mMatrix.h 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747
  1. //-----------------------------------------------------------------------------
  2. // Copyright (c) 2012 GarageGames, LLC
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to
  6. // deal in the Software without restriction, including without limitation the
  7. // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
  8. // sell copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  19. // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  20. // IN THE SOFTWARE.
  21. //-----------------------------------------------------------------------------
  22. #ifndef _MMATRIX_H_
  23. #define _MMATRIX_H_
  24. #include <algorithm>
  25. #ifndef _MPLANE_H_
  26. #include "math/mPlane.h"
  27. #endif
  28. #ifndef _MBOX_H_
  29. #include "math/mBox.h"
  30. #endif
  31. #ifndef _MPOINT4_H_
  32. #include "math/mPoint4.h"
  33. #endif
  34. #ifndef _ENGINETYPEINFO_H_
  35. #include "console/engineTypeInfo.h"
  36. #endif
  37. #ifndef USE_TEMPLATE_MATRIX
  38. /// 4x4 Matrix Class
  39. ///
  40. /// This runs at F32 precision.
  41. class MatrixF
  42. {
  43. friend class MatrixFEngineExport;
  44. private:
  45. F32 m[16]; ///< Note: Torque uses row-major matrices
  46. public:
  47. /// Create an uninitialized matrix.
  48. ///
  49. /// @param identity If true, initialize to the identity matrix.
  50. explicit MatrixF(bool identity=false);
  51. /// Create a matrix to rotate about origin by e.
  52. /// @see set
  53. explicit MatrixF( const EulerF &e);
  54. /// Create a matrix to rotate about p by e.
  55. /// @see set
  56. MatrixF( const EulerF &e, const Point3F& p);
  57. /// Get the index in m to element in column i, row j
  58. ///
  59. /// This is necessary as we have m as a one dimensional array.
  60. ///
  61. /// @param i Column desired.
  62. /// @param j Row desired.
  63. static U32 idx(U32 i, U32 j) { return (i + j*4); }
  64. /// Initialize matrix to rotate about origin by e.
  65. MatrixF& set( const EulerF &e);
  66. /// Initialize matrix to rotate about p by e.
  67. MatrixF& set( const EulerF &e, const Point3F& p);
  68. /// Initialize matrix with a cross product of p.
  69. MatrixF& setCrossProduct( const Point3F &p);
  70. /// Initialize matrix with a tensor product of p.
  71. MatrixF& setTensorProduct( const Point3F &p, const Point3F& q);
  72. operator F32*() { return (m); } ///< Allow people to get at m.
  73. operator const F32*() const { return (F32*)(m); } ///< Allow people to get at m.
  74. bool isAffine() const; ///< Check to see if this is an affine matrix.
  75. bool isIdentity() const; ///< Checks for identity matrix.
  76. /// Make this an identity matrix.
  77. MatrixF& identity();
  78. /// Invert m.
  79. MatrixF& inverse();
  80. /// Copy the inversion of this into out matrix.
  81. void invertTo( MatrixF *out );
  82. /// Take inverse of matrix assuming it is affine (rotation,
  83. /// scale, sheer, translation only).
  84. MatrixF& affineInverse();
  85. /// Swap rows and columns.
  86. MatrixF& transpose();
  87. /// M * Matrix(p) -> M
  88. MatrixF& scale( const Point3F &s );
  89. MatrixF& scale( F32 s ) { return scale( Point3F( s, s, s ) ); }
  90. /// Return scale assuming scale was applied via mat.scale(s).
  91. Point3F getScale() const;
  92. EulerF toEuler() const;
  93. /// Compute the inverse of the matrix.
  94. ///
  95. /// Computes inverse of full 4x4 matrix. Returns false and performs no inverse if
  96. /// the determinant is 0.
  97. ///
  98. /// Note: In most cases you want to use the normal inverse function. This method should
  99. /// be used if the matrix has something other than (0,0,0,1) in the bottom row.
  100. bool fullInverse();
  101. /// Reverse depth for projection matrix
  102. /// Simplifies reversal matrix mult to 4 subtractions
  103. void reverseProjection();
  104. /// Swaps rows and columns into matrix.
  105. void transposeTo(F32 *matrix) const;
  106. /// Normalize the matrix.
  107. void normalize();
  108. /// Copy the requested column into a Point4F.
  109. void getColumn(S32 col, Point4F *cptr) const;
  110. Point4F getColumn4F(S32 col) const { Point4F ret; getColumn(col,&ret); return ret; }
  111. /// Copy the requested column into a Point3F.
  112. ///
  113. /// This drops the bottom-most row.
  114. void getColumn(S32 col, Point3F *cptr) const;
  115. Point3F getColumn3F(S32 col) const { Point3F ret; getColumn(col,&ret); return ret; }
  116. /// Set the specified column from a Point4F.
  117. void setColumn(S32 col, const Point4F& cptr);
  118. /// Set the specified column from a Point3F.
  119. ///
  120. /// The bottom-most row is not set.
  121. void setColumn(S32 col, const Point3F& cptr);
  122. /// Copy the specified row into a Point4F.
  123. void getRow(S32 row, Point4F *cptr) const;
  124. Point4F getRow4F(S32 row) const { Point4F ret; getRow(row,&ret); return ret; }
  125. /// Copy the specified row into a Point3F.
  126. ///
  127. /// Right-most item is dropped.
  128. void getRow(S32 row, Point3F *cptr) const;
  129. Point3F getRow3F(S32 row) const { Point3F ret; getRow(row,&ret); return ret; }
  130. /// Set the specified row from a Point4F.
  131. void setRow(S32 row, const Point4F& cptr);
  132. /// Set the specified row from a Point3F.
  133. ///
  134. /// The right-most item is not set.
  135. void setRow(S32 row, const Point3F& cptr);
  136. /// Get the position of the matrix.
  137. ///
  138. /// This is the 4th column of the matrix.
  139. Point3F getPosition() const;
  140. /// Set the position of the matrix.
  141. ///
  142. /// This is the 4th column of the matrix.
  143. void setPosition( const Point3F &pos ) { setColumn( 3, pos ); }
  144. /// Add the passed delta to the matrix position.
  145. void displace( const Point3F &delta );
  146. /// Get the x axis of the matrix.
  147. ///
  148. /// This is the 1st column of the matrix and is
  149. /// normally considered the right vector.
  150. VectorF getRightVector() const;
  151. /// Get the y axis of the matrix.
  152. ///
  153. /// This is the 2nd column of the matrix and is
  154. /// normally considered the forward vector.
  155. VectorF getForwardVector() const;
  156. /// Get the z axis of the matrix.
  157. ///
  158. /// This is the 3rd column of the matrix and is
  159. /// normally considered the up vector.
  160. VectorF getUpVector() const;
  161. MatrixF& mul(const MatrixF &a); ///< M * a -> M
  162. MatrixF& mulL(const MatrixF &a); ///< a * M -> M
  163. MatrixF& mul(const MatrixF &a, const MatrixF &b); ///< a * b -> M
  164. // Scalar multiplies
  165. MatrixF& mul(const F32 a); ///< M * a -> M
  166. MatrixF& mul(const MatrixF &a, const F32 b); ///< a * b -> M
  167. void mul( Point4F& p ) const; ///< M * p -> p (full [4x4] * [1x4])
  168. void mulP( Point3F& p ) const; ///< M * p -> p (assume w = 1.0f)
  169. void mulP( const Point3F &p, Point3F *d) const; ///< M * p -> d (assume w = 1.0f)
  170. void mulV( VectorF& p ) const; ///< M * v -> v (assume w = 0.0f)
  171. void mulV( const VectorF &p, Point3F *d) const; ///< M * v -> d (assume w = 0.0f)
  172. void mul(Box3F& b) const; ///< Axial box -> Axial Box
  173. MatrixF& add( const MatrixF& m );
  174. /// Convenience function to allow people to treat this like an array.
  175. F32& operator ()(S32 row, S32 col) { return m[idx(col,row)]; }
  176. F32 operator ()(S32 row, S32 col) const { return m[idx(col,row)]; }
  177. void dumpMatrix(const char *caption=NULL) const;
  178. // Math operator overloads
  179. //------------------------------------
  180. friend MatrixF operator * ( const MatrixF &m1, const MatrixF &m2 );
  181. MatrixF& operator *= ( const MatrixF &m );
  182. MatrixF &operator = (const MatrixF &m);
  183. bool isNaN();
  184. // Static identity matrix
  185. const static MatrixF Identity;
  186. };
  187. class MatrixFEngineExport
  188. {
  189. public:
  190. static EngineFieldTable::Field getMatrixField();
  191. };
  192. //--------------------------------------
  193. // Inline Functions
  194. inline MatrixF::MatrixF(bool _identity)
  195. {
  196. if (_identity)
  197. identity();
  198. else
  199. std::fill_n(m, 16, 0);
  200. }
  201. inline MatrixF::MatrixF( const EulerF &e )
  202. {
  203. set(e);
  204. }
  205. inline MatrixF::MatrixF( const EulerF &e, const Point3F& p )
  206. {
  207. set(e,p);
  208. }
  209. inline MatrixF& MatrixF::set( const EulerF &e)
  210. {
  211. m_matF_set_euler( e, *this );
  212. return (*this);
  213. }
  214. inline MatrixF& MatrixF::set( const EulerF &e, const Point3F& p)
  215. {
  216. m_matF_set_euler_point( e, p, *this );
  217. return (*this);
  218. }
  219. inline MatrixF& MatrixF::setCrossProduct( const Point3F &p)
  220. {
  221. m[1] = -(m[4] = p.z);
  222. m[8] = -(m[2] = p.y);
  223. m[6] = -(m[9] = p.x);
  224. m[0] = m[3] = m[5] = m[7] = m[10] = m[11] =
  225. m[12] = m[13] = m[14] = 0.0f;
  226. m[15] = 1;
  227. return (*this);
  228. }
  229. inline MatrixF& MatrixF::setTensorProduct( const Point3F &p, const Point3F &q)
  230. {
  231. m[0] = p.x * q.x;
  232. m[1] = p.x * q.y;
  233. m[2] = p.x * q.z;
  234. m[4] = p.y * q.x;
  235. m[5] = p.y * q.y;
  236. m[6] = p.y * q.z;
  237. m[8] = p.z * q.x;
  238. m[9] = p.z * q.y;
  239. m[10] = p.z * q.z;
  240. m[3] = m[7] = m[11] = m[12] = m[13] = m[14] = 0.0f;
  241. m[15] = 1.0f;
  242. return (*this);
  243. }
  244. inline bool MatrixF::isIdentity() const
  245. {
  246. return
  247. m[0] == 1.0f &&
  248. m[1] == 0.0f &&
  249. m[2] == 0.0f &&
  250. m[3] == 0.0f &&
  251. m[4] == 0.0f &&
  252. m[5] == 1.0f &&
  253. m[6] == 0.0f &&
  254. m[7] == 0.0f &&
  255. m[8] == 0.0f &&
  256. m[9] == 0.0f &&
  257. m[10] == 1.0f &&
  258. m[11] == 0.0f &&
  259. m[12] == 0.0f &&
  260. m[13] == 0.0f &&
  261. m[14] == 0.0f &&
  262. m[15] == 1.0f;
  263. }
  264. inline MatrixF& MatrixF::identity()
  265. {
  266. m[0] = 1.0f;
  267. m[1] = 0.0f;
  268. m[2] = 0.0f;
  269. m[3] = 0.0f;
  270. m[4] = 0.0f;
  271. m[5] = 1.0f;
  272. m[6] = 0.0f;
  273. m[7] = 0.0f;
  274. m[8] = 0.0f;
  275. m[9] = 0.0f;
  276. m[10] = 1.0f;
  277. m[11] = 0.0f;
  278. m[12] = 0.0f;
  279. m[13] = 0.0f;
  280. m[14] = 0.0f;
  281. m[15] = 1.0f;
  282. return (*this);
  283. }
  284. inline MatrixF& MatrixF::inverse()
  285. {
  286. m_matF_inverse(m);
  287. return (*this);
  288. }
  289. inline void MatrixF::invertTo( MatrixF *out )
  290. {
  291. m_matF_invert_to(m,*out);
  292. }
  293. inline MatrixF& MatrixF::affineInverse()
  294. {
  295. // AssertFatal(isAffine() == true, "Error, this matrix is not an affine transform");
  296. m_matF_affineInverse(m);
  297. return (*this);
  298. }
  299. inline MatrixF& MatrixF::transpose()
  300. {
  301. m_matF_transpose(m);
  302. return (*this);
  303. }
  304. inline MatrixF& MatrixF::scale(const Point3F& p)
  305. {
  306. m_matF_scale(m,p);
  307. return *this;
  308. }
  309. inline Point3F MatrixF::getScale() const
  310. {
  311. Point3F scale;
  312. scale.x = mSqrt(m[0]*m[0] + m[4] * m[4] + m[8] * m[8]);
  313. scale.y = mSqrt(m[1]*m[1] + m[5] * m[5] + m[9] * m[9]);
  314. scale.z = mSqrt(m[2]*m[2] + m[6] * m[6] + m[10] * m[10]);
  315. return scale;
  316. }
  317. inline void MatrixF::normalize()
  318. {
  319. m_matF_normalize(m);
  320. }
  321. inline MatrixF& MatrixF::mul( const MatrixF &a )
  322. { // M * a -> M
  323. AssertFatal(&a != this, "MatrixF::mul - a.mul(a) is invalid!");
  324. MatrixF tempThis(*this);
  325. m_matF_x_matF(tempThis, a, *this);
  326. return (*this);
  327. }
  328. inline MatrixF& MatrixF::mulL( const MatrixF &a )
  329. { // a * M -> M
  330. AssertFatal(&a != this, "MatrixF::mulL - a.mul(a) is invalid!");
  331. MatrixF tempThis(*this);
  332. m_matF_x_matF(a, tempThis, *this);
  333. return (*this);
  334. }
  335. inline MatrixF& MatrixF::mul( const MatrixF &a, const MatrixF &b )
  336. { // a * b -> M
  337. AssertFatal((&a != this) && (&b != this), "MatrixF::mul - a.mul(a, b) a.mul(b, a) a.mul(a, a) is invalid!");
  338. m_matF_x_matF(a, b, *this);
  339. return (*this);
  340. }
  341. inline MatrixF& MatrixF::mul(const F32 a)
  342. {
  343. for (U32 i = 0; i < 16; i++)
  344. m[i] *= a;
  345. return *this;
  346. }
  347. inline MatrixF& MatrixF::mul(const MatrixF &a, const F32 b)
  348. {
  349. *this = a;
  350. mul(b);
  351. return *this;
  352. }
  353. inline void MatrixF::mul( Point4F& p ) const
  354. {
  355. Point4F temp;
  356. m_matF_x_point4F(*this, &p.x, &temp.x);
  357. p = temp;
  358. }
  359. inline void MatrixF::mulP( Point3F& p) const
  360. {
  361. // M * p -> d
  362. Point3F d;
  363. m_matF_x_point3F(*this, &p.x, &d.x);
  364. p = d;
  365. }
  366. inline void MatrixF::mulP( const Point3F &p, Point3F *d) const
  367. {
  368. // M * p -> d
  369. m_matF_x_point3F(*this, &p.x, &d->x);
  370. }
  371. inline void MatrixF::mulV( VectorF& v) const
  372. {
  373. // M * v -> v
  374. VectorF temp;
  375. m_matF_x_vectorF(*this, &v.x, &temp.x);
  376. v = temp;
  377. }
  378. inline void MatrixF::mulV( const VectorF &v, Point3F *d) const
  379. {
  380. // M * v -> d
  381. m_matF_x_vectorF(*this, &v.x, &d->x);
  382. }
  383. inline void MatrixF::mul(Box3F& b) const
  384. {
  385. m_matF_x_box3F(*this, &b.minExtents.x, &b.maxExtents.x);
  386. }
  387. inline MatrixF& MatrixF::add( const MatrixF& a )
  388. {
  389. for( U32 i = 0; i < 16; ++ i )
  390. m[ i ] += a.m[ i ];
  391. return *this;
  392. }
  393. inline void MatrixF::getColumn(S32 col, Point4F *cptr) const
  394. {
  395. cptr->x = m[col];
  396. cptr->y = m[col+4];
  397. cptr->z = m[col+8];
  398. cptr->w = m[col+12];
  399. }
  400. inline void MatrixF::getColumn(S32 col, Point3F *cptr) const
  401. {
  402. cptr->x = m[col];
  403. cptr->y = m[col+4];
  404. cptr->z = m[col+8];
  405. }
  406. inline void MatrixF::setColumn(S32 col, const Point4F &cptr)
  407. {
  408. m[col] = cptr.x;
  409. m[col+4] = cptr.y;
  410. m[col+8] = cptr.z;
  411. m[col+12]= cptr.w;
  412. }
  413. inline void MatrixF::setColumn(S32 col, const Point3F &cptr)
  414. {
  415. m[col] = cptr.x;
  416. m[col+4] = cptr.y;
  417. m[col+8] = cptr.z;
  418. }
  419. inline void MatrixF::getRow(S32 col, Point4F *cptr) const
  420. {
  421. col *= 4;
  422. cptr->x = m[col++];
  423. cptr->y = m[col++];
  424. cptr->z = m[col++];
  425. cptr->w = m[col];
  426. }
  427. inline void MatrixF::getRow(S32 col, Point3F *cptr) const
  428. {
  429. col *= 4;
  430. cptr->x = m[col++];
  431. cptr->y = m[col++];
  432. cptr->z = m[col];
  433. }
  434. inline void MatrixF::setRow(S32 col, const Point4F &cptr)
  435. {
  436. col *= 4;
  437. m[col++] = cptr.x;
  438. m[col++] = cptr.y;
  439. m[col++] = cptr.z;
  440. m[col] = cptr.w;
  441. }
  442. inline void MatrixF::setRow(S32 col, const Point3F &cptr)
  443. {
  444. col *= 4;
  445. m[col++] = cptr.x;
  446. m[col++] = cptr.y;
  447. m[col] = cptr.z;
  448. }
  449. inline Point3F MatrixF::getPosition() const
  450. {
  451. return Point3F( m[3], m[3+4], m[3+8] );
  452. }
  453. inline void MatrixF::displace( const Point3F &delta )
  454. {
  455. m[3] += delta.x;
  456. m[3+4] += delta.y;
  457. m[3+8] += delta.z;
  458. }
  459. inline VectorF MatrixF::getForwardVector() const
  460. {
  461. VectorF vec;
  462. getColumn( 1, &vec );
  463. return vec;
  464. }
  465. inline VectorF MatrixF::getRightVector() const
  466. {
  467. VectorF vec;
  468. getColumn( 0, &vec );
  469. return vec;
  470. }
  471. inline VectorF MatrixF::getUpVector() const
  472. {
  473. VectorF vec;
  474. getColumn( 2, &vec );
  475. return vec;
  476. }
  477. //------------------------------------
  478. // Math operator overloads
  479. //------------------------------------
  480. inline MatrixF operator * ( const MatrixF &m1, const MatrixF &m2 )
  481. {
  482. // temp = m1 * m2
  483. MatrixF temp;
  484. m_matF_x_matF(m1, m2, temp);
  485. return temp;
  486. }
  487. inline MatrixF& MatrixF::operator *= ( const MatrixF &m1 )
  488. {
  489. MatrixF tempThis(*this);
  490. m_matF_x_matF(tempThis, m1, *this);
  491. return (*this);
  492. }
  493. inline MatrixF &MatrixF::operator = (const MatrixF &m1)
  494. {
  495. for (U32 i=0;i<16;i++)
  496. this->m[i] = m1.m[i];
  497. return (*this);
  498. }
  499. inline bool MatrixF::isNaN()
  500. {
  501. bool isaNaN = false;
  502. for (U32 i = 0; i < 16; i++)
  503. if (mIsNaN_F(m[i]))
  504. isaNaN = true;
  505. return isaNaN;
  506. }
  507. //------------------------------------
  508. // Non-member methods
  509. //------------------------------------
  510. inline void mTransformPlane(const MatrixF& mat, const Point3F& scale, const PlaneF& plane, PlaneF * result)
  511. {
  512. m_matF_x_scale_x_planeF(mat, &scale.x, &plane.x, &result->x);
  513. }
  514. #else // !USE_TEMPLATE_MATRIX
  515. //------------------------------------
  516. // Templatized matrix class to replace MATRIXF above
  517. //------------------------------------
  518. template<typename DATA_TYPE, U32 rows, U32 cols>
  519. class Matrix {
  520. friend class MatrixTemplateExport;
  521. private:
  522. DATA_TYPE data[rows * cols];
  523. public:
  524. static_assert(rows >= 2 && cols >= 2, "Matrix must have at least 2 rows and 2 cols.");
  525. // ------ Setters and initializers ------
  526. explicit Matrix(bool identity = false) {
  527. std::fill(data, data + (rows * cols), DATA_TYPE(0));
  528. if (identity) {
  529. for (U32 i = 0; i < rows; i++) {
  530. for (U32 j = 0; j < cols; j++) {
  531. // others already get filled with 0
  532. if (j == i)
  533. (*this)(i, j) = static_cast<DATA_TYPE>(1);
  534. }
  535. }
  536. }
  537. }
  538. explicit Matrix(const EulerF& e);
  539. /// Make this an identity matrix.
  540. Matrix<DATA_TYPE, rows, cols>& identity();
  541. void reverseProjection();
  542. void normalize();
  543. Matrix<DATA_TYPE, rows, cols>& set(const EulerF& e);
  544. Matrix(const EulerF& e, const Point3F p);
  545. Matrix<DATA_TYPE, rows, cols>& set(const EulerF& e, const Point3F p);
  546. Matrix<DATA_TYPE, rows, cols> inverse();
  547. Matrix<DATA_TYPE, rows, cols>& transpose();
  548. void invert();
  549. Matrix<DATA_TYPE, rows, cols>& setCrossProduct(const Point3F& p);
  550. Matrix<DATA_TYPE, rows, cols>& setTensorProduct(const Point3F& p, const Point3F& q);
  551. /// M * Matrix(p) -> M
  552. Matrix<DATA_TYPE, rows, cols>& scale(const Point3F& s);
  553. Matrix<DATA_TYPE, rows, cols>& scale(DATA_TYPE s) { return scale(Point3F(s, s, s)); }
  554. void setColumn(S32 col, const Point4F& cptr);
  555. void setColumn(S32 col, const Point3F& cptr);
  556. void setRow(S32 row, const Point4F& cptr);
  557. void setRow(S32 row, const Point3F& cptr);
  558. void displace(const Point3F& delta);
  559. bool fullInverse();
  560. void setPosition(const Point3F& pos) { setColumn(3, pos); }
  561. ///< M * a -> M
  562. Matrix<DATA_TYPE, rows, cols>& mul(const Matrix<DATA_TYPE, rows, cols>& a)
  563. {
  564. *this = *this * a; return *this;
  565. }
  566. ///< a * M -> M
  567. Matrix<DATA_TYPE, rows, cols>& mulL(const Matrix<DATA_TYPE, rows, cols>& a)
  568. { return *this = a * *this; }
  569. ///< a * b -> M
  570. Matrix<DATA_TYPE, rows, cols>& mul(const Matrix<DATA_TYPE, rows, cols>& a, const Matrix<DATA_TYPE, rows, cols>& b)
  571. { return *this = a * b; }
  572. ///< M * a -> M
  573. Matrix<DATA_TYPE, rows, cols>& mul(const F32 a)
  574. { return *this * a; }
  575. ///< a * b -> M
  576. Matrix<DATA_TYPE, rows, cols>& mul(const Matrix<DATA_TYPE, rows, cols>& a, const F32 b)
  577. { return *this = a * b; }
  578. ///< M * p -> p (full [4x4] * [1x4])
  579. void mul(Point4F& p) const { p = *this * p; }
  580. ///< M * p -> p (assume w = 1.0f)
  581. void mulP(Point3F& p) const { p = *this * p; }
  582. ///< M * p -> d (assume w = 1.0f)
  583. void mulP(const Point3F& p, Point3F* d) const { *d = *this * p; }
  584. ///< M * v -> v (assume w = 0.0f)
  585. void mulV(VectorF& v) const
  586. {
  587. AssertFatal(rows == 4 && cols == 4, "Multiplying VectorF with matrix requires 4x4");
  588. VectorF result(
  589. (*this)(0, 0) * v.x + (*this)(0, 1) * v.y + (*this)(0, 2) * v.z,
  590. (*this)(1, 0) * v.x + (*this)(1, 1) * v.y + (*this)(1, 2) * v.z,
  591. (*this)(2, 0) * v.x + (*this)(2, 1) * v.y + (*this)(2, 2) * v.z
  592. );
  593. v = result;
  594. }
  595. ///< M * v -> d (assume w = 0.0f)
  596. void mulV(const VectorF& v, Point3F* d) const
  597. {
  598. AssertFatal(rows == 4 && cols == 4, "Multiplying VectorF with matrix requires 4x4");
  599. VectorF result(
  600. (*this)(0, 0) * v.x + (*this)(0, 1) * v.y + (*this)(0, 2) * v.z,
  601. (*this)(1, 0) * v.x + (*this)(1, 1) * v.y + (*this)(1, 2) * v.z,
  602. (*this)(2, 0) * v.x + (*this)(2, 1) * v.y + (*this)(2, 2) * v.z
  603. );
  604. d->x = result.x;
  605. d->y = result.y;
  606. d->z = result.z;
  607. }
  608. ///< Axial box -> Axial Box (too big a function to be inline)
  609. void mul(Box3F& box) const;
  610. // ------ Getters ------
  611. bool isNaN() {
  612. for (U32 i = 0; i < rows; i++) {
  613. for (U32 j = 0; j < cols; j++) {
  614. if (mIsNaN_F((*this)(i, j)))
  615. return true;
  616. }
  617. }
  618. return false;
  619. }
  620. // col * rows + row
  621. static U32 idx(U32 i, U32 j) { return (i * rows + j); }
  622. bool isAffine() const;
  623. bool isIdentity() const;
  624. /// Take inverse of matrix assuming it is affine (rotation,
  625. /// scale, sheer, translation only).
  626. Matrix<DATA_TYPE, rows, cols> affineInverse();
  627. Point3F getScale() const;
  628. EulerF toEuler() const;
  629. Point3F getPosition() const;
  630. void getColumn(S32 col, Point4F* cptr) const;
  631. Point4F getColumn4F(S32 col) const { Point4F ret; getColumn(col, &ret); return ret; }
  632. void getColumn(S32 col, Point3F* cptr) const;
  633. Point3F getColumn3F(S32 col) const { Point3F ret; getColumn(col, &ret); return ret; }
  634. void getRow(S32 row, Point4F* cptr) const;
  635. Point4F getRow4F(S32 row) const { Point4F ret; getRow(row, &ret); return ret; }
  636. void getRow(S32 row, Point3F* cptr) const;
  637. Point3F getRow3F(S32 row) const { Point3F ret; getRow(row, &ret); return ret; }
  638. VectorF getRightVector() const;
  639. VectorF getForwardVector() const;
  640. VectorF getUpVector() const;
  641. DATA_TYPE* getData() {
  642. return data;
  643. }
  644. const DATA_TYPE* getData() const {
  645. return data;
  646. }
  647. void transposeTo(Matrix<DATA_TYPE, cols, rows>& matrix) const {
  648. for (U32 i = 0; i < rows; ++i) {
  649. for (U32 j = 0; j < cols; ++j) {
  650. matrix(j, i) = (*this)(i, j);
  651. }
  652. }
  653. }
  654. void invertTo(Matrix<DATA_TYPE, cols, rows>* matrix) const;
  655. void invertTo(Matrix<DATA_TYPE, cols, rows>* matrix);
  656. void dumpMatrix(const char* caption = NULL) const;
  657. // Static identity matrix
  658. static const Matrix Identity;
  659. // ------ Operators ------
  660. Matrix<DATA_TYPE, rows, cols> operator * (const Matrix<DATA_TYPE, rows, cols>& other) const {
  661. Matrix<DATA_TYPE, rows, cols> result;
  662. for (U32 i = 0; i < rows; i++) {
  663. for (U32 j = 0; j < cols; j++) {
  664. result(i, j) = 0;
  665. for (U32 k = 0; k < cols; k++) {
  666. result(i, j) += (*this)(i, k) * other(k, j);
  667. }
  668. }
  669. }
  670. return result;
  671. }
  672. Matrix<DATA_TYPE, rows, cols> operator *= (const Matrix<DATA_TYPE, rows, cols>& other) {
  673. *this = *this * other;
  674. return *this;
  675. }
  676. Matrix<DATA_TYPE, rows, cols> operator * (const DATA_TYPE scalar) const {
  677. Matrix<DATA_TYPE, rows, cols> result;
  678. for (U32 i = 0; i < rows; i++) {
  679. for (U32 j = 0; j < cols; j++) {
  680. result(i, j) = (*this)(i, j) * scalar;
  681. }
  682. }
  683. return result;
  684. }
  685. Matrix<DATA_TYPE, rows, cols>& operator *= (const DATA_TYPE scalar) {
  686. for (U32 i = 0; i < rows; i++) {
  687. for (U32 j = 0; j < cols; j++) {
  688. (*this)(i, j) *= scalar;
  689. }
  690. }
  691. return *this;
  692. }
  693. Point3F operator*(const Point3F& point) const {
  694. AssertFatal(rows == 4 && cols == 4, "Multiplying point3 with matrix requires 4x4");
  695. return Point3F(
  696. (*this)(0, 0) * point.x + (*this)(0, 1) * point.y + (*this)(0, 2) * point.z + (*this)(0, 3),
  697. (*this)(1, 0) * point.x + (*this)(1, 1) * point.y + (*this)(1, 2) * point.z + (*this)(1, 3),
  698. (*this)(2, 0) * point.x + (*this)(2, 1) * point.y + (*this)(2, 2) * point.z + (*this)(2, 3)
  699. );
  700. }
  701. Point4F operator*(const Point4F& point) const {
  702. AssertFatal(rows == 4 && cols == 4, "Multiplying point4 with matrix requires 4x4");
  703. return Point4F(
  704. (*this)(0, 0) * point.x + (*this)(0, 1) * point.y + (*this)(0, 2) * point.z + (*this)(0, 3) * point.w,
  705. (*this)(1, 0) * point.x + (*this)(1, 1) * point.y + (*this)(1, 2) * point.z + (*this)(1, 3) * point.w,
  706. (*this)(2, 0) * point.x + (*this)(2, 1) * point.y + (*this)(2, 2) * point.z + (*this)(2, 3) * point.w,
  707. (*this)(3, 0) * point.x + (*this)(3, 1) * point.y + (*this)(3, 2) * point.z + (*this)(3, 3) * point.w
  708. );
  709. }
  710. Matrix<DATA_TYPE, rows, cols>& operator = (const Matrix<DATA_TYPE, rows, cols>& other) {
  711. if (this != &other) {
  712. std::copy(other.data, other.data + rows * cols, this->data);
  713. }
  714. return *this;
  715. }
  716. bool operator == (const Matrix<DATA_TYPE, rows, cols>& other) const {
  717. for (U32 i = 0; i < rows; i++) {
  718. for (U32 j = 0; j < cols; j++) {
  719. if ((*this)(i, j) != other(i, j))
  720. return false;
  721. }
  722. }
  723. return true;
  724. }
  725. bool operator != (const Matrix<DATA_TYPE, rows, cols>& other) const {
  726. return !(*this == other);
  727. }
  728. operator DATA_TYPE* () { return (data); }
  729. operator const DATA_TYPE* () const { return (DATA_TYPE*)(data); }
  730. DATA_TYPE& operator () (U32 row, U32 col) {
  731. if (row >= rows || col >= cols)
  732. AssertFatal(false, "Matrix indices out of range");
  733. return data[col * rows + row];
  734. }
  735. const DATA_TYPE& operator () (U32 row, U32 col) const {
  736. if (row >= rows || col >= cols)
  737. AssertFatal(false, "Matrix indices out of range");
  738. return data[col * rows + row];
  739. }
  740. };
  741. //--------------------------------------------
  742. // INLINE FUNCTIONS
  743. //--------------------------------------------
  744. template<typename DATA_TYPE, U32 rows, U32 cols>
  745. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::transpose()
  746. {
  747. // square matrices can just swap, non square requires a temp mat.
  748. if (rows == cols) {
  749. for (U32 i = 0; i < rows; i++) {
  750. for (U32 j = 0; j < cols; j++) {
  751. std::swap((*this)(j, i), (*this)(i, j));
  752. }
  753. }
  754. }
  755. else {
  756. Matrix<DATA_TYPE, rows, cols> result;
  757. for (U32 i = 0; i < rows; i++) {
  758. for (U32 j = 0; j < cols; j++) {
  759. result(j, i) = (*this)(i, j);
  760. }
  761. }
  762. std::copy(std::begin(result.data), std::end(result.data), std::begin(data));
  763. }
  764. return (*this);
  765. }
  766. template<typename DATA_TYPE, U32 rows, U32 cols>
  767. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::identity()
  768. {
  769. for (U32 i = 0; i < rows; i++) {
  770. for (U32 j = 0; j < cols; j++) {
  771. if (j == i)
  772. (*this)(i, j) = static_cast<DATA_TYPE>(1);
  773. else
  774. (*this)(i, j) = static_cast<DATA_TYPE>(0);
  775. }
  776. }
  777. return (*this);
  778. }
  779. template<typename DATA_TYPE, U32 rows, U32 cols>
  780. inline void Matrix<DATA_TYPE, rows, cols>::normalize()
  781. {
  782. AssertFatal(rows >= 3 && cols >= 3, "Normalize can only be applied 3x3 or more");
  783. Point3F col0, col1, col2;
  784. getColumn(0, &col0);
  785. getColumn(1, &col1);
  786. mCross(col0, col1, &col2);
  787. mCross(col2, col0, &col1);
  788. col0.normalize();
  789. col1.normalize();
  790. col2.normalize();
  791. setColumn(0, col0);
  792. setColumn(1, col1);
  793. setColumn(2, col2);
  794. }
  795. template<typename DATA_TYPE, U32 rows, U32 cols>
  796. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::scale(const Point3F& s)
  797. {
  798. // torques scale applies directly, does not create another matrix to multiply with the translation matrix.
  799. AssertFatal(rows >= 3 && cols >= 3, "Scale can only be applied 3x3 or more");
  800. for (U32 i = 0; i < 3; i++) {
  801. for (U32 j = 0; j < 3; j++) {
  802. DATA_TYPE scale = (i == 0) ? s.x : (i == 1) ? s.y : s.z;
  803. (*this)(i, j) *= scale;
  804. }
  805. }
  806. return (*this);
  807. }
  808. template<typename DATA_TYPE, U32 rows, U32 cols>
  809. inline bool Matrix<DATA_TYPE, rows, cols>::isIdentity() const {
  810. for (U32 i = 0; i < rows; i++) {
  811. for (U32 j = 0; j < cols; j++) {
  812. if (j == i) {
  813. if((*this)(i, j) != static_cast<DATA_TYPE>(1)) {
  814. return false;
  815. }
  816. }
  817. else {
  818. if((*this)(i, j) != static_cast<DATA_TYPE>(0)) {
  819. return false;
  820. }
  821. }
  822. }
  823. }
  824. return true;
  825. }
  826. template<typename DATA_TYPE, U32 rows, U32 cols>
  827. inline Point3F Matrix<DATA_TYPE, rows, cols>::getScale() const
  828. {
  829. // this function assumes the matrix has scale applied through the scale(const Point3F& s) function.
  830. // for now assume float since we have point3F.
  831. AssertFatal(rows >= 3 && cols >= 3, "Scale can only be applied 3x3 or more");
  832. Point3F scale;
  833. scale.x = mSqrt((*this)(0, 0) * (*this)(0, 0) + (*this)(1, 0) * (*this)(1, 0) + (*this)(2, 0) * (*this)(2, 0));
  834. scale.y = mSqrt((*this)(0, 1) * (*this)(0, 1) + (*this)(1, 1) * (*this)(1, 1) + (*this)(2, 1) * (*this)(2, 1));
  835. scale.z = mSqrt((*this)(0, 2) * (*this)(0, 2) + (*this)(1, 2) * (*this)(1, 2) + (*this)(2, 2) * (*this)(2, 2));
  836. return scale;
  837. }
  838. template<typename DATA_TYPE, U32 rows, U32 cols>
  839. inline Point3F Matrix<DATA_TYPE, rows, cols>::getPosition() const
  840. {
  841. Point3F pos;
  842. getColumn(3, &pos);
  843. return pos;
  844. }
  845. template<typename DATA_TYPE, U32 rows, U32 cols>
  846. inline void Matrix<DATA_TYPE, rows, cols>::getColumn(S32 col, Point4F* cptr) const
  847. {
  848. if (rows >= 2)
  849. {
  850. cptr->x = (*this)(0, col);
  851. cptr->y = (*this)(1, col);
  852. }
  853. if (rows >= 3)
  854. cptr->z = (*this)(2, col);
  855. else
  856. cptr->z = 0.0f;
  857. if (rows >= 4)
  858. cptr->w = (*this)(3, col);
  859. else
  860. cptr->w = 0.0f;
  861. }
  862. template<typename DATA_TYPE, U32 rows, U32 cols>
  863. inline void Matrix<DATA_TYPE, rows, cols>::getColumn(S32 col, Point3F* cptr) const
  864. {
  865. if (rows >= 2)
  866. {
  867. cptr->x = (*this)(0, col);
  868. cptr->y = (*this)(1, col);
  869. }
  870. if (rows >= 3)
  871. cptr->z = (*this)(2, col);
  872. else
  873. cptr->z = 0.0f;
  874. }
  875. template<typename DATA_TYPE, U32 rows, U32 cols>
  876. inline void Matrix<DATA_TYPE, rows, cols>::setColumn(S32 col, const Point4F &cptr) {
  877. if(rows >= 2)
  878. {
  879. (*this)(0, col) = cptr.x;
  880. (*this)(1, col) = cptr.y;
  881. }
  882. if(rows >= 3)
  883. (*this)(2, col) = cptr.z;
  884. if(rows >= 4)
  885. (*this)(3, col) = cptr.w;
  886. }
  887. template<typename DATA_TYPE, U32 rows, U32 cols>
  888. inline void Matrix<DATA_TYPE, rows, cols>::setColumn(S32 col, const Point3F &cptr) {
  889. if(rows >= 2)
  890. {
  891. (*this)(0, col) = cptr.x;
  892. (*this)(1, col) = cptr.y;
  893. }
  894. if(rows >= 3)
  895. (*this)(2, col) = cptr.z;
  896. }
  897. template<typename DATA_TYPE, U32 rows, U32 cols>
  898. inline void Matrix<DATA_TYPE, rows, cols>::getRow(S32 row, Point4F* cptr) const
  899. {
  900. if (cols >= 2)
  901. {
  902. cptr->x = (*this)(row, 0);
  903. cptr->y = (*this)(row, 1);
  904. }
  905. if (cols >= 3)
  906. cptr->z = (*this)(row, 2);
  907. else
  908. cptr->z = 0.0f;
  909. if (cols >= 4)
  910. cptr->w = (*this)(row, 3);
  911. else
  912. cptr->w = 0.0f;
  913. }
  914. template<typename DATA_TYPE, U32 rows, U32 cols>
  915. inline void Matrix<DATA_TYPE, rows, cols>::getRow(S32 row, Point3F* cptr) const
  916. {
  917. if (cols >= 2)
  918. {
  919. cptr->x = (*this)(row, 0);
  920. cptr->y = (*this)(row, 1);
  921. }
  922. if (cols >= 3)
  923. cptr->z = (*this)(row, 2);
  924. else
  925. cptr->z = 0.0f;
  926. }
  927. template<typename DATA_TYPE, U32 rows, U32 cols>
  928. inline VectorF Matrix<DATA_TYPE, rows, cols>::getRightVector() const
  929. {
  930. VectorF vec;
  931. getColumn(0, &vec);
  932. return vec;
  933. }
  934. template<typename DATA_TYPE, U32 rows, U32 cols>
  935. inline VectorF Matrix<DATA_TYPE, rows, cols>::getForwardVector() const
  936. {
  937. VectorF vec;
  938. getColumn(1, &vec);
  939. return vec;
  940. }
  941. template<typename DATA_TYPE, U32 rows, U32 cols>
  942. inline VectorF Matrix<DATA_TYPE, rows, cols>::getUpVector() const
  943. {
  944. VectorF vec;
  945. getColumn(2, &vec);
  946. return vec;
  947. }
  948. template<typename DATA_TYPE, U32 rows, U32 cols>
  949. inline void Matrix<DATA_TYPE, rows, cols>::invertTo(Matrix<DATA_TYPE, cols, rows>* matrix) const
  950. {
  951. Matrix<DATA_TYPE, rows, cols> invMatrix;
  952. for (U32 i = 0; i < rows; ++i) {
  953. for (U32 j = 0; j < cols; ++j) {
  954. invMatrix(i, j) = (*this)(i, j);
  955. }
  956. }
  957. invMatrix.inverse();
  958. for (U32 i = 0; i < rows; ++i) {
  959. for (U32 j = 0; j < cols; ++j) {
  960. (*matrix)(j, i) = invMatrix(i, j);
  961. }
  962. }
  963. (*matrix)(3, 0) = (*this)(3, 0);
  964. (*matrix)(3, 1) = (*this)(3, 1);
  965. (*matrix)(3, 2) = (*this)(3, 2);
  966. (*matrix)(3, 3) = (*this)(3, 3);
  967. }
  968. template<typename DATA_TYPE, U32 rows, U32 cols>
  969. inline void Matrix<DATA_TYPE, rows, cols>::invertTo(Matrix<DATA_TYPE, cols, rows>* matrix)
  970. {
  971. Matrix<DATA_TYPE, rows, cols> invMatrix = this->inverse();
  972. for (U32 i = 0; i < rows; ++i) {
  973. for (U32 j = 0; j < cols; ++j) {
  974. (*matrix)(i, j) = invMatrix(i, j);
  975. }
  976. }
  977. (*matrix)(3, 0) = (*this)(3, 0);
  978. (*matrix)(3, 1) = (*this)(3, 1);
  979. (*matrix)(3, 2) = (*this)(3, 2);
  980. (*matrix)(3, 3) = (*this)(3, 3);
  981. }
  982. template<typename DATA_TYPE, U32 rows, U32 cols>
  983. inline void Matrix<DATA_TYPE, rows, cols>::setRow(S32 row, const Point4F& cptr) {
  984. if(cols >= 2)
  985. {
  986. (*this)(row, 0) = cptr.x;
  987. (*this)(row, 1) = cptr.y;
  988. }
  989. if(cols >= 3)
  990. (*this)(row, 2) = cptr.z;
  991. if(cols >= 4)
  992. (*this)(row, 3) = cptr.w;
  993. }
  994. template<typename DATA_TYPE, U32 rows, U32 cols>
  995. inline void Matrix<DATA_TYPE, rows, cols>::setRow(S32 row, const Point3F& cptr) {
  996. if(cols >= 2)
  997. {
  998. (*this)(row, 0) = cptr.x;
  999. (*this)(row, 1) = cptr.y;
  1000. }
  1001. if(cols >= 3)
  1002. (*this)(row, 2) = cptr.z;
  1003. }
  1004. template<typename DATA_TYPE, U32 rows, U32 cols>
  1005. inline void Matrix<DATA_TYPE, rows, cols>::displace(const Point3F& delta)
  1006. {
  1007. (*this)(0, 3) += delta.x;
  1008. (*this)(1, 3) += delta.y;
  1009. (*this)(2, 3) += delta.z;
  1010. }
  1011. template<typename DATA_TYPE, U32 rows, U32 cols>
  1012. void Matrix<DATA_TYPE, rows, cols>::reverseProjection()
  1013. {
  1014. AssertFatal(rows == 4 && cols == 4, "reverseProjection requires a 4x4 matrix.");
  1015. (*this)(2, 0) = (*this)(3, 0) - (*this)(2, 0);
  1016. (*this)(2, 1) = (*this)(3, 1) - (*this)(2, 1);
  1017. (*this)(2, 2) = (*this)(3, 2) - (*this)(2, 2);
  1018. (*this)(2, 3) = (*this)(3, 3) - (*this)(2, 3);
  1019. }
  1020. template<typename DATA_TYPE, U32 rows, U32 cols>
  1021. const Matrix<DATA_TYPE, rows, cols> Matrix<DATA_TYPE, rows, cols>::Identity = []() {
  1022. Matrix<DATA_TYPE, rows, cols> identity(true);
  1023. return identity;
  1024. }();
  1025. template<typename DATA_TYPE, U32 rows, U32 cols>
  1026. Matrix<DATA_TYPE, rows, cols>::Matrix(const EulerF& e)
  1027. {
  1028. set(e);
  1029. }
  1030. template<typename DATA_TYPE, U32 rows, U32 cols>
  1031. Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::set(const EulerF& e)
  1032. {
  1033. // when the template refactor is done, euler will be able to be setup in different ways
  1034. AssertFatal(rows >= 3 && cols >= 3, "EulerF can only initialize 3x3 or more");
  1035. static_assert(std::is_same<DATA_TYPE, float>::value, "Can only initialize eulers with floats for now");
  1036. F32 cosPitch, sinPitch;
  1037. mSinCos(e.x, sinPitch, cosPitch);
  1038. F32 cosYaw, sinYaw;
  1039. mSinCos(e.y, sinYaw, cosYaw);
  1040. F32 cosRoll, sinRoll;
  1041. mSinCos(e.z, sinRoll, cosRoll);
  1042. enum {
  1043. AXIS_X = (1 << 0),
  1044. AXIS_Y = (1 << 1),
  1045. AXIS_Z = (1 << 2)
  1046. };
  1047. U32 axis = 0;
  1048. if (e.x != 0.0f) axis |= AXIS_X;
  1049. if (e.y != 0.0f) axis |= AXIS_Y;
  1050. if (e.z != 0.0f) axis |= AXIS_Z;
  1051. switch (axis) {
  1052. case 0:
  1053. (*this) = Matrix<DATA_TYPE, rows, cols>(true);
  1054. break;
  1055. case AXIS_X:
  1056. (*this)(0, 0) = 1.0f; (*this)(1, 0) = 0.0f; (*this)(2, 0) = 0.0f;
  1057. (*this)(0, 1) = 0.0f; (*this)(1, 1) = cosPitch; (*this)(2, 1) = -sinPitch;
  1058. (*this)(0, 2) = 0.0f; (*this)(1, 2) = sinPitch; (*this)(2, 2) = cosPitch;
  1059. break;
  1060. case AXIS_Y:
  1061. (*this)(0, 0) = cosYaw; (*this)(1, 0) = 0.0f; (*this)(2, 0) = sinYaw;
  1062. (*this)(0, 1) = 0.0f; (*this)(1, 1) = 1.0f; (*this)(2, 1) = 0.0f;
  1063. (*this)(0, 2) = -sinYaw; (*this)(1, 2) = 0.0f; (*this)(2, 2) = cosYaw;
  1064. break;
  1065. case AXIS_Z:
  1066. (*this)(0, 0) = cosRoll; (*this)(1, 0) = -sinRoll; (*this)(2, 0) = 0.0f;
  1067. (*this)(0, 1) = sinRoll; (*this)(1, 1) = cosRoll; (*this)(2, 1) = 0.0f;
  1068. (*this)(0, 2) = 0.0f; (*this)(1, 2) = 0.0f; (*this)(2, 2) = 0.0f;
  1069. break;
  1070. default:
  1071. F32 r1 = cosYaw * cosRoll;
  1072. F32 r2 = cosYaw * sinRoll;
  1073. F32 r3 = sinYaw * cosRoll;
  1074. F32 r4 = sinYaw * sinRoll;
  1075. // the matrix looks like this:
  1076. // r1 - (r4 * sin(x)) r2 + (r3 * sin(x)) -cos(x) * sin(y)
  1077. // -cos(x) * sin(z) cos(x) * cos(z) sin(x)
  1078. // r3 + (r2 * sin(x)) r4 - (r1 * sin(x)) cos(x) * cos(y)
  1079. //
  1080. // where:
  1081. // r1 = cos(y) * cos(z)
  1082. // r2 = cos(y) * sin(z)
  1083. // r3 = sin(y) * cos(z)
  1084. // r4 = sin(y) * sin(z)
  1085. // init the euler 3x3 rotation matrix.
  1086. (*this)(0, 0) = r1 - (r4 * sinPitch); (*this)(1, 0) = -cosPitch * sinRoll; (*this)(2, 0) = r3 + (r2 * sinPitch);
  1087. (*this)(0, 1) = r2 + (r3 * sinPitch); (*this)(1, 1) = cosPitch * cosRoll; (*this)(2, 1) = r4 - (r1 * sinPitch);
  1088. (*this)(0, 2) = -cosPitch * sinYaw; (*this)(1, 2) = sinPitch; (*this)(2, 2) = cosPitch * cosYaw;
  1089. break;
  1090. }
  1091. if (rows == 4) {
  1092. (*this)(3, 0) = 0.0f;
  1093. (*this)(3, 1) = 0.0f;
  1094. (*this)(3, 2) = 0.0f;
  1095. }
  1096. if (cols == 4) {
  1097. (*this)(0, 3) = 0.0f;
  1098. (*this)(1, 3) = 0.0f;
  1099. (*this)(2, 3) = 0.0f;
  1100. }
  1101. if (rows == 4 && cols == 4) {
  1102. (*this)(3, 3) = 1.0f;
  1103. }
  1104. return(*this);
  1105. }
  1106. template<typename DATA_TYPE, U32 rows, U32 cols>
  1107. Matrix<DATA_TYPE, rows, cols>::Matrix(const EulerF& e, const Point3F p)
  1108. {
  1109. set(e, p);
  1110. }
  1111. template<typename DATA_TYPE, U32 rows, U32 cols>
  1112. Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::set(const EulerF& e, const Point3F p)
  1113. {
  1114. AssertFatal(rows >= 3 && cols >= 4, "Euler and Point can only initialize 3x4 or more");
  1115. // call set euler, this already sets the last row if it exists.
  1116. set(e);
  1117. // does this need to multiply with the result of the euler? or are we just setting position.
  1118. (*this)(0, 3) = p.x;
  1119. (*this)(1, 3) = p.y;
  1120. (*this)(2, 3) = p.z;
  1121. return (*this);
  1122. }
  1123. template<typename DATA_TYPE, U32 rows, U32 cols>
  1124. Matrix<DATA_TYPE, rows, cols> Matrix<DATA_TYPE, rows, cols>::inverse()
  1125. {
  1126. // TODO: insert return statement here
  1127. AssertFatal(rows == cols, "Can only perform inverse on square matrices.");
  1128. const U32 size = rows;
  1129. // Create augmented matrix [this | I]
  1130. Matrix<DATA_TYPE, size, 2 * size> augmentedMatrix;
  1131. Matrix<DATA_TYPE, size, size> resultMatrix;
  1132. for (U32 i = 0; i < size; i++) {
  1133. for (U32 j = 0; j < size; j++) {
  1134. augmentedMatrix(i, j) = (*this)(i, j);
  1135. augmentedMatrix(i, j + size) = (i == j) ? static_cast<DATA_TYPE>(1) : static_cast<DATA_TYPE>(0);
  1136. }
  1137. }
  1138. // Apply gauss-joran elimination
  1139. for (U32 i = 0; i < size; i++) {
  1140. U32 pivotRow = i;
  1141. for (U32 k = i + 1; k < size; k++) {
  1142. // use std::abs until the templated math functions are in place.
  1143. if (std::abs(augmentedMatrix(k, i)) > std::abs(augmentedMatrix(pivotRow, i))) {
  1144. pivotRow = k;
  1145. }
  1146. }
  1147. // Swap if needed.
  1148. if (i != pivotRow) {
  1149. for (U32 j = 0; j < 2 * size; j++) {
  1150. std::swap(augmentedMatrix(i, j), augmentedMatrix(pivotRow, j));
  1151. }
  1152. }
  1153. // Early out if pivot is 0, return identity matrix.
  1154. if (augmentedMatrix(i, i) == static_cast<DATA_TYPE>(0)) {
  1155. return Matrix<DATA_TYPE, rows, cols>(true);
  1156. }
  1157. DATA_TYPE pivotVal = augmentedMatrix(i, i);
  1158. // scale the pivot
  1159. for (U32 j = 0; j < 2 * size; j++) {
  1160. augmentedMatrix(i, j) /= pivotVal;
  1161. }
  1162. // Eliminate the current column in all other rows
  1163. for (U32 k = 0; k < size; k++) {
  1164. if (k != i) {
  1165. DATA_TYPE factor = augmentedMatrix(k, i);
  1166. for (U32 j = 0; j < 2 * size; j++) {
  1167. augmentedMatrix(k, j) -= factor * augmentedMatrix(i, j);
  1168. }
  1169. }
  1170. }
  1171. }
  1172. for (U32 i = 0; i < size; i++) {
  1173. for (U32 j = 0; j < size; j++) {
  1174. resultMatrix(i, j) = augmentedMatrix(i, j + size);
  1175. }
  1176. }
  1177. return resultMatrix;
  1178. }
  1179. template<typename DATA_TYPE, U32 rows, U32 cols>
  1180. inline bool Matrix<DATA_TYPE, rows, cols>::fullInverse()
  1181. {
  1182. Matrix<DATA_TYPE, rows, cols> inv = this->inverse();
  1183. if (inv.isIdentity())
  1184. return false;
  1185. *this = inv;
  1186. return true;
  1187. }
  1188. template<typename DATA_TYPE, U32 rows, U32 cols>
  1189. inline void Matrix<DATA_TYPE, rows, cols>::invert()
  1190. {
  1191. (*this) = inverse();
  1192. }
  1193. template<typename DATA_TYPE, U32 rows, U32 cols>
  1194. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::setCrossProduct(const Point3F& p)
  1195. {
  1196. AssertFatal(rows == 4 && cols == 4, "Cross product only supported on 4x4 for now");
  1197. (*this)(0, 0) = 0;
  1198. (*this)(0, 1) = -p.z;
  1199. (*this)(0, 2) = p.y;
  1200. (*this)(0, 3) = 0;
  1201. (*this)(1, 0) = p.z;
  1202. (*this)(1, 1) = 0;
  1203. (*this)(1, 2) = -p.x;
  1204. (*this)(1, 3) = 0;
  1205. (*this)(2, 0) = -p.y;
  1206. (*this)(2, 1) = p.x;
  1207. (*this)(2, 2) = 0;
  1208. (*this)(2, 3) = 0;
  1209. (*this)(3, 0) = 0;
  1210. (*this)(3, 1) = 0;
  1211. (*this)(3, 2) = 0;
  1212. (*this)(3, 3) = 1;
  1213. return (*this);
  1214. }
  1215. template<typename DATA_TYPE, U32 rows, U32 cols>
  1216. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::setTensorProduct(const Point3F& p, const Point3F& q)
  1217. {
  1218. AssertFatal(rows == 4 && cols == 4, "Tensor product only supported on 4x4 for now");
  1219. (*this)(0, 0) = p.x * q.x;
  1220. (*this)(0, 1) = p.x * q.y;
  1221. (*this)(0, 2) = p.x * q.z;
  1222. (*this)(0, 3) = 0;
  1223. (*this)(1, 0) = p.y * q.x;
  1224. (*this)(1, 1) = p.y * q.y;
  1225. (*this)(1, 2) = p.y * q.z;
  1226. (*this)(1, 3) = 0;
  1227. (*this)(2, 0) = p.z * q.x;
  1228. (*this)(2, 1) = p.z * q.y;
  1229. (*this)(2, 2) = p.z * q.z;
  1230. (*this)(2, 3) = 0;
  1231. (*this)(3, 0) = 0;
  1232. (*this)(3, 1) = 0;
  1233. (*this)(3, 2) = 0;
  1234. (*this)(3, 3) = 1;
  1235. return (*this);
  1236. }
  1237. template<typename DATA_TYPE, U32 rows, U32 cols>
  1238. inline void Matrix<DATA_TYPE, rows, cols>::mul(Box3F& box) const
  1239. {
  1240. AssertFatal(rows == 4 && cols == 4, "Multiplying Box3F with matrix requires 4x4");
  1241. // Create an array of all 8 corners of the box
  1242. Point3F corners[8] = {
  1243. Point3F(box.minExtents.x, box.minExtents.y, box.minExtents.z),
  1244. Point3F(box.minExtents.x, box.minExtents.y, box.maxExtents.z),
  1245. Point3F(box.minExtents.x, box.maxExtents.y, box.minExtents.z),
  1246. Point3F(box.minExtents.x, box.maxExtents.y, box.maxExtents.z),
  1247. Point3F(box.maxExtents.x, box.minExtents.y, box.minExtents.z),
  1248. Point3F(box.maxExtents.x, box.minExtents.y, box.maxExtents.z),
  1249. Point3F(box.maxExtents.x, box.maxExtents.y, box.minExtents.z),
  1250. Point3F(box.maxExtents.x, box.maxExtents.y, box.maxExtents.z),
  1251. };
  1252. for (U32 i = 0; i < 8; i++) {
  1253. corners[i] = (*this) * corners[i];
  1254. }
  1255. box.minExtents = corners[0];
  1256. box.maxExtents = corners[0];
  1257. for (U32 i = 1; i < 8; ++i) {
  1258. box.minExtents.x = mMin(box.minExtents.x, corners[i].x);
  1259. box.minExtents.y = mMin(box.minExtents.y, corners[i].y);
  1260. box.minExtents.z = mMin(box.minExtents.z, corners[i].z);
  1261. box.maxExtents.x = mMax(box.maxExtents.x, corners[i].x);
  1262. box.maxExtents.y = mMax(box.maxExtents.y, corners[i].y);
  1263. box.maxExtents.z = mMax(box.maxExtents.z, corners[i].z);
  1264. }
  1265. }
  1266. template<typename DATA_TYPE, U32 rows, U32 cols>
  1267. inline bool Matrix<DATA_TYPE, rows, cols>::isAffine() const
  1268. {
  1269. if ((*this)(rows - 1, cols - 1) != 1.0f) {
  1270. return false;
  1271. }
  1272. for (U32 col = 0; col < cols - 1; ++col) {
  1273. if ((*this)(rows - 1, col) != 0.0f) {
  1274. return false;
  1275. }
  1276. }
  1277. Point3F one, two, three;
  1278. getColumn(0, &one);
  1279. getColumn(1, &two);
  1280. getColumn(2, &three);
  1281. // check columns
  1282. {
  1283. if (mDot(one, two) > 0.0001f ||
  1284. mDot(one, three) > 0.0001f ||
  1285. mDot(two, three) > 0.0001f)
  1286. return false;
  1287. if (mFabs(1.0f - one.lenSquared()) > 0.0001f ||
  1288. mFabs(1.0f - two.lenSquared()) > 0.0001f ||
  1289. mFabs(1.0f - three.lenSquared()) > 0.0001f)
  1290. return false;
  1291. }
  1292. getRow(0, &one);
  1293. getRow(1, &two);
  1294. getRow(2, &three);
  1295. // check rows
  1296. {
  1297. if (mDot(one, two) > 0.0001f ||
  1298. mDot(one, three) > 0.0001f ||
  1299. mDot(two, three) > 0.0001f)
  1300. return false;
  1301. if (mFabs(1.0f - one.lenSquared()) > 0.0001f ||
  1302. mFabs(1.0f - two.lenSquared()) > 0.0001f ||
  1303. mFabs(1.0f - three.lenSquared()) > 0.0001f)
  1304. return false;
  1305. }
  1306. return true;
  1307. }
  1308. template<typename DATA_TYPE, U32 rows, U32 cols>
  1309. inline Matrix<DATA_TYPE, rows, cols> Matrix<DATA_TYPE, rows, cols>::affineInverse()
  1310. {
  1311. AssertFatal(rows >= 4 && cols >= 4, "affineInverse requires at least 4x4");
  1312. Matrix<DATA_TYPE, 3, 3> subMatrix;
  1313. for (U32 i = 0; i < 3; i++) {
  1314. for (U32 j = 0; j < 3; j++) {
  1315. subMatrix(i, j) = (*this)(i, j);
  1316. }
  1317. }
  1318. subMatrix.transpose();
  1319. Point3F pos = getPosition();
  1320. (*this)(0, 3) = mDot(subMatrix.getColumn3F(0), pos);
  1321. (*this)(1, 3) = mDot(subMatrix.getColumn3F(1), pos);
  1322. (*this)(2, 3) = mDot(subMatrix.getColumn3F(2), pos);
  1323. return *this;
  1324. }
  1325. template<typename DATA_TYPE, U32 rows, U32 cols>
  1326. inline EulerF Matrix<DATA_TYPE, rows, cols>::toEuler() const
  1327. {
  1328. AssertFatal(rows >= 3 && cols >= 3, "Euler rotations require at least a 3x3 matrix.");
  1329. // Extract rotation matrix components
  1330. const DATA_TYPE m00 = (*this)(0, 0);
  1331. const DATA_TYPE m01 = (*this)(0, 1);
  1332. const DATA_TYPE m02 = (*this)(0, 2);
  1333. const DATA_TYPE m10 = (*this)(1, 0);
  1334. const DATA_TYPE m11 = (*this)(1, 1);
  1335. const DATA_TYPE m21 = (*this)(2, 1);
  1336. const DATA_TYPE m22 = (*this)(2, 2);
  1337. // like all others assume float for now.
  1338. EulerF r;
  1339. r.x = mAsin(mClampF(m21, -1.0, 1.0));
  1340. if (mCos(r.x) != 0.0f) {
  1341. r.y = mAtan2(-m02, m22); // yaw
  1342. r.z = mAtan2(-m10, m11); // roll
  1343. }
  1344. else {
  1345. r.y = 0.0f;
  1346. r.z = mAtan2(m01, m00); // this rolls when pitch is +90 degrees
  1347. }
  1348. return r;
  1349. }
  1350. template<typename DATA_TYPE, U32 rows, U32 cols>
  1351. inline void Matrix<DATA_TYPE, rows, cols>::dumpMatrix(const char* caption) const
  1352. {
  1353. U32 size = (caption == NULL) ? 0 : dStrlen(caption);
  1354. FrameTemp<char> spacer(size + 1);
  1355. char* spacerRef = spacer;
  1356. // is_floating_point should return true for floats and doubles.
  1357. const char* formatSpec = std::is_floating_point_v<DATA_TYPE> ? " %-8.4f" : " %d";
  1358. dMemset(spacerRef, ' ', size);
  1359. // null terminate.
  1360. spacerRef[size] = '\0';
  1361. /*Con::printf("%s = | %-8.4f %-8.4f %-8.4f %-8.4f |", caption, m[idx(0, 0)], m[idx(0, 1)], m[idx(0, 2)], m[idx(0, 3)]);
  1362. Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(1, 0)], m[idx(1, 1)], m[idx(1, 2)], m[idx(1, 3)]);
  1363. Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(2, 0)], m[idx(2, 1)], m[idx(2, 2)], m[idx(2, 3)]);
  1364. Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(3, 0)], m[idx(3, 1)], m[idx(3, 2)], m[idx(3, 3)]);*/
  1365. StringBuilder str;
  1366. str.format("%s = |", caption);
  1367. for (U32 i = 0; i < rows; i++) {
  1368. if (i > 0) {
  1369. str.append(spacerRef);
  1370. }
  1371. for (U32 j = 0; j < cols; j++) {
  1372. str.format(formatSpec, (*this)(i, j));
  1373. }
  1374. str.append(" |\n");
  1375. }
  1376. Con::printf("%s", str.end().c_str());
  1377. }
  1378. //------------------------------------
  1379. // Non-member methods
  1380. //------------------------------------
  1381. template<typename DATA_TYPE, std::size_t Rows, std::size_t Cols>
  1382. inline void mTransformPlane(
  1383. const Matrix<DATA_TYPE, Rows, Cols>& mat,
  1384. const Point3F& scale,
  1385. const PlaneF& plane,
  1386. PlaneF* result
  1387. ) {
  1388. AssertFatal(Rows == 4 && Cols == 4, "Matrix must be 4x4");
  1389. // Create a non-const copy of the matrix
  1390. Matrix<float, 4, 4> matCopy = mat;
  1391. // Create the inverse scale matrix
  1392. Matrix<DATA_TYPE, 4, 4> invScale = Matrix<DATA_TYPE, 4, 4>::Identity;
  1393. invScale(0, 0) = 1.0f / scale.x;
  1394. invScale(1, 1) = 1.0f / scale.y;
  1395. invScale(2, 2) = 1.0f / scale.z;
  1396. // Compute the inverse transpose of the matrix
  1397. Matrix<DATA_TYPE, 4, 4> invTrMatrix = matCopy.transpose().affineInverse() * invScale;
  1398. // Transform the plane normal
  1399. Point3F norm(plane.x, plane.y, plane.z);
  1400. norm = invTrMatrix * norm;
  1401. float normLength = std::sqrt(norm.x * norm.x + norm.y * norm.y + norm.z * norm.z);
  1402. norm.x /= normLength;
  1403. norm.y /= normLength;
  1404. norm.z /= normLength;
  1405. // Transform the plane point
  1406. Point3F point = norm * (-plane.d);
  1407. Matrix<DATA_TYPE, 4, 4> temp = mat;
  1408. point.x *= scale.x;
  1409. point.y *= scale.y;
  1410. point.z *= scale.z;
  1411. point = temp * point;
  1412. // Recompute the plane distance
  1413. PlaneF resultPlane(point, norm);
  1414. result->x = resultPlane.x;
  1415. result->y = resultPlane.y;
  1416. result->z = resultPlane.z;
  1417. result->d = resultPlane.d;
  1418. }
  1419. //--------------------------------------------
  1420. // INLINE FUNCTIONS END
  1421. //--------------------------------------------
  1422. typedef Matrix<F32, 4, 4> MatrixF;
  1423. class MatrixTemplateExport
  1424. {
  1425. public:
  1426. template <typename T, U32 rows, U32 cols>
  1427. static EngineFieldTable::Field getMatrixField();
  1428. };
  1429. template<typename T, U32 rows, U32 cols>
  1430. inline EngineFieldTable::Field MatrixTemplateExport::getMatrixField()
  1431. {
  1432. typedef Matrix<T, rows, cols> ThisType;
  1433. return _FIELD_AS(T, data, data, rows * cols, "");
  1434. }
  1435. #endif // !USE_TEMPLATE_MATRIX
  1436. #endif //_MMATRIX_H_