123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249 |
- #ifndef AL_NUMERIC_H
- #define AL_NUMERIC_H
- #include <algorithm>
- #include <array>
- #include <cmath>
- #include <cstddef>
- #include <cstdint>
- #include <iterator>
- #include <type_traits>
- #ifdef HAVE_INTRIN_H
- #include <intrin.h>
- #endif
- #ifdef HAVE_SSE_INTRINSICS
- #include <xmmintrin.h>
- #endif
- #include "albit.h"
- #include "altraits.h"
- #include "opthelpers.h"
- constexpr auto operator "" _i64(unsigned long long n) noexcept { return static_cast<std::int64_t>(n); }
- constexpr auto operator "" _u64(unsigned long long n) noexcept { return static_cast<std::uint64_t>(n); }
- constexpr auto operator "" _z(unsigned long long n) noexcept
- { return static_cast<std::make_signed_t<std::size_t>>(n); }
- constexpr auto operator "" _uz(unsigned long long n) noexcept { return static_cast<std::size_t>(n); }
- constexpr auto operator "" _zu(unsigned long long n) noexcept { return static_cast<std::size_t>(n); }
- constexpr auto GetCounterSuffix(size_t count) noexcept -> const char*
- {
- auto &suffix = (((count%100)/10) == 1) ? "th" :
- ((count%10) == 1) ? "st" :
- ((count%10) == 2) ? "nd" :
- ((count%10) == 3) ? "rd" : "th";
- return std::data(suffix);
- }
- constexpr inline float lerpf(float val1, float val2, float mu) noexcept
- { return val1 + (val2-val1)*mu; }
- constexpr inline double lerpd(double val1, double val2, double mu) noexcept
- { return val1 + (val2-val1)*mu; }
- /** Find the next power-of-2 for non-power-of-2 numbers. */
- inline uint32_t NextPowerOf2(uint32_t value) noexcept
- {
- if(value > 0)
- {
- value--;
- value |= value>>1;
- value |= value>>2;
- value |= value>>4;
- value |= value>>8;
- value |= value>>16;
- }
- return value+1;
- }
- /**
- * If the value is not already a multiple of r, round down to the next
- * multiple.
- */
- template<typename T>
- constexpr T RoundDown(T value, al::type_identity_t<T> r) noexcept
- { return value - (value%r); }
- /**
- * If the value is not already a multiple of r, round up to the next multiple.
- */
- template<typename T>
- constexpr T RoundUp(T value, al::type_identity_t<T> r) noexcept
- { return RoundDown(value + r-1, r); }
- /**
- * Fast float-to-int conversion. No particular rounding mode is assumed; the
- * IEEE-754 default is round-to-nearest with ties-to-even, though an app could
- * change it on its own threads. On some systems, a truncating conversion may
- * always be the fastest method.
- */
- inline int fastf2i(float f) noexcept
- {
- #if defined(HAVE_SSE_INTRINSICS)
- return _mm_cvt_ss2si(_mm_set_ss(f));
- #elif defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP == 0
- int i;
- __asm fld f
- __asm fistp i
- return i;
- #elif (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
- && !defined(__SSE_MATH__)
- int i;
- __asm__ __volatile__("fistpl %0" : "=m"(i) : "t"(f) : "st");
- return i;
- #else
- return static_cast<int>(f);
- #endif
- }
- inline unsigned int fastf2u(float f) noexcept
- { return static_cast<unsigned int>(fastf2i(f)); }
- /** Converts float-to-int using standard behavior (truncation). */
- inline int float2int(float f) noexcept
- {
- #if defined(HAVE_SSE_INTRINSICS)
- return _mm_cvtt_ss2si(_mm_set_ss(f));
- #elif (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP == 0) \
- || ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
- && !defined(__SSE_MATH__))
- const int conv_i{al::bit_cast<int>(f)};
- const int sign{(conv_i>>31) | 1};
- const int shift{((conv_i>>23)&0xff) - (127+23)};
- /* Over/underflow */
- if(shift >= 31 || shift < -23) UNLIKELY
- return 0;
- const int mant{(conv_i&0x7fffff) | 0x800000};
- if(shift < 0) LIKELY
- return (mant >> -shift) * sign;
- return (mant << shift) * sign;
- #else
- return static_cast<int>(f);
- #endif
- }
- inline unsigned int float2uint(float f) noexcept
- { return static_cast<unsigned int>(float2int(f)); }
- /** Converts double-to-int using standard behavior (truncation). */
- inline int double2int(double d) noexcept
- {
- #if defined(HAVE_SSE_INTRINSICS)
- return _mm_cvttsd_si32(_mm_set_sd(d));
- #elif (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP < 2) \
- || ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
- && !defined(__SSE2_MATH__))
- const int64_t conv_i64{al::bit_cast<int64_t>(d)};
- const int sign{static_cast<int>(conv_i64 >> 63) | 1};
- const int shift{(static_cast<int>(conv_i64 >> 52) & 0x7ff) - (1023 + 52)};
- /* Over/underflow */
- if(shift >= 63 || shift < -52) UNLIKELY
- return 0;
- const int64_t mant{(conv_i64 & 0xfffffffffffff_i64) | 0x10000000000000_i64};
- if(shift < 0) LIKELY
- return static_cast<int>(mant >> -shift) * sign;
- return static_cast<int>(mant << shift) * sign;
- #else
- return static_cast<int>(d);
- #endif
- }
- /**
- * Rounds a float to the nearest integral value, according to the current
- * rounding mode. This is essentially an inlined version of rintf, although
- * makes fewer promises (e.g. -0 or -0.25 rounded to 0 may result in +0).
- */
- inline float fast_roundf(float f) noexcept
- {
- #if (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) \
- && !defined(__SSE_MATH__)
- float out;
- __asm__ __volatile__("frndint" : "=t"(out) : "0"(f));
- return out;
- #elif (defined(__GNUC__) || defined(__clang__)) && defined(__aarch64__)
- float out;
- __asm__ volatile("frintx %s0, %s1" : "=w"(out) : "w"(f));
- return out;
- #else
- /* Integral limit, where sub-integral precision is not available for
- * floats.
- */
- static constexpr std::array ilim{
- 8388608.0f /* 0x1.0p+23 */,
- -8388608.0f /* -0x1.0p+23 */
- };
- const unsigned int conv_i{al::bit_cast<unsigned int>(f)};
- const unsigned int sign{(conv_i>>31)&0x01};
- const unsigned int expo{(conv_i>>23)&0xff};
- if(expo >= 150/*+23*/) UNLIKELY
- {
- /* An exponent (base-2) of 23 or higher is incapable of sub-integral
- * precision, so it's already an integral value. We don't need to worry
- * about infinity or NaN here.
- */
- return f;
- }
- /* Adding the integral limit to the value (with a matching sign) forces a
- * result that has no sub-integral precision, and is consequently forced to
- * round to an integral value. Removing the integral limit then restores
- * the initial value rounded to the integral. The compiler should not
- * optimize this out because of non-associative rules on floating-point
- * math (as long as you don't use -fassociative-math,
- * -funsafe-math-optimizations, -ffast-math, or -Ofast, in which case this
- * may break without __builtin_assoc_barrier support).
- */
- #if HAS_BUILTIN(__builtin_assoc_barrier)
- return __builtin_assoc_barrier(f + ilim[sign]) - ilim[sign];
- #else
- f += ilim[sign];
- return f - ilim[sign];
- #endif
- #endif
- }
- // Converts level (mB) to gain.
- inline float level_mb_to_gain(float x)
- {
- if(x <= -10'000.0f)
- return 0.0f;
- return std::pow(10.0f, x / 2'000.0f);
- }
- // Converts gain to level (mB).
- inline float gain_to_level_mb(float x)
- {
- if (x <= 0.0f)
- return -10'000.0f;
- return std::max(std::log10(x) * 2'000.0f, -10'000.0f);
- }
- #endif /* AL_NUMERIC_H */
|