateBlock(mPasses[pass]->mRenderStates[currState]);
  316. }
  317. void ProcessedMaterial::_setStageData()
  318. {
  319. // Only do this once
  320. if ( mHasSetStageData )
  321. return;
  322. mHasSetStageData = true;
  323. U32 i;
  324. // Load up all the textures for every possible stage
  325. for( i=0; i<Material::MAX_STAGES; i++ )
  326. {
  327. // DiffuseMap
  328. if( mMaterial->mDiffuseMapFilename[i].isNotEmpty() )
  329. {
  330. mStages[i].setTex( MFT_DiffuseMap, _createTexture( mMaterial->mDiffuseMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
  331. if (!mStages[i].getTex( MFT_DiffuseMap ))
  332. {
  333. mMaterial->logError("Failed to load diffuse map %s for stage %i", _getTexturePath(mMaterial->mDiffuseMapFilename[i]).c_str(), i);
  334. // Load a debug texture to make it clear to the user
  335. // that the texture for this stage was missing.
  336. mStages[i].setTex( MFT_DiffuseMap, _createTexture( GFXTextureManager::getMissingTexturePath().c_str(), &GFXDefaultStaticDiffuseProfile ) );
  337. }
  338. }
  339. // OverlayMap
  340. if( mMaterial->mOverlayMapFilename[i].isNotEmpty() )
  341. {
  342. mStages[i].setTex( MFT_OverlayMap, _createTexture( mMaterial->mOverlayMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
  343. if(!mStages[i].getTex( MFT_OverlayMap ))
  344. mMaterial->logError("Failed to load overlay map %s for stage %i", _getTexturePath(mMaterial->mOverlayMapFilename[i]).c_str(), i);
  345. }
  346. // LightMap
  347. if( mMaterial->mLightMapFilename[i].isNotEmpty() )
  348. {
  349. mStages[i].setTex( MFT_LightMap, _createTexture( mMaterial->mLightMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
  350. if(!mStages[i].getTex( MFT_LightMap ))
  351. mMaterial->logError("Failed to load light map %s for stage %i", _getTexturePath(mMaterial->mLightMapFilename[i]).c_str(), i);
  352. }
  353. // ToneMap
  354. if( mMaterial->mToneMapFilename[i].isNotEmpty() )
  355. {
  356. mStages[i].setTex( MFT_ToneMap, _createTexture( mMaterial->mToneMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
  357. if(!mStages[i].getTex( MFT_ToneMap ))
  358. mMaterial->logError("Failed to load tone map %s for stage %i", _getTexturePath(mMaterial->mToneMapFilename[i]).c_str(), i);
  359. }
  360. // DetailMap
  361. if( mMaterial->mDetailMapFilename[i].isNotEmpty() )
  362. {
  363. mStages[i].setTex( MFT_DetailMap, _createTexture( mMaterial->mDetailMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
  364. if(!mStages[i].getTex( MFT_DetailMap ))
  365. mMaterial->logError("Failed to load detail map %s for stage %i", _getTexturePath(mMaterial->mDetailMapFilename[i]).c_str(), i);
  366. }
  367. // NormalMap
  368. if( mMaterial->mNormalMapFilename[i].isNotEmpty() )
  369. {
  370. mStages[i].setTex( MFT_NormalMap, _createTexture( mMaterial->mNormalMapFilename[i], &GFXDefaultStaticNormalMapProfile ) );
  371. if(!mStages[i].getTex( MFT_NormalMap ))
  372. mMaterial->logError("Failed to load normal map %s for stage %i", _getTexturePath(mMaterial->mNormalMapFilename[i]).c_str(), i);
  373. }
  374. // Detail Normal Map
  375. if( mMaterial->mDetailNormalMapFilename[i].isNotEmpty() )
  376. {
  377. mStages[i].setTex( MFT_DetailNormalMap, _createTexture( mMaterial->mDetailNormalMapFilename[i], &GFXDefaultStaticNormalMapProfile ) );
  378. if(!mStages[i].getTex( MFT_DetailNormalMap ))
  379. mMaterial->logError("Failed to load normal map %s for stage %i", _getTexturePath(mMaterial->mDetailNormalMapFilename[i]).c_str(), i);
  380. }
  381. // SpecularMap
  382. if( mMaterial->mSpecularMapFilename[i].isNotEmpty() )
  383. {
  384. mStages[i].setTex( MFT_SpecularMap, _createTexture( mMaterial->mSpecularMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
  385. if(!mStages[i].getTex( MFT_SpecularMap ))
  386. mMaterial->logError("Failed to load specular map %s for stage %i", _getTexturePath(mMaterial->mSpecularMapFilename[i]).c_str(), i);
  387. }
  388. // EnironmentMap
  389. if( mMaterial->mEnvMapFilename[i].isNotEmpty() )
  390. {
  391. mStages[i].setTex( MFT_EnvMap, _createTexture( mMaterial->mEnvMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
  392. if(!mStages[i].getTex( MFT_EnvMap ))
  393. mMaterial->logError("Failed to load environment map %s for stage %i", _getTexturePath(mMaterial->mEnvMapFilename[i]).c_str(), i);
  394. }
  395. }
  396. mMaterial->mCubemapData = dynamic_cast<CubemapData*>(Sim::findObject( mMaterial->mCubemapName ));
  397. if( !mMaterial->mCubemapData )
  398. mMaterial->mCubemapData = NULL;
  399. // If we have a cubemap put it on stage 0 (cubemaps only supported on stage 0)
  400. if( mMaterial->mCubemapData )
  401. {
  402. mMaterial->mCubemapData->createMap();
  403. mStages[0].setCubemap( mMaterial->mCubemapData->mCubemap );
  404. if ( !mStages[0].getCubemap() )
  405. mMaterial->logError("Failed to load cubemap");
  406. }
  407. }