123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615 |
- /*
- * HRTF utility for producing and demonstrating the process of creating an
- * OpenAL Soft compatible HRIR data set.
- *
- * Copyright (C) 2018-2019 Christopher Fitzgerald
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
- */
- #include "loadsofa.h"
- #include <algorithm>
- #include <atomic>
- #include <chrono>
- #include <cmath>
- #include <cstdio>
- #include <functional>
- #include <future>
- #include <iterator>
- #include <memory>
- #include <numeric>
- #include <optional>
- #include <string>
- #include <string_view>
- #include <thread>
- #include <vector>
- #include "alspan.h"
- #include "alstring.h"
- #include "alnumeric.h"
- #include "makemhr.h"
- #include "polyphase_resampler.h"
- #include "sofa-support.h"
- #include "mysofa.h"
- namespace {
- using namespace std::string_view_literals;
- using uint = unsigned int;
- /* Attempts to produce a compatible layout. Most data sets tend to be
- * uniform and have the same major axis as used by OpenAL Soft's HRTF model.
- * This will remove outliers and produce a maximally dense layout when
- * possible. Those sets that contain purely random measurements or use
- * different major axes will fail.
- */
- auto PrepareLayout(const al::span<const float> xyzs, HrirDataT *hData) -> bool
- {
- fprintf(stdout, "Detecting compatible layout...\n");
- auto fds = GetCompatibleLayout(xyzs);
- if(fds.size() > MAX_FD_COUNT)
- {
- fprintf(stdout, "Incompatible layout (inumerable radii).\n");
- return false;
- }
- std::array<double,MAX_FD_COUNT> distances{};
- std::array<uint,MAX_FD_COUNT> evCounts{};
- auto azCounts = std::vector<std::array<uint,MAX_EV_COUNT>>(MAX_FD_COUNT);
- for(auto &azs : azCounts) azs.fill(0u);
- uint fi{0u}, ir_total{0u};
- for(const auto &field : fds)
- {
- distances[fi] = field.mDistance;
- evCounts[fi] = field.mEvCount;
- for(uint ei{0u};ei < field.mEvStart;ei++)
- azCounts[fi][ei] = field.mAzCounts[field.mEvCount-ei-1];
- for(uint ei{field.mEvStart};ei < field.mEvCount;ei++)
- {
- azCounts[fi][ei] = field.mAzCounts[ei];
- ir_total += field.mAzCounts[ei];
- }
- ++fi;
- }
- fprintf(stdout, "Using %u of %zu IRs.\n", ir_total, xyzs.size()/3);
- const auto azs = al::span{azCounts}.first<MAX_FD_COUNT>();
- return PrepareHrirData(al::span{distances}.first(fi), evCounts, azs, hData);
- }
- float GetSampleRate(MYSOFA_HRTF *sofaHrtf)
- {
- const char *srate_dim{nullptr};
- const char *srate_units{nullptr};
- MYSOFA_ARRAY *srate_array{&sofaHrtf->DataSamplingRate};
- MYSOFA_ATTRIBUTE *srate_attrs{srate_array->attributes};
- while(srate_attrs)
- {
- if("DIMENSION_LIST"sv == srate_attrs->name)
- {
- if(srate_dim)
- {
- fprintf(stderr, "Duplicate SampleRate.DIMENSION_LIST\n");
- return 0.0f;
- }
- srate_dim = srate_attrs->value;
- }
- else if("Units"sv == srate_attrs->name)
- {
- if(srate_units)
- {
- fprintf(stderr, "Duplicate SampleRate.Units\n");
- return 0.0f;
- }
- srate_units = srate_attrs->value;
- }
- else
- fprintf(stderr, "Unexpected sample rate attribute: %s = %s\n", srate_attrs->name,
- srate_attrs->value);
- srate_attrs = srate_attrs->next;
- }
- if(!srate_dim)
- {
- fprintf(stderr, "Missing sample rate dimensions\n");
- return 0.0f;
- }
- if(srate_dim != "I"sv)
- {
- fprintf(stderr, "Unsupported sample rate dimensions: %s\n", srate_dim);
- return 0.0f;
- }
- if(!srate_units)
- {
- fprintf(stderr, "Missing sample rate unit type\n");
- return 0.0f;
- }
- if(srate_units != "hertz"sv)
- {
- fprintf(stderr, "Unsupported sample rate unit type: %s\n", srate_units);
- return 0.0f;
- }
- /* I dimensions guarantees 1 element, so just extract it. */
- const auto values = al::span{srate_array->values, sofaHrtf->I};
- if(values[0] < float{MIN_RATE} || values[0] > float{MAX_RATE})
- {
- fprintf(stderr, "Sample rate out of range: %f (expected %u to %u)", values[0], MIN_RATE,
- MAX_RATE);
- return 0.0f;
- }
- return values[0];
- }
- enum class DelayType : uint8_t {
- None,
- I_R, /* [1][Channels] */
- M_R, /* [HRIRs][Channels] */
- };
- auto PrepareDelay(MYSOFA_HRTF *sofaHrtf) -> std::optional<DelayType>
- {
- const char *delay_dim{nullptr};
- MYSOFA_ARRAY *delay_array{&sofaHrtf->DataDelay};
- MYSOFA_ATTRIBUTE *delay_attrs{delay_array->attributes};
- while(delay_attrs)
- {
- if("DIMENSION_LIST"sv == delay_attrs->name)
- {
- if(delay_dim)
- {
- fprintf(stderr, "Duplicate Delay.DIMENSION_LIST\n");
- return std::nullopt;
- }
- delay_dim = delay_attrs->value;
- }
- else
- fprintf(stderr, "Unexpected delay attribute: %s = %s\n", delay_attrs->name,
- delay_attrs->value ? delay_attrs->value : "<null>");
- delay_attrs = delay_attrs->next;
- }
- if(!delay_dim)
- {
- fprintf(stderr, "Missing delay dimensions\n");
- return DelayType::None;
- }
- if(delay_dim == "I,R"sv)
- return DelayType::I_R;
- if(delay_dim == "M,R"sv)
- return DelayType::M_R;
- fprintf(stderr, "Unsupported delay dimensions: %s\n", delay_dim);
- return std::nullopt;
- }
- bool CheckIrData(MYSOFA_HRTF *sofaHrtf)
- {
- const char *ir_dim{nullptr};
- MYSOFA_ARRAY *ir_array{&sofaHrtf->DataIR};
- MYSOFA_ATTRIBUTE *ir_attrs{ir_array->attributes};
- while(ir_attrs)
- {
- if("DIMENSION_LIST"sv == ir_attrs->name)
- {
- if(ir_dim)
- {
- fprintf(stderr, "Duplicate IR.DIMENSION_LIST\n");
- return false;
- }
- ir_dim = ir_attrs->value;
- }
- else
- fprintf(stderr, "Unexpected IR attribute: %s = %s\n", ir_attrs->name,
- ir_attrs->value ? ir_attrs->value : "<null>");
- ir_attrs = ir_attrs->next;
- }
- if(!ir_dim)
- {
- fprintf(stderr, "Missing IR dimensions\n");
- return false;
- }
- if(ir_dim != "M,R,N"sv)
- {
- fprintf(stderr, "Unsupported IR dimensions: %s\n", ir_dim);
- return false;
- }
- return true;
- }
- /* Calculate the onset time of a HRIR. */
- constexpr int OnsetRateMultiple{10};
- auto CalcHrirOnset(PPhaseResampler &rs, const uint rate, al::span<double> upsampled,
- const al::span<const double> hrir) -> double
- {
- rs.process(hrir, upsampled);
- auto abs_lt = [](const double lhs, const double rhs) -> bool
- { return std::abs(lhs) < std::abs(rhs); };
- auto iter = std::max_element(upsampled.cbegin(), upsampled.cend(), abs_lt);
- return static_cast<double>(std::distance(upsampled.cbegin(), iter)) /
- (double{OnsetRateMultiple}*rate);
- }
- /* Calculate the magnitude response of a HRIR. */
- void CalcHrirMagnitude(const uint points, al::span<complex_d> h, const al::span<double> hrir)
- {
- auto iter = std::copy_n(hrir.cbegin(), points, h.begin());
- std::fill(iter, h.end(), complex_d{0.0, 0.0});
- forward_fft(h);
- MagnitudeResponse(h, hrir.first((h.size()/2) + 1));
- }
- bool LoadResponses(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData, const DelayType delayType,
- const uint outRate)
- {
- std::atomic<uint> loaded_count{0u};
- auto load_proc = [sofaHrtf,hData,delayType,outRate,&loaded_count]() -> bool
- {
- const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
- hData->mHrirsBase.resize(channels * size_t{hData->mIrCount} * hData->mIrSize, 0.0);
- const auto hrirs = al::span{hData->mHrirsBase};
- std::vector<double> restmp;
- std::optional<PPhaseResampler> resampler;
- if(outRate && outRate != hData->mIrRate)
- {
- resampler.emplace().init(hData->mIrRate, outRate);
- restmp.resize(sofaHrtf->N);
- }
- const auto srcPosValues = al::span{sofaHrtf->SourcePosition.values, sofaHrtf->M*3_uz};
- const auto irValues = al::span{sofaHrtf->DataIR.values,
- size_t{sofaHrtf->M}*sofaHrtf->R*sofaHrtf->N};
- for(uint si{0u};si < sofaHrtf->M;++si)
- {
- loaded_count.fetch_add(1u);
- std::array aer{srcPosValues[3_uz*si], srcPosValues[3_uz*si + 1],
- srcPosValues[3_uz*si + 2]};
- mysofa_c2s(aer.data());
- if(std::abs(aer[1]) >= 89.999f)
- aer[0] = 0.0f;
- else
- aer[0] = std::fmod(360.0f - aer[0], 360.0f);
- auto field = std::find_if(hData->mFds.cbegin(), hData->mFds.cend(),
- [&aer](const HrirFdT &fld) -> bool
- { return (std::abs(aer[2] - fld.mDistance) < 0.001); });
- if(field == hData->mFds.cend())
- continue;
- const double evscale{180.0 / static_cast<double>(field->mEvs.size()-1)};
- double ef{(90.0 + aer[1]) / evscale};
- auto ei = static_cast<uint>(std::round(ef));
- ef = (ef - ei) * evscale;
- if(std::abs(ef) >= 0.1) continue;
- const double azscale{360.0 / static_cast<double>(field->mEvs[ei].mAzs.size())};
- double af{aer[0] / azscale};
- auto ai = static_cast<uint>(std::round(af));
- af = (af-ai) * azscale;
- ai %= static_cast<uint>(field->mEvs[ei].mAzs.size());
- if(std::abs(af) >= 0.1) continue;
- HrirAzT &azd = field->mEvs[ei].mAzs[ai];
- if(!azd.mIrs[0].empty())
- {
- fprintf(stderr, "\nMultiple measurements near [ a=%f, e=%f, r=%f ].\n",
- aer[0], aer[1], aer[2]);
- return false;
- }
- for(uint ti{0u};ti < channels;++ti)
- {
- azd.mIrs[ti] = hrirs.subspan(
- (size_t{hData->mIrCount}*ti + azd.mIndex) * hData->mIrSize, hData->mIrSize);
- const auto ir = irValues.subspan((size_t{si}*sofaHrtf->R + ti)*sofaHrtf->N,
- sofaHrtf->N);
- if(!resampler)
- std::copy_n(ir.cbegin(), ir.size(), azd.mIrs[ti].begin());
- else
- {
- std::copy_n(ir.cbegin(), ir.size(), restmp.begin());
- resampler->process(restmp, azd.mIrs[ti]);
- }
- }
- /* Include any per-channel or per-HRIR delays. */
- if(delayType == DelayType::I_R)
- {
- const auto delayValues = al::span{sofaHrtf->DataDelay.values,
- size_t{sofaHrtf->I}*sofaHrtf->R};
- for(uint ti{0u};ti < channels;++ti)
- azd.mDelays[ti] = delayValues[ti] / static_cast<float>(hData->mIrRate);
- }
- else if(delayType == DelayType::M_R)
- {
- const auto delayValues = al::span{sofaHrtf->DataDelay.values,
- size_t{sofaHrtf->M}*sofaHrtf->R};
- for(uint ti{0u};ti < channels;++ti)
- azd.mDelays[ti] = delayValues[si*sofaHrtf->R + ti] /
- static_cast<float>(hData->mIrRate);
- }
- }
- if(outRate && outRate != hData->mIrRate)
- {
- const double scale{static_cast<double>(outRate) / hData->mIrRate};
- hData->mIrRate = outRate;
- hData->mIrPoints = std::min(static_cast<uint>(std::ceil(hData->mIrPoints*scale)),
- hData->mIrSize);
- }
- return true;
- };
- std::future_status load_status{};
- auto load_future = std::async(std::launch::async, load_proc);
- do {
- load_status = load_future.wait_for(std::chrono::milliseconds{50});
- printf("\rLoading HRIRs... %u of %u", loaded_count.load(), sofaHrtf->M);
- fflush(stdout);
- } while(load_status != std::future_status::ready);
- fputc('\n', stdout);
- return load_future.get();
- }
- /* Calculates the frequency magnitudes of the HRIR set. Work is delegated to
- * this struct, which runs asynchronously on one or more threads (sharing the
- * same calculator object).
- */
- struct MagCalculator {
- const uint mFftSize{};
- const uint mIrPoints{};
- std::vector<al::span<double>> mIrs{};
- std::atomic<size_t> mCurrent{};
- std::atomic<size_t> mDone{};
- void Worker()
- {
- auto htemp = std::vector<complex_d>(mFftSize);
- while(true)
- {
- /* Load the current index to process. */
- size_t idx{mCurrent.load()};
- do {
- /* If the index is at the end, we're done. */
- if(idx >= mIrs.size())
- return;
- /* Otherwise, increment the current index atomically so other
- * threads know to go to the next one. If this call fails, the
- * current index was just changed by another thread and the new
- * value is loaded into idx, which we'll recheck.
- */
- } while(!mCurrent.compare_exchange_weak(idx, idx+1, std::memory_order_relaxed));
- CalcHrirMagnitude(mIrPoints, htemp, mIrs[idx]);
- /* Increment the number of IRs done. */
- mDone.fetch_add(1);
- }
- }
- };
- } // namespace
- bool LoadSofaFile(const std::string_view filename, const uint numThreads, const uint fftSize,
- const uint truncSize, const uint outRate, const ChannelModeT chanMode, HrirDataT *hData)
- {
- int err;
- MySofaHrtfPtr sofaHrtf{mysofa_load(std::string{filename}.c_str(), &err)};
- if(!sofaHrtf)
- {
- fprintf(stdout, "Error: Could not load %.*s: %s\n", al::sizei(filename), filename.data(),
- SofaErrorStr(err));
- return false;
- }
- /* NOTE: Some valid SOFA files are failing this check. */
- err = mysofa_check(sofaHrtf.get());
- if(err != MYSOFA_OK)
- fprintf(stderr, "Warning: Supposedly malformed source file '%.*s' (%s).\n",
- al::sizei(filename), filename.data(), SofaErrorStr(err));
- mysofa_tocartesian(sofaHrtf.get());
- /* Make sure emitter and receiver counts are sane. */
- if(sofaHrtf->E != 1)
- {
- fprintf(stderr, "%u emitters not supported\n", sofaHrtf->E);
- return false;
- }
- if(sofaHrtf->R > 2 || sofaHrtf->R < 1)
- {
- fprintf(stderr, "%u receivers not supported\n", sofaHrtf->R);
- return false;
- }
- /* Assume R=2 is a stereo measurement, and R=1 is mono left-ear-only. */
- if(sofaHrtf->R == 2 && chanMode == CM_AllowStereo)
- hData->mChannelType = CT_STEREO;
- else
- hData->mChannelType = CT_MONO;
- /* Check and set the FFT and IR size. */
- if(sofaHrtf->N > fftSize)
- {
- fprintf(stderr, "Sample points exceeds the FFT size.\n");
- return false;
- }
- if(sofaHrtf->N < truncSize)
- {
- fprintf(stderr, "Sample points is below the truncation size.\n");
- return false;
- }
- hData->mIrPoints = sofaHrtf->N;
- hData->mFftSize = fftSize;
- hData->mIrSize = std::max(1u + (fftSize/2u), sofaHrtf->N);
- /* Assume a default head radius of 9cm. */
- hData->mRadius = 0.09;
- hData->mIrRate = static_cast<uint>(std::lround(GetSampleRate(sofaHrtf.get())));
- if(!hData->mIrRate)
- return false;
- const auto delayType = PrepareDelay(sofaHrtf.get());
- if(!delayType)
- return false;
- if(!CheckIrData(sofaHrtf.get()))
- return false;
- if(!PrepareLayout(al::span{sofaHrtf->SourcePosition.values, sofaHrtf->M*3_uz}, hData))
- return false;
- if(!LoadResponses(sofaHrtf.get(), hData, *delayType, outRate))
- return false;
- sofaHrtf = nullptr;
- for(uint fi{0u};fi < hData->mFds.size();fi++)
- {
- uint ei{0u};
- for(;ei < hData->mFds[fi].mEvs.size();ei++)
- {
- uint ai{0u};
- for(;ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++)
- {
- HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
- if(!azd.mIrs[0].empty()) break;
- }
- if(ai < hData->mFds[fi].mEvs[ei].mAzs.size())
- break;
- }
- if(ei >= hData->mFds[fi].mEvs.size())
- {
- fprintf(stderr, "Missing source references [ %d, *, * ].\n", fi);
- return false;
- }
- hData->mFds[fi].mEvStart = ei;
- for(;ei < hData->mFds[fi].mEvs.size();ei++)
- {
- for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++)
- {
- HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
- if(azd.mIrs[0].empty())
- {
- fprintf(stderr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
- return false;
- }
- }
- }
- }
- size_t hrir_total{0};
- const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
- const auto hrirs = al::span{hData->mHrirsBase};
- for(uint fi{0u};fi < hData->mFds.size();fi++)
- {
- for(uint ei{0u};ei < hData->mFds[fi].mEvStart;ei++)
- {
- for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++)
- {
- HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
- for(size_t ti{0u};ti < channels;ti++)
- azd.mIrs[ti] = hrirs.subspan((hData->mIrCount*ti + azd.mIndex)*hData->mIrSize,
- hData->mIrSize);
- }
- }
- for(uint ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvs.size();ei++)
- hrir_total += hData->mFds[fi].mEvs[ei].mAzs.size() * channels;
- }
- std::atomic<size_t> hrir_done{0};
- auto onset_proc = [hData,channels,&hrir_done]() -> bool
- {
- /* Temporary buffer used to calculate the IR's onset. */
- auto upsampled = std::vector<double>(size_t{OnsetRateMultiple} * hData->mIrPoints);
- /* This resampler is used to help detect the response onset. */
- PPhaseResampler rs;
- rs.init(hData->mIrRate, OnsetRateMultiple*hData->mIrRate);
- for(auto &field : hData->mFds)
- {
- for(auto &elev : field.mEvs.subspan(field.mEvStart))
- {
- for(auto &azd : elev.mAzs)
- {
- for(uint ti{0};ti < channels;ti++)
- {
- hrir_done.fetch_add(1u, std::memory_order_acq_rel);
- azd.mDelays[ti] += CalcHrirOnset(rs, hData->mIrRate, upsampled,
- azd.mIrs[ti].first(hData->mIrPoints));
- }
- }
- }
- }
- return true;
- };
- std::future_status load_status{};
- auto load_future = std::async(std::launch::async, onset_proc);
- do {
- load_status = load_future.wait_for(std::chrono::milliseconds{50});
- printf("\rCalculating HRIR onsets... %zu of %zu", hrir_done.load(), hrir_total);
- fflush(stdout);
- } while(load_status != std::future_status::ready);
- fputc('\n', stdout);
- if(!load_future.get())
- return false;
- MagCalculator calculator{hData->mFftSize, hData->mIrPoints};
- for(auto &field : hData->mFds)
- {
- for(auto &elev : field.mEvs.subspan(field.mEvStart))
- {
- for(auto &azd : elev.mAzs)
- {
- for(uint ti{0};ti < channels;ti++)
- calculator.mIrs.push_back(azd.mIrs[ti]);
- }
- }
- }
- std::vector<std::thread> thrds;
- thrds.reserve(numThreads);
- for(size_t i{0};i < numThreads;++i)
- thrds.emplace_back(std::mem_fn(&MagCalculator::Worker), &calculator);
- size_t count;
- do {
- std::this_thread::sleep_for(std::chrono::milliseconds{50});
- count = calculator.mDone.load();
- printf("\rCalculating HRIR magnitudes... %zu of %zu", count, calculator.mIrs.size());
- fflush(stdout);
- } while(count != calculator.mIrs.size());
- fputc('\n', stdout);
- for(auto &thrd : thrds)
- {
- if(thrd.joinable())
- thrd.join();
- }
- return true;
- }
|