BenchmarkDemo.cpp 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279
  1. /*
  2. Bullet Continuous Collision Detection and Physics Library
  3. Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
  4. This software is provided 'as-is', without any express or implied warranty.
  5. In no event will the authors be held liable for any damages arising from the use of this software.
  6. Permission is granted to anyone to use this software for any purpose,
  7. including commercial applications, and to alter it and redistribute it freely,
  8. subject to the following restrictions:
  9. 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
  10. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
  11. 3. This notice may not be removed or altered from any source distribution.
  12. */
  13. // Collision Radius
  14. #define COLLISION_RADIUS 0.0f
  15. #include "BenchmarkDemo.h"
  16. ///btBulletDynamicsCommon.h is the main Bullet include file, contains most common include files.
  17. #include "btBulletDynamicsCommon.h"
  18. #include <stdio.h> //printf debugging
  19. #include "TaruData.h"
  20. #include "landscapeData.h"
  21. #include "BulletCollision/BroadphaseCollision/btDbvtBroadphase.h"
  22. #include "BulletCollision/CollisionDispatch/btSimulationIslandManager.h"
  23. #include "LinearMath/btAlignedObjectArray.h"
  24. #include "LinearMath/btTransform.h"
  25. class btDynamicsWorld;
  26. #define NUMRAYS 500
  27. class btRigidBody;
  28. class btBroadphaseInterface;
  29. class btCollisionShape;
  30. class btOverlappingPairCache;
  31. class btCollisionDispatcher;
  32. class btConstraintSolver;
  33. struct btCollisionAlgorithmCreateFunc;
  34. class btDefaultCollisionConfiguration;
  35. #include "../CommonInterfaces/CommonRigidBodyBase.h"
  36. class BenchmarkDemo : public CommonRigidBodyBase
  37. {
  38. //keep the collision shapes, for deletion/cleanup
  39. btAlignedObjectArray<class RagDoll*> m_ragdolls;
  40. int m_benchmark;
  41. void myinit()
  42. {
  43. //??
  44. }
  45. void setCameraDistance(btScalar dist)
  46. {
  47. }
  48. void createTest1();
  49. void createTest2();
  50. void createTest3();
  51. void createTest4();
  52. void createTest5();
  53. void createTest6();
  54. void createTest7();
  55. void createWall(const btVector3& offsetPosition,int stackSize,const btVector3& boxSize);
  56. void createPyramid(const btVector3& offsetPosition,int stackSize,const btVector3& boxSize);
  57. void createTowerCircle(const btVector3& offsetPosition,int stackSize,int rotSize,const btVector3& boxSize);
  58. void createLargeMeshBody();
  59. class SpuBatchRaycaster* m_batchRaycaster;
  60. class btThreadSupportInterface* m_batchRaycasterThreadSupport;
  61. void castRays();
  62. void initRays();
  63. public:
  64. BenchmarkDemo(struct GUIHelperInterface* helper, int benchmark)
  65. :CommonRigidBodyBase(helper),
  66. m_benchmark(benchmark)
  67. {
  68. }
  69. virtual ~BenchmarkDemo()
  70. {
  71. exitPhysics();
  72. }
  73. void initPhysics();
  74. void exitPhysics();
  75. void stepSimulation(float deltaTime);
  76. void resetCamera()
  77. {
  78. float dist = 120;
  79. float pitch = 52;
  80. float yaw = 35;
  81. float targetPos[3]={0,10.46,0};
  82. m_guiHelper->resetCamera(dist,pitch,yaw,targetPos[0],targetPos[1],targetPos[2]);
  83. }
  84. };
  85. class btRaycastBar2
  86. {
  87. public:
  88. btVector3 source[NUMRAYS];
  89. btVector3 dest[NUMRAYS];
  90. btVector3 direction[NUMRAYS];
  91. btVector3 hit[NUMRAYS];
  92. btVector3 normal[NUMRAYS];
  93. struct GUIHelperInterface* m_guiHelper;
  94. int frame_counter;
  95. int ms;
  96. int sum_ms;
  97. int sum_ms_samples;
  98. int min_ms;
  99. int max_ms;
  100. #ifdef USE_BT_CLOCK
  101. btClock frame_timer;
  102. #endif //USE_BT_CLOCK
  103. btScalar dx;
  104. btScalar min_x;
  105. btScalar max_x;
  106. btScalar max_y;
  107. btScalar sign;
  108. btRaycastBar2 ()
  109. {
  110. m_guiHelper = 0;
  111. ms = 0;
  112. max_ms = 0;
  113. min_ms = 9999;
  114. sum_ms_samples = 0;
  115. sum_ms = 0;
  116. }
  117. btRaycastBar2 (btScalar ray_length, btScalar z,btScalar max_y,struct GUIHelperInterface* guiHelper)
  118. {
  119. m_guiHelper = guiHelper;
  120. frame_counter = 0;
  121. ms = 0;
  122. max_ms = 0;
  123. min_ms = 9999;
  124. sum_ms_samples = 0;
  125. sum_ms = 0;
  126. dx = 10.0;
  127. min_x = 0;
  128. max_x = 0;
  129. this->max_y = max_y;
  130. sign = 1.0;
  131. btScalar dalpha = 2*SIMD_2_PI/NUMRAYS;
  132. for (int i = 0; i < NUMRAYS; i++)
  133. {
  134. btScalar alpha = dalpha * i;
  135. // rotate around by alpha degrees y
  136. btQuaternion q(btVector3(0.0, 1.0, 0.0), alpha);
  137. direction[i] = btVector3(1.0, 0.0, 0.0);
  138. direction[i] = quatRotate(q , direction[i]);
  139. direction[i] = direction[i] * ray_length;
  140. source[i] = btVector3(min_x, max_y, z);
  141. dest[i] = source[i] + direction[i];
  142. dest[i][1]=-1000;
  143. normal[i] = btVector3(1.0, 0.0, 0.0);
  144. }
  145. }
  146. void move (btScalar dt)
  147. {
  148. if (dt > btScalar(1.0/60.0))
  149. dt = btScalar(1.0/60.0);
  150. for (int i = 0; i < NUMRAYS; i++)
  151. {
  152. source[i][0] += dx * dt * sign;
  153. dest[i][0] += dx * dt * sign;
  154. }
  155. if (source[0][0] < min_x)
  156. sign = 1.0;
  157. else if (source[0][0] > max_x)
  158. sign = -1.0;
  159. }
  160. void cast (btCollisionWorld* cw)
  161. {
  162. #ifdef USE_BT_CLOCK
  163. frame_timer.reset ();
  164. #endif //USE_BT_CLOCK
  165. #ifdef BATCH_RAYCASTER
  166. if (!gBatchRaycaster)
  167. return;
  168. gBatchRaycaster->clearRays ();
  169. for (int i = 0; i < NUMRAYS; i++)
  170. {
  171. gBatchRaycaster->addRay (source[i], dest[i]);
  172. }
  173. gBatchRaycaster->performBatchRaycast ();
  174. for (int i = 0; i < gBatchRaycaster->getNumRays (); i++)
  175. {
  176. const SpuRaycastTaskWorkUnitOut& out = (*gBatchRaycaster)[i];
  177. hit[i].setInterpolate3(source[i],dest[i],out.hitFraction);
  178. normal[i] = out.hitNormal;
  179. normal[i].normalize ();
  180. }
  181. #else
  182. for (int i = 0; i < NUMRAYS; i++)
  183. {
  184. btCollisionWorld::ClosestRayResultCallback cb(source[i], dest[i]);
  185. cw->rayTest (source[i], dest[i], cb);
  186. if (cb.hasHit ())
  187. {
  188. hit[i] = cb.m_hitPointWorld;
  189. normal[i] = cb.m_hitNormalWorld;
  190. normal[i].normalize ();
  191. } else {
  192. hit[i] = dest[i];
  193. normal[i] = btVector3(1.0, 0.0, 0.0);
  194. }
  195. }
  196. #ifdef USE_BT_CLOCK
  197. ms += frame_timer.getTimeMilliseconds ();
  198. #endif //USE_BT_CLOCK
  199. frame_counter++;
  200. if (frame_counter > 50)
  201. {
  202. min_ms = ms < min_ms ? ms : min_ms;
  203. max_ms = ms > max_ms ? ms : max_ms;
  204. sum_ms += ms;
  205. sum_ms_samples++;
  206. btScalar mean_ms = (btScalar)sum_ms/(btScalar)sum_ms_samples;
  207. printf("%d rays in %d ms %d %d %f\n", NUMRAYS * frame_counter, ms, min_ms, max_ms, mean_ms);
  208. ms = 0;
  209. frame_counter = 0;
  210. }
  211. #endif
  212. }
  213. void draw ()
  214. {
  215. if (m_guiHelper)
  216. {
  217. btAlignedObjectArray<unsigned int> indices;
  218. btAlignedObjectArray<btVector3FloatData> points;
  219. float lineColor[4]={1,0.4,.4,1};
  220. for (int i = 0; i < NUMRAYS; i++)
  221. {
  222. btVector3FloatData s,h;
  223. for (int w=0;w<4;w++)
  224. {
  225. s.m_floats[w] = source[i][w];
  226. h.m_floats[w] = hit[i][w];
  227. }
  228. points.push_back(s);
  229. points.push_back(h);
  230. indices.push_back(indices.size());
  231. indices.push_back(indices.size());
  232. }
  233. m_guiHelper->getRenderInterface()->drawLines(&points[0].m_floats[0],lineColor,points.size(),sizeof(btVector3),&indices[0],indices.size(),1);
  234. }
  235. #if 0
  236. glDisable (GL_LIGHTING);
  237. glColor3f (0.0, 1.0, 0.0);
  238. glBegin (GL_LINES);
  239. int i;
  240. for (i = 0; i < NUMRAYS; i++)
  241. {
  242. glVertex3f (source[i][0], source[i][1], source[i][2]);
  243. glVertex3f (hit[i][0], hit[i][1], hit[i][2]);
  244. }
  245. glEnd ();
  246. glColor3f (1.0, 1.0, 1.0);
  247. glBegin (GL_LINES);
  248. for (i = 0; i < NUMRAYS; i++)
  249. {
  250. glVertex3f (hit[i][0], hit[i][1], hit[i][2]);
  251. glVertex3f (hit[i][0] + normal[i][0], hit[i][1] + normal[i][1], hit[i][2] + normal[i][2]);
  252. }
  253. glEnd ();
  254. glColor3f (0.0, 1.0, 1.0);
  255. glBegin (GL_POINTS);
  256. for ( i = 0; i < NUMRAYS; i++)
  257. {
  258. glVertex3f (hit[i][0], hit[i][1], hit[i][2]);
  259. }
  260. glEnd ();
  261. glEnable (GL_LIGHTING);
  262. #endif //USE_GRAPHICAL_BENCHMARK
  263. }
  264. };
  265. static btRaycastBar2 raycastBar;
  266. void BenchmarkDemo::stepSimulation(float deltaTime)
  267. {
  268. if (m_dynamicsWorld)
  269. {
  270. m_dynamicsWorld->stepSimulation(deltaTime);
  271. }
  272. if (m_benchmark==7)
  273. {
  274. castRays();
  275. raycastBar.draw();
  276. }
  277. }
  278. void BenchmarkDemo::initPhysics()
  279. {
  280. m_guiHelper->setUpAxis(1);
  281. setCameraDistance(btScalar(100.));
  282. ///collision configuration contains default setup for memory, collision setup
  283. btDefaultCollisionConstructionInfo cci;
  284. cci.m_defaultMaxPersistentManifoldPoolSize = 32768;
  285. m_collisionConfiguration = new btDefaultCollisionConfiguration(cci);
  286. ///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
  287. m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
  288. m_dispatcher->setDispatcherFlags(btCollisionDispatcher::CD_DISABLE_CONTACTPOOL_DYNAMIC_ALLOCATION);
  289. ///the maximum size of the collision world. Make sure objects stay within these boundaries
  290. ///Don't make the world AABB size too large, it will harm simulation quality and performance
  291. btVector3 worldAabbMin(-1000,-1000,-1000);
  292. btVector3 worldAabbMax(1000,1000,1000);
  293. btHashedOverlappingPairCache* pairCache = new btHashedOverlappingPairCache();
  294. m_broadphase = new btAxisSweep3(worldAabbMin,worldAabbMax,3500,pairCache);
  295. // m_broadphase = new btSimpleBroadphase();
  296. // m_broadphase = new btDbvtBroadphase();
  297. ///the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded)
  298. btSequentialImpulseConstraintSolver* sol = new btSequentialImpulseConstraintSolver;
  299. m_solver = sol;
  300. btDiscreteDynamicsWorld* dynamicsWorld;
  301. m_dynamicsWorld = dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
  302. ///the following 3 lines increase the performance dramatically, with a little bit of loss of quality
  303. m_dynamicsWorld->getSolverInfo().m_solverMode |=SOLVER_ENABLE_FRICTION_DIRECTION_CACHING; //don't recalculate friction values each frame
  304. dynamicsWorld->getSolverInfo().m_numIterations = 5; //few solver iterations
  305. //m_defaultContactProcessingThreshold = 0.f;//used when creating bodies: body->setContactProcessingThreshold(...);
  306. m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
  307. m_dynamicsWorld->setGravity(btVector3(0,-10,0));
  308. if (m_benchmark<5)
  309. {
  310. ///create a few basic rigid bodies
  311. btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(250.),btScalar(50.),btScalar(250.)));
  312. // btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),0);
  313. m_collisionShapes.push_back(groundShape);
  314. btTransform groundTransform;
  315. groundTransform.setIdentity();
  316. groundTransform.setOrigin(btVector3(0,-50,0));
  317. //We can also use DemoApplication::createRigidBody, but for clarity it is provided here:
  318. {
  319. btScalar mass(0.);
  320. //rigidbody is dynamic if and only if mass is non zero, otherwise static
  321. bool isDynamic = (mass != 0.f);
  322. btVector3 localInertia(0,0,0);
  323. if (isDynamic)
  324. groundShape->calculateLocalInertia(mass,localInertia);
  325. //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
  326. btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
  327. btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
  328. btRigidBody* body = new btRigidBody(rbInfo);
  329. //add the body to the dynamics world
  330. m_dynamicsWorld->addRigidBody(body);
  331. }
  332. }
  333. switch (m_benchmark)
  334. {
  335. case 1:
  336. {
  337. createTest1();
  338. break;
  339. }
  340. case 2:
  341. {
  342. createTest2();
  343. break;
  344. }
  345. case 3:
  346. {
  347. createTest3();
  348. break;
  349. }
  350. case 4:
  351. {
  352. createTest4();
  353. break;
  354. }
  355. case 5:
  356. {
  357. createTest5();
  358. break;
  359. }
  360. case 6:
  361. {
  362. createTest6();
  363. break;
  364. }
  365. case 7:
  366. {
  367. createTest7();
  368. break;
  369. }
  370. default:
  371. {
  372. }
  373. }
  374. m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
  375. }
  376. void BenchmarkDemo::createTest1()
  377. {
  378. // 3000
  379. int size = 8;
  380. const float cubeSize = 1.0f;
  381. float spacing = cubeSize;
  382. btVector3 pos(0.0f, cubeSize * 2,0.f);
  383. float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f;
  384. btBoxShape* blockShape = new btBoxShape(btVector3(cubeSize-COLLISION_RADIUS,cubeSize-COLLISION_RADIUS,cubeSize-COLLISION_RADIUS));
  385. btVector3 localInertia(0,0,0);
  386. float mass = 2.f;
  387. blockShape->calculateLocalInertia(mass,localInertia);
  388. btTransform trans;
  389. trans.setIdentity();
  390. for(int k=0;k<47;k++) {
  391. for(int j=0;j<size;j++) {
  392. pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing);
  393. for(int i=0;i<size;i++) {
  394. pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing);
  395. trans.setOrigin(pos);
  396. btRigidBody* cmbody;
  397. cmbody= createRigidBody(mass,trans,blockShape);
  398. }
  399. }
  400. offset -= 0.05f * spacing * (size-1);
  401. // spacing *= 1.01f;
  402. pos[1] += (cubeSize * 2.0f + spacing);
  403. }
  404. }
  405. ///////////////////////////////////////////////////////////////////////////////
  406. // Pyramid 3
  407. void BenchmarkDemo::createWall(const btVector3& offsetPosition,int stackSize,const btVector3& boxSize)
  408. {
  409. btBoxShape* blockShape = new btBoxShape(btVector3(boxSize[0]-COLLISION_RADIUS,boxSize[1]-COLLISION_RADIUS,boxSize[2]-COLLISION_RADIUS));
  410. float mass = 1.f;
  411. btVector3 localInertia(0,0,0);
  412. blockShape->calculateLocalInertia(mass,localInertia);
  413. // btScalar diffX = boxSize[0] * 1.0f;
  414. btScalar diffY = boxSize[1] * 1.0f;
  415. btScalar diffZ = boxSize[2] * 1.0f;
  416. btScalar offset = -stackSize * (diffZ * 2.0f) * 0.5f;
  417. btVector3 pos(0.0f, diffY, 0.0f);
  418. btTransform trans;
  419. trans.setIdentity();
  420. while(stackSize) {
  421. for(int i=0;i<stackSize;i++) {
  422. pos[2] = offset + (float)i * (diffZ * 2.0f);
  423. trans.setOrigin(offsetPosition + pos);
  424. createRigidBody(mass,trans,blockShape);
  425. }
  426. offset += diffZ;
  427. pos[1] += (diffY * 2.0f);
  428. stackSize--;
  429. }
  430. }
  431. void BenchmarkDemo::createPyramid(const btVector3& offsetPosition,int stackSize,const btVector3& boxSize)
  432. {
  433. btScalar space = 0.0001f;
  434. btVector3 pos(0.0f, boxSize[1], 0.0f);
  435. btBoxShape* blockShape = new btBoxShape(btVector3(boxSize[0]-COLLISION_RADIUS,boxSize[1]-COLLISION_RADIUS,boxSize[2]-COLLISION_RADIUS));
  436. btTransform trans;
  437. trans.setIdentity();
  438. btScalar mass = 1.f;
  439. btVector3 localInertia(0,0,0);
  440. blockShape->calculateLocalInertia(mass,localInertia);
  441. btScalar diffX = boxSize[0]*1.02f;
  442. btScalar diffY = boxSize[1]*1.02f;
  443. btScalar diffZ = boxSize[2]*1.02f;
  444. btScalar offsetX = -stackSize * (diffX * 2.0f + space) * 0.5f;
  445. btScalar offsetZ = -stackSize * (diffZ * 2.0f + space) * 0.5f;
  446. while(stackSize) {
  447. for(int j=0;j<stackSize;j++) {
  448. pos[2] = offsetZ + (float)j * (diffZ * 2.0f + space);
  449. for(int i=0;i<stackSize;i++) {
  450. pos[0] = offsetX + (float)i * (diffX * 2.0f + space);
  451. trans.setOrigin(offsetPosition + pos);
  452. this->createRigidBody(mass,trans,blockShape);
  453. }
  454. }
  455. offsetX += diffX;
  456. offsetZ += diffZ;
  457. pos[1] += (diffY * 2.0f + space);
  458. stackSize--;
  459. }
  460. }
  461. const btVector3 rotate( const btQuaternion& quat, const btVector3 & vec )
  462. {
  463. float tmpX, tmpY, tmpZ, tmpW;
  464. tmpX = ( ( ( quat.getW() * vec.getX() ) + ( quat.getY() * vec.getZ() ) ) - ( quat.getZ() * vec.getY() ) );
  465. tmpY = ( ( ( quat.getW() * vec.getY() ) + ( quat.getZ() * vec.getX() ) ) - ( quat.getX() * vec.getZ() ) );
  466. tmpZ = ( ( ( quat.getW() * vec.getZ() ) + ( quat.getX() * vec.getY() ) ) - ( quat.getY() * vec.getX() ) );
  467. tmpW = ( ( ( quat.getX() * vec.getX() ) + ( quat.getY() * vec.getY() ) ) + ( quat.getZ() * vec.getZ() ) );
  468. return btVector3(
  469. ( ( ( ( tmpW * quat.getX() ) + ( tmpX * quat.getW() ) ) - ( tmpY * quat.getZ() ) ) + ( tmpZ * quat.getY() ) ),
  470. ( ( ( ( tmpW * quat.getY() ) + ( tmpY * quat.getW() ) ) - ( tmpZ * quat.getX() ) ) + ( tmpX * quat.getZ() ) ),
  471. ( ( ( ( tmpW * quat.getZ() ) + ( tmpZ * quat.getW() ) ) - ( tmpX * quat.getY() ) ) + ( tmpY * quat.getX() ) )
  472. );
  473. }
  474. void BenchmarkDemo::createTowerCircle(const btVector3& offsetPosition,int stackSize,int rotSize,const btVector3& boxSize)
  475. {
  476. btBoxShape* blockShape = new btBoxShape(btVector3(boxSize[0]-COLLISION_RADIUS,boxSize[1]-COLLISION_RADIUS,boxSize[2]-COLLISION_RADIUS));
  477. btTransform trans;
  478. trans.setIdentity();
  479. float mass = 1.f;
  480. btVector3 localInertia(0,0,0);
  481. blockShape->calculateLocalInertia(mass,localInertia);
  482. float radius = 1.3f * rotSize * boxSize[0] / SIMD_PI;
  483. // create active boxes
  484. btQuaternion rotY(0,1,0,0);
  485. float posY = boxSize[1];
  486. for(int i=0;i<stackSize;i++) {
  487. for(int j=0;j<rotSize;j++) {
  488. trans.setOrigin(offsetPosition+ rotate(rotY,btVector3(0.0f , posY, radius)));
  489. trans.setRotation(rotY);
  490. createRigidBody(mass,trans,blockShape);
  491. rotY *= btQuaternion(btVector3(0,1,0),SIMD_PI/(rotSize*btScalar(0.5)));
  492. }
  493. posY += boxSize[1] * 2.0f;
  494. rotY *= btQuaternion(btVector3(0,1,0),SIMD_PI/(float)rotSize);
  495. }
  496. }
  497. void BenchmarkDemo::createTest2()
  498. {
  499. setCameraDistance(btScalar(50.));
  500. const float cubeSize = 1.0f;
  501. createPyramid(btVector3(-20.0f,0.0f,0.0f),12,btVector3(cubeSize,cubeSize,cubeSize));
  502. createWall(btVector3(-2.0f,0.0f,0.0f),12,btVector3(cubeSize,cubeSize,cubeSize));
  503. createWall(btVector3(4.0f,0.0f,0.0f),12,btVector3(cubeSize,cubeSize,cubeSize));
  504. createWall(btVector3(10.0f,0.0f,0.0f),12,btVector3(cubeSize,cubeSize,cubeSize));
  505. createTowerCircle(btVector3(25.0f,0.0f,0.0f),8,24,btVector3(cubeSize,cubeSize,cubeSize));
  506. }
  507. // Enrico: Shouldn't these three variables be real constants and not defines?
  508. #ifndef M_PI
  509. #define M_PI btScalar(3.14159265358979323846)
  510. #endif
  511. #ifndef M_PI_2
  512. #define M_PI_2 btScalar(1.57079632679489661923)
  513. #endif
  514. #ifndef M_PI_4
  515. #define M_PI_4 btScalar(0.785398163397448309616)
  516. #endif
  517. class RagDoll
  518. {
  519. enum
  520. {
  521. BODYPART_PELVIS = 0,
  522. BODYPART_SPINE,
  523. BODYPART_HEAD,
  524. BODYPART_LEFT_UPPER_LEG,
  525. BODYPART_LEFT_LOWER_LEG,
  526. BODYPART_RIGHT_UPPER_LEG,
  527. BODYPART_RIGHT_LOWER_LEG,
  528. BODYPART_LEFT_UPPER_ARM,
  529. BODYPART_LEFT_LOWER_ARM,
  530. BODYPART_RIGHT_UPPER_ARM,
  531. BODYPART_RIGHT_LOWER_ARM,
  532. BODYPART_COUNT
  533. };
  534. enum
  535. {
  536. JOINT_PELVIS_SPINE = 0,
  537. JOINT_SPINE_HEAD,
  538. JOINT_LEFT_HIP,
  539. JOINT_LEFT_KNEE,
  540. JOINT_RIGHT_HIP,
  541. JOINT_RIGHT_KNEE,
  542. JOINT_LEFT_SHOULDER,
  543. JOINT_LEFT_ELBOW,
  544. JOINT_RIGHT_SHOULDER,
  545. JOINT_RIGHT_ELBOW,
  546. JOINT_COUNT
  547. };
  548. btDynamicsWorld* m_ownerWorld;
  549. btCollisionShape* m_shapes[BODYPART_COUNT];
  550. btRigidBody* m_bodies[BODYPART_COUNT];
  551. btTypedConstraint* m_joints[JOINT_COUNT];
  552. btRigidBody* createRigidBody (btScalar mass, const btTransform& startTransform, btCollisionShape* shape)
  553. {
  554. bool isDynamic = (mass != 0.f);
  555. btVector3 localInertia(0,0,0);
  556. if (isDynamic)
  557. shape->calculateLocalInertia(mass,localInertia);
  558. btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
  559. btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,shape,localInertia);
  560. btRigidBody* body = new btRigidBody(rbInfo);
  561. m_ownerWorld->addRigidBody(body);
  562. return body;
  563. }
  564. public:
  565. RagDoll (btDynamicsWorld* ownerWorld, const btVector3& positionOffset,btScalar scale)
  566. : m_ownerWorld (ownerWorld)
  567. {
  568. // Setup the geometry
  569. m_shapes[BODYPART_PELVIS] = new btCapsuleShape(btScalar(0.15)*scale, btScalar(0.20)*scale);
  570. m_shapes[BODYPART_SPINE] = new btCapsuleShape(btScalar(0.15)*scale, btScalar(0.28)*scale);
  571. m_shapes[BODYPART_HEAD] = new btCapsuleShape(btScalar(0.10)*scale, btScalar(0.05)*scale);
  572. m_shapes[BODYPART_LEFT_UPPER_LEG] = new btCapsuleShape(btScalar(0.07)*scale, btScalar(0.45)*scale);
  573. m_shapes[BODYPART_LEFT_LOWER_LEG] = new btCapsuleShape(btScalar(0.05)*scale, btScalar(0.37)*scale);
  574. m_shapes[BODYPART_RIGHT_UPPER_LEG] = new btCapsuleShape(btScalar(0.07)*scale, btScalar(0.45)*scale);
  575. m_shapes[BODYPART_RIGHT_LOWER_LEG] = new btCapsuleShape(btScalar(0.05)*scale, btScalar(0.37)*scale);
  576. m_shapes[BODYPART_LEFT_UPPER_ARM] = new btCapsuleShape(btScalar(0.05)*scale, btScalar(0.33)*scale);
  577. m_shapes[BODYPART_LEFT_LOWER_ARM] = new btCapsuleShape(btScalar(0.04)*scale, btScalar(0.25)*scale);
  578. m_shapes[BODYPART_RIGHT_UPPER_ARM] = new btCapsuleShape(btScalar(0.05)*scale, btScalar(0.33)*scale);
  579. m_shapes[BODYPART_RIGHT_LOWER_ARM] = new btCapsuleShape(btScalar(0.04)*scale, btScalar(0.25)*scale);
  580. // Setup all the rigid bodies
  581. btTransform offset; offset.setIdentity();
  582. offset.setOrigin(positionOffset);
  583. btTransform transform;
  584. transform.setIdentity();
  585. transform.setOrigin(scale*btVector3(btScalar(0.), btScalar(1.), btScalar(0.)));
  586. m_bodies[BODYPART_PELVIS] = createRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_PELVIS]);
  587. transform.setIdentity();
  588. transform.setOrigin(scale*btVector3(btScalar(0.), btScalar(1.2), btScalar(0.)));
  589. m_bodies[BODYPART_SPINE] = createRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_SPINE]);
  590. transform.setIdentity();
  591. transform.setOrigin(scale*btVector3(btScalar(0.), btScalar(1.6), btScalar(0.)));
  592. m_bodies[BODYPART_HEAD] = createRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_HEAD]);
  593. transform.setIdentity();
  594. transform.setOrigin(scale*btVector3(btScalar(-0.18), btScalar(0.65), btScalar(0.)));
  595. m_bodies[BODYPART_LEFT_UPPER_LEG] = createRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_LEFT_UPPER_LEG]);
  596. transform.setIdentity();
  597. transform.setOrigin(scale*btVector3(btScalar(-0.18), btScalar(0.2), btScalar(0.)));
  598. m_bodies[BODYPART_LEFT_LOWER_LEG] = createRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_LEFT_LOWER_LEG]);
  599. transform.setIdentity();
  600. transform.setOrigin(scale*btVector3(btScalar(0.18), btScalar(0.65), btScalar(0.)));
  601. m_bodies[BODYPART_RIGHT_UPPER_LEG] = createRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_RIGHT_UPPER_LEG]);
  602. transform.setIdentity();
  603. transform.setOrigin(scale*btVector3(btScalar(0.18), btScalar(0.2), btScalar(0.)));
  604. m_bodies[BODYPART_RIGHT_LOWER_LEG] = createRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_RIGHT_LOWER_LEG]);
  605. transform.setIdentity();
  606. transform.setOrigin(scale*btVector3(btScalar(-0.35), btScalar(1.45), btScalar(0.)));
  607. transform.getBasis().setEulerZYX(0,0,M_PI_2);
  608. m_bodies[BODYPART_LEFT_UPPER_ARM] = createRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_LEFT_UPPER_ARM]);
  609. transform.setIdentity();
  610. transform.setOrigin(scale*btVector3(btScalar(-0.7), btScalar(1.45), btScalar(0.)));
  611. transform.getBasis().setEulerZYX(0,0,M_PI_2);
  612. m_bodies[BODYPART_LEFT_LOWER_ARM] = createRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_LEFT_LOWER_ARM]);
  613. transform.setIdentity();
  614. transform.setOrigin(scale*btVector3(btScalar(0.35), btScalar(1.45), btScalar(0.)));
  615. transform.getBasis().setEulerZYX(0,0,-M_PI_2);
  616. m_bodies[BODYPART_RIGHT_UPPER_ARM] = createRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_RIGHT_UPPER_ARM]);
  617. transform.setIdentity();
  618. transform.setOrigin(scale*btVector3(btScalar(0.7), btScalar(1.45), btScalar(0.)));
  619. transform.getBasis().setEulerZYX(0,0,-M_PI_2);
  620. m_bodies[BODYPART_RIGHT_LOWER_ARM] = createRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_RIGHT_LOWER_ARM]);
  621. // Setup some damping on the m_bodies
  622. for (int i = 0; i < BODYPART_COUNT; ++i)
  623. {
  624. m_bodies[i]->setDamping(btScalar(0.05), btScalar(0.85));
  625. m_bodies[i]->setDeactivationTime(btScalar(0.8));
  626. m_bodies[i]->setSleepingThresholds(btScalar(1.6), btScalar(2.5));
  627. }
  628. // Now setup the constraints
  629. btHingeConstraint* hingeC;
  630. btConeTwistConstraint* coneC;
  631. btTransform localA, localB;
  632. localA.setIdentity(); localB.setIdentity();
  633. localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.15), btScalar(0.)));
  634. localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.15), btScalar(0.)));
  635. hingeC = new btHingeConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_SPINE], localA, localB);
  636. hingeC->setLimit(btScalar(-M_PI_4), btScalar(M_PI_2));
  637. m_joints[JOINT_PELVIS_SPINE] = hingeC;
  638. m_ownerWorld->addConstraint(m_joints[JOINT_PELVIS_SPINE], true);
  639. localA.setIdentity(); localB.setIdentity();
  640. localA.getBasis().setEulerZYX(0,0,M_PI_2); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.30), btScalar(0.)));
  641. localB.getBasis().setEulerZYX(0,0,M_PI_2); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.14), btScalar(0.)));
  642. coneC = new btConeTwistConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_HEAD], localA, localB);
  643. coneC->setLimit(M_PI_4, M_PI_4, M_PI_2);
  644. m_joints[JOINT_SPINE_HEAD] = coneC;
  645. m_ownerWorld->addConstraint(m_joints[JOINT_SPINE_HEAD], true);
  646. localA.setIdentity(); localB.setIdentity();
  647. localA.getBasis().setEulerZYX(0,0,-M_PI_4*5); localA.setOrigin(scale*btVector3(btScalar(-0.18), btScalar(-0.10), btScalar(0.)));
  648. localB.getBasis().setEulerZYX(0,0,-M_PI_4*5); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.225), btScalar(0.)));
  649. coneC = new btConeTwistConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_LEFT_UPPER_LEG], localA, localB);
  650. coneC->setLimit(M_PI_4, M_PI_4, 0);
  651. m_joints[JOINT_LEFT_HIP] = coneC;
  652. m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_HIP], true);
  653. localA.setIdentity(); localB.setIdentity();
  654. localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.225), btScalar(0.)));
  655. localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.185), btScalar(0.)));
  656. hingeC = new btHingeConstraint(*m_bodies[BODYPART_LEFT_UPPER_LEG], *m_bodies[BODYPART_LEFT_LOWER_LEG], localA, localB);
  657. hingeC->setLimit(btScalar(0), btScalar(M_PI_2));
  658. m_joints[JOINT_LEFT_KNEE] = hingeC;
  659. m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_KNEE], true);
  660. localA.setIdentity(); localB.setIdentity();
  661. localA.getBasis().setEulerZYX(0,0,M_PI_4); localA.setOrigin(scale*btVector3(btScalar(0.18), btScalar(-0.10), btScalar(0.)));
  662. localB.getBasis().setEulerZYX(0,0,M_PI_4); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.225), btScalar(0.)));
  663. coneC = new btConeTwistConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_RIGHT_UPPER_LEG], localA, localB);
  664. coneC->setLimit(M_PI_4, M_PI_4, 0);
  665. m_joints[JOINT_RIGHT_HIP] = coneC;
  666. m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_HIP], true);
  667. localA.setIdentity(); localB.setIdentity();
  668. localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.225), btScalar(0.)));
  669. localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.185), btScalar(0.)));
  670. hingeC = new btHingeConstraint(*m_bodies[BODYPART_RIGHT_UPPER_LEG], *m_bodies[BODYPART_RIGHT_LOWER_LEG], localA, localB);
  671. hingeC->setLimit(btScalar(0), btScalar(M_PI_2));
  672. m_joints[JOINT_RIGHT_KNEE] = hingeC;
  673. m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_KNEE], true);
  674. localA.setIdentity(); localB.setIdentity();
  675. localA.getBasis().setEulerZYX(0,0,M_PI); localA.setOrigin(scale*btVector3(btScalar(-0.2), btScalar(0.15), btScalar(0.)));
  676. localB.getBasis().setEulerZYX(0,0,M_PI_2); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.18), btScalar(0.)));
  677. coneC = new btConeTwistConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_LEFT_UPPER_ARM], localA, localB);
  678. coneC->setLimit(M_PI_2, M_PI_2, 0);
  679. m_joints[JOINT_LEFT_SHOULDER] = coneC;
  680. m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_SHOULDER], true);
  681. localA.setIdentity(); localB.setIdentity();
  682. localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.18), btScalar(0.)));
  683. localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.14), btScalar(0.)));
  684. hingeC = new btHingeConstraint(*m_bodies[BODYPART_LEFT_UPPER_ARM], *m_bodies[BODYPART_LEFT_LOWER_ARM], localA, localB);
  685. hingeC->setLimit(btScalar(-M_PI_2), btScalar(0));
  686. m_joints[JOINT_LEFT_ELBOW] = hingeC;
  687. m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_ELBOW], true);
  688. localA.setIdentity(); localB.setIdentity();
  689. localA.getBasis().setEulerZYX(0,0,0); localA.setOrigin(scale*btVector3(btScalar(0.2), btScalar(0.15), btScalar(0.)));
  690. localB.getBasis().setEulerZYX(0,0,M_PI_2); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.18), btScalar(0.)));
  691. coneC = new btConeTwistConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_RIGHT_UPPER_ARM], localA, localB);
  692. coneC->setLimit(M_PI_2, M_PI_2, 0);
  693. m_joints[JOINT_RIGHT_SHOULDER] = coneC;
  694. m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_SHOULDER], true);
  695. localA.setIdentity(); localB.setIdentity();
  696. localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.18), btScalar(0.)));
  697. localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.14), btScalar(0.)));
  698. hingeC = new btHingeConstraint(*m_bodies[BODYPART_RIGHT_UPPER_ARM], *m_bodies[BODYPART_RIGHT_LOWER_ARM], localA, localB);
  699. hingeC->setLimit(btScalar(-M_PI_2), btScalar(0));
  700. m_joints[JOINT_RIGHT_ELBOW] = hingeC;
  701. m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_ELBOW], true);
  702. }
  703. virtual ~RagDoll ()
  704. {
  705. int i;
  706. // Remove all constraints
  707. for ( i = 0; i < JOINT_COUNT; ++i)
  708. {
  709. m_ownerWorld->removeConstraint(m_joints[i]);
  710. delete m_joints[i]; m_joints[i] = 0;
  711. }
  712. // Remove all bodies and shapes
  713. for ( i = 0; i < BODYPART_COUNT; ++i)
  714. {
  715. m_ownerWorld->removeRigidBody(m_bodies[i]);
  716. delete m_bodies[i]->getMotionState();
  717. delete m_bodies[i]; m_bodies[i] = 0;
  718. delete m_shapes[i]; m_shapes[i] = 0;
  719. }
  720. }
  721. };
  722. void BenchmarkDemo::createTest3()
  723. {
  724. setCameraDistance(btScalar(50.));
  725. int size = 16;
  726. float sizeX = 1.f;
  727. float sizeY = 1.f;
  728. //int rc=0;
  729. btScalar scale(3.5);
  730. btVector3 pos(0.0f, sizeY, 0.0f);
  731. while(size) {
  732. float offset = -size * (sizeX * 6.0f) * 0.5f;
  733. for(int i=0;i<size;i++) {
  734. pos[0] = offset + (float)i * (sizeX * 6.0f);
  735. RagDoll* ragDoll = new RagDoll (m_dynamicsWorld,pos,scale);
  736. m_ragdolls.push_back(ragDoll);
  737. }
  738. offset += sizeX;
  739. pos[1] += (sizeY * 7.0f);
  740. pos[2] -= sizeX * 2.0f;
  741. size--;
  742. }
  743. }
  744. void BenchmarkDemo::createTest4()
  745. {
  746. setCameraDistance(btScalar(50.));
  747. int size = 8;
  748. const float cubeSize = 1.5f;
  749. float spacing = cubeSize;
  750. btVector3 pos(0.0f, cubeSize * 2, 0.0f);
  751. float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f;
  752. btConvexHullShape* convexHullShape = new btConvexHullShape();
  753. btScalar scaling(1);
  754. convexHullShape->setLocalScaling(btVector3(scaling,scaling,scaling));
  755. for (int i=0;i<TaruVtxCount;i++)
  756. {
  757. btVector3 vtx(TaruVtx[i*3],TaruVtx[i*3+1],TaruVtx[i*3+2]);
  758. convexHullShape->addPoint(vtx*btScalar(1./scaling));
  759. }
  760. //this will enable polyhedral contact clipping, better quality, slightly slower
  761. //convexHullShape->initializePolyhedralFeatures();
  762. btTransform trans;
  763. trans.setIdentity();
  764. float mass = 1.f;
  765. btVector3 localInertia(0,0,0);
  766. convexHullShape->calculateLocalInertia(mass,localInertia);
  767. for(int k=0;k<15;k++) {
  768. for(int j=0;j<size;j++) {
  769. pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing);
  770. for(int i=0;i<size;i++) {
  771. pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing);
  772. trans.setOrigin(pos);
  773. createRigidBody(mass,trans,convexHullShape);
  774. }
  775. }
  776. offset -= 0.05f * spacing * (size-1);
  777. spacing *= 1.01f;
  778. pos[1] += (cubeSize * 2.0f + spacing);
  779. }
  780. }
  781. ///////////////////////////////////////////////////////////////////////////////
  782. // LargeMesh
  783. int LandscapeVtxCount[] = {
  784. Landscape01VtxCount,
  785. Landscape02VtxCount,
  786. Landscape03VtxCount,
  787. Landscape04VtxCount,
  788. Landscape05VtxCount,
  789. Landscape06VtxCount,
  790. Landscape07VtxCount,
  791. Landscape08VtxCount,
  792. };
  793. int LandscapeIdxCount[] = {
  794. Landscape01IdxCount,
  795. Landscape02IdxCount,
  796. Landscape03IdxCount,
  797. Landscape04IdxCount,
  798. Landscape05IdxCount,
  799. Landscape06IdxCount,
  800. Landscape07IdxCount,
  801. Landscape08IdxCount,
  802. };
  803. btScalar *LandscapeVtx[] = {
  804. Landscape01Vtx,
  805. Landscape02Vtx,
  806. Landscape03Vtx,
  807. Landscape04Vtx,
  808. Landscape05Vtx,
  809. Landscape06Vtx,
  810. Landscape07Vtx,
  811. Landscape08Vtx,
  812. };
  813. btScalar *LandscapeNml[] = {
  814. Landscape01Nml,
  815. Landscape02Nml,
  816. Landscape03Nml,
  817. Landscape04Nml,
  818. Landscape05Nml,
  819. Landscape06Nml,
  820. Landscape07Nml,
  821. Landscape08Nml,
  822. };
  823. btScalar* LandscapeTex[] = {
  824. Landscape01Tex,
  825. Landscape02Tex,
  826. Landscape03Tex,
  827. Landscape04Tex,
  828. Landscape05Tex,
  829. Landscape06Tex,
  830. Landscape07Tex,
  831. Landscape08Tex,
  832. };
  833. unsigned short *LandscapeIdx[] = {
  834. Landscape01Idx,
  835. Landscape02Idx,
  836. Landscape03Idx,
  837. Landscape04Idx,
  838. Landscape05Idx,
  839. Landscape06Idx,
  840. Landscape07Idx,
  841. Landscape08Idx,
  842. };
  843. void BenchmarkDemo::createLargeMeshBody()
  844. {
  845. btTransform trans;
  846. trans.setIdentity();
  847. for(int i=0;i<8;i++) {
  848. btTriangleIndexVertexArray* meshInterface = new btTriangleIndexVertexArray();
  849. btIndexedMesh part;
  850. part.m_vertexBase = (const unsigned char*)LandscapeVtx[i];
  851. part.m_vertexStride = sizeof(btScalar) * 3;
  852. part.m_numVertices = LandscapeVtxCount[i];
  853. part.m_triangleIndexBase = (const unsigned char*)LandscapeIdx[i];
  854. part.m_triangleIndexStride = sizeof( short) * 3;
  855. part.m_numTriangles = LandscapeIdxCount[i]/3;
  856. part.m_indexType = PHY_SHORT;
  857. meshInterface->addIndexedMesh(part,PHY_SHORT);
  858. bool useQuantizedAabbCompression = true;
  859. btBvhTriangleMeshShape* trimeshShape = new btBvhTriangleMeshShape(meshInterface,useQuantizedAabbCompression);
  860. btVector3 localInertia(0,0,0);
  861. trans.setOrigin(btVector3(0,-25,0));
  862. btRigidBody* body = createRigidBody(0,trans,trimeshShape);
  863. body->setFriction (btScalar(0.9));
  864. }
  865. }
  866. void BenchmarkDemo::createTest5()
  867. {
  868. setCameraDistance(btScalar(250.));
  869. btVector3 boxSize(1.5f,1.5f,1.5f);
  870. float boxMass = 1.0f;
  871. float sphereRadius = 1.5f;
  872. float sphereMass = 1.0f;
  873. float capsuleHalf = 2.0f;
  874. float capsuleRadius = 1.0f;
  875. float capsuleMass = 1.0f;
  876. {
  877. int size = 10;
  878. int height = 10;
  879. const float cubeSize = boxSize[0];
  880. float spacing = 2.0f;
  881. btVector3 pos(0.0f, 20.0f, 0.0f);
  882. float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f;
  883. int numBodies = 0;
  884. for(int k=0;k<height;k++) {
  885. for(int j=0;j<size;j++) {
  886. pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing);
  887. for(int i=0;i<size;i++) {
  888. pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing);
  889. btVector3 bpos = btVector3(0,25,0) + btVector3(5.0f,1.0f,5.0f)*pos;
  890. int idx = rand() % 9;
  891. btTransform trans;
  892. trans.setIdentity();
  893. trans.setOrigin(bpos);
  894. switch(idx) {
  895. case 0:case 1:case 2:
  896. {
  897. float r = 0.5f * (idx+1);
  898. btBoxShape* boxShape = new btBoxShape(boxSize*r);
  899. createRigidBody(boxMass*r,trans,boxShape);
  900. }
  901. break;
  902. case 3:case 4:case 5:
  903. {
  904. float r = 0.5f * (idx-3+1);
  905. btSphereShape* sphereShape = new btSphereShape(sphereRadius*r);
  906. createRigidBody(sphereMass*r,trans,sphereShape);
  907. }
  908. break;
  909. case 6:case 7:case 8:
  910. {
  911. float r = 0.5f * (idx-6+1);
  912. btCapsuleShape* capsuleShape = new btCapsuleShape(capsuleRadius*r,capsuleHalf*r);
  913. createRigidBody(capsuleMass*r,trans,capsuleShape);
  914. }
  915. break;
  916. }
  917. numBodies++;
  918. }
  919. }
  920. offset -= 0.05f * spacing * (size-1);
  921. spacing *= 1.1f;
  922. pos[1] += (cubeSize * 2.0f + spacing);
  923. }
  924. }
  925. createLargeMeshBody();
  926. }
  927. void BenchmarkDemo::createTest6()
  928. {
  929. setCameraDistance(btScalar(250.));
  930. btVector3 boxSize(1.5f,1.5f,1.5f);
  931. btConvexHullShape* convexHullShape = new btConvexHullShape();
  932. for (int i=0;i<TaruVtxCount;i++)
  933. {
  934. btVector3 vtx(TaruVtx[i*3],TaruVtx[i*3+1],TaruVtx[i*3+2]);
  935. convexHullShape->addPoint(vtx);
  936. }
  937. btTransform trans;
  938. trans.setIdentity();
  939. float mass = 1.f;
  940. btVector3 localInertia(0,0,0);
  941. convexHullShape->calculateLocalInertia(mass,localInertia);
  942. {
  943. int size = 10;
  944. int height = 10;
  945. const float cubeSize = boxSize[0];
  946. float spacing = 2.0f;
  947. btVector3 pos(0.0f, 20.0f, 0.0f);
  948. float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f;
  949. for(int k=0;k<height;k++) {
  950. for(int j=0;j<size;j++) {
  951. pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing);
  952. for(int i=0;i<size;i++) {
  953. pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing);
  954. btVector3 bpos = btVector3(0,25,0) + btVector3(5.0f,1.0f,5.0f)*pos;
  955. trans.setOrigin(bpos);
  956. createRigidBody(mass,trans,convexHullShape);
  957. }
  958. }
  959. offset -= 0.05f * spacing * (size-1);
  960. spacing *= 1.1f;
  961. pos[1] += (cubeSize * 2.0f + spacing);
  962. }
  963. }
  964. createLargeMeshBody();
  965. }
  966. void BenchmarkDemo::initRays()
  967. {
  968. raycastBar = btRaycastBar2 (2500.0, 0,50.0,m_guiHelper);
  969. }
  970. void BenchmarkDemo::castRays()
  971. {
  972. raycastBar.cast (m_dynamicsWorld);
  973. }
  974. void BenchmarkDemo::createTest7()
  975. {
  976. createTest6();
  977. setCameraDistance(btScalar(150.));
  978. initRays();
  979. }
  980. void BenchmarkDemo::exitPhysics()
  981. {
  982. int i;
  983. for (i=0;i<m_ragdolls.size();i++)
  984. {
  985. RagDoll* doll = m_ragdolls[i];
  986. delete doll;
  987. }
  988. m_ragdolls.clear();
  989. CommonRigidBodyBase::exitPhysics();
  990. }
  991. CommonExampleInterface* BenchmarkCreateFunc(struct CommonExampleOptions& options)
  992. {
  993. return new BenchmarkDemo(options.m_guiHelper,options.m_option);
  994. }