123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259 |
- /**
- * OpenAL cross platform audio library
- * Copyright (C) 2018 by Raul Herraiz.
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
- #include "config.h"
- #include <algorithm>
- #include <array>
- #include <cmath>
- #include <complex>
- #include <cstdlib>
- #include <variant>
- #include "alc/effects/base.h"
- #include "alcomplex.h"
- #include "alnumbers.h"
- #include "alnumeric.h"
- #include "alspan.h"
- #include "core/ambidefs.h"
- #include "core/bufferline.h"
- #include "core/context.h"
- #include "core/device.h"
- #include "core/effects/base.h"
- #include "core/effectslot.h"
- #include "core/mixer.h"
- #include "core/mixer/defs.h"
- #include "intrusive_ptr.h"
- #include "opthelpers.h"
- struct BufferStorage;
- namespace {
- using uint = unsigned int;
- using complex_d = std::complex<double>;
- constexpr size_t HilSize{1024};
- constexpr size_t HilHalfSize{HilSize >> 1};
- constexpr size_t OversampleFactor{4};
- static_assert(HilSize%OversampleFactor == 0, "Factor must be a clean divisor of the size");
- constexpr size_t HilStep{HilSize / OversampleFactor};
- /* Define a Hann window, used to filter the HIL input and output. */
- struct Windower {
- alignas(16) std::array<double,HilSize> mData{};
- Windower()
- {
- /* Create lookup table of the Hann window for the desired size. */
- for(size_t i{0};i < HilHalfSize;i++)
- {
- constexpr double scale{al::numbers::pi / double{HilSize}};
- const double val{std::sin((static_cast<double>(i)+0.5) * scale)};
- mData[i] = mData[HilSize-1-i] = val * val;
- }
- }
- };
- const Windower gWindow{};
- struct FshifterState final : public EffectState {
- /* Effect parameters */
- size_t mCount{};
- size_t mPos{};
- std::array<uint,2> mPhaseStep{};
- std::array<uint,2> mPhase{};
- std::array<double,2> mSign{};
- /* Effects buffers */
- std::array<double,HilSize> mInFIFO{};
- std::array<complex_d,HilStep> mOutFIFO{};
- std::array<complex_d,HilSize> mOutputAccum{};
- std::array<complex_d,HilSize> mAnalytic{};
- std::array<complex_d,BufferLineSize> mOutdata{};
- alignas(16) FloatBufferLine mBufferOut{};
- /* Effect gains for each output channel */
- struct OutGains {
- std::array<float,MaxAmbiChannels> Current{};
- std::array<float,MaxAmbiChannels> Target{};
- };
- std::array<OutGains,2> mGains;
- void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override;
- void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
- const EffectTarget target) override;
- void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
- const al::span<FloatBufferLine> samplesOut) override;
- };
- void FshifterState::deviceUpdate(const DeviceBase*, const BufferStorage*)
- {
- /* (Re-)initializing parameters and clear the buffers. */
- mCount = 0;
- mPos = HilSize - HilStep;
- mPhaseStep.fill(0u);
- mPhase.fill(0u);
- mSign.fill(1.0);
- mInFIFO.fill(0.0);
- mOutFIFO.fill(complex_d{});
- mOutputAccum.fill(complex_d{});
- mAnalytic.fill(complex_d{});
- for(auto &gain : mGains)
- {
- gain.Current.fill(0.0f);
- gain.Target.fill(0.0f);
- }
- }
- void FshifterState::update(const ContextBase *context, const EffectSlot *slot,
- const EffectProps *props_, const EffectTarget target)
- {
- auto &props = std::get<FshifterProps>(*props_);
- const DeviceBase *device{context->mDevice};
- const float step{props.Frequency / static_cast<float>(device->Frequency)};
- mPhaseStep[0] = mPhaseStep[1] = fastf2u(std::min(step, 1.0f) * MixerFracOne);
- switch(props.LeftDirection)
- {
- case FShifterDirection::Down:
- mSign[0] = -1.0;
- break;
- case FShifterDirection::Up:
- mSign[0] = 1.0;
- break;
- case FShifterDirection::Off:
- mPhase[0] = 0;
- mPhaseStep[0] = 0;
- break;
- }
- switch(props.RightDirection)
- {
- case FShifterDirection::Down:
- mSign[1] = -1.0;
- break;
- case FShifterDirection::Up:
- mSign[1] = 1.0;
- break;
- case FShifterDirection::Off:
- mPhase[1] = 0;
- mPhaseStep[1] = 0;
- break;
- }
- static constexpr auto inv_sqrt2 = static_cast<float>(1.0 / al::numbers::sqrt2);
- static constexpr auto lcoeffs_pw = CalcDirectionCoeffs(std::array{-1.0f, 0.0f, 0.0f});
- static constexpr auto rcoeffs_pw = CalcDirectionCoeffs(std::array{ 1.0f, 0.0f, 0.0f});
- static constexpr auto lcoeffs_nrml = CalcDirectionCoeffs(std::array{-inv_sqrt2, 0.0f, inv_sqrt2});
- static constexpr auto rcoeffs_nrml = CalcDirectionCoeffs(std::array{ inv_sqrt2, 0.0f, inv_sqrt2});
- auto &lcoeffs = (device->mRenderMode != RenderMode::Pairwise) ? lcoeffs_nrml : lcoeffs_pw;
- auto &rcoeffs = (device->mRenderMode != RenderMode::Pairwise) ? rcoeffs_nrml : rcoeffs_pw;
- mOutTarget = target.Main->Buffer;
- ComputePanGains(target.Main, lcoeffs, slot->Gain, mGains[0].Target);
- ComputePanGains(target.Main, rcoeffs, slot->Gain, mGains[1].Target);
- }
- void FshifterState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
- {
- for(size_t base{0u};base < samplesToDo;)
- {
- size_t todo{std::min(HilStep-mCount, samplesToDo-base)};
- /* Fill FIFO buffer with samples data */
- const size_t pos{mPos};
- size_t count{mCount};
- do {
- mInFIFO[pos+count] = samplesIn[0][base];
- mOutdata[base] = mOutFIFO[count];
- ++base; ++count;
- } while(--todo);
- mCount = count;
- /* Check whether FIFO buffer is filled */
- if(mCount < HilStep) break;
- mCount = 0;
- mPos = (mPos+HilStep) & (HilSize-1);
- /* Real signal windowing and store in Analytic buffer */
- for(size_t src{mPos}, k{0u};src < HilSize;++src,++k)
- mAnalytic[k] = mInFIFO[src]*gWindow.mData[k];
- for(size_t src{0u}, k{HilSize-mPos};src < mPos;++src,++k)
- mAnalytic[k] = mInFIFO[src]*gWindow.mData[k];
- /* Processing signal by Discrete Hilbert Transform (analytical signal). */
- complex_hilbert(mAnalytic);
- /* Windowing and add to output accumulator */
- for(size_t dst{mPos}, k{0u};dst < HilSize;++dst,++k)
- mOutputAccum[dst] += 2.0/OversampleFactor*gWindow.mData[k]*mAnalytic[k];
- for(size_t dst{0u}, k{HilSize-mPos};dst < mPos;++dst,++k)
- mOutputAccum[dst] += 2.0/OversampleFactor*gWindow.mData[k]*mAnalytic[k];
- /* Copy out the accumulated result, then clear for the next iteration. */
- std::copy_n(mOutputAccum.cbegin() + mPos, HilStep, mOutFIFO.begin());
- std::fill_n(mOutputAccum.begin() + mPos, HilStep, complex_d{});
- }
- /* Process frequency shifter using the analytic signal obtained. */
- for(size_t c{0};c < 2;++c)
- {
- const double sign{mSign[c]};
- const uint phase_step{mPhaseStep[c]};
- uint phase_idx{mPhase[c]};
- std::transform(mOutdata.cbegin(), mOutdata.cbegin()+samplesToDo, mBufferOut.begin(),
- [&phase_idx,phase_step,sign](const complex_d &in) -> float
- {
- const double phase{phase_idx * (al::numbers::pi*2.0 / MixerFracOne)};
- const auto out = static_cast<float>(in.real()*std::cos(phase) +
- in.imag()*std::sin(phase)*sign);
- phase_idx += phase_step;
- phase_idx &= MixerFracMask;
- return out;
- });
- mPhase[c] = phase_idx;
- /* Now, mix the processed sound data to the output. */
- MixSamples(al::span{mBufferOut}.first(samplesToDo), samplesOut, mGains[c].Current,
- mGains[c].Target, std::max(samplesToDo, 512_uz), 0);
- }
- }
- struct FshifterStateFactory final : public EffectStateFactory {
- al::intrusive_ptr<EffectState> create() override
- { return al::intrusive_ptr<EffectState>{new FshifterState{}}; }
- };
- } // namespace
- EffectStateFactory *FshifterStateFactory_getFactory()
- {
- static FshifterStateFactory FshifterFactory{};
- return &FshifterFactory;
- }
|