123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325 |
- /**
- * OpenAL cross platform audio library
- * Copyright (C) 2018 by Raul Herraiz.
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
- #include "config.h"
- #include <algorithm>
- #include <array>
- #include <cmath>
- #include <complex>
- #include <cstdlib>
- #include <variant>
- #include "alc/effects/base.h"
- #include "alnumbers.h"
- #include "alnumeric.h"
- #include "alspan.h"
- #include "core/ambidefs.h"
- #include "core/bufferline.h"
- #include "core/device.h"
- #include "core/effects/base.h"
- #include "core/effectslot.h"
- #include "core/mixer.h"
- #include "core/mixer/defs.h"
- #include "intrusive_ptr.h"
- #include "pffft.h"
- struct BufferStorage;
- struct ContextBase;
- namespace {
- using uint = unsigned int;
- using complex_f = std::complex<float>;
- constexpr size_t StftSize{1024};
- constexpr size_t StftHalfSize{StftSize >> 1};
- constexpr size_t OversampleFactor{8};
- static_assert(StftSize%OversampleFactor == 0, "Factor must be a clean divisor of the size");
- constexpr size_t StftStep{StftSize / OversampleFactor};
- /* Define a Hann window, used to filter the STFT input and output. */
- struct Windower {
- alignas(16) std::array<float,StftSize> mData{};
- Windower()
- {
- /* Create lookup table of the Hann window for the desired size. */
- for(size_t i{0};i < StftHalfSize;i++)
- {
- constexpr double scale{al::numbers::pi / double{StftSize}};
- const double val{std::sin((static_cast<double>(i)+0.5) * scale)};
- mData[i] = mData[StftSize-1-i] = static_cast<float>(val * val);
- }
- }
- };
- const Windower gWindow{};
- struct FrequencyBin {
- float Magnitude;
- float FreqBin;
- };
- struct PshifterState final : public EffectState {
- /* Effect parameters */
- size_t mCount{};
- size_t mPos{};
- uint mPitchShiftI{};
- float mPitchShift{};
- /* Effects buffers */
- std::array<float,StftSize> mFIFO{};
- std::array<float,StftHalfSize+1> mLastPhase{};
- std::array<float,StftHalfSize+1> mSumPhase{};
- std::array<float,StftSize> mOutputAccum{};
- PFFFTSetup mFft;
- alignas(16) std::array<float,StftSize> mFftBuffer{};
- alignas(16) std::array<float,StftSize> mFftWorkBuffer{};
- std::array<FrequencyBin,StftHalfSize+1> mAnalysisBuffer{};
- std::array<FrequencyBin,StftHalfSize+1> mSynthesisBuffer{};
- alignas(16) FloatBufferLine mBufferOut{};
- /* Effect gains for each output channel */
- std::array<float,MaxAmbiChannels> mCurrentGains{};
- std::array<float,MaxAmbiChannels> mTargetGains{};
- void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override;
- void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
- const EffectTarget target) override;
- void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
- const al::span<FloatBufferLine> samplesOut) override;
- };
- void PshifterState::deviceUpdate(const DeviceBase*, const BufferStorage*)
- {
- /* (Re-)initializing parameters and clear the buffers. */
- mCount = 0;
- mPos = StftSize - StftStep;
- mPitchShiftI = MixerFracOne;
- mPitchShift = 1.0f;
- mFIFO.fill(0.0f);
- mLastPhase.fill(0.0f);
- mSumPhase.fill(0.0f);
- mOutputAccum.fill(0.0f);
- mFftBuffer.fill(0.0f);
- mAnalysisBuffer.fill(FrequencyBin{});
- mSynthesisBuffer.fill(FrequencyBin{});
- mCurrentGains.fill(0.0f);
- mTargetGains.fill(0.0f);
- if(!mFft)
- mFft = PFFFTSetup{StftSize, PFFFT_REAL};
- }
- void PshifterState::update(const ContextBase*, const EffectSlot *slot,
- const EffectProps *props_, const EffectTarget target)
- {
- auto &props = std::get<PshifterProps>(*props_);
- const int tune{props.CoarseTune*100 + props.FineTune};
- const float pitch{std::pow(2.0f, static_cast<float>(tune) / 1200.0f)};
- mPitchShiftI = std::clamp(fastf2u(pitch*MixerFracOne), uint{MixerFracHalf},
- uint{MixerFracOne}*2u);
- mPitchShift = static_cast<float>(mPitchShiftI) * float{1.0f/MixerFracOne};
- static constexpr auto coeffs = CalcDirectionCoeffs(std::array{0.0f, 0.0f, -1.0f});
- mOutTarget = target.Main->Buffer;
- ComputePanGains(target.Main, coeffs, slot->Gain, mTargetGains);
- }
- void PshifterState::process(const size_t samplesToDo,
- const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
- {
- /* Pitch shifter engine based on the work of Stephan Bernsee.
- * http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/
- */
- /* Cycle offset per update expected of each frequency bin (bin 0 is none,
- * bin 1 is x1, bin 2 is x2, etc).
- */
- constexpr float expected_cycles{al::numbers::pi_v<float>*2.0f / OversampleFactor};
- for(size_t base{0u};base < samplesToDo;)
- {
- const size_t todo{std::min(StftStep-mCount, samplesToDo-base)};
- /* Retrieve the output samples from the FIFO and fill in the new input
- * samples.
- */
- auto fifo_iter = mFIFO.begin()+mPos + mCount;
- std::copy_n(fifo_iter, todo, mBufferOut.begin()+base);
- std::copy_n(samplesIn[0].begin()+base, todo, fifo_iter);
- mCount += todo;
- base += todo;
- /* Check whether FIFO buffer is filled with new samples. */
- if(mCount < StftStep) break;
- mCount = 0;
- mPos = (mPos+StftStep) & (mFIFO.size()-1);
- /* Time-domain signal windowing, store in FftBuffer, and apply a
- * forward FFT to get the frequency-domain signal.
- */
- for(size_t src{mPos}, k{0u};src < StftSize;++src,++k)
- mFftBuffer[k] = mFIFO[src] * gWindow.mData[k];
- for(size_t src{0u}, k{StftSize-mPos};src < mPos;++src,++k)
- mFftBuffer[k] = mFIFO[src] * gWindow.mData[k];
- mFft.transform_ordered(mFftBuffer.data(), mFftBuffer.data(), mFftWorkBuffer.data(),
- PFFFT_FORWARD);
- /* Analyze the obtained data. Since the real FFT is symmetric, only
- * StftHalfSize+1 samples are needed.
- */
- for(size_t k{0u};k < StftHalfSize+1;++k)
- {
- const auto cplx = (k == 0) ? complex_f{mFftBuffer[0]} :
- (k == StftHalfSize) ? complex_f{mFftBuffer[1]} :
- complex_f{mFftBuffer[k*2], mFftBuffer[k*2 + 1]};
- const float magnitude{std::abs(cplx)};
- const float phase{std::arg(cplx)};
- /* Compute the phase difference from the last update and subtract
- * the expected phase difference for this bin.
- *
- * When oversampling, the expected per-update offset increments by
- * 1/OversampleFactor for every frequency bin. So, the offset wraps
- * every 'OversampleFactor' bin.
- */
- const auto bin_offset = static_cast<float>(k % OversampleFactor);
- float tmp{(phase - mLastPhase[k]) - bin_offset*expected_cycles};
- /* Store the actual phase for the next update. */
- mLastPhase[k] = phase;
- /* Normalize from pi, and wrap the delta between -1 and +1. */
- tmp *= al::numbers::inv_pi_v<float>;
- int qpd{float2int(tmp)};
- tmp -= static_cast<float>(qpd + (qpd%2));
- /* Get deviation from bin frequency (-0.5 to +0.5), and account for
- * oversampling.
- */
- tmp *= 0.5f * OversampleFactor;
- /* Compute the k-th partials' frequency bin target and store the
- * magnitude and frequency bin in the analysis buffer. We don't
- * need the "true frequency" since it's a linear relationship with
- * the bin.
- */
- mAnalysisBuffer[k].Magnitude = magnitude;
- mAnalysisBuffer[k].FreqBin = static_cast<float>(k) + tmp;
- }
- /* Shift the frequency bins according to the pitch adjustment,
- * accumulating the magnitudes of overlapping frequency bins.
- */
- std::fill(mSynthesisBuffer.begin(), mSynthesisBuffer.end(), FrequencyBin{});
- static constexpr size_t bin_limit{((StftHalfSize+1)<<MixerFracBits) - MixerFracHalf - 1};
- const size_t bin_count{std::min(StftHalfSize+1, bin_limit/mPitchShiftI + 1)};
- for(size_t k{0u};k < bin_count;k++)
- {
- const size_t j{(k*mPitchShiftI + MixerFracHalf) >> MixerFracBits};
- /* If more than two bins end up together, use the target frequency
- * bin for the one with the dominant magnitude. There might be a
- * better way to handle this, but it's better than last-index-wins.
- */
- if(mAnalysisBuffer[k].Magnitude > mSynthesisBuffer[j].Magnitude)
- mSynthesisBuffer[j].FreqBin = mAnalysisBuffer[k].FreqBin * mPitchShift;
- mSynthesisBuffer[j].Magnitude += mAnalysisBuffer[k].Magnitude;
- }
- /* Reconstruct the frequency-domain signal from the adjusted frequency
- * bins.
- */
- for(size_t k{0u};k < StftHalfSize+1;k++)
- {
- /* Calculate the actual delta phase for this bin's target frequency
- * bin, and accumulate it to get the actual bin phase.
- */
- float tmp{mSumPhase[k] + mSynthesisBuffer[k].FreqBin*expected_cycles};
- /* Wrap between -pi and +pi for the sum. If mSumPhase is left to
- * grow indefinitely, it will lose precision and produce less exact
- * phase over time.
- */
- tmp *= al::numbers::inv_pi_v<float>;
- int qpd{float2int(tmp)};
- tmp -= static_cast<float>(qpd + (qpd%2));
- mSumPhase[k] = tmp * al::numbers::pi_v<float>;
- const complex_f cplx{std::polar(mSynthesisBuffer[k].Magnitude, mSumPhase[k])};
- if(k == 0)
- mFftBuffer[0] = cplx.real();
- else if(k == StftHalfSize)
- mFftBuffer[1] = cplx.real();
- else
- {
- mFftBuffer[k*2 + 0] = cplx.real();
- mFftBuffer[k*2 + 1] = cplx.imag();
- }
- }
- /* Apply an inverse FFT to get the time-domain signal, and accumulate
- * for the output with windowing.
- */
- mFft.transform_ordered(mFftBuffer.data(), mFftBuffer.data(), mFftWorkBuffer.data(),
- PFFFT_BACKWARD);
- static constexpr float scale{3.0f / OversampleFactor / StftSize};
- for(size_t dst{mPos}, k{0u};dst < StftSize;++dst,++k)
- mOutputAccum[dst] += gWindow.mData[k]*mFftBuffer[k] * scale;
- for(size_t dst{0u}, k{StftSize-mPos};dst < mPos;++dst,++k)
- mOutputAccum[dst] += gWindow.mData[k]*mFftBuffer[k] * scale;
- /* Copy out the accumulated result, then clear for the next iteration. */
- std::copy_n(mOutputAccum.begin() + mPos, StftStep, mFIFO.begin() + mPos);
- std::fill_n(mOutputAccum.begin() + mPos, StftStep, 0.0f);
- }
- /* Now, mix the processed sound data to the output. */
- MixSamples(al::span{mBufferOut}.first(samplesToDo), samplesOut, mCurrentGains, mTargetGains,
- std::max(samplesToDo, 512_uz), 0);
- }
- struct PshifterStateFactory final : public EffectStateFactory {
- al::intrusive_ptr<EffectState> create() override
- { return al::intrusive_ptr<EffectState>{new PshifterState{}}; }
- };
- } // namespace
- EffectStateFactory *PshifterStateFactory_getFactory()
- {
- static PshifterStateFactory PshifterFactory{};
- return &PshifterFactory;
- }
|