123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340 |
- //
- // Big Vector and Sparse Matrix Classes
- //
- // (c) S Melax 2006
- //
- // The focus is on 3D applications, so
- // the big vector is an array of float3s
- // and the matrix class uses 3x3 blocks.
- //
- // This file includes both:
- // - basic non-optimized version
- // - an expression optimized version
- //
- // Optimized Expressions
- //
- // We want to write sweet looking code such as V=As+Bt with big vectors.
- // However, we dont want the extra overheads with allocating memory for temps and excessing copying.
- // Instead of a full Template Metaprogramming approach, we explicitly write
- // classes to specifically handle all the expressions we are likely to use.
- // Most applicable lines of code will be of the same handful of basic forms,
- // but with different parameters for the operands.
- // In the future, if we ever need a longer expression with more operands,
- // then we will just add whatever additional building blocks that are necessary - not a big deal.
- // This approach is much simpler to develop, debug and optimize (restrict keyword, simd etc)
- // than template metaprogramming is. We do not rely on the implementation
- // of a particular compiler to be able to expand extensive nested inline codes.
- // Additionally, we reliably get our optimizations even within a debug build.
- // Therefore we believe that our Optimized Expressions
- // are a good compromise that give us the best of both worlds.
- // The code within those important algorithms, which use this library,
- // can now remain clean and readable yet still execute quickly.
- //
- #ifndef SM_VEC3N_H
- #define SM_VEC3N_H
- #include "vecmath.h"
- #include "array.h"
- //#include <malloc.h>
- //template <class T> void * vec4<T>::operator new[](size_t n){ return _mm_malloc(n,64); }
- //template <class T> void vec4<T>::operator delete[](void *a) { _mm_free(a); }
- struct HalfConstraint {
- float3 n;int vi;
- float s,t;
- HalfConstraint(const float3& _n,int _vi,float _t):n(_n),vi(_vi),s(0),t(_t){}
- HalfConstraint():vi(-1){}
- };
- class float3Nx3N
- {
- public:
- class Block
- {
- public:
-
- float3x3 m;
- int r,c;
- float unused[16];
-
-
- Block(){}
- Block(short _r,short _c):r(_r),c(_c){m.x=m.y=m.z=float3(0,0,0);}
- };
- Array<Block> blocks; // the first n blocks use as the diagonal.
- int n;
- void Zero();
- void InitDiagonal(float d);
- void Identity(){InitDiagonal(1.0f);}
- float3Nx3N():n(0){}
- float3Nx3N(int _n):n(_n) {for(int i=0;i<n;i++) blocks.Add(Block((short)i,(short)i));}
- template<class E> float3Nx3N &operator= (const E& expression) {expression.evalequals(*this);return *this;}
- template<class E> float3Nx3N &operator+=(const E& expression) {expression.evalpluseq(*this);return *this;}
- template<class E> float3Nx3N &operator-=(const E& expression) {expression.evalmnuseq(*this);return *this;}
- };
- class float3N: public Array<float3>
- {
- public:
- float3N(int _count=0)
- {
- SetSize(_count);
- }
- void Zero();
- void Init(const float3 &v); // sets each subvector to v
- template<class E> float3N &operator= (const E& expression) {expression.evalequals(*this);return *this;}
- template<class E> float3N &operator+=(const E& expression) {expression.evalpluseq(*this);return *this;}
- template<class E> float3N &operator-=(const E& expression) {expression.evalmnuseq(*this);return *this;}
- float3N &operator=( const float3N &V) { this->copy(V); return *this;}
- };
- int ConjGradient(float3N &X, float3Nx3N &A, float3N &B);
- int ConjGradientFiltered(float3N &X, const float3Nx3N &A, const float3N &B,const float3Nx3N &S,Array<HalfConstraint> &H);
- int ConjGradientFiltered(float3N &X, const float3Nx3N &A, const float3N &B,const float3Nx3N &S);
- inline float3N& Mul(float3N &r,const float3Nx3N &m, const float3N &v)
- {
- int i;
- for(i=0;i<r.count;i++) r[i]=float3(0,0,0);
- for(i=0;i<m.blocks.count;i++)
- {
- r[m.blocks[i].r] += m.blocks[i].m * v[m.blocks[i].c];
- }
- return r;
- }
- inline float dot(const float3N &a,const float3N &b)
- {
- float d=0;
- for(int i=0;i<a.count;i++)
- {
- d+= dot(a[i],b[i]);
- }
- return d;
- }
- inline void float3Nx3N::Zero()
- {
- for(int i=0;i<blocks.count;i++)
- {
- blocks[i].m = float3x3(0,0,0,0,0,0,0,0,0);
- }
- }
- inline void float3Nx3N::InitDiagonal(float d)
- {
- for(int i=0;i<blocks.count;i++)
- {
- blocks[i].m = (blocks[i].c==blocks[i].r) ? float3x3(d,0,0,0,d,0,0,0,d) : float3x3(0,0,0,0,0,0,0,0,0);
- }
- }
- inline void float3N::Zero()
- {
- for(int i=0;i<count;i++)
- {
- element[i] = float3(0,0,0);
- }
- }
- inline void float3N::Init(const float3 &v)
- {
- for(int i=0;i<count;i++)
- {
- element[i] = v;
- }
- }
- #ifdef WE_LIKE_SLOW_CODE
- // Unoptimized Slow Basic Version of big vector operators.
- // Uses typical implmentation for operators +/-*=
- // These operators cause lots of unnecessary construction, memory allocation, and copying.
- inline float3N operator +(const float3N &a,const float3N &b)
- {
- float3N r(a.count);
- for(int i=0;i<a.count;i++) r[i]=a[i]+b[i];
- return r;
- }
- inline float3N operator *(const float3N &a,const float &s)
- {
- float3N r(a.count);
- for(int i=0;i<a.count;i++) r[i]=a[i]*s;
- return r;
- }
- inline float3N operator /(const float3N &a,const float &s)
- {
- float3N r(a.count);
- return Mul(r,a, 1.0f/s );
- }
- inline float3N operator -(const float3N &a,const float3N &b)
- {
- float3N r(a.count);
- for(int i=0;i<a.count;i++) r[i]=a[i]-b[i];
- return r;
- }
- inline float3N operator -(const float3N &a)
- {
- float3N r(a.count);
- for(int i=0;i<a.count;i++) r[i]=-a[i];
- return r;
- }
- inline float3N operator *(const float3Nx3N &m,const float3N &v)
- {
- float3N r(v.count);
- return Mul(r,m,v);
- }
- inline float3N &operator-=(float3N &A, const float3N &B)
- {
- assert(A.count==B.count);
- for(int i=0;i<A.count;i++) A[i] -= B[i];
- return A;
- }
- inline float3N &operator+=(float3N &A, const float3N &B)
- {
- assert(A.count==B.count);
- for(int i=0;i<A.count;i++) A[i] += B[i];
- return A;
- }
- #else
- // Optimized Expressions
- class exVneg
- {
- public:
- const float3N &v;
- exVneg(const float3N &_v): v(_v){}
- void evalequals(float3N &r)const { for(int i=0;i<v.count;i++) r[i] =-v[i];}
- void evalpluseq(float3N &r)const { for(int i=0;i<v.count;i++) r[i]+=-v[i];}
- void evalmnuseq(float3N &r)const { for(int i=0;i<v.count;i++) r[i]-=-v[i];}
- };
- class exVaddV
- {
- public:
- const float3N &a;
- const float3N &b;
- exVaddV(const float3N &_a,const float3N &_b): a(_a),b(_b){}
- void evalequals(float3N &r)const { for(int i=0;i<a.count;i++) r[i] =a[i]+b[i];}
- void evalpluseq(float3N &r)const { for(int i=0;i<a.count;i++) r[i]+=a[i]+b[i];}
- void evalmnuseq(float3N &r)const { for(int i=0;i<a.count;i++) r[i]-=a[i]+b[i];}
- };
- class exVsubV
- {
- public:
- const float3N &a;
- const float3N &b;
- exVsubV(const float3N &_a,const float3N &_b): a(_a),b(_b){}
- void evalequals(float3N &r)const { for(int i=0;i<a.count;i++) r[i] =a[i]-b[i];}
- void evalpluseq(float3N &r)const { for(int i=0;i<a.count;i++) r[i]+=a[i]-b[i];}
- void evalmnuseq(float3N &r)const { for(int i=0;i<a.count;i++) r[i]-=a[i]-b[i];}
- };
- class exVs
- {
- public:
- const float3N &v;
- const float s;
- exVs(const float3N &_v,const float &_s): v(_v),s(_s){}
- void evalequals(float3N &r)const { for(int i=0;i<v.count;i++) r[i] =v[i]*s;}
- void evalpluseq(float3N &r)const { for(int i=0;i<v.count;i++) r[i]+=v[i]*s;}
- void evalmnuseq(float3N &r)const { for(int i=0;i<v.count;i++) r[i]-=v[i]*s;}
- };
- class exAsaddB
- {
- public:
- const float3N &a;
- const float3N &b;
- const float s;
- exAsaddB(const float3N &_a,const float &_s,const float3N &_b): a(_a),s(_s),b(_b){}
- void evalequals(float3N &r)const { for(int i=0;i<a.count;i++) r[i] =a[i]*s+b[i];}
- void evalpluseq(float3N &r)const { for(int i=0;i<a.count;i++) r[i]+=a[i]*s+b[i];}
- void evalmnuseq(float3N &r)const { for(int i=0;i<a.count;i++) r[i]-=a[i]*s+b[i];}
- };
- class exAsaddBt
- {
- public:
- const float3N &a;
- const float3N &b;
- const float s;
- const float t;
- exAsaddBt(const float3N &_a,const float &_s,const float3N &_b,const float &_t): a(_a),s(_s),b(_b),t(_t){}
- void evalequals(float3N &r)const { for(int i=0;i<a.count;i++) r[i] =a[i]*s+b[i]*t;}
- void evalpluseq(float3N &r)const { for(int i=0;i<a.count;i++) r[i]+=a[i]*s+b[i]*t;}
- void evalmnuseq(float3N &r)const { for(int i=0;i<a.count;i++) r[i]-=a[i]*s+b[i]*t;}
- };
- class exMv
- {
- public:
- const float3Nx3N &m;
- const float3N &v;
- exMv(const float3Nx3N &_m,const float3N &_v): m(_m),v(_v){}
- void evalequals(float3N &r)const { Mul(r,m,v);}
- };
- class exMs
- {
- public:
- const float3Nx3N &m;
- const float s;
- exMs(const float3Nx3N &_m,const float &_s): m(_m),s(_s){}
- void evalequals(float3Nx3N &r)const { for(int i=0;i<r.blocks.count;i++) r.blocks[i].m = m.blocks[i].m*s;}
- void evalpluseq(float3Nx3N &r)const { for(int i=0;i<r.blocks.count;i++) r.blocks[i].m += m.blocks[i].m*s;}
- void evalmnuseq(float3Nx3N &r)const { for(int i=0;i<r.blocks.count;i++) r.blocks[i].m -= m.blocks[i].m*s;}
- };
- class exMAsMBt
- {
- public:
- const float3Nx3N &a;
- const float s;
- const float3Nx3N &b;
- const float t;
- exMAsMBt(const float3Nx3N &_a,const float &_s,const float3Nx3N &_b,const float &_t): a(_a),s(_s),b(_b),t(_t){}
- void evalequals(float3Nx3N &r)const { for(int i=0;i<r.blocks.count;i++) r.blocks[i].m = a.blocks[i].m*s + b.blocks[i].m*t;}
- void evalpluseq(float3Nx3N &r)const { for(int i=0;i<r.blocks.count;i++) r.blocks[i].m += a.blocks[i].m*s + b.blocks[i].m*t;}
- void evalmnuseq(float3Nx3N &r)const { for(int i=0;i<r.blocks.count;i++) r.blocks[i].m -= a.blocks[i].m*s + b.blocks[i].m*t;}
- };
- inline exVaddV operator +(const float3N &a,const float3N &b) {return exVaddV(a,b);}
- inline exVsubV operator +(const exVneg &E,const float3N &b) {return exVsubV(b,E.v);}
- inline exVsubV operator -(const float3N &a,const float3N &b) {return exVsubV(a,b);}
- inline exVs operator *(const float3N &V,const float &s) {return exVs(V,s); }
- inline exVs operator *(const exVs &E,const float &s) {return exVs(E.v,E.s*s); }
- inline exAsaddB operator +(const exVs &E,const float3N &b) {return exAsaddB(E.v, E.s,b);}
- inline exAsaddB operator +(const float3N &b,const exVs &E) {return exAsaddB(E.v, E.s,b);}
- inline exAsaddB operator -(const float3N &b,const exVs &E) {return exAsaddB(E.v,-E.s,b);}
- inline exAsaddBt operator +(const exVs &Ea,const exVs &Eb) {return exAsaddBt(Ea.v,Ea.s,Eb.v, Eb.s);}
- inline exAsaddBt operator -(const exVs &Ea,const exVs &Eb) {return exAsaddBt(Ea.v,Ea.s,Eb.v,-Eb.s);}
- inline exMv operator *(const float3Nx3N &m,const float3N &v) {return exMv(m,v); }
- inline exMs operator *(const exMs &E,const float &s) {return exMs(E.m,E.s*s); }
- inline exMs operator *(const float3Nx3N &m,const float &s) {return exMs(m,s); }
- inline exMAsMBt operator +(const exMs &Ea,const exMs &Eb) {return exMAsMBt(Ea.m,Ea.s, Eb.m,Eb.s);}
- inline exMAsMBt operator -(const exMs &Ea,const exMs &Eb) {return exMAsMBt(Ea.m,Ea.s, Eb.m,-Eb.s);}
- #endif
- #endif
|