loadsofa.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615
  1. /*
  2. * HRTF utility for producing and demonstrating the process of creating an
  3. * OpenAL Soft compatible HRIR data set.
  4. *
  5. * Copyright (C) 2018-2019 Christopher Fitzgerald
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. *
  21. * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
  22. */
  23. #include "loadsofa.h"
  24. #include <algorithm>
  25. #include <atomic>
  26. #include <chrono>
  27. #include <cmath>
  28. #include <cstdio>
  29. #include <functional>
  30. #include <future>
  31. #include <iterator>
  32. #include <memory>
  33. #include <numeric>
  34. #include <optional>
  35. #include <string>
  36. #include <string_view>
  37. #include <thread>
  38. #include <vector>
  39. #include "alspan.h"
  40. #include "alstring.h"
  41. #include "alnumeric.h"
  42. #include "makemhr.h"
  43. #include "polyphase_resampler.h"
  44. #include "sofa-support.h"
  45. #include "mysofa.h"
  46. namespace {
  47. using namespace std::string_view_literals;
  48. using uint = unsigned int;
  49. /* Attempts to produce a compatible layout. Most data sets tend to be
  50. * uniform and have the same major axis as used by OpenAL Soft's HRTF model.
  51. * This will remove outliers and produce a maximally dense layout when
  52. * possible. Those sets that contain purely random measurements or use
  53. * different major axes will fail.
  54. */
  55. auto PrepareLayout(const al::span<const float> xyzs, HrirDataT *hData) -> bool
  56. {
  57. fprintf(stdout, "Detecting compatible layout...\n");
  58. auto fds = GetCompatibleLayout(xyzs);
  59. if(fds.size() > MAX_FD_COUNT)
  60. {
  61. fprintf(stdout, "Incompatible layout (inumerable radii).\n");
  62. return false;
  63. }
  64. std::array<double,MAX_FD_COUNT> distances{};
  65. std::array<uint,MAX_FD_COUNT> evCounts{};
  66. auto azCounts = std::vector<std::array<uint,MAX_EV_COUNT>>(MAX_FD_COUNT);
  67. for(auto &azs : azCounts) azs.fill(0u);
  68. uint fi{0u}, ir_total{0u};
  69. for(const auto &field : fds)
  70. {
  71. distances[fi] = field.mDistance;
  72. evCounts[fi] = field.mEvCount;
  73. for(uint ei{0u};ei < field.mEvStart;ei++)
  74. azCounts[fi][ei] = field.mAzCounts[field.mEvCount-ei-1];
  75. for(uint ei{field.mEvStart};ei < field.mEvCount;ei++)
  76. {
  77. azCounts[fi][ei] = field.mAzCounts[ei];
  78. ir_total += field.mAzCounts[ei];
  79. }
  80. ++fi;
  81. }
  82. fprintf(stdout, "Using %u of %zu IRs.\n", ir_total, xyzs.size()/3);
  83. const auto azs = al::span{azCounts}.first<MAX_FD_COUNT>();
  84. return PrepareHrirData(al::span{distances}.first(fi), evCounts, azs, hData);
  85. }
  86. float GetSampleRate(MYSOFA_HRTF *sofaHrtf)
  87. {
  88. const char *srate_dim{nullptr};
  89. const char *srate_units{nullptr};
  90. MYSOFA_ARRAY *srate_array{&sofaHrtf->DataSamplingRate};
  91. MYSOFA_ATTRIBUTE *srate_attrs{srate_array->attributes};
  92. while(srate_attrs)
  93. {
  94. if("DIMENSION_LIST"sv == srate_attrs->name)
  95. {
  96. if(srate_dim)
  97. {
  98. fprintf(stderr, "Duplicate SampleRate.DIMENSION_LIST\n");
  99. return 0.0f;
  100. }
  101. srate_dim = srate_attrs->value;
  102. }
  103. else if("Units"sv == srate_attrs->name)
  104. {
  105. if(srate_units)
  106. {
  107. fprintf(stderr, "Duplicate SampleRate.Units\n");
  108. return 0.0f;
  109. }
  110. srate_units = srate_attrs->value;
  111. }
  112. else
  113. fprintf(stderr, "Unexpected sample rate attribute: %s = %s\n", srate_attrs->name,
  114. srate_attrs->value);
  115. srate_attrs = srate_attrs->next;
  116. }
  117. if(!srate_dim)
  118. {
  119. fprintf(stderr, "Missing sample rate dimensions\n");
  120. return 0.0f;
  121. }
  122. if(srate_dim != "I"sv)
  123. {
  124. fprintf(stderr, "Unsupported sample rate dimensions: %s\n", srate_dim);
  125. return 0.0f;
  126. }
  127. if(!srate_units)
  128. {
  129. fprintf(stderr, "Missing sample rate unit type\n");
  130. return 0.0f;
  131. }
  132. if(srate_units != "hertz"sv)
  133. {
  134. fprintf(stderr, "Unsupported sample rate unit type: %s\n", srate_units);
  135. return 0.0f;
  136. }
  137. /* I dimensions guarantees 1 element, so just extract it. */
  138. const auto values = al::span{srate_array->values, sofaHrtf->I};
  139. if(values[0] < float{MIN_RATE} || values[0] > float{MAX_RATE})
  140. {
  141. fprintf(stderr, "Sample rate out of range: %f (expected %u to %u)", values[0], MIN_RATE,
  142. MAX_RATE);
  143. return 0.0f;
  144. }
  145. return values[0];
  146. }
  147. enum class DelayType : uint8_t {
  148. None,
  149. I_R, /* [1][Channels] */
  150. M_R, /* [HRIRs][Channels] */
  151. };
  152. auto PrepareDelay(MYSOFA_HRTF *sofaHrtf) -> std::optional<DelayType>
  153. {
  154. const char *delay_dim{nullptr};
  155. MYSOFA_ARRAY *delay_array{&sofaHrtf->DataDelay};
  156. MYSOFA_ATTRIBUTE *delay_attrs{delay_array->attributes};
  157. while(delay_attrs)
  158. {
  159. if("DIMENSION_LIST"sv == delay_attrs->name)
  160. {
  161. if(delay_dim)
  162. {
  163. fprintf(stderr, "Duplicate Delay.DIMENSION_LIST\n");
  164. return std::nullopt;
  165. }
  166. delay_dim = delay_attrs->value;
  167. }
  168. else
  169. fprintf(stderr, "Unexpected delay attribute: %s = %s\n", delay_attrs->name,
  170. delay_attrs->value ? delay_attrs->value : "<null>");
  171. delay_attrs = delay_attrs->next;
  172. }
  173. if(!delay_dim)
  174. {
  175. fprintf(stderr, "Missing delay dimensions\n");
  176. return DelayType::None;
  177. }
  178. if(delay_dim == "I,R"sv)
  179. return DelayType::I_R;
  180. if(delay_dim == "M,R"sv)
  181. return DelayType::M_R;
  182. fprintf(stderr, "Unsupported delay dimensions: %s\n", delay_dim);
  183. return std::nullopt;
  184. }
  185. bool CheckIrData(MYSOFA_HRTF *sofaHrtf)
  186. {
  187. const char *ir_dim{nullptr};
  188. MYSOFA_ARRAY *ir_array{&sofaHrtf->DataIR};
  189. MYSOFA_ATTRIBUTE *ir_attrs{ir_array->attributes};
  190. while(ir_attrs)
  191. {
  192. if("DIMENSION_LIST"sv == ir_attrs->name)
  193. {
  194. if(ir_dim)
  195. {
  196. fprintf(stderr, "Duplicate IR.DIMENSION_LIST\n");
  197. return false;
  198. }
  199. ir_dim = ir_attrs->value;
  200. }
  201. else
  202. fprintf(stderr, "Unexpected IR attribute: %s = %s\n", ir_attrs->name,
  203. ir_attrs->value ? ir_attrs->value : "<null>");
  204. ir_attrs = ir_attrs->next;
  205. }
  206. if(!ir_dim)
  207. {
  208. fprintf(stderr, "Missing IR dimensions\n");
  209. return false;
  210. }
  211. if(ir_dim != "M,R,N"sv)
  212. {
  213. fprintf(stderr, "Unsupported IR dimensions: %s\n", ir_dim);
  214. return false;
  215. }
  216. return true;
  217. }
  218. /* Calculate the onset time of a HRIR. */
  219. constexpr int OnsetRateMultiple{10};
  220. auto CalcHrirOnset(PPhaseResampler &rs, const uint rate, al::span<double> upsampled,
  221. const al::span<const double> hrir) -> double
  222. {
  223. rs.process(hrir, upsampled);
  224. auto abs_lt = [](const double lhs, const double rhs) -> bool
  225. { return std::abs(lhs) < std::abs(rhs); };
  226. auto iter = std::max_element(upsampled.cbegin(), upsampled.cend(), abs_lt);
  227. return static_cast<double>(std::distance(upsampled.cbegin(), iter)) /
  228. (double{OnsetRateMultiple}*rate);
  229. }
  230. /* Calculate the magnitude response of a HRIR. */
  231. void CalcHrirMagnitude(const uint points, al::span<complex_d> h, const al::span<double> hrir)
  232. {
  233. auto iter = std::copy_n(hrir.cbegin(), points, h.begin());
  234. std::fill(iter, h.end(), complex_d{0.0, 0.0});
  235. forward_fft(h);
  236. MagnitudeResponse(h, hrir.first((h.size()/2) + 1));
  237. }
  238. bool LoadResponses(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData, const DelayType delayType,
  239. const uint outRate)
  240. {
  241. std::atomic<uint> loaded_count{0u};
  242. auto load_proc = [sofaHrtf,hData,delayType,outRate,&loaded_count]() -> bool
  243. {
  244. const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
  245. hData->mHrirsBase.resize(channels * size_t{hData->mIrCount} * hData->mIrSize, 0.0);
  246. const auto hrirs = al::span{hData->mHrirsBase};
  247. std::vector<double> restmp;
  248. std::optional<PPhaseResampler> resampler;
  249. if(outRate && outRate != hData->mIrRate)
  250. {
  251. resampler.emplace().init(hData->mIrRate, outRate);
  252. restmp.resize(sofaHrtf->N);
  253. }
  254. const auto srcPosValues = al::span{sofaHrtf->SourcePosition.values, sofaHrtf->M*3_uz};
  255. const auto irValues = al::span{sofaHrtf->DataIR.values,
  256. size_t{sofaHrtf->M}*sofaHrtf->R*sofaHrtf->N};
  257. for(uint si{0u};si < sofaHrtf->M;++si)
  258. {
  259. loaded_count.fetch_add(1u);
  260. std::array aer{srcPosValues[3_uz*si], srcPosValues[3_uz*si + 1],
  261. srcPosValues[3_uz*si + 2]};
  262. mysofa_c2s(aer.data());
  263. if(std::abs(aer[1]) >= 89.999f)
  264. aer[0] = 0.0f;
  265. else
  266. aer[0] = std::fmod(360.0f - aer[0], 360.0f);
  267. auto field = std::find_if(hData->mFds.cbegin(), hData->mFds.cend(),
  268. [&aer](const HrirFdT &fld) -> bool
  269. { return (std::abs(aer[2] - fld.mDistance) < 0.001); });
  270. if(field == hData->mFds.cend())
  271. continue;
  272. const double evscale{180.0 / static_cast<double>(field->mEvs.size()-1)};
  273. double ef{(90.0 + aer[1]) / evscale};
  274. auto ei = static_cast<uint>(std::round(ef));
  275. ef = (ef - ei) * evscale;
  276. if(std::abs(ef) >= 0.1) continue;
  277. const double azscale{360.0 / static_cast<double>(field->mEvs[ei].mAzs.size())};
  278. double af{aer[0] / azscale};
  279. auto ai = static_cast<uint>(std::round(af));
  280. af = (af-ai) * azscale;
  281. ai %= static_cast<uint>(field->mEvs[ei].mAzs.size());
  282. if(std::abs(af) >= 0.1) continue;
  283. HrirAzT &azd = field->mEvs[ei].mAzs[ai];
  284. if(!azd.mIrs[0].empty())
  285. {
  286. fprintf(stderr, "\nMultiple measurements near [ a=%f, e=%f, r=%f ].\n",
  287. aer[0], aer[1], aer[2]);
  288. return false;
  289. }
  290. for(uint ti{0u};ti < channels;++ti)
  291. {
  292. azd.mIrs[ti] = hrirs.subspan(
  293. (size_t{hData->mIrCount}*ti + azd.mIndex) * hData->mIrSize, hData->mIrSize);
  294. const auto ir = irValues.subspan((size_t{si}*sofaHrtf->R + ti)*sofaHrtf->N,
  295. sofaHrtf->N);
  296. if(!resampler)
  297. std::copy_n(ir.cbegin(), ir.size(), azd.mIrs[ti].begin());
  298. else
  299. {
  300. std::copy_n(ir.cbegin(), ir.size(), restmp.begin());
  301. resampler->process(restmp, azd.mIrs[ti]);
  302. }
  303. }
  304. /* Include any per-channel or per-HRIR delays. */
  305. if(delayType == DelayType::I_R)
  306. {
  307. const auto delayValues = al::span{sofaHrtf->DataDelay.values,
  308. size_t{sofaHrtf->I}*sofaHrtf->R};
  309. for(uint ti{0u};ti < channels;++ti)
  310. azd.mDelays[ti] = delayValues[ti] / static_cast<float>(hData->mIrRate);
  311. }
  312. else if(delayType == DelayType::M_R)
  313. {
  314. const auto delayValues = al::span{sofaHrtf->DataDelay.values,
  315. size_t{sofaHrtf->M}*sofaHrtf->R};
  316. for(uint ti{0u};ti < channels;++ti)
  317. azd.mDelays[ti] = delayValues[si*sofaHrtf->R + ti] /
  318. static_cast<float>(hData->mIrRate);
  319. }
  320. }
  321. if(outRate && outRate != hData->mIrRate)
  322. {
  323. const double scale{static_cast<double>(outRate) / hData->mIrRate};
  324. hData->mIrRate = outRate;
  325. hData->mIrPoints = std::min(static_cast<uint>(std::ceil(hData->mIrPoints*scale)),
  326. hData->mIrSize);
  327. }
  328. return true;
  329. };
  330. std::future_status load_status{};
  331. auto load_future = std::async(std::launch::async, load_proc);
  332. do {
  333. load_status = load_future.wait_for(std::chrono::milliseconds{50});
  334. printf("\rLoading HRIRs... %u of %u", loaded_count.load(), sofaHrtf->M);
  335. fflush(stdout);
  336. } while(load_status != std::future_status::ready);
  337. fputc('\n', stdout);
  338. return load_future.get();
  339. }
  340. /* Calculates the frequency magnitudes of the HRIR set. Work is delegated to
  341. * this struct, which runs asynchronously on one or more threads (sharing the
  342. * same calculator object).
  343. */
  344. struct MagCalculator {
  345. const uint mFftSize{};
  346. const uint mIrPoints{};
  347. std::vector<al::span<double>> mIrs{};
  348. std::atomic<size_t> mCurrent{};
  349. std::atomic<size_t> mDone{};
  350. void Worker()
  351. {
  352. auto htemp = std::vector<complex_d>(mFftSize);
  353. while(true)
  354. {
  355. /* Load the current index to process. */
  356. size_t idx{mCurrent.load()};
  357. do {
  358. /* If the index is at the end, we're done. */
  359. if(idx >= mIrs.size())
  360. return;
  361. /* Otherwise, increment the current index atomically so other
  362. * threads know to go to the next one. If this call fails, the
  363. * current index was just changed by another thread and the new
  364. * value is loaded into idx, which we'll recheck.
  365. */
  366. } while(!mCurrent.compare_exchange_weak(idx, idx+1, std::memory_order_relaxed));
  367. CalcHrirMagnitude(mIrPoints, htemp, mIrs[idx]);
  368. /* Increment the number of IRs done. */
  369. mDone.fetch_add(1);
  370. }
  371. }
  372. };
  373. } // namespace
  374. bool LoadSofaFile(const std::string_view filename, const uint numThreads, const uint fftSize,
  375. const uint truncSize, const uint outRate, const ChannelModeT chanMode, HrirDataT *hData)
  376. {
  377. int err;
  378. MySofaHrtfPtr sofaHrtf{mysofa_load(std::string{filename}.c_str(), &err)};
  379. if(!sofaHrtf)
  380. {
  381. fprintf(stdout, "Error: Could not load %.*s: %s\n", al::sizei(filename), filename.data(),
  382. SofaErrorStr(err));
  383. return false;
  384. }
  385. /* NOTE: Some valid SOFA files are failing this check. */
  386. err = mysofa_check(sofaHrtf.get());
  387. if(err != MYSOFA_OK)
  388. fprintf(stderr, "Warning: Supposedly malformed source file '%.*s' (%s).\n",
  389. al::sizei(filename), filename.data(), SofaErrorStr(err));
  390. mysofa_tocartesian(sofaHrtf.get());
  391. /* Make sure emitter and receiver counts are sane. */
  392. if(sofaHrtf->E != 1)
  393. {
  394. fprintf(stderr, "%u emitters not supported\n", sofaHrtf->E);
  395. return false;
  396. }
  397. if(sofaHrtf->R > 2 || sofaHrtf->R < 1)
  398. {
  399. fprintf(stderr, "%u receivers not supported\n", sofaHrtf->R);
  400. return false;
  401. }
  402. /* Assume R=2 is a stereo measurement, and R=1 is mono left-ear-only. */
  403. if(sofaHrtf->R == 2 && chanMode == CM_AllowStereo)
  404. hData->mChannelType = CT_STEREO;
  405. else
  406. hData->mChannelType = CT_MONO;
  407. /* Check and set the FFT and IR size. */
  408. if(sofaHrtf->N > fftSize)
  409. {
  410. fprintf(stderr, "Sample points exceeds the FFT size.\n");
  411. return false;
  412. }
  413. if(sofaHrtf->N < truncSize)
  414. {
  415. fprintf(stderr, "Sample points is below the truncation size.\n");
  416. return false;
  417. }
  418. hData->mIrPoints = sofaHrtf->N;
  419. hData->mFftSize = fftSize;
  420. hData->mIrSize = std::max(1u + (fftSize/2u), sofaHrtf->N);
  421. /* Assume a default head radius of 9cm. */
  422. hData->mRadius = 0.09;
  423. hData->mIrRate = static_cast<uint>(std::lround(GetSampleRate(sofaHrtf.get())));
  424. if(!hData->mIrRate)
  425. return false;
  426. const auto delayType = PrepareDelay(sofaHrtf.get());
  427. if(!delayType)
  428. return false;
  429. if(!CheckIrData(sofaHrtf.get()))
  430. return false;
  431. if(!PrepareLayout(al::span{sofaHrtf->SourcePosition.values, sofaHrtf->M*3_uz}, hData))
  432. return false;
  433. if(!LoadResponses(sofaHrtf.get(), hData, *delayType, outRate))
  434. return false;
  435. sofaHrtf = nullptr;
  436. for(uint fi{0u};fi < hData->mFds.size();fi++)
  437. {
  438. uint ei{0u};
  439. for(;ei < hData->mFds[fi].mEvs.size();ei++)
  440. {
  441. uint ai{0u};
  442. for(;ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++)
  443. {
  444. HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
  445. if(!azd.mIrs[0].empty()) break;
  446. }
  447. if(ai < hData->mFds[fi].mEvs[ei].mAzs.size())
  448. break;
  449. }
  450. if(ei >= hData->mFds[fi].mEvs.size())
  451. {
  452. fprintf(stderr, "Missing source references [ %d, *, * ].\n", fi);
  453. return false;
  454. }
  455. hData->mFds[fi].mEvStart = ei;
  456. for(;ei < hData->mFds[fi].mEvs.size();ei++)
  457. {
  458. for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++)
  459. {
  460. HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
  461. if(azd.mIrs[0].empty())
  462. {
  463. fprintf(stderr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
  464. return false;
  465. }
  466. }
  467. }
  468. }
  469. size_t hrir_total{0};
  470. const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
  471. const auto hrirs = al::span{hData->mHrirsBase};
  472. for(uint fi{0u};fi < hData->mFds.size();fi++)
  473. {
  474. for(uint ei{0u};ei < hData->mFds[fi].mEvStart;ei++)
  475. {
  476. for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++)
  477. {
  478. HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
  479. for(size_t ti{0u};ti < channels;ti++)
  480. azd.mIrs[ti] = hrirs.subspan((hData->mIrCount*ti + azd.mIndex)*hData->mIrSize,
  481. hData->mIrSize);
  482. }
  483. }
  484. for(uint ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvs.size();ei++)
  485. hrir_total += hData->mFds[fi].mEvs[ei].mAzs.size() * channels;
  486. }
  487. std::atomic<size_t> hrir_done{0};
  488. auto onset_proc = [hData,channels,&hrir_done]() -> bool
  489. {
  490. /* Temporary buffer used to calculate the IR's onset. */
  491. auto upsampled = std::vector<double>(size_t{OnsetRateMultiple} * hData->mIrPoints);
  492. /* This resampler is used to help detect the response onset. */
  493. PPhaseResampler rs;
  494. rs.init(hData->mIrRate, OnsetRateMultiple*hData->mIrRate);
  495. for(auto &field : hData->mFds)
  496. {
  497. for(auto &elev : field.mEvs.subspan(field.mEvStart))
  498. {
  499. for(auto &azd : elev.mAzs)
  500. {
  501. for(uint ti{0};ti < channels;ti++)
  502. {
  503. hrir_done.fetch_add(1u, std::memory_order_acq_rel);
  504. azd.mDelays[ti] += CalcHrirOnset(rs, hData->mIrRate, upsampled,
  505. azd.mIrs[ti].first(hData->mIrPoints));
  506. }
  507. }
  508. }
  509. }
  510. return true;
  511. };
  512. std::future_status load_status{};
  513. auto load_future = std::async(std::launch::async, onset_proc);
  514. do {
  515. load_status = load_future.wait_for(std::chrono::milliseconds{50});
  516. printf("\rCalculating HRIR onsets... %zu of %zu", hrir_done.load(), hrir_total);
  517. fflush(stdout);
  518. } while(load_status != std::future_status::ready);
  519. fputc('\n', stdout);
  520. if(!load_future.get())
  521. return false;
  522. MagCalculator calculator{hData->mFftSize, hData->mIrPoints};
  523. for(auto &field : hData->mFds)
  524. {
  525. for(auto &elev : field.mEvs.subspan(field.mEvStart))
  526. {
  527. for(auto &azd : elev.mAzs)
  528. {
  529. for(uint ti{0};ti < channels;ti++)
  530. calculator.mIrs.push_back(azd.mIrs[ti]);
  531. }
  532. }
  533. }
  534. std::vector<std::thread> thrds;
  535. thrds.reserve(numThreads);
  536. for(size_t i{0};i < numThreads;++i)
  537. thrds.emplace_back(std::mem_fn(&MagCalculator::Worker), &calculator);
  538. size_t count;
  539. do {
  540. std::this_thread::sleep_for(std::chrono::milliseconds{50});
  541. count = calculator.mDone.load();
  542. printf("\rCalculating HRIR magnitudes... %zu of %zu", count, calculator.mIrs.size());
  543. fflush(stdout);
  544. } while(count != calculator.mIrs.size());
  545. fputc('\n', stdout);
  546. for(auto &thrd : thrds)
  547. {
  548. if(thrd.joinable())
  549. thrd.join();
  550. }
  551. return true;
  552. }