Hinge2Vehicle.cpp 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178
  1. /*
  2. Bullet Continuous Collision Detection and Physics Library
  3. Copyright (c) 2003-2015 Erwin Coumans http://bulletphysics.org
  4. This software is provided 'as-is', without any express or implied warranty.
  5. In no event will the authors be held liable for any damages arising from the use of this software.
  6. Permission is granted to anyone to use this software for any purpose,
  7. including commercial applications, and to alter it and redistribute it freely,
  8. subject to the following restrictions:
  9. 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
  10. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
  11. 3. This notice may not be removed or altered from any source distribution.
  12. */
  13. ///May 2015: implemented the wheels using the Hinge2Constraint
  14. ///todo: add controls for the motors etc.
  15. #include "Hinge2Vehicle.h"
  16. #include "btBulletDynamicsCommon.h"
  17. #include "BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h"
  18. #include "BulletDynamics/MLCPSolvers/btDantzigSolver.h"
  19. #include "BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h"
  20. #include "BulletDynamics/MLCPSolvers/btMLCPSolver.h"
  21. class btVehicleTuning;
  22. class btCollisionShape;
  23. #include "BulletDynamics/ConstraintSolver/btHingeConstraint.h"
  24. #include "BulletDynamics/ConstraintSolver/btSliderConstraint.h"
  25. #include "../CommonInterfaces/CommonExampleInterface.h"
  26. #include "LinearMath/btAlignedObjectArray.h"
  27. #include "btBulletCollisionCommon.h"
  28. #include "../CommonInterfaces/CommonGUIHelperInterface.h"
  29. #include "../CommonInterfaces/CommonRenderInterface.h"
  30. #include "../CommonInterfaces/CommonWindowInterface.h"
  31. #include "../CommonInterfaces/CommonGraphicsAppInterface.h"
  32. #include "../CommonInterfaces/CommonRigidBodyBase.h"
  33. class Hinge2Vehicle : public CommonRigidBodyBase
  34. {
  35. public:
  36. /* extra stuff*/
  37. btVector3 m_cameraPosition;
  38. btRigidBody* m_carChassis;
  39. btRigidBody* localCreateRigidBody(btScalar mass, const btTransform& worldTransform, btCollisionShape* colSape);
  40. GUIHelperInterface* m_guiHelper;
  41. int m_wheelInstances[4];
  42. //----------------------------
  43. btRigidBody* m_liftBody;
  44. btVector3 m_liftStartPos;
  45. btHingeConstraint* m_liftHinge;
  46. btRigidBody* m_forkBody;
  47. btVector3 m_forkStartPos;
  48. btSliderConstraint* m_forkSlider;
  49. btRigidBody* m_loadBody;
  50. btVector3 m_loadStartPos;
  51. void lockLiftHinge(void);
  52. void lockForkSlider(void);
  53. bool m_useDefaultCamera;
  54. //----------------------------
  55. class btTriangleIndexVertexArray* m_indexVertexArrays;
  56. btVector3* m_vertices;
  57. btCollisionShape* m_wheelShape;
  58. float m_cameraHeight;
  59. float m_minCameraDistance;
  60. float m_maxCameraDistance;
  61. Hinge2Vehicle(struct GUIHelperInterface* helper);
  62. virtual ~Hinge2Vehicle();
  63. virtual void stepSimulation(float deltaTime);
  64. virtual void resetForklift();
  65. virtual void clientResetScene();
  66. virtual void displayCallback();
  67. virtual void specialKeyboard(int key, int x, int y);
  68. virtual void specialKeyboardUp(int key, int x, int y);
  69. virtual bool keyboardCallback(int key, int state);
  70. virtual void renderScene();
  71. virtual void physicsDebugDraw(int debugFlags);
  72. void initPhysics();
  73. void exitPhysics();
  74. virtual void resetCamera()
  75. {
  76. float dist = 8;
  77. float pitch = -45;
  78. float yaw = 32;
  79. float targetPos[3]={-0.33,-0.72,4.5};
  80. m_guiHelper->resetCamera(dist,pitch,yaw,targetPos[0],targetPos[1],targetPos[2]);
  81. }
  82. /*static DemoApplication* Create()
  83. {
  84. Hinge2Vehicle* demo = new Hinge2Vehicle();
  85. demo->myinit();
  86. demo->initPhysics();
  87. return demo;
  88. }
  89. */
  90. };
  91. static btScalar maxMotorImpulse = 4000.f;
  92. //the sequential impulse solver has difficulties dealing with large mass ratios (differences), between loadMass and the fork parts
  93. static btScalar loadMass = 350.f;//
  94. //btScalar loadMass = 10.f;//this should work fine for the SI solver
  95. #ifndef M_PI
  96. #define M_PI 3.14159265358979323846
  97. #endif
  98. #ifndef M_PI_2
  99. #define M_PI_2 1.57079632679489661923
  100. #endif
  101. #ifndef M_PI_4
  102. #define M_PI_4 0.785398163397448309616
  103. #endif
  104. static int rightIndex = 0;
  105. static int upIndex = 1;
  106. static int forwardIndex = 2;
  107. static btVector3 wheelDirectionCS0(0,-1,0);
  108. static btVector3 wheelAxleCS(-1,0,0);
  109. static bool useMCLPSolver = false;//true;
  110. #include <stdio.h> //printf debugging
  111. #include "Hinge2Vehicle.h"
  112. static const int maxProxies = 32766;
  113. static const int maxOverlap = 65535;
  114. static float gEngineForce = 0.f;
  115. static float defaultBreakingForce = 10.f;
  116. static float gBreakingForce = 100.f;
  117. static float maxEngineForce = 1000.f;//this should be engine/velocity dependent
  118. static float maxBreakingForce = 100.f;
  119. static float gVehicleSteering = 0.f;
  120. static float steeringIncrement = 0.04f;
  121. static float steeringClamp = 0.3f;
  122. static float wheelRadius = 0.5f;
  123. static float wheelWidth = 0.4f;
  124. static float wheelFriction = 1000;//BT_LARGE_FLOAT;
  125. static float suspensionStiffness = 20.f;
  126. static float suspensionDamping = 2.3f;
  127. static float suspensionCompression = 4.4f;
  128. static float rollInfluence = 0.1f;//1.0f;
  129. static btScalar suspensionRestLength(0.6);
  130. #define CUBE_HALF_EXTENTS 1
  131. ////////////////////////////////////
  132. Hinge2Vehicle::Hinge2Vehicle(struct GUIHelperInterface* helper)
  133. :CommonRigidBodyBase(helper),
  134. m_guiHelper(helper),
  135. m_carChassis(0),
  136. m_liftBody(0),
  137. m_forkBody(0),
  138. m_loadBody(0),
  139. m_indexVertexArrays(0),
  140. m_vertices(0),
  141. m_cameraHeight(4.f),
  142. m_minCameraDistance(3.f),
  143. m_maxCameraDistance(10.f)
  144. {
  145. helper->setUpAxis(1);
  146. m_wheelShape = 0;
  147. m_cameraPosition = btVector3(30,30,30);
  148. m_useDefaultCamera = false;
  149. // setTexturing(true);
  150. // setShadows(true);
  151. }
  152. void Hinge2Vehicle::exitPhysics()
  153. {
  154. //cleanup in the reverse order of creation/initialization
  155. //remove the rigidbodies from the dynamics world and delete them
  156. int i;
  157. for (i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
  158. {
  159. btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
  160. btRigidBody* body = btRigidBody::upcast(obj);
  161. if (body && body->getMotionState())
  162. {
  163. while (body->getNumConstraintRefs())
  164. {
  165. btTypedConstraint* constraint = body->getConstraintRef(0);
  166. m_dynamicsWorld->removeConstraint(constraint);
  167. delete constraint;
  168. }
  169. delete body->getMotionState();
  170. m_dynamicsWorld->removeRigidBody(body);
  171. } else
  172. {
  173. m_dynamicsWorld->removeCollisionObject( obj );
  174. }
  175. delete obj;
  176. }
  177. //delete collision shapes
  178. for (int j=0;j<m_collisionShapes.size();j++)
  179. {
  180. btCollisionShape* shape = m_collisionShapes[j];
  181. delete shape;
  182. }
  183. m_collisionShapes.clear();
  184. delete m_indexVertexArrays;
  185. delete m_vertices;
  186. //delete dynamics world
  187. delete m_dynamicsWorld;
  188. m_dynamicsWorld=0;
  189. delete m_wheelShape;
  190. m_wheelShape=0;
  191. //delete solver
  192. delete m_solver;
  193. m_solver=0;
  194. //delete broadphase
  195. delete m_broadphase;
  196. m_broadphase=0;
  197. //delete dispatcher
  198. delete m_dispatcher;
  199. m_dispatcher=0;
  200. delete m_collisionConfiguration;
  201. m_collisionConfiguration=0;
  202. }
  203. Hinge2Vehicle::~Hinge2Vehicle()
  204. {
  205. //exitPhysics();
  206. }
  207. void Hinge2Vehicle::initPhysics()
  208. {
  209. m_guiHelper->setUpAxis(1);
  210. btCollisionShape* groundShape = new btBoxShape(btVector3(50,3,50));
  211. m_collisionShapes.push_back(groundShape);
  212. m_collisionConfiguration = new btDefaultCollisionConfiguration();
  213. m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
  214. btVector3 worldMin(-1000,-1000,-1000);
  215. btVector3 worldMax(1000,1000,1000);
  216. m_broadphase = new btAxisSweep3(worldMin,worldMax);
  217. if (useMCLPSolver)
  218. {
  219. btDantzigSolver* mlcp = new btDantzigSolver();
  220. //btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel;
  221. btMLCPSolver* sol = new btMLCPSolver(mlcp);
  222. m_solver = sol;
  223. } else
  224. {
  225. m_solver = new btSequentialImpulseConstraintSolver();
  226. }
  227. m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
  228. if (useMCLPSolver)
  229. {
  230. m_dynamicsWorld ->getSolverInfo().m_minimumSolverBatchSize = 1;//for direct solver it is better to have a small A matrix
  231. } else
  232. {
  233. m_dynamicsWorld ->getSolverInfo().m_minimumSolverBatchSize = 128;//for direct solver, it is better to solve multiple objects together, small batches have high overhead
  234. }
  235. m_dynamicsWorld->getSolverInfo().m_numIterations = 100;
  236. m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
  237. //m_dynamicsWorld->setGravity(btVector3(0,0,0));
  238. btTransform tr;
  239. tr.setIdentity();
  240. tr.setOrigin(btVector3(0,-3,0));
  241. //either use heightfield or triangle mesh
  242. //create ground object
  243. localCreateRigidBody(0,tr,groundShape);
  244. btCollisionShape* chassisShape = new btBoxShape(btVector3(1.f,0.5f,2.f));
  245. m_collisionShapes.push_back(chassisShape);
  246. btCompoundShape* compound = new btCompoundShape();
  247. m_collisionShapes.push_back(compound);
  248. btTransform localTrans;
  249. localTrans.setIdentity();
  250. //localTrans effectively shifts the center of mass with respect to the chassis
  251. localTrans.setOrigin(btVector3(0,1,0));
  252. compound->addChildShape(localTrans,chassisShape);
  253. {
  254. btCollisionShape* suppShape = new btBoxShape(btVector3(0.5f,0.1f,0.5f));
  255. btTransform suppLocalTrans;
  256. suppLocalTrans.setIdentity();
  257. //localTrans effectively shifts the center of mass with respect to the chassis
  258. suppLocalTrans.setOrigin(btVector3(0,1.0,2.5));
  259. compound->addChildShape(suppLocalTrans, suppShape);
  260. }
  261. tr.setOrigin(btVector3(0,0.f,0));
  262. btScalar chassisMass = 800;
  263. m_carChassis = localCreateRigidBody(chassisMass,tr,compound);//chassisShape);
  264. //m_carChassis->setDamping(0.2,0.2);
  265. //m_wheelShape = new btCylinderShapeX(btVector3(wheelWidth,wheelRadius,wheelRadius));
  266. m_wheelShape = new btCylinderShapeX(btVector3(wheelWidth,wheelRadius,wheelRadius));
  267. const float position[4]={0,10,10,0};
  268. const float quaternion[4]={0,0,0,1};
  269. const float color[4]={0,1,0,1};
  270. const float scaling[4] = {1,1,1,1};
  271. btVector3 wheelPos[4] = {
  272. btVector3(btScalar(-1.), btScalar(-0.25), btScalar(1.25)),
  273. btVector3(btScalar(1.), btScalar(-0.25), btScalar(1.25)),
  274. btVector3(btScalar(1.), btScalar(-0.25), btScalar(-1.25)),
  275. btVector3(btScalar(-1.), btScalar(-0.25), btScalar(-1.25))
  276. };
  277. for (int i=0;i<4;i++)
  278. {
  279. // create a Hinge2 joint
  280. // create two rigid bodies
  281. // static bodyA (parent) on top:
  282. btRigidBody* pBodyA = this->m_carChassis;//m_chassis;//createRigidBody( 0.0, tr, m_wheelShape);
  283. pBodyA->setActivationState(DISABLE_DEACTIVATION);
  284. // dynamic bodyB (child) below it :
  285. btTransform tr;
  286. tr.setIdentity();
  287. tr.setOrigin(wheelPos[i]);
  288. btRigidBody* pBodyB = createRigidBody(10.0, tr, m_wheelShape);
  289. pBodyB->setFriction(1110);
  290. pBodyB->setActivationState(DISABLE_DEACTIVATION);
  291. // add some data to build constraint frames
  292. btVector3 parentAxis(0.f, 1.f, 0.f);
  293. btVector3 childAxis(1.f, 0.f, 0.f);
  294. btVector3 anchor = tr.getOrigin();//(0.f, 0.f, 0.f);
  295. btHinge2Constraint* pHinge2 = new btHinge2Constraint(*pBodyA, *pBodyB, anchor, parentAxis, childAxis);
  296. //m_guiHelper->get2dCanvasInterface();
  297. pHinge2->setLowerLimit(-SIMD_HALF_PI * 0.5f);
  298. pHinge2->setUpperLimit( SIMD_HALF_PI * 0.5f);
  299. // add constraint to world
  300. m_dynamicsWorld->addConstraint(pHinge2, true);
  301. // draw constraint frames and limits for debugging
  302. {
  303. int motorAxis = 3;
  304. pHinge2->enableMotor(motorAxis,true);
  305. pHinge2->setMaxMotorForce(motorAxis,1000);
  306. pHinge2->setTargetVelocity(motorAxis,-1);
  307. }
  308. {
  309. int motorAxis = 5;
  310. pHinge2->enableMotor(motorAxis,true);
  311. pHinge2->setMaxMotorForce(motorAxis,1000);
  312. pHinge2->setTargetVelocity(motorAxis,0);
  313. }
  314. pHinge2->setDbgDrawSize(btScalar(5.f));
  315. }
  316. {
  317. btCollisionShape* liftShape = new btBoxShape(btVector3(0.5f,2.0f,0.05f));
  318. m_collisionShapes.push_back(liftShape);
  319. btTransform liftTrans;
  320. m_liftStartPos = btVector3(0.0f, 2.5f, 3.05f);
  321. liftTrans.setIdentity();
  322. liftTrans.setOrigin(m_liftStartPos);
  323. m_liftBody = localCreateRigidBody(10,liftTrans, liftShape);
  324. btTransform localA, localB;
  325. localA.setIdentity();
  326. localB.setIdentity();
  327. localA.getBasis().setEulerZYX(0, M_PI_2, 0);
  328. localA.setOrigin(btVector3(0.0, 1.0, 3.05));
  329. localB.getBasis().setEulerZYX(0, M_PI_2, 0);
  330. localB.setOrigin(btVector3(0.0, -1.5, -0.05));
  331. m_liftHinge = new btHingeConstraint(*m_carChassis,*m_liftBody, localA, localB);
  332. // m_liftHinge->setLimit(-LIFT_EPS, LIFT_EPS);
  333. m_liftHinge->setLimit(0.0f, 0.0f);
  334. m_dynamicsWorld->addConstraint(m_liftHinge, true);
  335. btCollisionShape* forkShapeA = new btBoxShape(btVector3(1.0f,0.1f,0.1f));
  336. m_collisionShapes.push_back(forkShapeA);
  337. btCompoundShape* forkCompound = new btCompoundShape();
  338. m_collisionShapes.push_back(forkCompound);
  339. btTransform forkLocalTrans;
  340. forkLocalTrans.setIdentity();
  341. forkCompound->addChildShape(forkLocalTrans, forkShapeA);
  342. btCollisionShape* forkShapeB = new btBoxShape(btVector3(0.1f,0.02f,0.6f));
  343. m_collisionShapes.push_back(forkShapeB);
  344. forkLocalTrans.setIdentity();
  345. forkLocalTrans.setOrigin(btVector3(-0.9f, -0.08f, 0.7f));
  346. forkCompound->addChildShape(forkLocalTrans, forkShapeB);
  347. btCollisionShape* forkShapeC = new btBoxShape(btVector3(0.1f,0.02f,0.6f));
  348. m_collisionShapes.push_back(forkShapeC);
  349. forkLocalTrans.setIdentity();
  350. forkLocalTrans.setOrigin(btVector3(0.9f, -0.08f, 0.7f));
  351. forkCompound->addChildShape(forkLocalTrans, forkShapeC);
  352. btTransform forkTrans;
  353. m_forkStartPos = btVector3(0.0f, 0.6f, 3.2f);
  354. forkTrans.setIdentity();
  355. forkTrans.setOrigin(m_forkStartPos);
  356. m_forkBody = localCreateRigidBody(5, forkTrans, forkCompound);
  357. localA.setIdentity();
  358. localB.setIdentity();
  359. localA.getBasis().setEulerZYX(0, 0, M_PI_2);
  360. localA.setOrigin(btVector3(0.0f, -1.9f, 0.05f));
  361. localB.getBasis().setEulerZYX(0, 0, M_PI_2);
  362. localB.setOrigin(btVector3(0.0, 0.0, -0.1));
  363. m_forkSlider = new btSliderConstraint(*m_liftBody, *m_forkBody, localA, localB, true);
  364. m_forkSlider->setLowerLinLimit(0.1f);
  365. m_forkSlider->setUpperLinLimit(0.1f);
  366. // m_forkSlider->setLowerAngLimit(-LIFT_EPS);
  367. // m_forkSlider->setUpperAngLimit(LIFT_EPS);
  368. m_forkSlider->setLowerAngLimit(0.0f);
  369. m_forkSlider->setUpperAngLimit(0.0f);
  370. m_dynamicsWorld->addConstraint(m_forkSlider, true);
  371. btCompoundShape* loadCompound = new btCompoundShape();
  372. m_collisionShapes.push_back(loadCompound);
  373. btCollisionShape* loadShapeA = new btBoxShape(btVector3(2.0f,0.5f,0.5f));
  374. m_collisionShapes.push_back(loadShapeA);
  375. btTransform loadTrans;
  376. loadTrans.setIdentity();
  377. loadCompound->addChildShape(loadTrans, loadShapeA);
  378. btCollisionShape* loadShapeB = new btBoxShape(btVector3(0.1f,1.0f,1.0f));
  379. m_collisionShapes.push_back(loadShapeB);
  380. loadTrans.setIdentity();
  381. loadTrans.setOrigin(btVector3(2.1f, 0.0f, 0.0f));
  382. loadCompound->addChildShape(loadTrans, loadShapeB);
  383. btCollisionShape* loadShapeC = new btBoxShape(btVector3(0.1f,1.0f,1.0f));
  384. m_collisionShapes.push_back(loadShapeC);
  385. loadTrans.setIdentity();
  386. loadTrans.setOrigin(btVector3(-2.1f, 0.0f, 0.0f));
  387. loadCompound->addChildShape(loadTrans, loadShapeC);
  388. loadTrans.setIdentity();
  389. m_loadStartPos = btVector3(0.0f, 3.5f, 7.0f);
  390. loadTrans.setOrigin(m_loadStartPos);
  391. m_loadBody = localCreateRigidBody(loadMass, loadTrans, loadCompound);
  392. }
  393. resetForklift();
  394. // setCameraDistance(26.f);
  395. m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
  396. }
  397. void Hinge2Vehicle::physicsDebugDraw(int debugFlags)
  398. {
  399. if (m_dynamicsWorld && m_dynamicsWorld->getDebugDrawer())
  400. {
  401. m_dynamicsWorld->getDebugDrawer()->setDebugMode(debugFlags);
  402. m_dynamicsWorld->debugDrawWorld();
  403. }
  404. }
  405. //to be implemented by the demo
  406. void Hinge2Vehicle::renderScene()
  407. {
  408. m_guiHelper->syncPhysicsToGraphics(m_dynamicsWorld);
  409. #if 0
  410. for (int i=0;i<m_vehicle->getNumWheels();i++)
  411. {
  412. //synchronize the wheels with the (interpolated) chassis worldtransform
  413. m_vehicle->updateWheelTransform(i,true);
  414. CommonRenderInterface* renderer = m_guiHelper->getRenderInterface();
  415. if (renderer)
  416. {
  417. btTransform tr = m_vehicle->getWheelInfo(i).m_worldTransform;
  418. btVector3 pos=tr.getOrigin();
  419. btQuaternion orn = tr.getRotation();
  420. renderer->writeSingleInstanceTransformToCPU(pos,orn,m_wheelInstances[i]);
  421. }
  422. }
  423. #endif
  424. m_guiHelper->render(m_dynamicsWorld);
  425. btVector3 wheelColor(1,0,0);
  426. btVector3 worldBoundsMin,worldBoundsMax;
  427. getDynamicsWorld()->getBroadphase()->getBroadphaseAabb(worldBoundsMin,worldBoundsMax);
  428. #if 0
  429. int lineWidth=400;
  430. int xStart = m_glutScreenWidth - lineWidth;
  431. int yStart = 20;
  432. if((getDebugMode() & btIDebugDraw::DBG_NoHelpText)==0)
  433. {
  434. setOrthographicProjection();
  435. glDisable(GL_LIGHTING);
  436. glColor3f(0, 0, 0);
  437. char buf[124];
  438. sprintf(buf,"SHIFT+Cursor Left/Right - rotate lift");
  439. GLDebugDrawString(xStart,20,buf);
  440. yStart+=20;
  441. sprintf(buf,"SHIFT+Cursor UP/Down - fork up/down");
  442. yStart+=20;
  443. GLDebugDrawString(xStart,yStart,buf);
  444. if (m_useDefaultCamera)
  445. {
  446. sprintf(buf,"F5 - camera mode (free)");
  447. } else
  448. {
  449. sprintf(buf,"F5 - camera mode (follow)");
  450. }
  451. yStart+=20;
  452. GLDebugDrawString(xStart,yStart,buf);
  453. yStart+=20;
  454. if (m_dynamicsWorld->getConstraintSolver()->getSolverType()==BT_MLCP_SOLVER)
  455. {
  456. sprintf(buf,"F6 - solver (direct MLCP)");
  457. } else
  458. {
  459. sprintf(buf,"F6 - solver (sequential impulse)");
  460. }
  461. GLDebugDrawString(xStart,yStart,buf);
  462. btDiscreteDynamicsWorld* world = (btDiscreteDynamicsWorld*) m_dynamicsWorld;
  463. if (world->getLatencyMotionStateInterpolation())
  464. {
  465. sprintf(buf,"F7 - motionstate interpolation (on)");
  466. } else
  467. {
  468. sprintf(buf,"F7 - motionstate interpolation (off)");
  469. }
  470. yStart+=20;
  471. GLDebugDrawString(xStart,yStart,buf);
  472. sprintf(buf,"Click window for keyboard focus");
  473. yStart+=20;
  474. GLDebugDrawString(xStart,yStart,buf);
  475. resetPerspectiveProjection();
  476. glEnable(GL_LIGHTING);
  477. }
  478. #endif
  479. }
  480. void Hinge2Vehicle::stepSimulation(float deltaTime)
  481. {
  482. //glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
  483. #if 0
  484. {
  485. int wheelIndex = 2;
  486. m_vehicle->applyEngineForce(gEngineForce,wheelIndex);
  487. m_vehicle->setBrake(gBreakingForce,wheelIndex);
  488. wheelIndex = 3;
  489. m_vehicle->applyEngineForce(gEngineForce,wheelIndex);
  490. m_vehicle->setBrake(gBreakingForce,wheelIndex);
  491. wheelIndex = 0;
  492. m_vehicle->setSteeringValue(gVehicleSteering,wheelIndex);
  493. wheelIndex = 1;
  494. m_vehicle->setSteeringValue(gVehicleSteering,wheelIndex);
  495. }
  496. #endif
  497. float dt = deltaTime;
  498. if (m_dynamicsWorld)
  499. {
  500. //during idle mode, just run 1 simulation step maximum
  501. int maxSimSubSteps = 2;
  502. int numSimSteps;
  503. numSimSteps = m_dynamicsWorld->stepSimulation(dt,maxSimSubSteps);
  504. if (m_dynamicsWorld->getConstraintSolver()->getSolverType()==BT_MLCP_SOLVER)
  505. {
  506. btMLCPSolver* sol = (btMLCPSolver*) m_dynamicsWorld->getConstraintSolver();
  507. int numFallbacks = sol->getNumFallbacks();
  508. if (numFallbacks)
  509. {
  510. static int totalFailures = 0;
  511. totalFailures+=numFallbacks;
  512. printf("MLCP solver failed %d times, falling back to btSequentialImpulseSolver (SI)\n",totalFailures);
  513. }
  514. sol->setNumFallbacks(0);
  515. }
  516. //#define VERBOSE_FEEDBACK
  517. #ifdef VERBOSE_FEEDBACK
  518. if (!numSimSteps)
  519. printf("Interpolated transforms\n");
  520. else
  521. {
  522. if (numSimSteps > maxSimSubSteps)
  523. {
  524. //detect dropping frames
  525. printf("Dropped (%i) simulation steps out of %i\n",numSimSteps - maxSimSubSteps,numSimSteps);
  526. } else
  527. {
  528. printf("Simulated (%i) steps\n",numSimSteps);
  529. }
  530. }
  531. #endif //VERBOSE_FEEDBACK
  532. }
  533. }
  534. void Hinge2Vehicle::displayCallback(void)
  535. {
  536. // glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
  537. //renderme();
  538. //optional but useful: debug drawing
  539. if (m_dynamicsWorld)
  540. m_dynamicsWorld->debugDrawWorld();
  541. // glFlush();
  542. // glutSwapBuffers();
  543. }
  544. void Hinge2Vehicle::clientResetScene()
  545. {
  546. exitPhysics();
  547. initPhysics();
  548. }
  549. void Hinge2Vehicle::resetForklift()
  550. {
  551. gVehicleSteering = 0.f;
  552. gBreakingForce = defaultBreakingForce;
  553. gEngineForce = 0.f;
  554. m_carChassis->setCenterOfMassTransform(btTransform::getIdentity());
  555. m_carChassis->setLinearVelocity(btVector3(0,0,0));
  556. m_carChassis->setAngularVelocity(btVector3(0,0,0));
  557. m_dynamicsWorld->getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(m_carChassis->getBroadphaseHandle(),getDynamicsWorld()->getDispatcher());
  558. #if 0
  559. if (m_vehicle)
  560. {
  561. m_vehicle->resetSuspension();
  562. for (int i=0;i<m_vehicle->getNumWheels();i++)
  563. {
  564. //synchronize the wheels with the (interpolated) chassis worldtransform
  565. m_vehicle->updateWheelTransform(i,true);
  566. }
  567. }
  568. #endif
  569. btTransform liftTrans;
  570. liftTrans.setIdentity();
  571. liftTrans.setOrigin(m_liftStartPos);
  572. m_liftBody->activate();
  573. m_liftBody->setCenterOfMassTransform(liftTrans);
  574. m_liftBody->setLinearVelocity(btVector3(0,0,0));
  575. m_liftBody->setAngularVelocity(btVector3(0,0,0));
  576. btTransform forkTrans;
  577. forkTrans.setIdentity();
  578. forkTrans.setOrigin(m_forkStartPos);
  579. m_forkBody->activate();
  580. m_forkBody->setCenterOfMassTransform(forkTrans);
  581. m_forkBody->setLinearVelocity(btVector3(0,0,0));
  582. m_forkBody->setAngularVelocity(btVector3(0,0,0));
  583. // m_liftHinge->setLimit(-LIFT_EPS, LIFT_EPS);
  584. m_liftHinge->setLimit(0.0f, 0.0f);
  585. m_liftHinge->enableAngularMotor(false, 0, 0);
  586. m_forkSlider->setLowerLinLimit(0.1f);
  587. m_forkSlider->setUpperLinLimit(0.1f);
  588. m_forkSlider->setPoweredLinMotor(false);
  589. btTransform loadTrans;
  590. loadTrans.setIdentity();
  591. loadTrans.setOrigin(m_loadStartPos);
  592. m_loadBody->activate();
  593. m_loadBody->setCenterOfMassTransform(loadTrans);
  594. m_loadBody->setLinearVelocity(btVector3(0,0,0));
  595. m_loadBody->setAngularVelocity(btVector3(0,0,0));
  596. }
  597. bool Hinge2Vehicle::keyboardCallback(int key, int state)
  598. {
  599. bool handled = false;
  600. bool isShiftPressed = m_guiHelper->getAppInterface()->m_window->isModifierKeyPressed(B3G_SHIFT);
  601. if (state)
  602. {
  603. if (isShiftPressed)
  604. {
  605. switch (key)
  606. {
  607. case B3G_LEFT_ARROW :
  608. {
  609. m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f);
  610. m_liftHinge->enableAngularMotor(true, -0.1, maxMotorImpulse);
  611. handled = true;
  612. break;
  613. }
  614. case B3G_RIGHT_ARROW :
  615. {
  616. m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f);
  617. m_liftHinge->enableAngularMotor(true, 0.1, maxMotorImpulse);
  618. handled = true;
  619. break;
  620. }
  621. case B3G_UP_ARROW :
  622. {
  623. m_forkSlider->setLowerLinLimit(0.1f);
  624. m_forkSlider->setUpperLinLimit(3.9f);
  625. m_forkSlider->setPoweredLinMotor(true);
  626. m_forkSlider->setMaxLinMotorForce(maxMotorImpulse);
  627. m_forkSlider->setTargetLinMotorVelocity(1.0);
  628. handled = true;
  629. break;
  630. }
  631. case B3G_DOWN_ARROW :
  632. {
  633. m_forkSlider->setLowerLinLimit(0.1f);
  634. m_forkSlider->setUpperLinLimit(3.9f);
  635. m_forkSlider->setPoweredLinMotor(true);
  636. m_forkSlider->setMaxLinMotorForce(maxMotorImpulse);
  637. m_forkSlider->setTargetLinMotorVelocity(-1.0);
  638. handled = true;
  639. break;
  640. }
  641. }
  642. } else
  643. {
  644. switch (key)
  645. {
  646. case B3G_LEFT_ARROW :
  647. {
  648. handled = true;
  649. gVehicleSteering += steeringIncrement;
  650. if ( gVehicleSteering > steeringClamp)
  651. gVehicleSteering = steeringClamp;
  652. break;
  653. }
  654. case B3G_RIGHT_ARROW :
  655. {
  656. handled = true;
  657. gVehicleSteering -= steeringIncrement;
  658. if ( gVehicleSteering < -steeringClamp)
  659. gVehicleSteering = -steeringClamp;
  660. break;
  661. }
  662. case B3G_UP_ARROW :
  663. {
  664. handled = true;
  665. gEngineForce = maxEngineForce;
  666. gBreakingForce = 0.f;
  667. break;
  668. }
  669. case B3G_DOWN_ARROW :
  670. {
  671. handled = true;
  672. gEngineForce = -maxEngineForce;
  673. gBreakingForce = 0.f;
  674. break;
  675. }
  676. case B3G_F7:
  677. {
  678. handled = true;
  679. btDiscreteDynamicsWorld* world = (btDiscreteDynamicsWorld*)m_dynamicsWorld;
  680. world->setLatencyMotionStateInterpolation(!world->getLatencyMotionStateInterpolation());
  681. printf("world latencyMotionStateInterpolation = %d\n", world->getLatencyMotionStateInterpolation());
  682. break;
  683. }
  684. case B3G_F6:
  685. {
  686. handled = true;
  687. //switch solver (needs demo restart)
  688. useMCLPSolver = !useMCLPSolver;
  689. printf("switching to useMLCPSolver = %d\n", useMCLPSolver);
  690. delete m_solver;
  691. if (useMCLPSolver)
  692. {
  693. btDantzigSolver* mlcp = new btDantzigSolver();
  694. //btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel;
  695. btMLCPSolver* sol = new btMLCPSolver(mlcp);
  696. m_solver = sol;
  697. } else
  698. {
  699. m_solver = new btSequentialImpulseConstraintSolver();
  700. }
  701. m_dynamicsWorld->setConstraintSolver(m_solver);
  702. //exitPhysics();
  703. //initPhysics();
  704. break;
  705. }
  706. case B3G_F5:
  707. handled = true;
  708. m_useDefaultCamera = !m_useDefaultCamera;
  709. break;
  710. default:
  711. break;
  712. }
  713. }
  714. } else
  715. {
  716. switch (key)
  717. {
  718. case B3G_UP_ARROW:
  719. {
  720. lockForkSlider();
  721. gEngineForce = 0.f;
  722. gBreakingForce = defaultBreakingForce;
  723. handled=true;
  724. break;
  725. }
  726. case B3G_DOWN_ARROW:
  727. {
  728. lockForkSlider();
  729. gEngineForce = 0.f;
  730. gBreakingForce = defaultBreakingForce;
  731. handled=true;
  732. break;
  733. }
  734. case B3G_LEFT_ARROW:
  735. case B3G_RIGHT_ARROW:
  736. {
  737. lockLiftHinge();
  738. handled=true;
  739. break;
  740. }
  741. default:
  742. break;
  743. }
  744. }
  745. return handled;
  746. }
  747. void Hinge2Vehicle::specialKeyboardUp(int key, int x, int y)
  748. {
  749. #if 0
  750. #endif
  751. }
  752. void Hinge2Vehicle::specialKeyboard(int key, int x, int y)
  753. {
  754. #if 0
  755. if (key==GLUT_KEY_END)
  756. return;
  757. // printf("key = %i x=%i y=%i\n",key,x,y);
  758. int state;
  759. state=glutGetModifiers();
  760. if (state & GLUT_ACTIVE_SHIFT)
  761. {
  762. switch (key)
  763. {
  764. case GLUT_KEY_LEFT :
  765. {
  766. m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f);
  767. m_liftHinge->enableAngularMotor(true, -0.1, maxMotorImpulse);
  768. break;
  769. }
  770. case GLUT_KEY_RIGHT :
  771. {
  772. m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f);
  773. m_liftHinge->enableAngularMotor(true, 0.1, maxMotorImpulse);
  774. break;
  775. }
  776. case GLUT_KEY_UP :
  777. {
  778. m_forkSlider->setLowerLinLimit(0.1f);
  779. m_forkSlider->setUpperLinLimit(3.9f);
  780. m_forkSlider->setPoweredLinMotor(true);
  781. m_forkSlider->setMaxLinMotorForce(maxMotorImpulse);
  782. m_forkSlider->setTargetLinMotorVelocity(1.0);
  783. break;
  784. }
  785. case GLUT_KEY_DOWN :
  786. {
  787. m_forkSlider->setLowerLinLimit(0.1f);
  788. m_forkSlider->setUpperLinLimit(3.9f);
  789. m_forkSlider->setPoweredLinMotor(true);
  790. m_forkSlider->setMaxLinMotorForce(maxMotorImpulse);
  791. m_forkSlider->setTargetLinMotorVelocity(-1.0);
  792. break;
  793. }
  794. default:
  795. DemoApplication::specialKeyboard(key,x,y);
  796. break;
  797. }
  798. } else
  799. {
  800. switch (key)
  801. {
  802. case GLUT_KEY_LEFT :
  803. {
  804. gVehicleSteering += steeringIncrement;
  805. if ( gVehicleSteering > steeringClamp)
  806. gVehicleSteering = steeringClamp;
  807. break;
  808. }
  809. case GLUT_KEY_RIGHT :
  810. {
  811. gVehicleSteering -= steeringIncrement;
  812. if ( gVehicleSteering < -steeringClamp)
  813. gVehicleSteering = -steeringClamp;
  814. break;
  815. }
  816. case GLUT_KEY_UP :
  817. {
  818. gEngineForce = maxEngineForce;
  819. gBreakingForce = 0.f;
  820. break;
  821. }
  822. case GLUT_KEY_DOWN :
  823. {
  824. gEngineForce = -maxEngineForce;
  825. gBreakingForce = 0.f;
  826. break;
  827. }
  828. case GLUT_KEY_F7:
  829. {
  830. btDiscreteDynamicsWorld* world = (btDiscreteDynamicsWorld*)m_dynamicsWorld;
  831. world->setLatencyMotionStateInterpolation(!world->getLatencyMotionStateInterpolation());
  832. printf("world latencyMotionStateInterpolation = %d\n", world->getLatencyMotionStateInterpolation());
  833. break;
  834. }
  835. case GLUT_KEY_F6:
  836. {
  837. //switch solver (needs demo restart)
  838. useMCLPSolver = !useMCLPSolver;
  839. printf("switching to useMLCPSolver = %d\n", useMCLPSolver);
  840. delete m_solver;
  841. if (useMCLPSolver)
  842. {
  843. btDantzigSolver* mlcp = new btDantzigSolver();
  844. //btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel;
  845. btMLCPSolver* sol = new btMLCPSolver(mlcp);
  846. m_solver = sol;
  847. } else
  848. {
  849. m_solver = new btSequentialImpulseConstraintSolver();
  850. }
  851. m_dynamicsWorld->setConstraintSolver(m_solver);
  852. //exitPhysics();
  853. //initPhysics();
  854. break;
  855. }
  856. case GLUT_KEY_F5:
  857. m_useDefaultCamera = !m_useDefaultCamera;
  858. break;
  859. default:
  860. DemoApplication::specialKeyboard(key,x,y);
  861. break;
  862. }
  863. }
  864. // glutPostRedisplay();
  865. #endif
  866. }
  867. void Hinge2Vehicle::lockLiftHinge(void)
  868. {
  869. btScalar hingeAngle = m_liftHinge->getHingeAngle();
  870. btScalar lowLim = m_liftHinge->getLowerLimit();
  871. btScalar hiLim = m_liftHinge->getUpperLimit();
  872. m_liftHinge->enableAngularMotor(false, 0, 0);
  873. if(hingeAngle < lowLim)
  874. {
  875. // m_liftHinge->setLimit(lowLim, lowLim + LIFT_EPS);
  876. m_liftHinge->setLimit(lowLim, lowLim);
  877. }
  878. else if(hingeAngle > hiLim)
  879. {
  880. // m_liftHinge->setLimit(hiLim - LIFT_EPS, hiLim);
  881. m_liftHinge->setLimit(hiLim, hiLim);
  882. }
  883. else
  884. {
  885. // m_liftHinge->setLimit(hingeAngle - LIFT_EPS, hingeAngle + LIFT_EPS);
  886. m_liftHinge->setLimit(hingeAngle, hingeAngle);
  887. }
  888. return;
  889. } // Hinge2Vehicle::lockLiftHinge()
  890. void Hinge2Vehicle::lockForkSlider(void)
  891. {
  892. btScalar linDepth = m_forkSlider->getLinearPos();
  893. btScalar lowLim = m_forkSlider->getLowerLinLimit();
  894. btScalar hiLim = m_forkSlider->getUpperLinLimit();
  895. m_forkSlider->setPoweredLinMotor(false);
  896. if(linDepth <= lowLim)
  897. {
  898. m_forkSlider->setLowerLinLimit(lowLim);
  899. m_forkSlider->setUpperLinLimit(lowLim);
  900. }
  901. else if(linDepth > hiLim)
  902. {
  903. m_forkSlider->setLowerLinLimit(hiLim);
  904. m_forkSlider->setUpperLinLimit(hiLim);
  905. }
  906. else
  907. {
  908. m_forkSlider->setLowerLinLimit(linDepth);
  909. m_forkSlider->setUpperLinLimit(linDepth);
  910. }
  911. return;
  912. } // Hinge2Vehicle::lockForkSlider()
  913. btRigidBody* Hinge2Vehicle::localCreateRigidBody(btScalar mass, const btTransform& startTransform, btCollisionShape* shape)
  914. {
  915. btAssert((!shape || shape->getShapeType() != INVALID_SHAPE_PROXYTYPE));
  916. //rigidbody is dynamic if and only if mass is non zero, otherwise static
  917. bool isDynamic = (mass != 0.f);
  918. btVector3 localInertia(0,0,0);
  919. if (isDynamic)
  920. shape->calculateLocalInertia(mass,localInertia);
  921. //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
  922. #define USE_MOTIONSTATE 1
  923. #ifdef USE_MOTIONSTATE
  924. btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
  925. btRigidBody::btRigidBodyConstructionInfo cInfo(mass,myMotionState,shape,localInertia);
  926. btRigidBody* body = new btRigidBody(cInfo);
  927. //body->setContactProcessingThreshold(m_defaultContactProcessingThreshold);
  928. #else
  929. btRigidBody* body = new btRigidBody(mass,0,shape,localInertia);
  930. body->setWorldTransform(startTransform);
  931. #endif//
  932. m_dynamicsWorld->addRigidBody(body);
  933. return body;
  934. }
  935. CommonExampleInterface* Hinge2VehicleCreateFunc(struct CommonExampleOptions& options)
  936. {
  937. return new Hinge2Vehicle(options.m_guiHelper);
  938. }