123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257 |
- #include "float_math.h"
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <assert.h>
- #include <math.h>
- /*----------------------------------------------------------------------
- Copyright (c) 2004 Open Dynamics Framework Group
- www.physicstools.org
- All rights reserved.
- Redistribution and use in source and binary forms, with or without modification, are permitted provided
- that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this list of conditions
- and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- Neither the name of the Open Dynamics Framework Group nor the names of its contributors may
- be used to endorse or promote products derived from this software without specific prior written permission.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
- INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE INTEL OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
- IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- -----------------------------------------------------------------------*/
- // http://codesuppository.blogspot.com
- //
- // mailto: [email protected]
- //
- // http://www.amillionpixels.us
- //
- void fm_inverseRT(const float *matrix,const float *pos,float *t) // inverse rotate translate the point.
- {
- float _x = pos[0] - matrix[3*4+0];
- float _y = pos[1] - matrix[3*4+1];
- float _z = pos[2] - matrix[3*4+2];
- // Multiply inverse-translated source vector by inverted rotation transform
- t[0] = (matrix[0*4+0] * _x) + (matrix[0*4+1] * _y) + (matrix[0*4+2] * _z);
- t[1] = (matrix[1*4+0] * _x) + (matrix[1*4+1] * _y) + (matrix[1*4+2] * _z);
- t[2] = (matrix[2*4+0] * _x) + (matrix[2*4+1] * _y) + (matrix[2*4+2] * _z);
- }
- void fm_identity(float *matrix) // set 4x4 matrix to identity.
- {
- matrix[0*4+0] = 1;
- matrix[1*4+1] = 1;
- matrix[2*4+2] = 1;
- matrix[3*4+3] = 1;
- matrix[1*4+0] = 0;
- matrix[2*4+0] = 0;
- matrix[3*4+0] = 0;
- matrix[0*4+1] = 0;
- matrix[2*4+1] = 0;
- matrix[3*4+1] = 0;
- matrix[0*4+2] = 0;
- matrix[1*4+2] = 0;
- matrix[3*4+2] = 0;
- matrix[0*4+3] = 0;
- matrix[1*4+3] = 0;
- matrix[2*4+3] = 0;
- }
- void fm_eulerMatrix(float ax,float ay,float az,float *matrix) // convert euler (in radians) to a dest 4x4 matrix (translation set to zero)
- {
- float quat[4];
- fm_eulerToQuat(ax,ay,az,quat);
- fm_quatToMatrix(quat,matrix);
- }
- void fm_getAABB(unsigned int vcount,const float *points,unsigned int pstride,float *bmin,float *bmax)
- {
- const unsigned char *source = (const unsigned char *) points;
- bmin[0] = points[0];
- bmin[1] = points[1];
- bmin[2] = points[2];
- bmax[0] = points[0];
- bmax[1] = points[1];
- bmax[2] = points[2];
- for (unsigned int i=1; i<vcount; i++)
- {
- source+=pstride;
- const float *p = (const float *) source;
- if ( p[0] < bmin[0] ) bmin[0] = p[0];
- if ( p[1] < bmin[1] ) bmin[1] = p[1];
- if ( p[2] < bmin[2] ) bmin[2] = p[2];
- if ( p[0] > bmax[0] ) bmax[0] = p[0];
- if ( p[1] > bmax[1] ) bmax[1] = p[1];
- if ( p[2] > bmax[2] ) bmax[2] = p[2];
- }
- }
- void fm_eulerToQuat(float roll,float pitch,float yaw,float *quat) // convert euler angles to quaternion.
- {
- roll *= 0.5f;
- pitch *= 0.5f;
- yaw *= 0.5f;
- float cr = cosf(roll);
- float cp = cosf(pitch);
- float cy = cosf(yaw);
- float sr = sinf(roll);
- float sp = sinf(pitch);
- float sy = sinf(yaw);
- float cpcy = cp * cy;
- float spsy = sp * sy;
- float spcy = sp * cy;
- float cpsy = cp * sy;
- quat[0] = ( sr * cpcy - cr * spsy);
- quat[1] = ( cr * spcy + sr * cpsy);
- quat[2] = ( cr * cpsy - sr * spcy);
- quat[3] = cr * cpcy + sr * spsy;
- }
- void fm_quatToMatrix(const float *quat,float *matrix) // convert quaterinion rotation to matrix, zeros out the translation component.
- {
- float xx = quat[0]*quat[0];
- float yy = quat[1]*quat[1];
- float zz = quat[2]*quat[2];
- float xy = quat[0]*quat[1];
- float xz = quat[0]*quat[2];
- float yz = quat[1]*quat[2];
- float wx = quat[3]*quat[0];
- float wy = quat[3]*quat[1];
- float wz = quat[3]*quat[2];
- matrix[0*4+0] = 1 - 2 * ( yy + zz );
- matrix[1*4+0] = 2 * ( xy - wz );
- matrix[2*4+0] = 2 * ( xz + wy );
- matrix[0*4+1] = 2 * ( xy + wz );
- matrix[1*4+1] = 1 - 2 * ( xx + zz );
- matrix[2*4+1] = 2 * ( yz - wx );
- matrix[0*4+2] = 2 * ( xz - wy );
- matrix[1*4+2] = 2 * ( yz + wx );
- matrix[2*4+2] = 1 - 2 * ( xx + yy );
- matrix[3*4+0] = matrix[3*4+1] = matrix[3*4+2] = 0.0f;
- matrix[0*4+3] = matrix[1*4+3] = matrix[2*4+3] = 0.0f;
- matrix[3*4+3] = 1.0f;
- }
- void fm_quatRotate(const float *quat,const float *v,float *r) // rotate a vector directly by a quaternion.
- {
- float left[4];
- left[0] = quat[3]*v[0] + quat[1]*v[2] - v[1]*quat[2];
- left[1] = quat[3]*v[1] + quat[2]*v[0] - v[2]*quat[0];
- left[2] = quat[3]*v[2] + quat[0]*v[1] - v[0]*quat[1];
- left[3] = - quat[0]*v[0] - quat[1]*v[1] - quat[2]*v[2];
- r[0] = (left[3]*-quat[0]) + (quat[3]*left[0]) + (left[1]*-quat[2]) - (-quat[1]*left[2]);
- r[1] = (left[3]*-quat[1]) + (quat[3]*left[1]) + (left[2]*-quat[0]) - (-quat[2]*left[0]);
- r[2] = (left[3]*-quat[2]) + (quat[3]*left[2]) + (left[0]*-quat[1]) - (-quat[0]*left[1]);
- }
- void fm_getTranslation(const float *matrix,float *t)
- {
- t[0] = matrix[3*4+0];
- t[1] = matrix[3*4+1];
- t[2] = matrix[3*4+2];
- }
- void fm_matrixToQuat(const float *matrix,float *quat) // convert the 3x3 portion of a 4x4 matrix into a quaterion as x,y,z,w
- {
- float tr = matrix[0*4+0] + matrix[1*4+1] + matrix[2*4+2];
- // check the diagonal
- if (tr > 0.0f )
- {
- float s = (float) sqrt ( (double) (tr + 1.0f) );
- quat[3] = s * 0.5f;
- s = 0.5f / s;
- quat[0] = (matrix[1*4+2] - matrix[2*4+1]) * s;
- quat[1] = (matrix[2*4+0] - matrix[0*4+2]) * s;
- quat[2] = (matrix[0*4+1] - matrix[1*4+0]) * s;
- }
- else
- {
- // diagonal is negative
- int nxt[3] = {1, 2, 0};
- float qa[4];
- int i = 0;
- if (matrix[1*4+1] > matrix[0*4+0]) i = 1;
- if (matrix[2*4+2] > matrix[i*4+i]) i = 2;
- int j = nxt[i];
- int k = nxt[j];
- float s = sqrtf ( ((matrix[i*4+i] - (matrix[j*4+j] + matrix[k*4+k])) + 1.0f) );
- qa[i] = s * 0.5f;
- if (s != 0.0f ) s = 0.5f / s;
- qa[3] = (matrix[j*4+k] - matrix[k*4+j]) * s;
- qa[j] = (matrix[i*4+j] + matrix[j*4+i]) * s;
- qa[k] = (matrix[i*4+k] + matrix[k*4+i]) * s;
- quat[0] = qa[0];
- quat[1] = qa[1];
- quat[2] = qa[2];
- quat[3] = qa[3];
- }
- }
- float fm_sphereVolume(float radius) // return's the volume of a sphere of this radius (4/3 PI * R cubed )
- {
- return (4.0f / 3.0f ) * FM_PI * radius * radius * radius;
- }
|