//----------------------------------------------------------------------------- // Copyright (c) 2012 GarageGames, LLC // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. //----------------------------------------------------------------------------- #include "platform/input/oculusVR/oculusVRUtil.h" namespace OculusVRUtil { void convertRotation(const F32 inRotMat[4][4], MatrixF& outRotation) { // Set rotation. We need to convert from sensor coordinates to // Torque coordinates. The sensor matrix is stored row-major. // The conversion is: // // Sensor Torque // a b c a b c a -c b // d e f --> -g -h -i --> -g i -h // g h i d e f d -f e outRotation.setColumn(0, Point4F( inRotMat[0][0], -inRotMat[2][0], inRotMat[1][0], 0.0f)); outRotation.setColumn(1, Point4F(-inRotMat[0][2], inRotMat[2][2], -inRotMat[1][2], 0.0f)); outRotation.setColumn(2, Point4F( inRotMat[0][1], -inRotMat[2][1], inRotMat[1][1], 0.0f)); outRotation.setPosition(Point3F::Zero); } void convertRotation(OVR::Quatf& inRotation, EulerF& outRotation) { F32 yaw, pitch, roll; inRotation.GetEulerAngles(&yaw, &pitch, &roll); outRotation.x = -pitch; outRotation.y = roll; outRotation.z = -yaw; } void calculateAxisRotation(const MatrixF& inRotation, const F32& maxAxisRadius, Point2F& outRotation) { const VectorF& controllerUp = inRotation.getUpVector(); Point2F axis(0,0); axis.x = controllerUp.x; axis.y = controllerUp.y; // Limit the axis angle to that given to us if(axis.len() > maxAxisRadius) { axis.normalize(maxAxisRadius); } // Renormalize to the range of 0..1 if(maxAxisRadius != 0.0f) { axis /= maxAxisRadius; } outRotation.x = axis.x; outRotation.y = axis.y; } void convertAcceleration(OVR::Vector3f& inAcceleration, VectorF& outAcceleration) { outAcceleration.set(inAcceleration.x, -inAcceleration.z, inAcceleration.y); } void convertAngularVelocity(OVR::Vector3f& inAngVel, EulerF& outAngVel) { outAngVel.set(-inAngVel.x, inAngVel.z, -inAngVel.y); } void convertMagnetometer(OVR::Vector3f& inMagnetometer, VectorF& outMagnetometer) { outMagnetometer.set(inMagnetometer.x, -inMagnetometer.z, inMagnetometer.y); } }