hacdICHull.cpp 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019
  1. /* Copyright (c) 2011 Khaled Mamou (kmamou at gmail dot com)
  2. All rights reserved.
  3. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
  4. 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
  5. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
  6. 3. The names of the contributors may not be used to endorse or promote products derived from this software without specific prior written permission.
  7. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  8. */
  9. #include "hacdICHull.h"
  10. #include <limits>
  11. #include <algorithm>
  12. namespace HACD
  13. {
  14. const long ICHull::sc_dummyIndex = std::numeric_limits<long>::max();
  15. ICHull::ICHull(void)
  16. {
  17. m_distPoints = 0;
  18. m_isFlat = false;
  19. m_dummyVertex = 0;
  20. }
  21. bool ICHull::AddPoints(const Vec3<Real> * points, size_t nPoints)
  22. {
  23. if (!points)
  24. {
  25. return false;
  26. }
  27. CircularListElement<TMMVertex> * vertex = NULL;
  28. for (size_t i = 0; i < nPoints; i++)
  29. {
  30. vertex = m_mesh.AddVertex();
  31. vertex->GetData().m_pos.X() = points[i].X();
  32. vertex->GetData().m_pos.Y() = points[i].Y();
  33. vertex->GetData().m_pos.Z() = points[i].Z();
  34. vertex->GetData().m_name = static_cast<long>(i);
  35. }
  36. return true;
  37. }
  38. bool ICHull::AddPoints(std::vector< Vec3<Real> > points)
  39. {
  40. CircularListElement<TMMVertex> * vertex = NULL;
  41. for (size_t i = 0; i < points.size(); i++)
  42. {
  43. vertex = m_mesh.AddVertex();
  44. vertex->GetData().m_pos.X() = points[i].X();
  45. vertex->GetData().m_pos.Y() = points[i].Y();
  46. vertex->GetData().m_pos.Z() = points[i].Z();
  47. }
  48. return true;
  49. }
  50. bool ICHull::AddPoint(const Vec3<Real> & point, long id)
  51. {
  52. if (AddPoints(&point, 1))
  53. {
  54. m_mesh.m_vertices.GetData().m_name = id;
  55. return true;
  56. }
  57. return false;
  58. }
  59. ICHullError ICHull::Process()
  60. {
  61. unsigned long addedPoints = 0;
  62. if (m_mesh.GetNVertices() < 3)
  63. {
  64. return ICHullErrorNotEnoughPoints;
  65. }
  66. if (m_mesh.GetNVertices() == 3)
  67. {
  68. m_isFlat = true;
  69. CircularListElement<TMMTriangle> * t1 = m_mesh.AddTriangle();
  70. CircularListElement<TMMTriangle> * t2 = m_mesh.AddTriangle();
  71. CircularListElement<TMMVertex> * v0 = m_mesh.m_vertices.GetHead();
  72. CircularListElement<TMMVertex> * v1 = v0->GetNext();
  73. CircularListElement<TMMVertex> * v2 = v1->GetNext();
  74. // Compute the normal to the plane
  75. Vec3<Real> p0 = v0->GetData().m_pos;
  76. Vec3<Real> p1 = v1->GetData().m_pos;
  77. Vec3<Real> p2 = v2->GetData().m_pos;
  78. m_normal = (p1-p0) ^ (p2-p0);
  79. m_normal.Normalize();
  80. t1->GetData().m_vertices[0] = v0;
  81. t1->GetData().m_vertices[1] = v1;
  82. t1->GetData().m_vertices[2] = v2;
  83. t2->GetData().m_vertices[0] = v1;
  84. t2->GetData().m_vertices[1] = v2;
  85. t2->GetData().m_vertices[2] = v2;
  86. return ICHullErrorOK;
  87. }
  88. if (m_isFlat)
  89. {
  90. m_mesh.m_edges.Clear();
  91. m_mesh.m_triangles.Clear();
  92. m_isFlat = false;
  93. }
  94. if (m_mesh.GetNTriangles() == 0) // we have to create the first polyhedron
  95. {
  96. ICHullError res = DoubleTriangle();
  97. if (res != ICHullErrorOK)
  98. {
  99. return res;
  100. }
  101. else
  102. {
  103. addedPoints += 3;
  104. }
  105. }
  106. CircularList<TMMVertex> & vertices = m_mesh.GetVertices();
  107. // go to the first added and not processed vertex
  108. while (!(vertices.GetHead()->GetPrev()->GetData().m_tag))
  109. {
  110. vertices.Prev();
  111. }
  112. while (!vertices.GetData().m_tag) // not processed
  113. {
  114. vertices.GetData().m_tag = true;
  115. if (ProcessPoint())
  116. {
  117. addedPoints++;
  118. CleanUp(addedPoints);
  119. vertices.Next();
  120. if (!GetMesh().CheckConsistancy())
  121. {
  122. return ICHullErrorInconsistent;
  123. }
  124. }
  125. }
  126. if (m_isFlat)
  127. {
  128. std::vector< CircularListElement<TMMTriangle> * > trianglesToDuplicate;
  129. size_t nT = m_mesh.GetNTriangles();
  130. for(size_t f = 0; f < nT; f++)
  131. {
  132. TMMTriangle & currentTriangle = m_mesh.m_triangles.GetHead()->GetData();
  133. if( currentTriangle.m_vertices[0]->GetData().m_name == sc_dummyIndex ||
  134. currentTriangle.m_vertices[1]->GetData().m_name == sc_dummyIndex ||
  135. currentTriangle.m_vertices[2]->GetData().m_name == sc_dummyIndex )
  136. {
  137. m_trianglesToDelete.push_back(m_mesh.m_triangles.GetHead());
  138. for(int k = 0; k < 3; k++)
  139. {
  140. for(int h = 0; h < 2; h++)
  141. {
  142. if (currentTriangle.m_edges[k]->GetData().m_triangles[h] == m_mesh.m_triangles.GetHead())
  143. {
  144. currentTriangle.m_edges[k]->GetData().m_triangles[h] = 0;
  145. break;
  146. }
  147. }
  148. }
  149. }
  150. else
  151. {
  152. trianglesToDuplicate.push_back(m_mesh.m_triangles.GetHead());
  153. }
  154. m_mesh.m_triangles.Next();
  155. }
  156. size_t nE = m_mesh.GetNEdges();
  157. for(size_t e = 0; e < nE; e++)
  158. {
  159. TMMEdge & currentEdge = m_mesh.m_edges.GetHead()->GetData();
  160. if( currentEdge.m_triangles[0] == 0 && currentEdge.m_triangles[1] == 0)
  161. {
  162. m_edgesToDelete.push_back(m_mesh.m_edges.GetHead());
  163. }
  164. m_mesh.m_edges.Next();
  165. }
  166. m_mesh.m_vertices.Delete(m_dummyVertex);
  167. m_dummyVertex = 0;
  168. size_t nV = m_mesh.GetNVertices();
  169. CircularList<TMMVertex> & vertices = m_mesh.GetVertices();
  170. for(size_t v = 0; v < nV; ++v)
  171. {
  172. vertices.GetData().m_tag = false;
  173. vertices.Next();
  174. }
  175. CleanEdges();
  176. CleanTriangles();
  177. CircularListElement<TMMTriangle> * newTriangle;
  178. for(size_t t = 0; t < trianglesToDuplicate.size(); t++)
  179. {
  180. newTriangle = m_mesh.AddTriangle();
  181. newTriangle->GetData().m_vertices[0] = trianglesToDuplicate[t]->GetData().m_vertices[1];
  182. newTriangle->GetData().m_vertices[1] = trianglesToDuplicate[t]->GetData().m_vertices[0];
  183. newTriangle->GetData().m_vertices[2] = trianglesToDuplicate[t]->GetData().m_vertices[2];
  184. }
  185. }
  186. return ICHullErrorOK;
  187. }
  188. ICHullError ICHull::Process(unsigned long nPointsCH)
  189. {
  190. unsigned long addedPoints = 0;
  191. if (nPointsCH < 3 || m_mesh.GetNVertices() < 3)
  192. {
  193. return ICHullErrorNotEnoughPoints;
  194. }
  195. if (m_mesh.GetNVertices() == 3)
  196. {
  197. m_isFlat = true;
  198. CircularListElement<TMMTriangle> * t1 = m_mesh.AddTriangle();
  199. CircularListElement<TMMTriangle> * t2 = m_mesh.AddTriangle();
  200. CircularListElement<TMMVertex> * v0 = m_mesh.m_vertices.GetHead();
  201. CircularListElement<TMMVertex> * v1 = v0->GetNext();
  202. CircularListElement<TMMVertex> * v2 = v1->GetNext();
  203. // Compute the normal to the plane
  204. Vec3<Real> p0 = v0->GetData().m_pos;
  205. Vec3<Real> p1 = v1->GetData().m_pos;
  206. Vec3<Real> p2 = v2->GetData().m_pos;
  207. m_normal = (p1-p0) ^ (p2-p0);
  208. m_normal.Normalize();
  209. t1->GetData().m_vertices[0] = v0;
  210. t1->GetData().m_vertices[1] = v1;
  211. t1->GetData().m_vertices[2] = v2;
  212. t2->GetData().m_vertices[0] = v1;
  213. t2->GetData().m_vertices[1] = v0;
  214. t2->GetData().m_vertices[2] = v2;
  215. return ICHullErrorOK;
  216. }
  217. if (m_isFlat)
  218. {
  219. m_mesh.m_triangles.Clear();
  220. m_mesh.m_edges.Clear();
  221. m_isFlat = false;
  222. }
  223. if (m_mesh.GetNTriangles() == 0) // we have to create the first polyhedron
  224. {
  225. ICHullError res = DoubleTriangle();
  226. if (res != ICHullErrorOK)
  227. {
  228. return res;
  229. }
  230. else
  231. {
  232. addedPoints += 3;
  233. }
  234. }
  235. CircularList<TMMVertex> & vertices = m_mesh.GetVertices();
  236. while (!vertices.GetData().m_tag && addedPoints < nPointsCH) // not processed
  237. {
  238. if (!FindMaxVolumePoint())
  239. {
  240. break;
  241. }
  242. vertices.GetData().m_tag = true;
  243. if (ProcessPoint())
  244. {
  245. addedPoints++;
  246. CleanUp(addedPoints);
  247. if (!GetMesh().CheckConsistancy())
  248. {
  249. return ICHullErrorInconsistent;
  250. }
  251. vertices.Next();
  252. }
  253. }
  254. // delete remaining points
  255. while (!vertices.GetData().m_tag)
  256. {
  257. if (vertices.GetHead() == m_dummyVertex)
  258. m_dummyVertex = 0;
  259. vertices.Delete();
  260. }
  261. if (m_isFlat)
  262. {
  263. std::vector< CircularListElement<TMMTriangle> * > trianglesToDuplicate;
  264. size_t nT = m_mesh.GetNTriangles();
  265. for(size_t f = 0; f < nT; f++)
  266. {
  267. TMMTriangle & currentTriangle = m_mesh.m_triangles.GetHead()->GetData();
  268. if( currentTriangle.m_vertices[0]->GetData().m_name == sc_dummyIndex ||
  269. currentTriangle.m_vertices[1]->GetData().m_name == sc_dummyIndex ||
  270. currentTriangle.m_vertices[2]->GetData().m_name == sc_dummyIndex )
  271. {
  272. m_trianglesToDelete.push_back(m_mesh.m_triangles.GetHead());
  273. for(int k = 0; k < 3; k++)
  274. {
  275. for(int h = 0; h < 2; h++)
  276. {
  277. if (currentTriangle.m_edges[k]->GetData().m_triangles[h] == m_mesh.m_triangles.GetHead())
  278. {
  279. currentTriangle.m_edges[k]->GetData().m_triangles[h] = 0;
  280. break;
  281. }
  282. }
  283. }
  284. }
  285. else
  286. {
  287. trianglesToDuplicate.push_back(m_mesh.m_triangles.GetHead());
  288. }
  289. m_mesh.m_triangles.Next();
  290. }
  291. size_t nE = m_mesh.GetNEdges();
  292. for(size_t e = 0; e < nE; e++)
  293. {
  294. TMMEdge & currentEdge = m_mesh.m_edges.GetHead()->GetData();
  295. if( currentEdge.m_triangles[0] == 0 && currentEdge.m_triangles[1] == 0)
  296. {
  297. m_edgesToDelete.push_back(m_mesh.m_edges.GetHead());
  298. }
  299. m_mesh.m_edges.Next();
  300. }
  301. m_mesh.m_vertices.Delete(m_dummyVertex);
  302. m_dummyVertex = 0;
  303. size_t nV = m_mesh.GetNVertices();
  304. CircularList<TMMVertex> & vertices = m_mesh.GetVertices();
  305. for(size_t v = 0; v < nV; ++v)
  306. {
  307. vertices.GetData().m_tag = false;
  308. vertices.Next();
  309. }
  310. CleanEdges();
  311. CleanTriangles();
  312. CircularListElement<TMMTriangle> * newTriangle;
  313. for(size_t t = 0; t < trianglesToDuplicate.size(); t++)
  314. {
  315. newTriangle = m_mesh.AddTriangle();
  316. newTriangle->GetData().m_vertices[0] = trianglesToDuplicate[t]->GetData().m_vertices[1];
  317. newTriangle->GetData().m_vertices[1] = trianglesToDuplicate[t]->GetData().m_vertices[0];
  318. newTriangle->GetData().m_vertices[2] = trianglesToDuplicate[t]->GetData().m_vertices[2];
  319. }
  320. }
  321. return ICHullErrorOK;
  322. }
  323. bool ICHull::FindMaxVolumePoint()
  324. {
  325. CircularList<TMMVertex> & vertices = m_mesh.GetVertices();
  326. CircularListElement<TMMVertex> * vMaxVolume = 0;
  327. CircularListElement<TMMVertex> * vHeadPrev = vertices.GetHead()->GetPrev();
  328. double maxVolume = 0.0;
  329. double volume = 0.0;
  330. while (!vertices.GetData().m_tag) // not processed
  331. {
  332. if (ComputePointVolume(volume, false))
  333. {
  334. if ( maxVolume < volume)
  335. {
  336. maxVolume = volume;
  337. vMaxVolume = vertices.GetHead();
  338. }
  339. vertices.Next();
  340. }
  341. }
  342. CircularListElement<TMMVertex> * vHead = vHeadPrev->GetNext();
  343. vertices.GetHead() = vHead;
  344. if (!vMaxVolume)
  345. {
  346. return false;
  347. }
  348. if (vMaxVolume != vHead)
  349. {
  350. Vec3<Real> pos = vHead->GetData().m_pos;
  351. long id = vHead->GetData().m_name;
  352. vHead->GetData().m_pos = vMaxVolume->GetData().m_pos;
  353. vHead->GetData().m_name = vMaxVolume->GetData().m_name;
  354. vMaxVolume->GetData().m_pos = pos;
  355. vHead->GetData().m_name = id;
  356. }
  357. return true;
  358. }
  359. ICHullError ICHull::DoubleTriangle()
  360. {
  361. // find three non colinear points
  362. m_isFlat = false;
  363. CircularList<TMMVertex> & vertices = m_mesh.GetVertices();
  364. CircularListElement<TMMVertex> * v0 = vertices.GetHead();
  365. while( Colinear(v0->GetData().m_pos,
  366. v0->GetNext()->GetData().m_pos,
  367. v0->GetNext()->GetNext()->GetData().m_pos))
  368. {
  369. if ( (v0 = v0->GetNext()) == vertices.GetHead())
  370. {
  371. return ICHullErrorCoplanarPoints;
  372. }
  373. }
  374. CircularListElement<TMMVertex> * v1 = v0->GetNext();
  375. CircularListElement<TMMVertex> * v2 = v1->GetNext();
  376. // mark points as processed
  377. v0->GetData().m_tag = v1->GetData().m_tag = v2->GetData().m_tag = true;
  378. // create two triangles
  379. CircularListElement<TMMTriangle> * f0 = MakeFace(v0, v1, v2, 0);
  380. MakeFace(v2, v1, v0, f0);
  381. // find a fourth non-coplanar point to form tetrahedron
  382. CircularListElement<TMMVertex> * v3 = v2->GetNext();
  383. vertices.GetHead() = v3;
  384. double vol = Volume(v0->GetData().m_pos, v1->GetData().m_pos, v2->GetData().m_pos, v3->GetData().m_pos);
  385. while (vol == 0.0 && !v3->GetNext()->GetData().m_tag)
  386. {
  387. v3 = v3->GetNext();
  388. vol = Volume(v0->GetData().m_pos, v1->GetData().m_pos, v2->GetData().m_pos, v3->GetData().m_pos);
  389. }
  390. if (vol == 0.0)
  391. {
  392. // compute the barycenter
  393. Vec3<Real> bary(0.0,0.0,0.0);
  394. CircularListElement<TMMVertex> * vBary = v0;
  395. do
  396. {
  397. bary += vBary->GetData().m_pos;
  398. }
  399. while ( (vBary = vBary->GetNext()) != v0);
  400. bary /= static_cast<Real>(vertices.GetSize());
  401. // Compute the normal to the plane
  402. Vec3<Real> p0 = v0->GetData().m_pos;
  403. Vec3<Real> p1 = v1->GetData().m_pos;
  404. Vec3<Real> p2 = v2->GetData().m_pos;
  405. m_normal = (p1-p0) ^ (p2-p0);
  406. m_normal.Normalize();
  407. // add dummy vertex placed at (bary + normal)
  408. vertices.GetHead() = v2;
  409. Vec3<Real> newPt = bary + m_normal;
  410. AddPoint(newPt, sc_dummyIndex);
  411. m_dummyVertex = vertices.GetHead();
  412. m_isFlat = true;
  413. v3 = v2->GetNext();
  414. vol = Volume(v0->GetData().m_pos, v1->GetData().m_pos, v2->GetData().m_pos, v3->GetData().m_pos);
  415. return ICHullErrorOK;
  416. }
  417. else if (v3 != vertices.GetHead())
  418. {
  419. TMMVertex temp;
  420. temp.m_name = v3->GetData().m_name;
  421. temp.m_pos = v3->GetData().m_pos;
  422. v3->GetData().m_name = vertices.GetHead()->GetData().m_name;
  423. v3->GetData().m_pos = vertices.GetHead()->GetData().m_pos;
  424. vertices.GetHead()->GetData().m_name = temp.m_name;
  425. vertices.GetHead()->GetData().m_pos = temp.m_pos;
  426. }
  427. return ICHullErrorOK;
  428. }
  429. CircularListElement<TMMTriangle> * ICHull::MakeFace(CircularListElement<TMMVertex> * v0,
  430. CircularListElement<TMMVertex> * v1,
  431. CircularListElement<TMMVertex> * v2,
  432. CircularListElement<TMMTriangle> * fold)
  433. {
  434. CircularListElement<TMMEdge> * e0;
  435. CircularListElement<TMMEdge> * e1;
  436. CircularListElement<TMMEdge> * e2;
  437. long index = 0;
  438. if (!fold) // if first face to be created
  439. {
  440. e0 = m_mesh.AddEdge(); // create the three edges
  441. e1 = m_mesh.AddEdge();
  442. e2 = m_mesh.AddEdge();
  443. }
  444. else // otherwise re-use existing edges (in reverse order)
  445. {
  446. e0 = fold->GetData().m_edges[2];
  447. e1 = fold->GetData().m_edges[1];
  448. e2 = fold->GetData().m_edges[0];
  449. index = 1;
  450. }
  451. e0->GetData().m_vertices[0] = v0; e0->GetData().m_vertices[1] = v1;
  452. e1->GetData().m_vertices[0] = v1; e1->GetData().m_vertices[1] = v2;
  453. e2->GetData().m_vertices[0] = v2; e2->GetData().m_vertices[1] = v0;
  454. // create the new face
  455. CircularListElement<TMMTriangle> * f = m_mesh.AddTriangle();
  456. f->GetData().m_edges[0] = e0; f->GetData().m_edges[1] = e1; f->GetData().m_edges[2] = e2;
  457. f->GetData().m_vertices[0] = v0; f->GetData().m_vertices[1] = v1; f->GetData().m_vertices[2] = v2;
  458. // link edges to face f
  459. e0->GetData().m_triangles[index] = e1->GetData().m_triangles[index] = e2->GetData().m_triangles[index] = f;
  460. return f;
  461. }
  462. CircularListElement<TMMTriangle> * ICHull::MakeConeFace(CircularListElement<TMMEdge> * e, CircularListElement<TMMVertex> * p)
  463. {
  464. // create two new edges if they don't already exist
  465. CircularListElement<TMMEdge> * newEdges[2];
  466. for(int i = 0; i < 2; ++i)
  467. {
  468. if ( !( newEdges[i] = e->GetData().m_vertices[i]->GetData().m_duplicate ) )
  469. { // if the edge doesn't exits add it and mark the vertex as duplicated
  470. newEdges[i] = m_mesh.AddEdge();
  471. newEdges[i]->GetData().m_vertices[0] = e->GetData().m_vertices[i];
  472. newEdges[i]->GetData().m_vertices[1] = p;
  473. e->GetData().m_vertices[i]->GetData().m_duplicate = newEdges[i];
  474. }
  475. }
  476. // make the new face
  477. CircularListElement<TMMTriangle> * newFace = m_mesh.AddTriangle();
  478. newFace->GetData().m_edges[0] = e;
  479. newFace->GetData().m_edges[1] = newEdges[0];
  480. newFace->GetData().m_edges[2] = newEdges[1];
  481. MakeCCW(newFace, e, p);
  482. for(int i=0; i < 2; ++i)
  483. {
  484. for(int j=0; j < 2; ++j)
  485. {
  486. if ( ! newEdges[i]->GetData().m_triangles[j] )
  487. {
  488. newEdges[i]->GetData().m_triangles[j] = newFace;
  489. break;
  490. }
  491. }
  492. }
  493. return newFace;
  494. }
  495. bool ICHull::ComputePointVolume(double &totalVolume, bool markVisibleFaces)
  496. {
  497. // mark visible faces
  498. CircularListElement<TMMTriangle> * fHead = m_mesh.GetTriangles().GetHead();
  499. CircularListElement<TMMTriangle> * f = fHead;
  500. CircularList<TMMVertex> & vertices = m_mesh.GetVertices();
  501. CircularListElement<TMMVertex> * vertex0 = vertices.GetHead();
  502. bool visible = false;
  503. Vec3<double> pos0 = Vec3<double>(vertex0->GetData().m_pos.X(),
  504. vertex0->GetData().m_pos.Y(),
  505. vertex0->GetData().m_pos.Z());
  506. double vol = 0.0;
  507. totalVolume = 0.0;
  508. Vec3<double> ver0, ver1, ver2;
  509. do
  510. {
  511. ver0.X() = f->GetData().m_vertices[0]->GetData().m_pos.X();
  512. ver0.Y() = f->GetData().m_vertices[0]->GetData().m_pos.Y();
  513. ver0.Z() = f->GetData().m_vertices[0]->GetData().m_pos.Z();
  514. ver1.X() = f->GetData().m_vertices[1]->GetData().m_pos.X();
  515. ver1.Y() = f->GetData().m_vertices[1]->GetData().m_pos.Y();
  516. ver1.Z() = f->GetData().m_vertices[1]->GetData().m_pos.Z();
  517. ver2.X() = f->GetData().m_vertices[2]->GetData().m_pos.X();
  518. ver2.Y() = f->GetData().m_vertices[2]->GetData().m_pos.Y();
  519. ver2.Z() = f->GetData().m_vertices[2]->GetData().m_pos.Z();
  520. vol = Volume(ver0, ver1, ver2, pos0);
  521. if ( vol < 0.0 )
  522. {
  523. vol = fabs(vol);
  524. totalVolume += vol;
  525. if (markVisibleFaces)
  526. {
  527. f->GetData().m_visible = true;
  528. m_trianglesToDelete.push_back(f);
  529. }
  530. visible = true;
  531. }
  532. f = f->GetNext();
  533. }
  534. while (f != fHead);
  535. if (m_trianglesToDelete.size() == m_mesh.m_triangles.GetSize())
  536. {
  537. for(size_t i = 0; i < m_trianglesToDelete.size(); i++)
  538. {
  539. m_trianglesToDelete[i]->GetData().m_visible = false;
  540. }
  541. visible = false;
  542. }
  543. // if no faces visible from p then p is inside the hull
  544. if (!visible && markVisibleFaces)
  545. {
  546. if (vertices.GetHead() == m_dummyVertex)
  547. m_dummyVertex = 0;
  548. vertices.Delete();
  549. m_trianglesToDelete.clear();
  550. return false;
  551. }
  552. return true;
  553. }
  554. bool ICHull::ProcessPoint()
  555. {
  556. double totalVolume = 0.0;
  557. if (!ComputePointVolume(totalVolume, true))
  558. {
  559. return false;
  560. }
  561. // Mark edges in interior of visible region for deletion.
  562. // Create a new face based on each border edge
  563. CircularListElement<TMMVertex> * v0 = m_mesh.GetVertices().GetHead();
  564. CircularListElement<TMMEdge> * eHead = m_mesh.GetEdges().GetHead();
  565. CircularListElement<TMMEdge> * e = eHead;
  566. CircularListElement<TMMEdge> * tmp = 0;
  567. long nvisible = 0;
  568. m_edgesToDelete.clear();
  569. m_edgesToUpdate.clear();
  570. do
  571. {
  572. tmp = e->GetNext();
  573. nvisible = 0;
  574. for(int k = 0; k < 2; k++)
  575. {
  576. if ( e->GetData().m_triangles[k]->GetData().m_visible )
  577. {
  578. nvisible++;
  579. }
  580. }
  581. if ( nvisible == 2)
  582. {
  583. m_edgesToDelete.push_back(e);
  584. }
  585. else if ( nvisible == 1)
  586. {
  587. e->GetData().m_newFace = MakeConeFace(e, v0);
  588. m_edgesToUpdate.push_back(e);
  589. }
  590. e = tmp;
  591. }
  592. while (e != eHead);
  593. return true;
  594. }
  595. bool ICHull::MakeCCW(CircularListElement<TMMTriangle> * f,
  596. CircularListElement<TMMEdge> * e,
  597. CircularListElement<TMMVertex> * v)
  598. {
  599. // the visible face adjacent to e
  600. CircularListElement<TMMTriangle> * fv;
  601. if (e->GetData().m_triangles[0]->GetData().m_visible)
  602. {
  603. fv = e->GetData().m_triangles[0];
  604. }
  605. else
  606. {
  607. fv = e->GetData().m_triangles[1];
  608. }
  609. // set vertex[0] and vertex[1] to have the same orientation as the corresponding vertices of fv.
  610. long i; // index of e->m_vertices[0] in fv
  611. CircularListElement<TMMVertex> * v0 = e->GetData().m_vertices[0];
  612. CircularListElement<TMMVertex> * v1 = e->GetData().m_vertices[1];
  613. for(i = 0; fv->GetData().m_vertices[i] != v0; i++);
  614. if ( fv->GetData().m_vertices[(i+1) % 3] != e->GetData().m_vertices[1] )
  615. {
  616. f->GetData().m_vertices[0] = v1;
  617. f->GetData().m_vertices[1] = v0;
  618. }
  619. else
  620. {
  621. f->GetData().m_vertices[0] = v0;
  622. f->GetData().m_vertices[1] = v1;
  623. // swap edges
  624. CircularListElement<TMMEdge> * tmp = f->GetData().m_edges[0];
  625. f->GetData().m_edges[0] = f->GetData().m_edges[1];
  626. f->GetData().m_edges[1] = tmp;
  627. }
  628. f->GetData().m_vertices[2] = v;
  629. return true;
  630. }
  631. bool ICHull::CleanUp(unsigned long & addedPoints)
  632. {
  633. bool r0 = CleanEdges();
  634. bool r1 = CleanTriangles();
  635. bool r2 = CleanVertices(addedPoints);
  636. return r0 && r1 && r2;
  637. }
  638. bool ICHull::CleanEdges()
  639. {
  640. // integrate the new faces into the data structure
  641. CircularListElement<TMMEdge> * e;
  642. const std::vector<CircularListElement<TMMEdge> *>::iterator itEndUpdate = m_edgesToUpdate.end();
  643. for(std::vector<CircularListElement<TMMEdge> *>::iterator it = m_edgesToUpdate.begin(); it != itEndUpdate; ++it)
  644. {
  645. e = *it;
  646. if ( e->GetData().m_newFace )
  647. {
  648. if ( e->GetData().m_triangles[0]->GetData().m_visible)
  649. {
  650. e->GetData().m_triangles[0] = e->GetData().m_newFace;
  651. }
  652. else
  653. {
  654. e->GetData().m_triangles[1] = e->GetData().m_newFace;
  655. }
  656. e->GetData().m_newFace = 0;
  657. }
  658. }
  659. // delete edges maked for deletion
  660. CircularList<TMMEdge> & edges = m_mesh.GetEdges();
  661. const std::vector<CircularListElement<TMMEdge> *>::iterator itEndDelete = m_edgesToDelete.end();
  662. for(std::vector<CircularListElement<TMMEdge> *>::iterator it = m_edgesToDelete.begin(); it != itEndDelete; ++it)
  663. {
  664. edges.Delete(*it);
  665. }
  666. m_edgesToDelete.clear();
  667. m_edgesToUpdate.clear();
  668. return true;
  669. }
  670. bool ICHull::CleanTriangles()
  671. {
  672. CircularList<TMMTriangle> & triangles = m_mesh.GetTriangles();
  673. const std::vector<CircularListElement<TMMTriangle> *>::iterator itEndDelete = m_trianglesToDelete.end();
  674. for(std::vector<CircularListElement<TMMTriangle> *>::iterator it = m_trianglesToDelete.begin(); it != itEndDelete; ++it)
  675. {
  676. if (m_distPoints)
  677. {
  678. if (m_isFlat)
  679. {
  680. // to be updated
  681. }
  682. else
  683. {
  684. std::set<long>::const_iterator itPEnd((*it)->GetData().m_incidentPoints.end());
  685. std::set<long>::const_iterator itP((*it)->GetData().m_incidentPoints.begin());
  686. std::map<long, DPoint>::iterator itPoint;
  687. for(; itP != itPEnd; ++itP)
  688. {
  689. itPoint = m_distPoints->find(*itP);
  690. if (itPoint != m_distPoints->end())
  691. {
  692. itPoint->second.m_computed = false;
  693. }
  694. }
  695. }
  696. }
  697. triangles.Delete(*it);
  698. }
  699. m_trianglesToDelete.clear();
  700. return true;
  701. }
  702. bool ICHull::CleanVertices(unsigned long & addedPoints)
  703. {
  704. // mark all vertices incident to some undeleted edge as on the hull
  705. CircularList<TMMEdge> & edges = m_mesh.GetEdges();
  706. CircularListElement<TMMEdge> * e = edges.GetHead();
  707. size_t nE = edges.GetSize();
  708. for(size_t i = 0; i < nE; i++)
  709. {
  710. e->GetData().m_vertices[0]->GetData().m_onHull = true;
  711. e->GetData().m_vertices[1]->GetData().m_onHull = true;
  712. e = e->GetNext();
  713. }
  714. // delete all the vertices that have been processed but are not on the hull
  715. CircularList<TMMVertex> & vertices = m_mesh.GetVertices();
  716. CircularListElement<TMMVertex> * vHead = vertices.GetHead();
  717. CircularListElement<TMMVertex> * v = vHead;
  718. v = v->GetPrev();
  719. do
  720. {
  721. if (v->GetData().m_tag && !v->GetData().m_onHull)
  722. {
  723. CircularListElement<TMMVertex> * tmp = v->GetPrev();
  724. if (tmp == m_dummyVertex)
  725. m_dummyVertex = 0;
  726. vertices.Delete(v);
  727. v = tmp;
  728. addedPoints--;
  729. }
  730. else
  731. {
  732. v->GetData().m_duplicate = 0;
  733. v->GetData().m_onHull = false;
  734. v = v->GetPrev();
  735. }
  736. }
  737. while (v->GetData().m_tag && v != vHead);
  738. return true;
  739. }
  740. void ICHull::Clear()
  741. {
  742. m_mesh.Clear();
  743. m_edgesToDelete = std::vector<CircularListElement<TMMEdge> *>();
  744. m_edgesToUpdate = std::vector<CircularListElement<TMMEdge> *>();
  745. m_trianglesToDelete= std::vector<CircularListElement<TMMTriangle> *>();
  746. m_isFlat = false;
  747. }
  748. const ICHull & ICHull::operator=(ICHull & rhs)
  749. {
  750. if (&rhs != this)
  751. {
  752. m_mesh.Copy(rhs.m_mesh);
  753. m_edgesToDelete = rhs.m_edgesToDelete;
  754. m_edgesToUpdate = rhs.m_edgesToUpdate;
  755. m_trianglesToDelete = rhs.m_trianglesToDelete;
  756. m_isFlat = rhs.m_isFlat;
  757. }
  758. return (*this);
  759. }
  760. double ICHull::ComputeVolume()
  761. {
  762. size_t nV = m_mesh.m_vertices.GetSize();
  763. if (nV == 0 || m_isFlat)
  764. {
  765. return 0.0;
  766. }
  767. Vec3<double> bary(0.0, 0.0, 0.0);
  768. for(size_t v = 0; v < nV; v++)
  769. {
  770. bary.X() += m_mesh.m_vertices.GetHead()->GetData().m_pos.X();
  771. bary.Y() += m_mesh.m_vertices.GetHead()->GetData().m_pos.Y();
  772. bary.Z() += m_mesh.m_vertices.GetHead()->GetData().m_pos.Z();
  773. m_mesh.m_vertices.Next();
  774. }
  775. bary /= static_cast<double>(nV);
  776. size_t nT = m_mesh.m_triangles.GetSize();
  777. Vec3<double> ver0, ver1, ver2;
  778. double totalVolume = 0.0;
  779. for(size_t t = 0; t < nT; t++)
  780. {
  781. ver0.X() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[0]->GetData().m_pos.X();
  782. ver0.Y() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[0]->GetData().m_pos.Y();
  783. ver0.Z() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[0]->GetData().m_pos.Z();
  784. ver1.X() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[1]->GetData().m_pos.X();
  785. ver1.Y() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[1]->GetData().m_pos.Y();
  786. ver1.Z() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[1]->GetData().m_pos.Z();
  787. ver2.X() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[2]->GetData().m_pos.X();
  788. ver2.Y() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[2]->GetData().m_pos.Y();
  789. ver2.Z() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[2]->GetData().m_pos.Z();
  790. totalVolume += Volume(ver0, ver1, ver2, bary);
  791. m_mesh.m_triangles.Next();
  792. }
  793. return totalVolume;
  794. }
  795. bool ICHull::IsInside(const Vec3<Real> & pt0)
  796. {
  797. const Vec3<double> pt(pt0.X(), pt0.Y(), pt0.Z());
  798. if (m_isFlat)
  799. {
  800. size_t nT = m_mesh.m_triangles.GetSize();
  801. Vec3<double> ver0, ver1, ver2, a, b, c;
  802. double u,v;
  803. for(size_t t = 0; t < nT; t++)
  804. {
  805. ver0.X() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[0]->GetData().m_pos.X();
  806. ver0.Y() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[0]->GetData().m_pos.Y();
  807. ver0.Z() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[0]->GetData().m_pos.Z();
  808. ver1.X() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[1]->GetData().m_pos.X();
  809. ver1.Y() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[1]->GetData().m_pos.Y();
  810. ver1.Z() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[1]->GetData().m_pos.Z();
  811. ver2.X() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[2]->GetData().m_pos.X();
  812. ver2.Y() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[2]->GetData().m_pos.Y();
  813. ver2.Z() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[2]->GetData().m_pos.Z();
  814. a = ver1 - ver0;
  815. b = ver2 - ver0;
  816. c = pt - ver0;
  817. u = c * a;
  818. v = c * b;
  819. if ( u >= 0.0 && u <= 1.0 && v >= 0.0 && u+v <= 1.0)
  820. {
  821. return true;
  822. }
  823. m_mesh.m_triangles.Next();
  824. }
  825. return false;
  826. }
  827. else
  828. {
  829. size_t nT = m_mesh.m_triangles.GetSize();
  830. Vec3<double> ver0, ver1, ver2;
  831. for(size_t t = 0; t < nT; t++)
  832. {
  833. ver0.X() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[0]->GetData().m_pos.X();
  834. ver0.Y() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[0]->GetData().m_pos.Y();
  835. ver0.Z() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[0]->GetData().m_pos.Z();
  836. ver1.X() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[1]->GetData().m_pos.X();
  837. ver1.Y() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[1]->GetData().m_pos.Y();
  838. ver1.Z() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[1]->GetData().m_pos.Z();
  839. ver2.X() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[2]->GetData().m_pos.X();
  840. ver2.Y() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[2]->GetData().m_pos.Y();
  841. ver2.Z() = m_mesh.m_triangles.GetHead()->GetData().m_vertices[2]->GetData().m_pos.Z();
  842. if (Volume(ver0, ver1, ver2, pt) < 0.0)
  843. {
  844. return false;
  845. }
  846. m_mesh.m_triangles.Next();
  847. }
  848. return true;
  849. }
  850. }
  851. double ICHull::ComputeDistance(long name, const Vec3<Real> & pt, const Vec3<Real> & normal, bool & insideHull, bool updateIncidentPoints)
  852. {
  853. Vec3<double> ptNormal(static_cast<double>(normal.X()),
  854. static_cast<double>(normal.Y()),
  855. static_cast<double>(normal.Z()));
  856. Vec3<double> p0( static_cast<double>(pt.X()),
  857. static_cast<double>(pt.Y()),
  858. static_cast<double>(pt.Z()));
  859. if (m_isFlat)
  860. {
  861. double distance = 0.0;
  862. Vec3<double> chNormal(static_cast<double>(m_normal.X()),
  863. static_cast<double>(m_normal.Y()),
  864. static_cast<double>(m_normal.Z()));
  865. ptNormal -= (ptNormal * chNormal) * chNormal;
  866. if (ptNormal.GetNorm() > 0.0)
  867. {
  868. ptNormal.Normalize();
  869. long nameVE1;
  870. long nameVE2;
  871. Vec3<double> pa, pb, d0, d1, d2, d3;
  872. Vec3<double> p1 = p0 + ptNormal;
  873. Vec3<double> p2, p3;
  874. double mua, mub, s;
  875. const double EPS = 0.00000000001;
  876. size_t nE = m_mesh.GetNEdges();
  877. for(size_t e = 0; e < nE; e++)
  878. {
  879. TMMEdge & currentEdge = m_mesh.m_edges.GetHead()->GetData();
  880. nameVE1 = currentEdge.m_vertices[0]->GetData().m_name;
  881. nameVE2 = currentEdge.m_vertices[1]->GetData().m_name;
  882. if (currentEdge.m_triangles[0] == 0 || currentEdge.m_triangles[1] == 0)
  883. {
  884. if ( nameVE1==name || nameVE2==name )
  885. {
  886. return 0.0;
  887. }
  888. /*
  889. if (debug) std::cout << "V" << name
  890. << " E " << nameVE1 << " " << nameVE2 << std::endl;
  891. */
  892. p2.X() = currentEdge.m_vertices[0]->GetData().m_pos.X();
  893. p2.Y() = currentEdge.m_vertices[0]->GetData().m_pos.Y();
  894. p2.Z() = currentEdge.m_vertices[0]->GetData().m_pos.Z();
  895. p3.X() = currentEdge.m_vertices[1]->GetData().m_pos.X();
  896. p3.Y() = currentEdge.m_vertices[1]->GetData().m_pos.Y();
  897. p3.Z() = currentEdge.m_vertices[1]->GetData().m_pos.Z();
  898. d0 = p3 - p2;
  899. if (d0.GetNorm() > 0.0)
  900. {
  901. if (IntersectLineLine(p0, p1, p2, p3, pa, pb, mua, mub))
  902. {
  903. d1 = pa - p2;
  904. d2 = pa - pb;
  905. d3 = pa - p0;
  906. mua = d1.GetNorm()/d0.GetNorm();
  907. mub = d1*d0;
  908. s = d3*ptNormal;
  909. if (d2.GetNorm() < EPS && mua <= 1.0 && mub>=0.0 && s>0.0)
  910. {
  911. distance = std::max<double>(distance, d3.GetNorm());
  912. }
  913. }
  914. }
  915. }
  916. m_mesh.m_edges.Next();
  917. }
  918. }
  919. return distance;
  920. }
  921. else
  922. {
  923. Vec3<double> ptNormal(static_cast<double>(normal.X()),
  924. static_cast<double>(normal.Y()),
  925. static_cast<double>(normal.Z()));
  926. Vec3<double> impact;
  927. long nhit;
  928. double dist;
  929. double distance = 0.0;
  930. size_t nT = m_mesh.GetNTriangles();
  931. insideHull = false;
  932. CircularListElement<TMMTriangle> * face = 0;
  933. Vec3<double> ver0, ver1, ver2;
  934. for(size_t f = 0; f < nT; f++)
  935. {
  936. TMMTriangle & currentTriangle = m_mesh.m_triangles.GetHead()->GetData();
  937. /*
  938. if (debug) std::cout << "T " << currentTriangle.m_vertices[0]->GetData().m_name << " "
  939. << currentTriangle.m_vertices[1]->GetData().m_name << " "
  940. << currentTriangle.m_vertices[2]->GetData().m_name << std::endl;
  941. */
  942. if (currentTriangle.m_vertices[0]->GetData().m_name == name ||
  943. currentTriangle.m_vertices[1]->GetData().m_name == name ||
  944. currentTriangle.m_vertices[2]->GetData().m_name == name)
  945. {
  946. nhit = 1;
  947. dist = 0.0;
  948. }
  949. else
  950. {
  951. ver0.X() = currentTriangle.m_vertices[0]->GetData().m_pos.X();
  952. ver0.Y() = currentTriangle.m_vertices[0]->GetData().m_pos.Y();
  953. ver0.Z() = currentTriangle.m_vertices[0]->GetData().m_pos.Z();
  954. ver1.X() = currentTriangle.m_vertices[1]->GetData().m_pos.X();
  955. ver1.Y() = currentTriangle.m_vertices[1]->GetData().m_pos.Y();
  956. ver1.Z() = currentTriangle.m_vertices[1]->GetData().m_pos.Z();
  957. ver2.X() = currentTriangle.m_vertices[2]->GetData().m_pos.X();
  958. ver2.Y() = currentTriangle.m_vertices[2]->GetData().m_pos.Y();
  959. ver2.Z() = currentTriangle.m_vertices[2]->GetData().m_pos.Z();
  960. nhit = IntersectRayTriangle(p0, ptNormal, ver0, ver1, ver2, dist);
  961. }
  962. if (nhit == 1 && distance <= dist)
  963. {
  964. distance = dist;
  965. insideHull = true;
  966. face = m_mesh.m_triangles.GetHead();
  967. /*
  968. std::cout << name << " -> T " << currentTriangle.m_vertices[0]->GetData().m_name << " "
  969. << currentTriangle.m_vertices[1]->GetData().m_name << " "
  970. << currentTriangle.m_vertices[2]->GetData().m_name << " Dist "
  971. << dist << " P " << currentTriangle.m_normal * normal << std::endl;
  972. */
  973. if (dist > 0.1)
  974. {
  975. break;
  976. }
  977. }
  978. m_mesh.m_triangles.Next();
  979. }
  980. if (updateIncidentPoints && face && m_distPoints)
  981. {
  982. (*m_distPoints)[name].m_dist = static_cast<Real>(distance);
  983. face->GetData().m_incidentPoints.insert(name);
  984. }
  985. return distance;
  986. }
  987. }
  988. }