123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354 |
- /**
- * This file is part of the OpenAL Soft cross platform audio library
- *
- * Copyright (C) 2019 by Anis A. Hireche
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * * Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- *
- * * Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * * Neither the name of Spherical-Harmonic-Transform nor the names of its
- * contributors may be used to endorse or promote products derived from
- * this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- */
- #include "config.h"
- #include <algorithm>
- #include <array>
- #include <cmath>
- #include <cstdlib>
- #include <functional>
- #include <variant>
- #include "alc/effects/base.h"
- #include "alnumbers.h"
- #include "alnumeric.h"
- #include "alspan.h"
- #include "core/ambidefs.h"
- #include "core/bufferline.h"
- #include "core/context.h"
- #include "core/device.h"
- #include "core/effects/base.h"
- #include "core/effectslot.h"
- #include "core/mixer.h"
- #include "intrusive_ptr.h"
- struct BufferStorage;
- namespace {
- using uint = unsigned int;
- constexpr size_t MaxUpdateSamples{256};
- constexpr size_t NumFormants{4};
- constexpr float RcpQFactor{1.0f / 5.0f};
- enum : size_t {
- VowelAIndex,
- VowelBIndex,
- NumFilters
- };
- constexpr size_t WaveformFracBits{24};
- constexpr size_t WaveformFracOne{1<<WaveformFracBits};
- constexpr size_t WaveformFracMask{WaveformFracOne-1};
- inline float Sin(uint index)
- {
- constexpr float scale{al::numbers::pi_v<float>*2.0f / float{WaveformFracOne}};
- return std::sin(static_cast<float>(index) * scale)*0.5f + 0.5f;
- }
- inline float Saw(uint index)
- { return static_cast<float>(index) / float{WaveformFracOne}; }
- inline float Triangle(uint index)
- { return std::fabs(static_cast<float>(index)*(2.0f/WaveformFracOne) - 1.0f); }
- inline float Half(uint) { return 0.5f; }
- template<float (&func)(uint)>
- void Oscillate(const al::span<float> dst, uint index, const uint step)
- {
- std::generate(dst.begin(), dst.end(), [&index,step]
- {
- index += step;
- index &= WaveformFracMask;
- return func(index);
- });
- }
- struct FormantFilter {
- float mCoeff{0.0f};
- float mGain{1.0f};
- float mS1{0.0f};
- float mS2{0.0f};
- FormantFilter() = default;
- FormantFilter(float f0norm, float gain)
- : mCoeff{std::tan(al::numbers::pi_v<float> * f0norm)}, mGain{gain}
- { }
- void process(const float *samplesIn, float *samplesOut, const size_t numInput) noexcept
- {
- /* A state variable filter from a topology-preserving transform.
- * Based on a talk given by Ivan Cohen: https://www.youtube.com/watch?v=esjHXGPyrhg
- */
- const float g{mCoeff};
- const float gain{mGain};
- const float h{1.0f / (1.0f + (g*RcpQFactor) + (g*g))};
- const float coeff{RcpQFactor + g};
- float s1{mS1};
- float s2{mS2};
- const auto input = al::span{samplesIn, numInput};
- const auto output = al::span{samplesOut, numInput};
- std::transform(input.cbegin(), input.cend(), output.cbegin(), output.begin(),
- [g,gain,h,coeff,&s1,&s2](const float in, const float out) noexcept -> float
- {
- const float H{(in - coeff*s1 - s2)*h};
- const float B{g*H + s1};
- const float L{g*B + s2};
- s1 = g*H + B;
- s2 = g*B + L;
- // Apply peak and accumulate samples.
- return out + B*gain;
- });
- mS1 = s1;
- mS2 = s2;
- }
- void clear() noexcept
- {
- mS1 = 0.0f;
- mS2 = 0.0f;
- }
- };
- struct VmorpherState final : public EffectState {
- struct OutParams {
- uint mTargetChannel{InvalidChannelIndex};
- /* Effect parameters */
- std::array<std::array<FormantFilter,NumFormants>,NumFilters> mFormants;
- /* Effect gains for each channel */
- float mCurrentGain{};
- float mTargetGain{};
- };
- std::array<OutParams,MaxAmbiChannels> mChans;
- void (*mGetSamples)(const al::span<float> dst, uint index, const uint step){};
- uint mIndex{0};
- uint mStep{1};
- /* Effects buffers */
- alignas(16) std::array<float,MaxUpdateSamples> mSampleBufferA{};
- alignas(16) std::array<float,MaxUpdateSamples> mSampleBufferB{};
- alignas(16) std::array<float,MaxUpdateSamples> mLfo{};
- void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override;
- void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
- const EffectTarget target) override;
- void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
- const al::span<FloatBufferLine> samplesOut) override;
- static std::array<FormantFilter,NumFormants> getFiltersByPhoneme(VMorpherPhenome phoneme,
- float frequency, float pitch) noexcept;
- };
- std::array<FormantFilter,NumFormants> VmorpherState::getFiltersByPhoneme(VMorpherPhenome phoneme,
- float frequency, float pitch) noexcept
- {
- /* Using soprano formant set of values to
- * better match mid-range frequency space.
- *
- * See: https://www.classes.cs.uchicago.edu/archive/1999/spring/CS295/Computing_Resources/Csound/CsManual3.48b1.HTML/Appendices/table3.html
- */
- switch(phoneme)
- {
- case VMorpherPhenome::A:
- return {{
- {( 800 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f, 0 / 20.0f); */
- {(1150 * pitch) / frequency, 0.501187f}, /* std::pow(10.0f, -6 / 20.0f); */
- {(2900 * pitch) / frequency, 0.025118f}, /* std::pow(10.0f, -32 / 20.0f); */
- {(3900 * pitch) / frequency, 0.100000f} /* std::pow(10.0f, -20 / 20.0f); */
- }};
- case VMorpherPhenome::E:
- return {{
- {( 350 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f, 0 / 20.0f); */
- {(2000 * pitch) / frequency, 0.100000f}, /* std::pow(10.0f, -20 / 20.0f); */
- {(2800 * pitch) / frequency, 0.177827f}, /* std::pow(10.0f, -15 / 20.0f); */
- {(3600 * pitch) / frequency, 0.009999f} /* std::pow(10.0f, -40 / 20.0f); */
- }};
- case VMorpherPhenome::I:
- return {{
- {( 270 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f, 0 / 20.0f); */
- {(2140 * pitch) / frequency, 0.251188f}, /* std::pow(10.0f, -12 / 20.0f); */
- {(2950 * pitch) / frequency, 0.050118f}, /* std::pow(10.0f, -26 / 20.0f); */
- {(3900 * pitch) / frequency, 0.050118f} /* std::pow(10.0f, -26 / 20.0f); */
- }};
- case VMorpherPhenome::O:
- return {{
- {( 450 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f, 0 / 20.0f); */
- {( 800 * pitch) / frequency, 0.281838f}, /* std::pow(10.0f, -11 / 20.0f); */
- {(2830 * pitch) / frequency, 0.079432f}, /* std::pow(10.0f, -22 / 20.0f); */
- {(3800 * pitch) / frequency, 0.079432f} /* std::pow(10.0f, -22 / 20.0f); */
- }};
- case VMorpherPhenome::U:
- return {{
- {( 325 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f, 0 / 20.0f); */
- {( 700 * pitch) / frequency, 0.158489f}, /* std::pow(10.0f, -16 / 20.0f); */
- {(2700 * pitch) / frequency, 0.017782f}, /* std::pow(10.0f, -35 / 20.0f); */
- {(3800 * pitch) / frequency, 0.009999f} /* std::pow(10.0f, -40 / 20.0f); */
- }};
- default:
- break;
- }
- return {};
- }
- void VmorpherState::deviceUpdate(const DeviceBase*, const BufferStorage*)
- {
- for(auto &e : mChans)
- {
- e.mTargetChannel = InvalidChannelIndex;
- std::for_each(e.mFormants[VowelAIndex].begin(), e.mFormants[VowelAIndex].end(),
- std::mem_fn(&FormantFilter::clear));
- std::for_each(e.mFormants[VowelBIndex].begin(), e.mFormants[VowelBIndex].end(),
- std::mem_fn(&FormantFilter::clear));
- e.mCurrentGain = 0.0f;
- }
- }
- void VmorpherState::update(const ContextBase *context, const EffectSlot *slot,
- const EffectProps *props_, const EffectTarget target)
- {
- auto &props = std::get<VmorpherProps>(*props_);
- const DeviceBase *device{context->mDevice};
- const float frequency{static_cast<float>(device->Frequency)};
- const float step{props.Rate / frequency};
- mStep = fastf2u(std::clamp(step*WaveformFracOne, 0.0f, WaveformFracOne-1.0f));
- if(mStep == 0)
- mGetSamples = Oscillate<Half>;
- else if(props.Waveform == VMorpherWaveform::Sinusoid)
- mGetSamples = Oscillate<Sin>;
- else if(props.Waveform == VMorpherWaveform::Triangle)
- mGetSamples = Oscillate<Triangle>;
- else /*if(props.Waveform == VMorpherWaveform::Sawtooth)*/
- mGetSamples = Oscillate<Saw>;
- const float pitchA{std::pow(2.0f, static_cast<float>(props.PhonemeACoarseTuning) / 12.0f)};
- const float pitchB{std::pow(2.0f, static_cast<float>(props.PhonemeBCoarseTuning) / 12.0f)};
- auto vowelA = getFiltersByPhoneme(props.PhonemeA, frequency, pitchA);
- auto vowelB = getFiltersByPhoneme(props.PhonemeB, frequency, pitchB);
- /* Copy the filter coefficients to the input channels. */
- for(size_t i{0u};i < slot->Wet.Buffer.size();++i)
- {
- std::copy(vowelA.begin(), vowelA.end(), mChans[i].mFormants[VowelAIndex].begin());
- std::copy(vowelB.begin(), vowelB.end(), mChans[i].mFormants[VowelBIndex].begin());
- }
- mOutTarget = target.Main->Buffer;
- auto set_channel = [this](size_t idx, uint outchan, float outgain)
- {
- mChans[idx].mTargetChannel = outchan;
- mChans[idx].mTargetGain = outgain;
- };
- target.Main->setAmbiMixParams(slot->Wet, slot->Gain, set_channel);
- }
- void VmorpherState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
- {
- alignas(16) std::array<float,MaxUpdateSamples> blended{};
- /* Following the EFX specification for a conformant implementation which describes
- * the effect as a pair of 4-band formant filters blended together using an LFO.
- */
- for(size_t base{0u};base < samplesToDo;)
- {
- const size_t td{std::min(MaxUpdateSamples, samplesToDo-base)};
- mGetSamples(al::span{mLfo}.first(td), mIndex, mStep);
- mIndex += static_cast<uint>(mStep * td);
- mIndex &= WaveformFracMask;
- auto chandata = mChans.begin();
- for(const auto &input : samplesIn)
- {
- const size_t outidx{chandata->mTargetChannel};
- if(outidx == InvalidChannelIndex)
- {
- ++chandata;
- continue;
- }
- const auto vowelA = al::span{chandata->mFormants[VowelAIndex]};
- const auto vowelB = al::span{chandata->mFormants[VowelBIndex]};
- /* Process first vowel. */
- std::fill_n(mSampleBufferA.begin(), td, 0.0f);
- vowelA[0].process(&input[base], mSampleBufferA.data(), td);
- vowelA[1].process(&input[base], mSampleBufferA.data(), td);
- vowelA[2].process(&input[base], mSampleBufferA.data(), td);
- vowelA[3].process(&input[base], mSampleBufferA.data(), td);
- /* Process second vowel. */
- std::fill_n(mSampleBufferB.begin(), td, 0.0f);
- vowelB[0].process(&input[base], mSampleBufferB.data(), td);
- vowelB[1].process(&input[base], mSampleBufferB.data(), td);
- vowelB[2].process(&input[base], mSampleBufferB.data(), td);
- vowelB[3].process(&input[base], mSampleBufferB.data(), td);
- for(size_t i{0u};i < td;i++)
- blended[i] = lerpf(mSampleBufferA[i], mSampleBufferB[i], mLfo[i]);
- /* Now, mix the processed sound data to the output. */
- MixSamples(al::span{blended}.first(td), al::span{samplesOut[outidx]}.subspan(base),
- chandata->mCurrentGain, chandata->mTargetGain, samplesToDo-base);
- ++chandata;
- }
- base += td;
- }
- }
- struct VmorpherStateFactory final : public EffectStateFactory {
- al::intrusive_ptr<EffectState> create() override
- { return al::intrusive_ptr<EffectState>{new VmorpherState{}}; }
- };
- } // namespace
- EffectStateFactory *VmorpherStateFactory_getFactory()
- {
- static VmorpherStateFactory VmorpherFactory{};
- return &VmorpherFactory;
- }
|