alcomplex.cpp 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219
  1. #include "config.h"
  2. #include "alcomplex.h"
  3. #include <algorithm>
  4. #include <array>
  5. #include <cassert>
  6. #include <cstddef>
  7. #include <functional>
  8. #include <iterator>
  9. #include <utility>
  10. #include "albit.h"
  11. #include "alnumbers.h"
  12. #include "alnumeric.h"
  13. #include "opthelpers.h"
  14. namespace {
  15. using ushort = unsigned short;
  16. using ushort2 = std::pair<ushort,ushort>;
  17. using complex_d = std::complex<double>;
  18. constexpr std::size_t BitReverseCounter(std::size_t log2_size) noexcept
  19. {
  20. /* Some magic math that calculates the number of swaps needed for a
  21. * sequence of bit-reversed indices when index < reversed_index.
  22. */
  23. return (1_zu<<(log2_size-1)) - (1_zu<<((log2_size-1_zu)/2_zu));
  24. }
  25. template<std::size_t N>
  26. struct BitReverser {
  27. static_assert(N <= sizeof(ushort)*8, "Too many bits for the bit-reversal table.");
  28. std::array<ushort2,BitReverseCounter(N)> mData{};
  29. constexpr BitReverser()
  30. {
  31. const std::size_t fftsize{1u << N};
  32. std::size_t ret_i{0};
  33. /* Bit-reversal permutation applied to a sequence of fftsize items. */
  34. for(std::size_t idx{1u};idx < fftsize-1;++idx)
  35. {
  36. std::size_t revidx{idx};
  37. revidx = ((revidx&0xaaaaaaaa) >> 1) | ((revidx&0x55555555) << 1);
  38. revidx = ((revidx&0xcccccccc) >> 2) | ((revidx&0x33333333) << 2);
  39. revidx = ((revidx&0xf0f0f0f0) >> 4) | ((revidx&0x0f0f0f0f) << 4);
  40. revidx = ((revidx&0xff00ff00) >> 8) | ((revidx&0x00ff00ff) << 8);
  41. revidx = (revidx >> 16) | ((revidx&0x0000ffff) << 16);
  42. revidx >>= 32-N;
  43. if(idx < revidx)
  44. {
  45. mData[ret_i].first = static_cast<ushort>(idx);
  46. mData[ret_i].second = static_cast<ushort>(revidx);
  47. ++ret_i;
  48. }
  49. }
  50. assert(ret_i == std::size(mData));
  51. }
  52. };
  53. /* These bit-reversal swap tables support up to 11-bit indices (2048 elements),
  54. * which is large enough for the filters and effects in OpenAL Soft. Larger FFT
  55. * requests will use a slower table-less path.
  56. */
  57. constexpr BitReverser<2> BitReverser2{};
  58. constexpr BitReverser<3> BitReverser3{};
  59. constexpr BitReverser<4> BitReverser4{};
  60. constexpr BitReverser<5> BitReverser5{};
  61. constexpr BitReverser<6> BitReverser6{};
  62. constexpr BitReverser<7> BitReverser7{};
  63. constexpr BitReverser<8> BitReverser8{};
  64. constexpr BitReverser<9> BitReverser9{};
  65. constexpr BitReverser<10> BitReverser10{};
  66. constexpr BitReverser<11> BitReverser11{};
  67. constexpr std::array<al::span<const ushort2>,12> gBitReverses{{
  68. {}, {},
  69. BitReverser2.mData,
  70. BitReverser3.mData,
  71. BitReverser4.mData,
  72. BitReverser5.mData,
  73. BitReverser6.mData,
  74. BitReverser7.mData,
  75. BitReverser8.mData,
  76. BitReverser9.mData,
  77. BitReverser10.mData,
  78. BitReverser11.mData
  79. }};
  80. /* Lookup table for std::polar(1, pi / (1<<index)); */
  81. template<typename T>
  82. constexpr std::array<std::complex<T>,gBitReverses.size()-1> gArgAngle{{
  83. {static_cast<T>(-1.00000000000000000e+00), static_cast<T>(0.00000000000000000e+00)},
  84. {static_cast<T>( 0.00000000000000000e+00), static_cast<T>(1.00000000000000000e+00)},
  85. {static_cast<T>( 7.07106781186547524e-01), static_cast<T>(7.07106781186547524e-01)},
  86. {static_cast<T>( 9.23879532511286756e-01), static_cast<T>(3.82683432365089772e-01)},
  87. {static_cast<T>( 9.80785280403230449e-01), static_cast<T>(1.95090322016128268e-01)},
  88. {static_cast<T>( 9.95184726672196886e-01), static_cast<T>(9.80171403295606020e-02)},
  89. {static_cast<T>( 9.98795456205172393e-01), static_cast<T>(4.90676743274180143e-02)},
  90. {static_cast<T>( 9.99698818696204220e-01), static_cast<T>(2.45412285229122880e-02)},
  91. {static_cast<T>( 9.99924701839144541e-01), static_cast<T>(1.22715382857199261e-02)},
  92. {static_cast<T>( 9.99981175282601143e-01), static_cast<T>(6.13588464915447536e-03)},
  93. {static_cast<T>( 9.99995293809576172e-01), static_cast<T>(3.06795676296597627e-03)}
  94. }};
  95. } // namespace
  96. void complex_fft(const al::span<std::complex<double>> buffer, const double sign)
  97. {
  98. const std::size_t fftsize{buffer.size()};
  99. /* Get the number of bits used for indexing. Simplifies bit-reversal and
  100. * the main loop count.
  101. */
  102. const std::size_t log2_size{static_cast<std::size_t>(al::countr_zero(fftsize))};
  103. if(log2_size < gBitReverses.size()) LIKELY
  104. {
  105. for(auto &rev : gBitReverses[log2_size])
  106. std::swap(buffer[rev.first], buffer[rev.second]);
  107. /* Iterative form of Danielson-Lanczos lemma */
  108. for(std::size_t i{0};i < log2_size;++i)
  109. {
  110. const std::size_t step2{1_uz << i};
  111. const std::size_t step{2_uz << i};
  112. /* The first iteration of the inner loop would have u=1, which we
  113. * can simplify to remove a number of complex multiplies.
  114. */
  115. for(std::size_t k{0};k < fftsize;k+=step)
  116. {
  117. const complex_d temp{buffer[k+step2]};
  118. buffer[k+step2] = buffer[k] - temp;
  119. buffer[k] += temp;
  120. }
  121. const complex_d w{gArgAngle<double>[i].real(), gArgAngle<double>[i].imag()*sign};
  122. complex_d u{w};
  123. for(std::size_t j{1};j < step2;j++)
  124. {
  125. for(std::size_t k{j};k < fftsize;k+=step)
  126. {
  127. const complex_d temp{buffer[k+step2] * u};
  128. buffer[k+step2] = buffer[k] - temp;
  129. buffer[k] += temp;
  130. }
  131. u *= w;
  132. }
  133. }
  134. }
  135. else
  136. {
  137. assert(log2_size < 32);
  138. for(std::size_t idx{1u};idx < fftsize-1;++idx)
  139. {
  140. std::size_t revidx{idx};
  141. revidx = ((revidx&0xaaaaaaaa) >> 1) | ((revidx&0x55555555) << 1);
  142. revidx = ((revidx&0xcccccccc) >> 2) | ((revidx&0x33333333) << 2);
  143. revidx = ((revidx&0xf0f0f0f0) >> 4) | ((revidx&0x0f0f0f0f) << 4);
  144. revidx = ((revidx&0xff00ff00) >> 8) | ((revidx&0x00ff00ff) << 8);
  145. revidx = (revidx >> 16) | ((revidx&0x0000ffff) << 16);
  146. revidx >>= 32-log2_size;
  147. if(idx < revidx)
  148. std::swap(buffer[idx], buffer[revidx]);
  149. }
  150. const double pi{al::numbers::pi * sign};
  151. for(std::size_t i{0};i < log2_size;++i)
  152. {
  153. const std::size_t step2{1_uz << i};
  154. const std::size_t step{2_uz << i};
  155. for(std::size_t k{0};k < fftsize;k+=step)
  156. {
  157. const complex_d temp{buffer[k+step2]};
  158. buffer[k+step2] = buffer[k] - temp;
  159. buffer[k] += temp;
  160. }
  161. const double arg{pi / static_cast<double>(step2)};
  162. const complex_d w{std::polar(1.0, arg)};
  163. complex_d u{w};
  164. for(std::size_t j{1};j < step2;j++)
  165. {
  166. for(std::size_t k{j};k < fftsize;k+=step)
  167. {
  168. const complex_d temp{buffer[k+step2] * u};
  169. buffer[k+step2] = buffer[k] - temp;
  170. buffer[k] += temp;
  171. }
  172. u *= w;
  173. }
  174. }
  175. }
  176. }
  177. void complex_hilbert(const al::span<std::complex<double>> buffer)
  178. {
  179. inverse_fft(buffer);
  180. const double inverse_size = 1.0/static_cast<double>(buffer.size());
  181. auto bufiter = buffer.begin();
  182. const auto halfiter = bufiter + ptrdiff_t(buffer.size()>>1);
  183. *bufiter *= inverse_size; ++bufiter;
  184. bufiter = std::transform(bufiter, halfiter, bufiter,
  185. [scale=inverse_size*2.0](std::complex<double> d){ return d * scale; });
  186. *bufiter *= inverse_size; ++bufiter;
  187. std::fill(bufiter, buffer.end(), std::complex<double>{});
  188. forward_fft(buffer);
  189. }