123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585 |
- //-----------------------------------------------------------------------------
- // Copyright (c) 2012 GarageGames, LLC
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- //-----------------------------------------------------------------------------
- #include "core/strings/stringFunctions.h"
- #include "core/frameAllocator.h"
- #include "math/mMatrix.h"
- #include "console/console.h"
- #include "console/enginePrimitives.h"
- #include "console/engineTypes.h"
- const MatrixF MatrixF::Identity( true );
- // idx(i,j) is index to element in column i, row j
- void MatrixF::transposeTo(F32 *matrix) const
- {
- matrix[idx(0,0)] = m[idx(0,0)];
- matrix[idx(0,1)] = m[idx(1,0)];
- matrix[idx(0,2)] = m[idx(2,0)];
- matrix[idx(0,3)] = m[idx(3,0)];
- matrix[idx(1,0)] = m[idx(0,1)];
- matrix[idx(1,1)] = m[idx(1,1)];
- matrix[idx(1,2)] = m[idx(2,1)];
- matrix[idx(1,3)] = m[idx(3,1)];
- matrix[idx(2,0)] = m[idx(0,2)];
- matrix[idx(2,1)] = m[idx(1,2)];
- matrix[idx(2,2)] = m[idx(2,2)];
- matrix[idx(2,3)] = m[idx(3,2)];
- matrix[idx(3,0)] = m[idx(0,3)];
- matrix[idx(3,1)] = m[idx(1,3)];
- matrix[idx(3,2)] = m[idx(2,3)];
- matrix[idx(3,3)] = m[idx(3,3)];
- }
- bool MatrixF::isAffine() const
- {
- // An affine transform is defined by the following structure
- //
- // [ X X X P ]
- // [ X X X P ]
- // [ X X X P ]
- // [ 0 0 0 1 ]
- //
- // Where X is an orthonormal 3x3 submatrix and P is an arbitrary translation
- // We'll check in the following order:
- // 1: [3][3] must be 1
- // 2: Shear portion must be zero
- // 3: Dot products of rows and columns must be zero
- // 4: Length of rows and columns must be 1
- //
- if (m[idx(3,3)] != 1.0f)
- return false;
- if (m[idx(0,3)] != 0.0f ||
- m[idx(1,3)] != 0.0f ||
- m[idx(2,3)] != 0.0f)
- return false;
- Point3F one, two, three;
- getColumn(0, &one);
- getColumn(1, &two);
- getColumn(2, &three);
- if (mDot(one, two) > 0.0001f ||
- mDot(one, three) > 0.0001f ||
- mDot(two, three) > 0.0001f)
- return false;
- if (mFabs(1.0f - one.lenSquared()) > 0.0001f ||
- mFabs(1.0f - two.lenSquared()) > 0.0001f ||
- mFabs(1.0f - three.lenSquared()) > 0.0001f)
- return false;
- getRow(0, &one);
- getRow(1, &two);
- getRow(2, &three);
- if (mDot(one, two) > 0.0001f ||
- mDot(one, three) > 0.0001f ||
- mDot(two, three) > 0.0001f)
- return false;
- if (mFabs(1.0f - one.lenSquared()) > 0.0001f ||
- mFabs(1.0f - two.lenSquared()) > 0.0001f ||
- mFabs(1.0f - three.lenSquared()) > 0.0001f)
- return false;
- // We're ok.
- return true;
- }
- // Perform inverse on full 4x4 matrix. Used in special cases only, so not at all optimized.
- bool MatrixF::fullInverse()
- {
- Point4F a,b,c,d;
- getRow(0,&a);
- getRow(1,&b);
- getRow(2,&c);
- getRow(3,&d);
- // det = a0*b1*c2*d3 - a0*b1*c3*d2 - a0*c1*b2*d3 + a0*c1*b3*d2 + a0*d1*b2*c3 - a0*d1*b3*c2 -
- // b0*a1*c2*d3 + b0*a1*c3*d2 + b0*c1*a2*d3 - b0*c1*a3*d2 - b0*d1*a2*c3 + b0*d1*a3*c2 +
- // c0*a1*b2*d3 - c0*a1*b3*d2 - c0*b1*a2*d3 + c0*b1*a3*d2 + c0*d1*a2*b3 - c0*d1*a3*b2 -
- // d0*a1*b2*c3 + d0*a1*b3*c2 + d0*b1*a2*c3 - d0*b1*a3*c2 - d0*c1*a2*b3 + d0*c1*a3*b2
- F32 det = a.x*b.y*c.z*d.w - a.x*b.y*c.w*d.z - a.x*c.y*b.z*d.w + a.x*c.y*b.w*d.z + a.x*d.y*b.z*c.w - a.x*d.y*b.w*c.z
- - b.x*a.y*c.z*d.w + b.x*a.y*c.w*d.z + b.x*c.y*a.z*d.w - b.x*c.y*a.w*d.z - b.x*d.y*a.z*c.w + b.x*d.y*a.w*c.z
- + c.x*a.y*b.z*d.w - c.x*a.y*b.w*d.z - c.x*b.y*a.z*d.w + c.x*b.y*a.w*d.z + c.x*d.y*a.z*b.w - c.x*d.y*a.w*b.z
- - d.x*a.y*b.z*c.w + d.x*a.y*b.w*c.z + d.x*b.y*a.z*c.w - d.x*b.y*a.w*c.z - d.x*c.y*a.z*b.w + d.x*c.y*a.w*b.z;
- if (mFabs(det)<0.00001f)
- return false;
- Point4F aa,bb,cc,dd;
- aa.x = b.y*c.z*d.w - b.y*c.w*d.z - c.y*b.z*d.w + c.y*b.w*d.z + d.y*b.z*c.w - d.y*b.w*c.z;
- aa.y = -a.y*c.z*d.w + a.y*c.w*d.z + c.y*a.z*d.w - c.y*a.w*d.z - d.y*a.z*c.w + d.y*a.w*c.z;
- aa.z = a.y*b.z*d.w - a.y*b.w*d.z - b.y*a.z*d.w + b.y*a.w*d.z + d.y*a.z*b.w - d.y*a.w*b.z;
- aa.w = -a.y*b.z*c.w + a.y*b.w*c.z + b.y*a.z*c.w - b.y*a.w*c.z - c.y*a.z*b.w + c.y*a.w*b.z;
- bb.x = -b.x*c.z*d.w + b.x*c.w*d.z + c.x*b.z*d.w - c.x*b.w*d.z - d.x*b.z*c.w + d.x*b.w*c.z;
- bb.y = a.x*c.z*d.w - a.x*c.w*d.z - c.x*a.z*d.w + c.x*a.w*d.z + d.x*a.z*c.w - d.x*a.w*c.z;
- bb.z = -a.x*b.z*d.w + a.x*b.w*d.z + b.x*a.z*d.w - b.x*a.w*d.z - d.x*a.z*b.w + d.x*a.w*b.z;
- bb.w = a.x*b.z*c.w - a.x*b.w*c.z - b.x*a.z*c.w + b.x*a.w*c.z + c.x*a.z*b.w - c.x*a.w*b.z;
- cc.x = b.x*c.y*d.w - b.x*c.w*d.y - c.x*b.y*d.w + c.x*b.w*d.y + d.x*b.y*c.w - d.x*b.w*c.y;
- cc.y = -a.x*c.y*d.w + a.x*c.w*d.y + c.x*a.y*d.w - c.x*a.w*d.y - d.x*a.y*c.w + d.x*a.w*c.y;
- cc.z = a.x*b.y*d.w - a.x*b.w*d.y - b.x*a.y*d.w + b.x*a.w*d.y + d.x*a.y*b.w - d.x*a.w*b.y;
- cc.w = -a.x*b.y*c.w + a.x*b.w*c.y + b.x*a.y*c.w - b.x*a.w*c.y - c.x*a.y*b.w + c.x*a.w*b.y;
- dd.x = -b.x*c.y*d.z + b.x*c.z*d.y + c.x*b.y*d.z - c.x*b.z*d.y - d.x*b.y*c.z + d.x*b.z*c.y;
- dd.y = a.x*c.y*d.z - a.x*c.z*d.y - c.x*a.y*d.z + c.x*a.z*d.y + d.x*a.y*c.z - d.x*a.z*c.y;
- dd.z = -a.x*b.y*d.z + a.x*b.z*d.y + b.x*a.y*d.z - b.x*a.z*d.y - d.x*a.y*b.z + d.x*a.z*b.y;
- dd.w = a.x*b.y*c.z - a.x*b.z*c.y - b.x*a.y*c.z + b.x*a.z*c.y + c.x*a.y*b.z - c.x*a.z*b.y;
- setRow(0,aa);
- setRow(1,bb);
- setRow(2,cc);
- setRow(3,dd);
- mul(1.0f/det);
- return true;
- }
- void MatrixF::reverseProjection()
- {
- m[idx(0, 2)] = m[idx(0, 3)] - m[idx(0, 2)];
- m[idx(1, 2)] = m[idx(1, 3)] - m[idx(1, 2)];
- m[idx(2, 2)] = m[idx(2, 3)] - m[idx(2, 2)];
- m[idx(3, 2)] = m[idx(3, 3)] - m[idx(3, 2)];
- }
- EulerF MatrixF::toEuler() const
- {
- const F32 * mat = m;
- EulerF r;
- r.x = mAsin(mClampF(mat[MatrixF::idx(2,1)], -1.0, 1.0));
- if(mCos(r.x) != 0.f)
- {
- r.y = mAtan2(-mat[MatrixF::idx(2,0)], mat[MatrixF::idx(2,2)]);
- r.z = mAtan2(-mat[MatrixF::idx(0,1)], mat[MatrixF::idx(1,1)]);
- }
- else
- {
- r.y = 0.f;
- r.z = mAtan2(mat[MatrixF::idx(1,0)], mat[MatrixF::idx(0,0)]);
- }
- return r;
- }
- void MatrixF::dumpMatrix(const char *caption /* =NULL */) const
- {
- U32 size = (caption == NULL)? 0 : dStrlen(caption);
- FrameTemp<char> spacer(size+1);
- char *spacerRef = spacer;
- dMemset(spacerRef, ' ', size);
- spacerRef[size] = 0;
- Con::printf("%s = | %-8.4f %-8.4f %-8.4f %-8.4f |", caption, m[idx(0,0)], m[idx(0, 1)], m[idx(0, 2)], m[idx(0, 3)]);
- Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(1,0)], m[idx(1, 1)], m[idx(1, 2)], m[idx(1, 3)]);
- Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(2,0)], m[idx(2, 1)], m[idx(2, 2)], m[idx(2, 3)]);
- Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(3,0)], m[idx(3, 1)], m[idx(3, 2)], m[idx(3, 3)]);
- }
- EngineFieldTable::Field MatrixFEngineExport::getMatrixField()
- {
- typedef MatrixF ThisType;
- return _FIELD_AS(F32, m, m, 16, "");
- }
- //------------------------------------
- // Templatized matrix class to replace MATRIXF above
- // row-major for now, since torque says it uses that
- // but in future could cut down on transpose calls if
- // we switch to column major.
- //------------------------------------
- template<typename DATA_TYPE, U32 rows, U32 cols>
- const Matrix<DATA_TYPE, rows, cols> Matrix<DATA_TYPE, rows, cols>::Identity = []() {
- Matrix<DATA_TYPE, rows, cols> identity(true);
- return identity;
- }();
- template<typename DATA_TYPE, U32 rows, U32 cols>
- Matrix<DATA_TYPE, rows, cols>::Matrix(const EulerF& e)
- {
- set(e);
- }
- template<typename DATA_TYPE, U32 rows, U32 cols>
- Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::set(const EulerF& e)
- {
- // when the template refactor is done, euler will be able to be setup in different ways
- AssertFatal(rows >= 3 && cols >= 3, "EulerF can only initialize 3x3 or more");
- static_assert(std::is_same<DATA_TYPE, float>::value, "Can only initialize eulers with floats for now");
- F32 cosPitch, sinPitch;
- mSinCos(e.x, sinPitch, cosPitch);
- F32 cosYaw, sinYaw;
- mSinCos(e.y, sinYaw, cosYaw);
- F32 cosRoll, sinRoll;
- mSinCos(e.z, sinRoll, cosRoll);
- enum {
- AXIS_X = (1 << 0),
- AXIS_Y = (1 << 1),
- AXIS_Z = (1 << 2)
- };
- U32 axis = 0;
- if (e.x != 0.0f) axis |= AXIS_X;
- if (e.y != 0.0f) axis |= AXIS_Y;
- if (e.z != 0.0f) axis |= AXIS_Z;
- switch (axis) {
- case 0:
- (*this) = Matrix<DATA_TYPE, rows, cols>(true);
- break;
- case AXIS_X:
- (*this)(0, 0) = 1.0f; (*this)(1, 0) = 0.0f; (*this)(2, 0) = 0.0f;
- (*this)(0, 1) = 0.0f; (*this)(1, 1) = cosPitch; (*this)(2, 1) = -sinPitch;
- (*this)(0, 2) = 0.0f; (*this)(1, 2) = sinPitch; (*this)(2, 2) = cosPitch;
- break;
- case AXIS_Y:
- (*this)(0, 0) = cosYaw; (*this)(1, 0) = 0.0f; (*this)(2, 0) = sinYaw;
- (*this)(0, 1) = 0.0f; (*this)(1, 1) = 1.0f; (*this)(2, 1) = 0.0f;
- (*this)(0, 2) = -sinYaw; (*this)(1, 2) = 0.0f; (*this)(2, 2) = cosYaw;
- break;
- case AXIS_Z:
- (*this)(0, 0) = cosRoll; (*this)(1, 0) = -sinRoll; (*this)(2, 0) = 0.0f;
- (*this)(0, 1) = sinRoll; (*this)(1, 1) = cosRoll; (*this)(2, 1) = 0.0f;
- (*this)(0, 2) = 0.0f; (*this)(1, 2) = 0.0f; (*this)(2, 2) = 0.0f;
- break;
- default:
- F32 r1 = cosYaw * cosRoll;
- F32 r2 = cosYaw * sinRoll;
- F32 r3 = sinYaw * cosRoll;
- F32 r4 = sinYaw * sinRoll;
- // the matrix looks like this:
- // r1 - (r4 * sin(x)) r2 + (r3 * sin(x)) -cos(x) * sin(y)
- // -cos(x) * sin(z) cos(x) * cos(z) sin(x)
- // r3 + (r2 * sin(x)) r4 - (r1 * sin(x)) cos(x) * cos(y)
- //
- // where:
- // r1 = cos(y) * cos(z)
- // r2 = cos(y) * sin(z)
- // r3 = sin(y) * cos(z)
- // r4 = sin(y) * sin(z)
- // init the euler 3x3 rotation matrix.
- (*this)(0, 0) = r1 - (r4 * sinPitch); (*this)(1, 0) = -cosPitch * sinRoll; (*this)(2, 0) = r3 + (r2 * sinPitch);
- (*this)(0, 1) = r2 + (r3 * sinPitch); (*this)(1, 1) = cosPitch * cosRoll; (*this)(2, 1) = r4 - (r1 * sinPitch);
- (*this)(0, 2) = -cosPitch * sinYaw; (*this)(1, 2) = sinPitch; (*this)(2, 2) = cosPitch * cosYaw;
- break;
- }
- if (rows == 4) {
- (*this)(3, 0) = 0.0f;
- (*this)(3, 1) = 0.0f;
- (*this)(3, 2) = 0.0f;
- }
- if (cols == 4) {
- (*this)(0, 3) = 0.0f;
- (*this)(1, 3) = 0.0f;
- (*this)(2, 3) = 0.0f;
- }
- if (rows == 4 && cols == 4) {
- (*this)(3, 3) = 1.0f;
- }
- return(*this);
- }
- template<typename DATA_TYPE, U32 rows, U32 cols>
- Matrix<DATA_TYPE, rows, cols>::Matrix(const EulerF& e, const Point3F p)
- {
- set(e, p);
- }
- template<typename DATA_TYPE, U32 rows, U32 cols>
- Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::set(const EulerF& e, const Point3F p)
- {
- AssertFatal(rows >= 3 && cols >= 4, "Euler and Point can only initialize 3x4 or more");
- // call set euler, this already sets the last row if it exists.
- set(e);
- // does this need to multiply with the result of the euler? or are we just setting position.
- (*this)(0, 3) = p.x;
- (*this)(1, 3) = p.y;
- (*this)(2, 3) = p.z;
- return (*this);
- }
- template<typename DATA_TYPE, U32 rows, U32 cols>
- Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::inverse()
- {
- // TODO: insert return statement here
- AssertFatal(rows == cols, "Can only perform inverse on square matrices.");
- const U32 size = rows;
- // Create augmented matrix [this | I]
- Matrix<DATA_TYPE, size, 2 * size> augmentedMatrix;
- Matrix<DATA_TYPE, size, size> resultMatrix;
- for (U32 i = 0; i < size; i++) {
- for (U32 j = 0; j < size; j++) {
- augmentedMatrix(i, j) = (*this)(i, j);
- augmentedMatrix(i, j + size) = (i == j) ? static_cast<DATA_TYPE>(1) : static_cast<DATA_TYPE>(0);
- }
- }
- // Apply gauss-joran elimination
- for (U32 i = 0; i < size; i++) {
- U32 pivotRow = i;
- for (U32 k = i + 1; k < size; k++) {
- // use std::abs until the templated math functions are in place.
- if (std::abs(augmentedMatrix(k, i)) > std::abs(augmentedMatrix(pivotRow, i))) {
- pivotRow = k;
- }
- }
- // Swap if needed.
- if (i != pivotRow) {
- for (U32 j = 0; j < 2 * size; j++) {
- std::swap(augmentedMatrix(i, j), augmentedMatrix(pivotRow, j));
- }
- }
- // Early out if pivot is 0, return a new empty matrix.
- if (augmentedMatrix(i, i) == static_cast<DATA_TYPE>(0)) {
- return Matrix<DATA_TYPE, rows, cols>();
- }
- DATA_TYPE pivotVal = augmentedMatrix(i, i);
- // scale the pivot
- for (U32 j = 0; j < 2 * size; ++j) {
- augmentedMatrix(i, j) /= pivotVal;
- }
- // Eliminate the current column in all other rows
- for (std::size_t k = 0; k < size; k++) {
- if (k != i) {
- DATA_TYPE factor = augmentedMatrix(k, i);
- for (std::size_t j = 0; j < 2 * size; ++j) {
- augmentedMatrix(k, j) -= factor * augmentedMatrix(i, j);
- }
- }
- }
- }
- for (U32 i = 0; i < size; i++) {
- for (U32 j = 0; j < size; j++) {
- resultMatrix(i, j) = augmentedMatrix(i, j + size);
- }
- }
- return resultMatrix;
- }
- template<typename DATA_TYPE, U32 rows, U32 cols>
- void Matrix<DATA_TYPE, rows, cols>::invert()
- {
- (*this) = inverse();
- }
- template<typename DATA_TYPE, U32 rows, U32 cols>
- Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::setCrossProduct(const Point3F& p)
- {
- AssertFatal(rows == 4 && cols == 4, "Cross product only supported on 4x4 for now");
- (*this)(0, 0) = 0;
- (*this)(0, 1) = -p.z;
- (*this)(0, 2) = p.y;
- (*this)(0, 3) = 0;
- (*this)(1, 0) = p.z;
- (*this)(1, 1) = 0;
- (*this)(1, 2) = -p.x;
- (*this)(1, 3) = 0;
- (*this)(2, 0) = -p.y;
- (*this)(2, 1) = p.x;
- (*this)(2, 2) = 0;
- (*this)(2, 3) = 0;
- (*this)(3, 0) = 0;
- (*this)(3, 1) = 0;
- (*this)(3, 2) = 0;
- (*this)(3, 3) = 1;
- return (*this);
- }
- template<typename DATA_TYPE, U32 rows, U32 cols>
- Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::setTensorProduct(const Point3F& p, const Point3F& q)
- {
- AssertFatal(rows == 4 && cols == 4, "Tensor product only supported on 4x4 for now");
- (*this)(0, 0) = p.x * q.x;
- (*this)(0, 1) = p.x * q.y;
- (*this)(0, 2) = p.x * q.z;
- (*this)(0, 3) = 0;
- (*this)(1, 0) = p.y * q.x;
- (*this)(1, 1) = p.y * q.y;
- (*this)(1, 2) = p.y * q.z;
- (*this)(1, 3) = 0;
- (*this)(2, 0) = p.z * q.x;
- (*this)(2, 1) = p.z * q.y;
- (*this)(2, 2) = p.z * q.z;
- (*this)(2, 3) = 0;
- (*this)(3, 0) = 0;
- (*this)(3, 1) = 0;
- (*this)(3, 2) = 0;
- (*this)(3, 3) = 1;
- return (*this);
- }
- template<typename DATA_TYPE, U32 rows, U32 cols>
- bool Matrix<DATA_TYPE, rows, cols>::isAffine() const
- {
- if ((*this)(rows - 1, cols - 1) != 1.0f) {
- return false;
- }
- for (U32 col = 0; col < cols - 1; ++col) {
- if ((*this)(rows - 1, col) != 0.0f) {
- return false;
- }
- }
- Point3F one, two, three;
- getColumn(0, &one);
- getColumn(1, &two);
- getColumn(2, &three);
- // check columns
- {
- if (mDot(one, two) > 0.0001f ||
- mDot(one, three) > 0.0001f ||
- mDot(two, three) > 0.0001f)
- return false;
- if (mFabs(1.0f - one.lenSquared()) > 0.0001f ||
- mFabs(1.0f - two.lenSquared()) > 0.0001f ||
- mFabs(1.0f - three.lenSquared()) > 0.0001f)
- return false;
- }
- getRow(0, &one);
- getRow(1, &two);
- getRow(2, &three);
- // check rows
- {
- if (mDot(one, two) > 0.0001f ||
- mDot(one, three) > 0.0001f ||
- mDot(two, three) > 0.0001f)
- return false;
- if (mFabs(1.0f - one.lenSquared()) > 0.0001f ||
- mFabs(1.0f - two.lenSquared()) > 0.0001f ||
- mFabs(1.0f - three.lenSquared()) > 0.0001f)
- return false;
- }
- return true;
- }
- template<typename DATA_TYPE, U32 rows, U32 cols>
- EulerF Matrix<DATA_TYPE, rows, cols>::toEuler() const
- {
- AssertFatal(rows >= 3 && cols >= 3, "Euler rotations require at least a 3x3 matrix.");
- // Extract rotation matrix components
- const DATA_TYPE m00 = (*this)(0, 0);
- const DATA_TYPE m01 = (*this)(0, 1);
- const DATA_TYPE m02 = (*this)(0, 2);
- const DATA_TYPE m10 = (*this)(1, 0);
- const DATA_TYPE m11 = (*this)(1, 1);
- const DATA_TYPE m21 = (*this)(2, 1);
- const DATA_TYPE m22 = (*this)(2, 2);
- // like all others assume float for now.
- EulerF r;
- r.x = mAsin(mClampF(m21, -1.0, 1.0));
- if (mCos(r.x) != 0.0f) {
- r.y = mAtan2(-m02, m22); // yaw
- r.z = mAtan2(-m10, m11); // roll
- }
- else {
- r.y = 0.0f;
- r.z = mAtan2(m01, m00); // this rolls when pitch is +90 degrees
- }
- return r;
- }
- template<typename DATA_TYPE, U32 rows, U32 cols>
- void Matrix<DATA_TYPE, rows, cols>::dumpMatrix(const char* caption) const
- {
- U32 size = (caption == NULL) ? 0 : dStrlen(caption);
- FrameTemp<char> spacer(size + 1);
- char* spacerRef = spacer;
- // is_floating_point should return true for floats and doubles.
- const char* formatSpec = std::is_floating_point_v<DATA_TYPE> ? " %-8.4f" : " %d";
- dMemset(spacerRef, ' ', size);
- // null terminate.
- spacerRef[size] = '\0';
- /*Con::printf("%s = | %-8.4f %-8.4f %-8.4f %-8.4f |", caption, m[idx(0, 0)], m[idx(0, 1)], m[idx(0, 2)], m[idx(0, 3)]);
- Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(1, 0)], m[idx(1, 1)], m[idx(1, 2)], m[idx(1, 3)]);
- Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(2, 0)], m[idx(2, 1)], m[idx(2, 2)], m[idx(2, 3)]);
- Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(3, 0)], m[idx(3, 1)], m[idx(3, 2)], m[idx(3, 3)]);*/
- StringBuilder str;
- str.format("%s = |", caption);
- for (U32 i = 0; i < rows; i++) {
- if (i > 0) {
- str.append(spacerRef);
- }
- for (U32 j = 0; j < cols; j++) {
- str.format(formatSpec, (*this)(i, j));
- }
- str.append(" |\n");
- }
- Con::printf("%s", str.end().c_str());
- }
|