123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 |
- #ifndef PHASE_SHIFTER_H
- #define PHASE_SHIFTER_H
- #ifdef HAVE_SSE_INTRINSICS
- #include <xmmintrin.h>
- #elif defined(HAVE_NEON)
- #include <arm_neon.h>
- #endif
- #include <array>
- #include <cmath>
- #include <cstddef>
- #include "alnumbers.h"
- #include "alspan.h"
- #include "opthelpers.h"
- /* Implements a wide-band +90 degree phase-shift. Note that this should be
- * given one sample less of a delay (FilterSize/2 - 1) compared to the direct
- * signal delay (FilterSize/2) to properly align.
- */
- template<std::size_t FilterSize>
- struct PhaseShifterT {
- static_assert(FilterSize >= 16, "FilterSize needs to be at least 16");
- static_assert((FilterSize&(FilterSize-1)) == 0, "FilterSize needs to be power-of-two");
- alignas(16) std::array<float,FilterSize/2> mCoeffs{};
- PhaseShifterT()
- {
- /* Every other coefficient is 0, so we only need to calculate and store
- * the non-0 terms and double-step over the input to apply it. The
- * calculated coefficients are in reverse to make applying in the time-
- * domain more efficient.
- */
- for(std::size_t i{0};i < FilterSize/2;++i)
- {
- const int k{static_cast<int>(i*2 + 1) - int{FilterSize/2}};
- /* Calculate the Blackman window value for this coefficient. */
- const double w{2.0*al::numbers::pi * static_cast<double>(i*2 + 1)
- / double{FilterSize}};
- const double window{0.3635819 - 0.4891775*std::cos(w) + 0.1365995*std::cos(2.0*w)
- - 0.0106411*std::cos(3.0*w)};
- const double pk{al::numbers::pi * static_cast<double>(k)};
- mCoeffs[i] = static_cast<float>(window * (1.0-std::cos(pk)) / pk);
- }
- }
- void process(const al::span<float> dst, const al::span<const float> src) const;
- private:
- #if defined(HAVE_NEON)
- static auto unpacklo(float32x4_t a, float32x4_t b)
- {
- float32x2x2_t result{vzip_f32(vget_low_f32(a), vget_low_f32(b))};
- return vcombine_f32(result.val[0], result.val[1]);
- }
- static auto unpackhi(float32x4_t a, float32x4_t b)
- {
- float32x2x2_t result{vzip_f32(vget_high_f32(a), vget_high_f32(b))};
- return vcombine_f32(result.val[0], result.val[1]);
- }
- static auto load4(float32_t a, float32_t b, float32_t c, float32_t d)
- {
- float32x4_t ret{vmovq_n_f32(a)};
- ret = vsetq_lane_f32(b, ret, 1);
- ret = vsetq_lane_f32(c, ret, 2);
- ret = vsetq_lane_f32(d, ret, 3);
- return ret;
- }
- static void vtranspose4(float32x4_t &x0, float32x4_t &x1, float32x4_t &x2, float32x4_t &x3)
- {
- float32x4x2_t t0_{vzipq_f32(x0, x2)};
- float32x4x2_t t1_{vzipq_f32(x1, x3)};
- float32x4x2_t u0_{vzipq_f32(t0_.val[0], t1_.val[0])};
- float32x4x2_t u1_{vzipq_f32(t0_.val[1], t1_.val[1])};
- x0 = u0_.val[0];
- x1 = u0_.val[1];
- x2 = u1_.val[0];
- x3 = u1_.val[1];
- }
- #endif
- };
- template<std::size_t S>
- NOINLINE inline
- void PhaseShifterT<S>::process(const al::span<float> dst, const al::span<const float> src) const
- {
- auto in = src.begin();
- #ifdef HAVE_SSE_INTRINSICS
- if(const std::size_t todo{dst.size()>>2})
- {
- auto out = al::span{reinterpret_cast<__m128*>(dst.data()), todo};
- std::generate(out.begin(), out.end(), [&in,this]
- {
- __m128 r0{_mm_setzero_ps()};
- __m128 r1{_mm_setzero_ps()};
- __m128 r2{_mm_setzero_ps()};
- __m128 r3{_mm_setzero_ps()};
- for(std::size_t j{0};j < mCoeffs.size();j+=4)
- {
- const __m128 coeffs{_mm_load_ps(&mCoeffs[j])};
- const __m128 s0{_mm_loadu_ps(&in[j*2])};
- const __m128 s1{_mm_loadu_ps(&in[j*2 + 4])};
- const __m128 s2{_mm_movehl_ps(_mm_movelh_ps(s1, s1), s0)};
- const __m128 s3{_mm_loadh_pi(_mm_movehl_ps(s1, s1),
- reinterpret_cast<const __m64*>(&in[j*2 + 8]))};
- __m128 s{_mm_shuffle_ps(s0, s1, _MM_SHUFFLE(2, 0, 2, 0))};
- r0 = _mm_add_ps(r0, _mm_mul_ps(s, coeffs));
- s = _mm_shuffle_ps(s0, s1, _MM_SHUFFLE(3, 1, 3, 1));
- r1 = _mm_add_ps(r1, _mm_mul_ps(s, coeffs));
- s = _mm_shuffle_ps(s2, s3, _MM_SHUFFLE(2, 0, 2, 0));
- r2 = _mm_add_ps(r2, _mm_mul_ps(s, coeffs));
- s = _mm_shuffle_ps(s2, s3, _MM_SHUFFLE(3, 1, 3, 1));
- r3 = _mm_add_ps(r3, _mm_mul_ps(s, coeffs));
- }
- in += 4;
- _MM_TRANSPOSE4_PS(r0, r1, r2, r3);
- return _mm_add_ps(_mm_add_ps(r0, r1), _mm_add_ps(r2, r3));
- });
- }
- if(const std::size_t todo{dst.size()&3})
- {
- auto out = dst.last(todo);
- std::generate(out.begin(), out.end(), [&in,this]
- {
- __m128 r4{_mm_setzero_ps()};
- for(std::size_t j{0};j < mCoeffs.size();j+=4)
- {
- const __m128 coeffs{_mm_load_ps(&mCoeffs[j])};
- const __m128 s{_mm_setr_ps(in[j*2], in[j*2 + 2], in[j*2 + 4], in[j*2 + 6])};
- r4 = _mm_add_ps(r4, _mm_mul_ps(s, coeffs));
- }
- ++in;
- r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
- r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
- return _mm_cvtss_f32(r4);
- });
- }
- #elif defined(HAVE_NEON)
- if(const std::size_t todo{dst.size()>>2})
- {
- auto out = al::span{reinterpret_cast<float32x4_t*>(dst.data()), todo};
- std::generate(out.begin(), out.end(), [&in,this]
- {
- float32x4_t r0{vdupq_n_f32(0.0f)};
- float32x4_t r1{vdupq_n_f32(0.0f)};
- float32x4_t r2{vdupq_n_f32(0.0f)};
- float32x4_t r3{vdupq_n_f32(0.0f)};
- for(std::size_t j{0};j < mCoeffs.size();j+=4)
- {
- const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])};
- const float32x4_t s0{vld1q_f32(&in[j*2])};
- const float32x4_t s1{vld1q_f32(&in[j*2 + 4])};
- const float32x4_t s2{vcombine_f32(vget_high_f32(s0), vget_low_f32(s1))};
- const float32x4_t s3{vcombine_f32(vget_high_f32(s1), vld1_f32(&in[j*2 + 8]))};
- const float32x4x2_t values0{vuzpq_f32(s0, s1)};
- const float32x4x2_t values1{vuzpq_f32(s2, s3)};
- r0 = vmlaq_f32(r0, values0.val[0], coeffs);
- r1 = vmlaq_f32(r1, values0.val[1], coeffs);
- r2 = vmlaq_f32(r2, values1.val[0], coeffs);
- r3 = vmlaq_f32(r3, values1.val[1], coeffs);
- }
- in += 4;
- vtranspose4(r0, r1, r2, r3);
- return vaddq_f32(vaddq_f32(r0, r1), vaddq_f32(r2, r3));
- });
- }
- if(const std::size_t todo{dst.size()&3})
- {
- auto out = dst.last(todo);
- std::generate(out.begin(), out.end(), [&in,this]
- {
- float32x4_t r4{vdupq_n_f32(0.0f)};
- for(std::size_t j{0};j < mCoeffs.size();j+=4)
- {
- const float32x4_t coeffs{vld1q_f32(&mCoeffs[j])};
- const float32x4_t s{load4(in[j*2], in[j*2 + 2], in[j*2 + 4], in[j*2 + 6])};
- r4 = vmlaq_f32(r4, s, coeffs);
- }
- ++in;
- r4 = vaddq_f32(r4, vrev64q_f32(r4));
- return vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
- });
- }
- #else
- std::generate(dst.begin(), dst.end(), [&in,this]
- {
- float ret{0.0f};
- for(std::size_t j{0};j < mCoeffs.size();++j)
- ret += in[j*2] * mCoeffs[j];
- ++in;
- return ret;
- });
- #endif
- }
- #endif /* PHASE_SHIFTER_H */
|