//----------------------------------------------------------------------------- // Copyright (c) 2012 GarageGames, LLC // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. //----------------------------------------------------------------------------- #include "platform/platform.h" #include "ts/tsShape.h" #include "ts/tsLastDetail.h" #include "ts/tsMaterialList.h" #include "core/stringTable.h" #include "console/console.h" #include "ts/tsShapeInstance.h" #include "collision/convex.h" #include "materials/matInstance.h" #include "materials/materialManager.h" #include "math/mathIO.h" #include "core/util/endian.h" #include "core/stream/fileStream.h" #include "console/compiler.h" #include "core/fileObject.h" #ifdef TORQUE_COLLADA extern TSShape* loadColladaShape(const Torque::Path &path); #endif /// most recent version -- this is the version we write S32 TSShape::smVersion = 26; /// the version currently being read...valid only during a read S32 TSShape::smReadVersion = -1; const U32 TSShape::smMostRecentExporterVersion = DTS_EXPORTER_CURRENT_VERSION; F32 TSShape::smAlphaOutLastDetail = -1.0f; F32 TSShape::smAlphaInBillboard = 0.15f; F32 TSShape::smAlphaOutBillboard = 0.15f; F32 TSShape::smAlphaInDefault = -1.0f; F32 TSShape::smAlphaOutDefault = -1.0f; // don't bother even loading this many of the highest detail levels (but // always load last renderable detail) S32 TSShape::smNumSkipLoadDetails = 0; bool TSShape::smInitOnRead = true; TSShape::TSShape() { materialList = NULL; mReadVersion = -1; // -1 means constructed from scratch (e.g., in exporter or no read yet) mHasSkinMesh = false; mSequencesConstructed = false; mShapeData = NULL; mShapeDataSize = 0; mUseDetailFromScreenError = false; mDetailLevelLookup.setSize( 1 ); mDetailLevelLookup[0].set( -1, 0 ); VECTOR_SET_ASSOCIATION(sequences); VECTOR_SET_ASSOCIATION(nodeRotations); VECTOR_SET_ASSOCIATION(nodeTranslations); VECTOR_SET_ASSOCIATION(nodeUniformScales); VECTOR_SET_ASSOCIATION(nodeAlignedScales); VECTOR_SET_ASSOCIATION(nodeArbitraryScaleRots); VECTOR_SET_ASSOCIATION(nodeArbitraryScaleFactors); VECTOR_SET_ASSOCIATION(groundRotations); VECTOR_SET_ASSOCIATION(groundTranslations); VECTOR_SET_ASSOCIATION(triggers); VECTOR_SET_ASSOCIATION(billboardDetails); VECTOR_SET_ASSOCIATION(detailCollisionAccelerators); VECTOR_SET_ASSOCIATION(names); VECTOR_SET_ASSOCIATION( nodes ); VECTOR_SET_ASSOCIATION( objects ); VECTOR_SET_ASSOCIATION( objectStates ); VECTOR_SET_ASSOCIATION( subShapeFirstNode ); VECTOR_SET_ASSOCIATION( subShapeFirstObject ); VECTOR_SET_ASSOCIATION( detailFirstSkin ); VECTOR_SET_ASSOCIATION( subShapeNumNodes ); VECTOR_SET_ASSOCIATION( subShapeNumObjects ); VECTOR_SET_ASSOCIATION( details ); VECTOR_SET_ASSOCIATION( defaultRotations ); VECTOR_SET_ASSOCIATION( defaultTranslations ); VECTOR_SET_ASSOCIATION( subShapeFirstTranslucentObject ); VECTOR_SET_ASSOCIATION( meshes ); VECTOR_SET_ASSOCIATION( alphaIn ); VECTOR_SET_ASSOCIATION( alphaOut ); } TSShape::~TSShape() { delete materialList; S32 i; // everything left over here is a legit mesh for (i=0; i= mShapeData) && ((S8*)meshes[i] < (mShapeData + mShapeDataSize))) destructInPlace(meshes[i]); else delete meshes[i]; } for (i=0; ivertexList; delete [] accel->normalList; for (S32 j = 0; j < accel->numVerts; j++) delete [] accel->emitStrings[j]; delete [] accel->emitStrings; delete accel; } } for (dca = 0; dca < detailCollisionAccelerators.size(); dca++) detailCollisionAccelerators[dca] = NULL; if( mShapeData ) delete[] mShapeData; } const String& TSShape::getName( S32 nameIndex ) const { AssertFatal(nameIndex>=0 && nameIndex= 0 && seqIndexgetMaterialNameList().size(); if(mapToNameIndex < 0 || mapToNameIndex >= targetCount) return String::EmptyString; return materialList->getMaterialNameList()[mapToNameIndex]; } S32 TSShape::getTargetCount() const { if(!this) return -1; return materialList->getMaterialNameList().size(); } S32 TSShape::findNode(S32 nameIndex) const { for (S32 i=0; i validDetails; getSubShapeDetails(subShapeIndex, validDetails); // Find the detail with the correct size for (meshIndex = 0; meshIndex < validDetails.size(); meshIndex++) { const TSShape::Detail& det = details[validDetails[meshIndex]]; if (detailSize == det.size) return true; } return false; } TSMesh* TSShape::findMesh(const String& meshName) { S32 objIndex, meshIndex; if (!findMeshIndex(meshName, objIndex, meshIndex)) return 0; return meshes[objects[objIndex].startMeshIndex + meshIndex]; } S32 TSShape::getSubShapeForNode(S32 nodeIndex) { for (S32 i = 0; i < subShapeFirstNode.size(); i++) { S32 start = subShapeFirstNode[i]; S32 end = start + subShapeNumNodes[i]; if ((nodeIndex >= start) && (nodeIndex < end)) return i;; } return -1; } S32 TSShape::getSubShapeForObject(S32 objIndex) { for (S32 i = 0; i < subShapeFirstObject.size(); i++) { S32 start = subShapeFirstObject[i]; S32 end = start + subShapeNumObjects[i]; if ((objIndex >= start) && (objIndex < end)) return i; } return -1; } void TSShape::getSubShapeDetails(S32 subShapeIndex, Vector& validDetails) { validDetails.clear(); for (S32 i = 0; i < details.size(); i++) { if ((details[i].subShapeNum == subShapeIndex) || (details[i].subShapeNum < 0)) validDetails.push_back(i); } } void TSShape::getNodeWorldTransform(S32 nodeIndex, MatrixF* mat) const { if ( nodeIndex == -1 ) { mat->identity(); } else { // Calculate the world transform of the given node defaultRotations[nodeIndex].getQuatF().setMatrix(mat); mat->setPosition(defaultTranslations[nodeIndex]); S32 parentIndex = nodes[nodeIndex].parentIndex; while (parentIndex != -1) { MatrixF mat2(*mat); defaultRotations[parentIndex].getQuatF().setMatrix(mat); mat->setPosition(defaultTranslations[parentIndex]); mat->mul(mat2); parentIndex = nodes[parentIndex].parentIndex; } } } void TSShape::getNodeObjects(S32 nodeIndex, Vector& nodeObjects) { for (S32 i = 0; i < objects.size(); i++) { if ((nodeIndex == -1) || (objects[i].nodeIndex == nodeIndex)) nodeObjects.push_back(i); } } void TSShape::getNodeChildren(S32 nodeIndex, Vector& nodeChildren) { for (S32 i = 0; i < nodes.size(); i++) { if (nodes[i].parentIndex == nodeIndex) nodeChildren.push_back(i); } } void TSShape::getObjectDetails(S32 objIndex, Vector& objDetails) { // Get the detail levels for this subshape Vector validDetails; getSubShapeDetails(getSubShapeForObject(objIndex), validDetails); // Get the non-null details for this object const TSShape::Object& obj = objects[objIndex]; for (S32 i = 0; i < obj.numMeshes; i++) { if (meshes[obj.startMeshIndex + i]) objDetails.push_back(validDetails[i]); } } void TSShape::init() { S32 numSubShapes = subShapeFirstNode.size(); AssertFatal(numSubShapes==subShapeFirstObject.size(),"TSShape::init"); S32 i,j; // set up parent/child relationships on nodes and objects for (i=0; i=0) { if (nodes[parentIndex].firstChild<0) nodes[parentIndex].firstChild=i; else { S32 child = nodes[parentIndex].firstChild; while (nodes[child].nextSibling>=0) child = nodes[child].nextSibling; nodes[child].nextSibling = i; } } } for (i=0; i=0) { if (nodes[nodeIndex].firstObject<0) nodes[nodeIndex].firstObject = i; else { S32 objectIndex = nodes[nodeIndex].firstObject; while (objects[objectIndex].nextSibling>=0) objectIndex = objects[objectIndex].nextSibling; objects[objectIndex].nextSibling = i; } } } mFlags = 0; for (i=0; i=0; i--) { if (igetNumPolys() : 0; } } details[i].polyCount = count; } // Init the collision accelerator array. Note that we don't compute the // accelerators until the app requests them { S32 dca; for (dca = 0; dca < detailCollisionAccelerators.size(); dca++) { ConvexHullAccelerator* accel = detailCollisionAccelerators[dca]; if (accel != NULL) { delete [] accel->vertexList; delete [] accel->normalList; for (S32 j = 0; j < accel->numVerts; j++) delete [] accel->emitStrings[j]; delete [] accel->emitStrings; delete accel; } } detailCollisionAccelerators.setSize(details.size()); for (dca = 0; dca < detailCollisionAccelerators.size(); dca++) detailCollisionAccelerators[dca] = NULL; } initVertexFeatures(); initMaterialList(); } void TSShape::initVertexFeatures() { bool hasColors = false; bool hasTexcoord2 = false; Vector::iterator iter = meshes.begin(); for ( ; iter != meshes.end(); iter++ ) { TSMesh *mesh = *iter; if ( mesh && ( mesh->getMeshType() == TSMesh::StandardMeshType || mesh->getMeshType() == TSMesh::SkinMeshType ) ) { if ( mesh->mVertexData.isReady() ) { hasColors |= mesh->mHasColor; hasTexcoord2 |= mesh->mHasTVert2; } else { hasColors |= !mesh->colors.empty(); hasTexcoord2 |= !mesh->tverts2.empty(); } } } mVertSize = ( hasTexcoord2 || hasColors ) ? sizeof(TSMesh::__TSMeshVertex_3xUVColor) : sizeof(TSMesh::__TSMeshVertexBase); mVertexFormat.clear(); mVertexFormat.addElement( GFXSemantic::POSITION, GFXDeclType_Float3 ); mVertexFormat.addElement( GFXSemantic::TANGENTW, GFXDeclType_Float, 3 ); mVertexFormat.addElement( GFXSemantic::NORMAL, GFXDeclType_Float3 ); mVertexFormat.addElement( GFXSemantic::TANGENT, GFXDeclType_Float3 ); mVertexFormat.addElement( GFXSemantic::TEXCOORD, GFXDeclType_Float2, 0 ); if(hasTexcoord2 || hasColors) { mVertexFormat.addElement( GFXSemantic::TEXCOORD, GFXDeclType_Float2, 1 ); mVertexFormat.addElement( GFXSemantic::COLOR, GFXDeclType_Color ); mVertexFormat.addElement( GFXSemantic::TEXCOORD, GFXDeclType_Float, 2 ); } // Go fix up meshes to include defaults for optional features // and initialize them if they're not a skin mesh. iter = meshes.begin(); for ( ; iter != meshes.end(); iter++ ) { TSMesh *mesh = *iter; if ( !mesh || ( mesh->getMeshType() != TSMesh::StandardMeshType && mesh->getMeshType() != TSMesh::SkinMeshType ) ) continue; // Set the flags. mesh->mVertexFormat = &mVertexFormat; mesh->mVertSize = mVertSize; // Create and fill aligned data structure mesh->convertToAlignedMeshData(); // Init the vertex buffer. if ( mesh->getMeshType() == TSMesh::StandardMeshType ) mesh->createVBIB(); } } void TSShape::setupBillboardDetails( const String &cachePath ) { // set up billboard details -- only do this once, meaning that // if we add a sequence to the shape we don't redo the billboard // details... if ( !billboardDetails.empty() ) return; for ( U32 i=0; i < details.size(); i++ ) { const Detail &det = details[i]; if ( det.subShapeNum >= 0 ) continue; // not a billboard detail while (billboardDetails.size() <= i ) billboardDetails.push_back(NULL); billboardDetails[i] = new TSLastDetail( this, cachePath, det.bbEquatorSteps, det.bbPolarSteps, det.bbPolarAngle, det.bbIncludePoles, det.bbDetailLevel, det.bbDimension ); billboardDetails[i]->update(); } } void TSShape::initMaterialList() { S32 numSubShapes = subShapeFirstObject.size(); #if defined(TORQUE_MAX_LIB) subShapeFirstTranslucentObject.setSize(numSubShapes); #endif mHasSkinMesh = false; S32 i,j,k; // for each subshape, find the first translucent object // also, while we're at it, set mHasTranslucency for (S32 ss = 0; ssgetMeshType() == TSMesh::SkinMeshType; for (k=0; kprimitives.size(); k++) { if (mesh->primitives[k].matIndex & TSDrawPrimitive::NoMaterial) continue; S32 flags = materialList->getFlags(mesh->primitives[k].matIndex & TSDrawPrimitive::MaterialMask); if (flags & TSMaterialList::AuxiliaryMap) continue; if (flags & TSMaterialList::Translucent) { mFlags |= HasTranslucency; subShapeFirstTranslucentObject[ss] = i; break; } } if (k!=mesh->primitives.size()) break; } if (j!=obj.numMeshes) break; } if (i!=end) break; } } bool TSShape::preloadMaterialList(const Torque::Path &path) { if (materialList) materialList->setTextureLookupPath(path.getPath()); return true; } bool TSShape::buildConvexHull(S32 dl) const { AssertFatal(dl>=0 && dlbuildConvexHull(); } return ok; } Vector gTempNodeTransforms(__FILE__, __LINE__); void TSShape::computeBounds(S32 dl, Box3F & bounds) const { // if dl==-1, nothing to do if (dl==-1) return; AssertFatal(dl>=0 && dlsubShapeNum; S32 od = detail->objectDetailNum; // If we have no subshapes then there is // no valid bounds for this detail level. if ( ss < 0 ) return; // set up temporary storage for non-local transforms... S32 i; S32 start = subShapeFirstNode[ss]; S32 end = subShapeNumNodes[ss] + start; gTempNodeTransforms.setSize(end-start); for (i=start; i=0) gTempNodeTransforms[i-start].mul(gTempNodeTransforms[nodes[i].parentIndex-start],mat); else gTempNodeTransforms[i-start] = mat; } // run through objects and updating bounds as we go bounds.minExtents.set( 10E30f, 10E30f, 10E30f); bounds.maxExtents.set(-10E30f,-10E30f,-10E30f); Box3F box; start = subShapeFirstObject[ss]; end = subShapeNumObjects[ss] + start; for (i=start; inumMeshes ? meshes[object->startMeshIndex+od] : NULL; if (mesh) { static MatrixF idMat(true); if (object->nodeIndex<0) mesh->computeBounds(idMat,box); else mesh->computeBounds(gTempNodeTransforms[object->nodeIndex-start],box); bounds.minExtents.setMin(box.minExtents); bounds.maxExtents.setMax(box.maxExtents); } } } TSShapeAlloc TSShape::smTSAlloc; #define tsalloc TSShape::smTSAlloc // messy stuff: check to see if we should "skip" meshNum // this assumes that meshes for a given object are in a row // skipDL is the lowest detail number we keep (i.e., the # of details we skip) bool TSShape::checkSkip(S32 meshNum, S32 & curObject, S32 skipDL) { if (skipDL==0) // easy out... return false; // skip detail level exists on this subShape S32 skipSS = details[skipDL].subShapeNum; if (curObject=start) { // we are either from this object, the next object, or a decal if (meshNum < start + objects[curObject].numMeshes) { // this object... if (subShapeFirstObject[skipSS]>curObject) // haven't reached this subshape yet return true; if (skipSS+1==subShapeFirstObject.size() || curObject23) numGroundFrames = tsalloc.get32(); S32 numObjectStates = tsalloc.get32(); S32 numDecalStates = tsalloc.get32(); S32 numTriggers = tsalloc.get32(); S32 numDetails = tsalloc.get32(); S32 numMeshes = tsalloc.get32(); S32 numSkins = 0; if (smReadVersion<23) // in later versions, skins are kept with other meshes numSkins = tsalloc.get32(); S32 numNames = tsalloc.get32(); // Note that we are recalculating these values later on for safety. mSmallestVisibleSize = (F32)tsalloc.get32(); mSmallestVisibleDL = tsalloc.get32(); tsalloc.checkGuard(); // get bounds... tsalloc.get32((S32*)&radius,1); tsalloc.get32((S32*)&tubeRadius,1); tsalloc.get32((S32*)¢er,3); tsalloc.get32((S32*)&bounds,6); tsalloc.checkGuard(); // copy various vectors... S32 * ptr32 = tsalloc.copyToShape32(numNodes*5); nodes.set(ptr32,numNodes); tsalloc.checkGuard(); ptr32 = tsalloc.copyToShape32(numObjects*6,true); if (!ptr32) ptr32 = tsalloc.allocShape32(numSkins*6); // pre v23 shapes store skins and meshes separately...no longer else tsalloc.allocShape32(numSkins*6); objects.set(ptr32,numObjects); tsalloc.checkGuard(); // DEPRECATED decals ptr32 = tsalloc.getPointer32(numDecals*5); tsalloc.checkGuard(); // DEPRECATED ifl materials ptr32 = tsalloc.copyToShape32(numIflMaterials*5); tsalloc.checkGuard(); ptr32 = tsalloc.copyToShape32(numSubShapes,true); subShapeFirstNode.set(ptr32,numSubShapes); ptr32 = tsalloc.copyToShape32(numSubShapes,true); subShapeFirstObject.set(ptr32,numSubShapes); // DEPRECATED subShapeFirstDecal ptr32 = tsalloc.getPointer32(numSubShapes); tsalloc.checkGuard(); ptr32 = tsalloc.copyToShape32(numSubShapes); subShapeNumNodes.set(ptr32,numSubShapes); ptr32 = tsalloc.copyToShape32(numSubShapes); subShapeNumObjects.set(ptr32,numSubShapes); // DEPRECATED subShapeNumDecals ptr32 = tsalloc.getPointer32(numSubShapes); tsalloc.checkGuard(); ptr32 = tsalloc.allocShape32(numSubShapes); subShapeFirstTranslucentObject.set(ptr32,numSubShapes); // get default translation and rotation S16 * ptr16 = tsalloc.allocShape16(0); for (i=0;i21) { // more node sequence data...scale nodeUniformScales.setSize(numNodeUniformScales); for (i=0;i23) { groundTranslations.setSize(numGroundFrames); for (i=0;i= 26 ) { U32 alignedSize32 = sizeof( Detail ) / 4; ptr32 = tsalloc.copyToShape32( numDetails * alignedSize32, true ); details.set( ptr32, numDetails ); } else { // Previous to version 26 the Detail structure // only contained the first 7 values... // // struct Detail // { // S32 nameIndex; // S32 subShapeNum; // S32 objectDetailNum; // F32 size; // F32 averageError; // F32 maxError; // S32 polyCount; // }; // // In the code below we're reading just these 7 values and // copying them to the new larger structure. ptr32 = tsalloc.copyToShape32( numDetails * 7, true ); details.setSize( numDetails ); for ( U32 i = 0; i < details.size(); i++, ptr32 += 7 ) { Detail *det = &(details[i]); // Clear the struct... we don't want to leave // garbage in the parts that are unfilled. U32 alignedSize32 = sizeof( Detail ); dMemset( det, 0, alignedSize32 ); // Copy the old struct values over. dMemcpy( det, ptr32, 7 * 4 ); // If this is an autobillboard then we need to // fill in the new part of the struct. if ( det->subShapeNum >= 0 ) continue; S32 lastDetailOpts = det->objectDetailNum; det->bbEquatorSteps = lastDetailOpts & 0x7F; // bits 0..6 det->bbPolarSteps = (lastDetailOpts >> 7) & 0x3F; // bits 7..12 det->bbPolarAngle = 0.5f * M_PI_F * (1.0f/64.0f) * (F32) (( lastDetailOpts >>13 ) & 0x3F); // bits 13..18 det->bbDetailLevel = (lastDetailOpts >> 19) & 0x0F; // 19..22 det->bbDimension = (lastDetailOpts >> 23) & 0xFF; // 23..30 det->bbIncludePoles = (lastDetailOpts & 0x80000000)!=0; // bit 31 } } // Some DTS exporters (MAX - I'm looking at you!) write garbage into the // averageError and maxError values which stops LOD from working correctly. // Try to detect and fix it for ( U32 i = 0; i < details.size(); i++ ) { if ( ( details[i].averageError == 0 ) || ( details[i].averageError > 10000 ) || ( details[i].maxError == 0 ) || ( details[i].maxError > 10000 ) ) { details[i].averageError = details[i].maxError = -1.0f; } } // We don't trust the value of mSmallestVisibleDL loaded from the dts // since some legacy meshes seem to have the wrong value. Recalculate it // now that we have the details loaded. updateSmallestVisibleDL(); S32 skipDL = getMin(mSmallestVisibleDL,smNumSkipLoadDetails); if (skipDL < 0) skipDL = 0; tsalloc.checkGuard(); // about to read in the meshes...first must allocate some scratch space S32 scratchSize = getMax(numSkins,numMeshes); TSMesh::smVertsList.setSize(scratchSize); TSMesh::smTVertsList.setSize(scratchSize); if ( smReadVersion >= 26 ) { TSMesh::smTVerts2List.setSize(scratchSize); TSMesh::smColorsList.setSize(scratchSize); } TSMesh::smNormsList.setSize(scratchSize); TSMesh::smEncodedNormsList.setSize(scratchSize); TSMesh::smDataCopied.setSize(scratchSize); TSSkinMesh::smInitTransformList.setSize(scratchSize); TSSkinMesh::smVertexIndexList.setSize(scratchSize); TSSkinMesh::smBoneIndexList.setSize(scratchSize); TSSkinMesh::smWeightList.setSize(scratchSize); TSSkinMesh::smNodeIndexList.setSize(scratchSize); for (i=0; i= 26 ) { TSMesh::smTVerts2List[i] = NULL; TSMesh::smColorsList[i] = NULL; } TSMesh::smNormsList[i]=NULL; TSMesh::smEncodedNormsList[i]=NULL; TSMesh::smDataCopied[i]=false; TSSkinMesh::smInitTransformList[i] = NULL; TSSkinMesh::smVertexIndexList[i] = NULL; TSSkinMesh::smBoneIndexList[i] = NULL; TSSkinMesh::smWeightList[i] = NULL; TSSkinMesh::smNodeIndexList[i] = NULL; } // read in the meshes (sans skins)...straightforward read one at a time ptr32 = tsalloc.allocShape32(numMeshes + numSkins*numDetails); // leave room for skins on old shapes S32 curObject = 0; // for tracking skipped meshes for (i=0; iverts.address(); TSMesh::smTVertsList[i] = mesh->tverts.address(); if (smReadVersion >= 26) { TSMesh::smTVerts2List[i] = mesh->tverts2.address(); TSMesh::smColorsList[i] = mesh->colors.address(); } TSMesh::smNormsList[i] = mesh->norms.address(); TSMesh::smEncodedNormsList[i] = mesh->encodedNorms.address(); TSMesh::smDataCopied[i] = !skip; // as long as we didn't skip this mesh, the data should be in shape now if (meshType==TSMesh::SkinMeshType) { TSSkinMesh * skin = (TSSkinMesh*)mesh; TSMesh::smVertsList[i] = skin->batchData.initialVerts.address(); TSMesh::smNormsList[i] = skin->batchData.initialNorms.address(); TSSkinMesh::smInitTransformList[i] = skin->batchData.initialTransforms.address(); TSSkinMesh::smVertexIndexList[i] = skin->vertexIndex.address(); TSSkinMesh::smBoneIndexList[i] = skin->boneIndex.address(); TSSkinMesh::smWeightList[i] = skin->weight.address(); TSSkinMesh::smNodeIndexList[i] = skin->batchData.nodeIndex.address(); } } } meshes.set(ptr32,numMeshes); tsalloc.checkGuard(); // names char * nameBufferStart = (char*)tsalloc.getPointer8(0); char * name = nameBufferStart; S32 nameBufferSize = 0; names.setSize(numNames); for (i=0; ibatchData.initialVerts.address(); TSMesh::smTVertsList[i] = skin->tverts.address(); TSMesh::smNormsList[i] = skin->batchData.initialNorms.address(); TSMesh::smEncodedNormsList[i] = skin->encodedNorms.address(); TSMesh::smDataCopied[i] = !skip; // as long as we didn't skip this mesh, the data should be in shape now TSSkinMesh::smInitTransformList[i] = skin->batchData.initialTransforms.address(); TSSkinMesh::smVertexIndexList[i] = skin->vertexIndex.address(); TSSkinMesh::smBoneIndexList[i] = skin->boneIndex.address(); TSSkinMesh::smWeightList[i] = skin->weight.address(); TSSkinMesh::smNodeIndexList[i] = skin->batchData.nodeIndex.address(); } } tsalloc.checkGuard(); // we now have skins in mesh list...add skin objects to object list and patch things up fixupOldSkins(numMeshes,numSkins,numDetails,detFirstSkin,detailNumSkins); } // allocate storage space for some arrays (filled in during Shape::init)... ptr32 = tsalloc.allocShape32(numDetails); alphaIn.set(ptr32,numDetails); ptr32 = tsalloc.allocShape32(numDetails); alphaOut.set(ptr32,numDetails); } void TSShape::disassembleShape() { S32 i; // set counts... S32 numNodes = tsalloc.set32(nodes.size()); S32 numObjects = tsalloc.set32(objects.size()); tsalloc.set32(0); // DEPRECATED decals S32 numSubShapes = tsalloc.set32(subShapeFirstNode.size()); tsalloc.set32(0); // DEPRECATED ifl materials S32 numNodeRotations = tsalloc.set32(nodeRotations.size()); S32 numNodeTranslations = tsalloc.set32(nodeTranslations.size()); S32 numNodeUniformScales = tsalloc.set32(nodeUniformScales.size()); S32 numNodeAlignedScales = tsalloc.set32(nodeAlignedScales.size()); S32 numNodeArbitraryScales = tsalloc.set32(nodeArbitraryScaleFactors.size()); S32 numGroundFrames = tsalloc.set32(groundTranslations.size()); S32 numObjectStates = tsalloc.set32(objectStates.size()); tsalloc.set32(0); // DEPRECATED decals S32 numTriggers = tsalloc.set32(triggers.size()); S32 numDetails = tsalloc.set32(details.size()); S32 numMeshes = tsalloc.set32(meshes.size()); S32 numNames = tsalloc.set32(names.size()); tsalloc.set32((S32)mSmallestVisibleSize); tsalloc.set32(mSmallestVisibleDL); tsalloc.setGuard(); // get bounds... tsalloc.copyToBuffer32((S32*)&radius,1); tsalloc.copyToBuffer32((S32*)&tubeRadius,1); tsalloc.copyToBuffer32((S32*)¢er,3); tsalloc.copyToBuffer32((S32*)&bounds,6); tsalloc.setGuard(); // copy various vectors... tsalloc.copyToBuffer32((S32*)nodes.address(),numNodes*5); tsalloc.setGuard(); tsalloc.copyToBuffer32((S32*)objects.address(),numObjects*6); tsalloc.setGuard(); // DEPRECATED: no copy decals tsalloc.setGuard(); tsalloc.copyToBuffer32(0,0); // DEPRECATED: ifl materials! tsalloc.setGuard(); tsalloc.copyToBuffer32((S32*)subShapeFirstNode.address(),numSubShapes); tsalloc.copyToBuffer32((S32*)subShapeFirstObject.address(),numSubShapes); tsalloc.copyToBuffer32(0, numSubShapes); // DEPRECATED: no copy subShapeFirstDecal tsalloc.setGuard(); tsalloc.copyToBuffer32((S32*)subShapeNumNodes.address(),numSubShapes); tsalloc.copyToBuffer32((S32*)subShapeNumObjects.address(),numSubShapes); tsalloc.copyToBuffer32(0, numSubShapes); // DEPRECATED: no copy subShapeNumDecals tsalloc.setGuard(); // default transforms... tsalloc.copyToBuffer16((S16*)defaultRotations.address(),numNodes*4); tsalloc.copyToBuffer32((S32*)defaultTranslations.address(),numNodes*3); // animated transforms... tsalloc.copyToBuffer16((S16*)nodeRotations.address(),numNodeRotations*4); tsalloc.copyToBuffer32((S32*)nodeTranslations.address(),numNodeTranslations*3); tsalloc.setGuard(); // ...with scale tsalloc.copyToBuffer32((S32*)nodeUniformScales.address(),numNodeUniformScales); tsalloc.copyToBuffer32((S32*)nodeAlignedScales.address(),numNodeAlignedScales*3); tsalloc.copyToBuffer32((S32*)nodeArbitraryScaleFactors.address(),numNodeArbitraryScales*3); tsalloc.copyToBuffer16((S16*)nodeArbitraryScaleRots.address(),numNodeArbitraryScales*4); tsalloc.setGuard(); tsalloc.copyToBuffer32((S32*)groundTranslations.address(),3*numGroundFrames); tsalloc.copyToBuffer16((S16*)groundRotations.address(),4*numGroundFrames); tsalloc.setGuard(); // object states.. tsalloc.copyToBuffer32((S32*)objectStates.address(),numObjectStates*3); tsalloc.setGuard(); // decal states... // DEPRECATED (numDecalStates = 0) tsalloc.setGuard(); // frame triggers tsalloc.copyToBuffer32((S32*)triggers.address(),numTriggers*2); tsalloc.setGuard(); // details if (TSShape::smVersion > 25) { U32 alignedSize32 = sizeof( Detail ) / 4; tsalloc.copyToBuffer32((S32*)details.address(),numDetails * alignedSize32 ); } else { // Legacy details => no explicit autobillboard parameters U32 legacyDetailSize32 = 7; // only store the first 7 4-byte values of each detail for ( S32 i = 0; i < details.size(); i++ ) tsalloc.copyToBuffer32( (S32*)&details[i], legacyDetailSize32 ); } tsalloc.setGuard(); // read in the meshes (sans skins)... bool * isMesh = new bool[numMeshes]; // funny business because decals are pretend meshes (legacy issue) for (i=0;igetMeshType() != TSMesh::DecalMeshType) ? mesh->getMeshType() : TSMesh::NullMeshType); if (mesh) mesh->disassemble(); } delete [] isMesh; tsalloc.setGuard(); // names for (i=0; itverts2.size() || meshes[i]->colors.size()) return false; // Cannot use old format if any primitive has too many triangles // (ie. cannot fit in a S16) for (S32 j = 0; j < meshes[i]->primitives.size(); j++) { if ((meshes[i]->primitives[j].start + meshes[i]->primitives[j].numElements) >= (1 << 15)) { return false; } } } return true; } void TSShape::write(Stream * s, bool saveOldFormat) { S32 currentVersion = smVersion; if (saveOldFormat) smVersion = 24; // write version s->write(smVersion | (mExporterVersion<<16)); tsalloc.setWrite(); disassembleShape(); S32 * buffer32 = tsalloc.getBuffer32(); S16 * buffer16 = tsalloc.getBuffer16(); S8 * buffer8 = tsalloc.getBuffer8(); S32 size32 = tsalloc.getBufferSize32(); S32 size16 = tsalloc.getBufferSize16(); S32 size8 = tsalloc.getBufferSize8(); // convert sizes to dwords... if (size16 & 1) size16 += 2; size16 >>= 1; if (size8 & 3) size8 += 4; size8 >>= 2; S32 sizeMemBuffer, start16, start8; sizeMemBuffer = size32 + size16 + size8; start16 = size32; start8 = start16+size16; // in dwords -- write will properly endian-flip. s->write(sizeMemBuffer); s->write(start16); s->write(start8); // endian-flip the entire write buffers. fixEndian(buffer32,buffer16,buffer8,size32,size16,size8); // now write buffers s->write(size32*4,buffer32); s->write(size16*4,buffer16); s->write(size8 *4,buffer8); // write sequences - write will properly endian-flip. s->write(sequences.size()); for (S32 i=0; iwrite(*s); delete [] buffer32; delete [] buffer16; delete [] buffer8; smVersion = currentVersion; } //------------------------------------------------- // read whole shape //------------------------------------------------- bool TSShape::read(Stream * s) { // read version - read handles endian-flip s->read(&smReadVersion); mExporterVersion = smReadVersion >> 16; smReadVersion &= 0xFF; if (smReadVersion>smVersion) { // error -- don't support future versions yet :> Con::errorf(ConsoleLogEntry::General, "Error: attempt to load a version %i dts-shape, can currently only load version %i and before.", smReadVersion,smVersion); return false; } mReadVersion = smReadVersion; S32 * memBuffer32; S16 * memBuffer16; S8 * memBuffer8; S32 count32, count16, count8; if (mReadVersion<19) { Con::errorf("... Shape with old version."); return false; } else { S32 i; U32 sizeMemBuffer, startU16, startU8; // in dwords. - read handles endian-flip s->read(&sizeMemBuffer); s->read(&startU16); s->read(&startU8); if (s->getStatus()!=Stream::Ok) { Con::errorf(ConsoleLogEntry::General, "Error: bad shape file."); return false; } S32 * tmp = new S32[sizeMemBuffer]; s->read(sizeof(S32)*sizeMemBuffer,(U8*)tmp); memBuffer32 = tmp; memBuffer16 = (S16*)(tmp+startU16); memBuffer8 = (S8*)(tmp+startU8); count32 = startU16; count16 = startU8-startU16; count8 = sizeMemBuffer-startU8; // read sequences S32 numSequences; s->read(&numSequences); sequences.setSize(numSequences); for (i=0; iread(*s); } // since we read in the buffers, we need to endian-flip their entire contents... fixEndian(memBuffer32,memBuffer16,memBuffer8,count32,count16,count8); tsalloc.setRead(memBuffer32,memBuffer16,memBuffer8,true); assembleShape(); // determine size of buffer needed mShapeDataSize = tsalloc.getSize(); tsalloc.doAlloc(); mShapeData = tsalloc.getBuffer(); tsalloc.setRead(memBuffer32,memBuffer16,memBuffer8,false); assembleShape(); // copy to buffer AssertFatal(tsalloc.getSize()==mShapeDataSize,"TSShape::read: shape data buffer size mis-calculated"); delete [] memBuffer32; if (smInitOnRead) init(); //if (names.size() == 3 && dStricmp(names[2], "Box") == 0) //{ // Con::errorf("\nnodes.set(dMalloc(%d * sizeof(Node)), %d);", nodes.size(), nodes.size()); // for (U32 i = 0; i < nodes.size(); i++) // { // Node& obj = nodes[i]; // Con::errorf(" nodes[%d].nameIndex = %d;", i, obj.nameIndex); // Con::errorf(" nodes[%d].parentIndex = %d;", i, obj.parentIndex); // Con::errorf(" nodes[%d].firstObject = %d;", i, obj.firstObject); // Con::errorf(" nodes[%d].firstChild = %d;", i, obj.firstChild); // Con::errorf(" nodes[%d].nextSibling = %d;", i, obj.nextSibling); // } // Con::errorf("\nobjects.set(dMalloc(%d * sizeof(Object)), %d);", objects.size(), objects.size()); // for (U32 i = 0; i < objects.size(); i++) // { // Object& obj = objects[i]; // Con::errorf(" objects[%d].nameIndex = %d;", i, obj.nameIndex); // Con::errorf(" objects[%d].numMeshes = %d;", i, obj.numMeshes); // Con::errorf(" objects[%d].startMeshIndex = %d;", i, obj.startMeshIndex); // Con::errorf(" objects[%d].nodeIndex = %d;", i, obj.nodeIndex); // Con::errorf(" objects[%d].nextSibling = %d;", i, obj.nextSibling); // Con::errorf(" objects[%d].firstDecal = %d;", i, obj.firstDecal); // } // Con::errorf("\nobjectStates.set(dMalloc(%d * sizeof(ObjectState)), %d);", objectStates.size(), objectStates.size()); // for (U32 i = 0; i < objectStates.size(); i++) // { // ObjectState& obj = objectStates[i]; // Con::errorf(" objectStates[%d].vis = %g;", i, obj.vis); // Con::errorf(" objectStates[%d].frameIndex = %d;", i, obj.frameIndex); // Con::errorf(" objectStates[%d].matFrameIndex = %d;", i, obj.matFrameIndex); // } // Con::errorf("\nsubShapeFirstNode.set(dMalloc(%d * sizeof(S32)), %d);", subShapeFirstNode.size(), subShapeFirstNode.size()); // for (U32 i = 0; i < subShapeFirstNode.size(); i++) // Con::errorf(" subShapeFirstNode[%d] = %d;", i, subShapeFirstNode[i]); // Con::errorf("\nsubShapeFirstObject.set(dMalloc(%d * sizeof(S32)), %d);", subShapeFirstObject.size(), subShapeFirstObject.size()); // for (U32 i = 0; i < subShapeFirstObject.size(); i++) // Con::errorf(" subShapeFirstObject[%d] = %d;", i, subShapeFirstObject[i]); // //Con::errorf("numDetailFirstSkins = %d", detailFirstSkin.size()); // Con::errorf("\nsubShapeNumNodes.set(dMalloc(%d * sizeof(S32)), %d);", subShapeNumNodes.size(), subShapeNumNodes.size()); // for (U32 i = 0; i < subShapeNumNodes.size(); i++) // Con::errorf(" subShapeNumNodes[%d] = %d;", i, subShapeNumNodes[i]); // Con::errorf("\nsubShapeNumObjects.set(dMalloc(%d * sizeof(S32)), %d);", subShapeNumObjects.size(), subShapeNumObjects.size()); // for (U32 i = 0; i < subShapeNumObjects.size(); i++) // Con::errorf(" subShapeNumObjects[%d] = %d;", i, subShapeNumObjects[i]); // Con::errorf("\ndetails.set(dMalloc(%d * sizeof(Detail)), %d);", details.size(), details.size()); // for (U32 i = 0; i < details.size(); i++) // { // Detail& obj = details[i]; // Con::errorf(" details[%d].nameIndex = %d;", i, obj.nameIndex); // Con::errorf(" details[%d].subShapeNum = %d;", i, obj.subShapeNum); // Con::errorf(" details[%d].objectDetailNum = %d;", i, obj.objectDetailNum); // Con::errorf(" details[%d].size = %g;", i, obj.size); // Con::errorf(" details[%d].averageError = %g;", i, obj.averageError); // Con::errorf(" details[%d].maxError = %g;", i, obj.maxError); // Con::errorf(" details[%d].polyCount = %d;", i, obj.polyCount); // } // Con::errorf("\ndefaultRotations.set(dMalloc(%d * sizeof(Quat16)), %d);", defaultRotations.size(), defaultRotations.size()); // for (U32 i = 0; i < defaultRotations.size(); i++) // { // Con::errorf(" defaultRotations[%d].x = %g;", i, defaultRotations[i].x); // Con::errorf(" defaultRotations[%d].y = %g;", i, defaultRotations[i].y); // Con::errorf(" defaultRotations[%d].z = %g;", i, defaultRotations[i].z); // Con::errorf(" defaultRotations[%d].w = %g;", i, defaultRotations[i].w); // } // Con::errorf("\ndefaultTranslations.set(dMalloc(%d * sizeof(Point3F)), %d);", defaultTranslations.size(), defaultTranslations.size()); // for (U32 i = 0; i < defaultTranslations.size(); i++) // Con::errorf(" defaultTranslations[%d].set(%g, %g, %g);", i, defaultTranslations[i].x, defaultTranslations[i].y, defaultTranslations[i].z); // Con::errorf("\nsubShapeFirstTranslucentObject.set(dMalloc(%d * sizeof(S32)), %d);", subShapeFirstTranslucentObject.size(), subShapeFirstTranslucentObject.size()); // for (U32 i = 0; i < subShapeFirstTranslucentObject.size(); i++) // Con::errorf(" subShapeFirstTranslucentObject[%d] = %d;", i, subShapeFirstTranslucentObject[i]); // Con::errorf("\nmeshes.set(dMalloc(%d * sizeof(TSMesh)), %d);", meshes.size(), meshes.size()); // for (U32 i = 0; i < meshes.size(); i++) // { // TSMesh* obj = meshes[i]; // if (obj) // { // Con::errorf(" meshes[%d]->meshType = %d;", i, obj->meshType); // Con::errorf(" meshes[%d]->mBounds.minExtents.set(%g, %g, %g);", i, obj->mBounds.minExtents.x, obj->mBounds.minExtents.y, obj->mBounds.minExtents.z); // Con::errorf(" meshes[%d]->mBounds.maxExtents.set(%g, %g, %g);", i, obj->mBounds.maxExtents.x, obj->mBounds.maxExtents.y, obj->mBounds.maxExtents.z); // Con::errorf(" meshes[%d]->mCenter.set(%g, %g, %g);", i, obj->mCenter.x, obj->mCenter.y, obj->mCenter.z); // Con::errorf(" meshes[%d]->mRadius = %g;", i, obj->mRadius); // Con::errorf(" meshes[%d]->mVisibility = %g;", i, obj->mVisibility); // Con::errorf(" meshes[%d]->mDynamic = %d;", i, obj->mDynamic); // Con::errorf(" meshes[%d]->parentMesh = %d;", i, obj->parentMesh); // Con::errorf(" meshes[%d]->numFrames = %d;", i, obj->numFrames); // Con::errorf(" meshes[%d]->numMatFrames = %d;", i, obj->numMatFrames); // Con::errorf(" meshes[%d]->vertsPerFrame = %d;", i, obj->vertsPerFrame); // Con::errorf("\n meshes[%d]->verts.set(dMalloc(%d * sizeof(Point3F)), %d);", obj->verts.size(), obj->verts.size()); // for (U32 j = 0; j < obj->verts.size(); j++) // Con::errorf(" meshes[%d]->verts[%d].set(%g, %g, %g);", i, j, obj->verts[j].x, obj->verts[j].y, obj->verts[j].z); // Con::errorf("\n meshes[%d]->norms.set(dMalloc(%d * sizeof(Point3F)), %d);", obj->norms.size(), obj->norms.size()); // for (U32 j = 0; j < obj->norms.size(); j++) // Con::errorf(" meshes[%d]->norms[%d].set(%g, %g, %g);", i, j, obj->norms[j].x, obj->norms[j].y, obj->norms[j].z); // Con::errorf("\n meshes[%d]->tverts.set(dMalloc(%d * sizeof(Point2F)), %d);", obj->tverts.size(), obj->tverts.size()); // for (U32 j = 0; j < obj->tverts.size(); j++) // Con::errorf(" meshes[%d]->tverts[%d].set(%g, %g);", i, j, obj->tverts[j].x, obj->tverts[j].y); // Con::errorf("\n meshes[%d]->primitives.set(dMalloc(%d * sizeof(TSDrawPrimitive)), %d);", obj->primitives.size(), obj->primitives.size()); // for (U32 j = 0; j < obj->primitives.size(); j++) // { // TSDrawPrimitive& prim = obj->primitives[j]; // Con::errorf(" meshes[%d]->primitives[%d].start = %d;", i, j, prim.start); // Con::errorf(" meshes[%d]->primitives[%d].numElements = %d;", i, j, prim.numElements); // Con::errorf(" meshes[%d]->primitives[%d].matIndex = %d;", i, j, prim.matIndex); // } // Con::errorf("\n meshes[%d]->encodedNorms.set(dMalloc(%d * sizeof(U8)), %d);", obj->encodedNorms.size(), obj->encodedNorms.size()); // for (U32 j = 0; j < obj->encodedNorms.size(); j++) // Con::errorf(" meshes[%d]->encodedNorms[%d] = %c;", i, j, obj->encodedNorms[j]); // Con::errorf("\n meshes[%d]->indices.set(dMalloc(%d * sizeof(U16)), %d);", obj->indices.size(), obj->indices.size()); // for (U32 j = 0; j < obj->indices.size(); j++) // Con::errorf(" meshes[%d]->indices[%d] = %d;", i, j, obj->indices[j]); // Con::errorf("\n meshes[%d]->initialTangents.set(dMalloc(%d * sizeof(Point3F)), %d);", obj->initialTangents.size(), obj->initialTangents.size()); // for (U32 j = 0; j < obj->initialTangents.size(); j++) // Con::errorf(" meshes[%d]->initialTangents[%d].set(%g, %g, %g);", i, j, obj->initialTangents[j].x, obj->initialTangents[j].y, obj->initialTangents[j].z); // Con::errorf("\n meshes[%d]->tangents.set(dMalloc(%d * sizeof(Point4F)), %d);", obj->tangents.size(), obj->tangents.size()); // for (U32 j = 0; j < obj->tangents.size(); j++) // Con::errorf(" meshes[%d]->tangents[%d].set(%g, %g, %g, %g);", i, j, obj->tangents[j].x, obj->tangents[j].y, obj->tangents[j].z, obj->tangents[j].w); // Con::errorf(" meshes[%d]->billboardAxis.set(%g, %g, %g);", i, obj->billboardAxis.x, obj->billboardAxis.y, obj->billboardAxis.z); // Con::errorf("\n meshes[%d]->planeNormals.set(dMalloc(%d * sizeof(Point3F)), %d);", obj->planeNormals.size(), obj->planeNormals.size()); // for (U32 j = 0; j < obj->planeNormals.size(); j++) // Con::errorf(" meshes[%d]->planeNormals[%d].set(%g, %g, %g);", i, j, obj->planeNormals[j].x, obj->planeNormals[j].y, obj->planeNormals[j].z); // Con::errorf("\n meshes[%d]->planeConstants.set(dMalloc(%d * sizeof(F32)), %d);", obj->planeConstants.size(), obj->planeConstants.size()); // for (U32 j = 0; j < obj->planeConstants.size(); j++) // Con::errorf(" meshes[%d]->planeConstants[%d] = %g;", i, j, obj->planeConstants[j]); // Con::errorf("\n meshes[%d]->planeMaterials.set(dMalloc(%d * sizeof(U32)), %d);", obj->planeMaterials.size(), obj->planeMaterials.size()); // for (U32 j = 0; j < obj->planeMaterials.size(); j++) // Con::errorf(" meshes[%d]->planeMaterials[%d] = %d;", i, j, obj->planeMaterials[j]); // Con::errorf(" meshes[%d]->planesPerFrame = %d;", i, obj->planesPerFrame); // Con::errorf(" meshes[%d]->mergeBufferStart = %d;", i, obj->mergeBufferStart); // } // } // Con::errorf("\nalphaIn.set(dMalloc(%d * sizeof(F32)), %d);", alphaIn.size(), alphaIn.size()); // for (U32 i = 0; i < alphaIn.size(); i++) // Con::errorf(" alphaIn[%d] = %g;", i, alphaIn[i]); // Con::errorf("\nalphaOut.set(dMalloc(%d * sizeof(F32)), %d);", alphaOut.size(), alphaOut.size()); // for (U32 i = 0; i < alphaOut.size(); i++) // Con::errorf(" alphaOut[%d] = %g;", i, alphaOut[i]); // //Con::errorf("numSequences = %d", sequences.size()); // //Con::errorf("numNodeRotations = %d", nodeRotations.size()); // //Con::errorf("numNodeTranslations = %d", nodeTranslations.size()); // //Con::errorf("numNodeUniformScales = %d", nodeUniformScales.size()); // //Con::errorf("numNodeAlignedScales = %d", nodeAlignedScales.size()); // //Con::errorf("numNodeArbitraryScaleRots = %d", nodeArbitraryScaleRots.size()); // //Con::errorf("numNodeArbitraryScaleFactors = %d", nodeArbitraryScaleFactors.size()); // //Con::errorf("numGroundRotations = %d", groundRotations.size()); // //Con::errorf("numGroundTranslations = %d", groundTranslations.size()); // //Con::errorf("numTriggers = %d", triggers.size()); // //Con::errorf("numBillboardDetails = %d", billboardDetails.size()); // //Con::errorf("\nnumDetailCollisionAccelerators = %d", detailCollisionAccelerators.size()); // //for (U32 i = 0; i < detailCollisionAccelerators.size(); i++) // //{ // // ConvexHullAccelerator* obj = detailCollisionAccelerators[i]; // // if (obj) // // { // // Con::errorf(" detailCollisionAccelerators[%d].numVerts = %d", i, obj->numVerts); // // for (U32 j = 0; j < obj->numVerts; j++) // // { // // Con::errorf(" verts[%d](%g, %g, %g)", j, obj->vertexList[j].x, obj->vertexList[j].y, obj->vertexList[j].z); // // Con::errorf(" norms[%d](%g, %g, %g)", j, obj->normalList[j].x, obj->normalList[j].y, obj->normalList[j].z); // // //U8** emitStrings; // // } // // } // //} // Con::errorf("\nnames.setSize(%d);", names.size()); // for (U32 i = 0; i < names.size(); i++) // Con::errorf(" names[%d] = StringTable->insert(\"%s\");", i, names[i]); // //TSMaterialList * materialList; // Con::errorf("\nradius = %g;", radius); // Con::errorf("tubeRadius = %g;", tubeRadius); // Con::errorf("center.set(%g, %g, %g);", center.x, center.y, center.z); // Con::errorf("bounds.minExtents.set(%g, %g, %g);", bounds.minExtents.x, bounds.minExtents.y, bounds.minExtents.z); // Con::errorf("bounds.maxExtents.set(%g, %g, %g);", bounds.maxExtents.x, bounds.maxExtents.y, bounds.maxExtents.z); // Con::errorf("\nmExporterVersion = %d;", mExporterVersion); // Con::errorf("mSmallestVisibleSize = %g;", mSmallestVisibleSize); // Con::errorf("mSmallestVisibleDL = %d;", mSmallestVisibleDL); // Con::errorf("mReadVersion = %d;", mReadVersion); // Con::errorf("mFlags = %d;", mFlags); // //Con::errorf("data = %d", data); // Con::errorf("mSequencesConstructed = %d;", mSequencesConstructed); //} return true; } void TSShape::createEmptyShape() { nodes.set(dMalloc(1 * sizeof(Node)), 1); nodes[0].nameIndex = 1; nodes[0].parentIndex = -1; nodes[0].firstObject = 0; nodes[0].firstChild = -1; nodes[0].nextSibling = -1; objects.set(dMalloc(1 * sizeof(Object)), 1); objects[0].nameIndex = 2; objects[0].numMeshes = 1; objects[0].startMeshIndex = 0; objects[0].nodeIndex = 0; objects[0].nextSibling = -1; objects[0].firstDecal = -1; objectStates.set(dMalloc(1 * sizeof(ObjectState)), 1); objectStates[0].vis = 1; objectStates[0].frameIndex = 0; objectStates[0].matFrameIndex = 0; subShapeFirstNode.set(dMalloc(1 * sizeof(S32)), 1); subShapeFirstNode[0] = 0; subShapeFirstObject.set(dMalloc(1 * sizeof(S32)), 1); subShapeFirstObject[0] = 0; detailFirstSkin.set(NULL, 0); subShapeNumNodes.set(dMalloc(1 * sizeof(S32)), 1); subShapeNumNodes[0] = 1; subShapeNumObjects.set(dMalloc(1 * sizeof(S32)), 1); subShapeNumObjects[0] = 1; details.set(dMalloc(1 * sizeof(Detail)), 1); details[0].nameIndex = 0; details[0].subShapeNum = 0; details[0].objectDetailNum = 0; details[0].size = 2.0f; details[0].averageError = -1.0f; details[0].maxError = -1.0f; details[0].polyCount = 0; defaultRotations.set(dMalloc(1 * sizeof(Quat16)), 1); defaultRotations[0].x = 0.0f; defaultRotations[0].y = 0.0f; defaultRotations[0].z = 0.0f; defaultRotations[0].w = 0.0f; defaultTranslations.set(dMalloc(1 * sizeof(Point3F)), 1); defaultTranslations[0].set(0.0f, 0.0f, 0.0f); subShapeFirstTranslucentObject.set(dMalloc(1 * sizeof(S32)), 1); subShapeFirstTranslucentObject[0] = 1; alphaIn.set(dMalloc(1 * sizeof(F32)), 1); alphaIn[0] = 0; alphaOut.set(dMalloc(1 * sizeof(F32)), 1); alphaOut[0] = -1; sequences.set(NULL, 0); nodeRotations.set(NULL, 0); nodeTranslations.set(NULL, 0); nodeUniformScales.set(NULL, 0); nodeAlignedScales.set(NULL, 0); nodeArbitraryScaleRots.set(NULL, 0); nodeArbitraryScaleFactors.set(NULL, 0); groundRotations.set(NULL, 0); groundTranslations.set(NULL, 0); triggers.set(NULL, 0); billboardDetails.set(NULL, 0); names.setSize(3); names[0] = StringTable->insert("Detail2"); names[1] = StringTable->insert("Mesh2"); names[2] = StringTable->insert("Mesh"); radius = 0.866025f; tubeRadius = 0.707107f; center.set(0.0f, 0.5f, 0.0f); bounds.minExtents.set(-0.5f, 0.0f, -0.5f); bounds.maxExtents.set(0.5f, 1.0f, 0.5f); mExporterVersion = 124; mSmallestVisibleSize = 2; mSmallestVisibleDL = 0; mReadVersion = 24; mFlags = 0; mSequencesConstructed = 0; mUseDetailFromScreenError = false; mDetailLevelLookup.setSize( 1 ); mDetailLevelLookup[0].set( -1, 0 ); // Init the collision accelerator array. Note that we don't compute the // accelerators until the app requests them detailCollisionAccelerators.setSize(details.size()); for (U32 i = 0; i < detailCollisionAccelerators.size(); i++) detailCollisionAccelerators[i] = NULL; } void TSShape::fixEndian(S32 * buff32, S16 * buff16, S8 *, S32 count32, S32 count16, S32) { // if endian-ness isn't the same, need to flip the buffer contents. if (0x12345678!=convertLEndianToHost(0x12345678)) { for (S32 i=0; i void *Resource::create(const Torque::Path &path) { // Execute the shape script if it exists Torque::Path scriptPath(path); scriptPath.setExtension("cs"); // Don't execute the script if we're already doing so! StringTableEntry currentScript = Platform::stripBasePath(CodeBlock::getCurrentCodeBlockFullPath()); if (!scriptPath.getFullPath().equal(currentScript)) { Torque::Path scriptPathDSO(scriptPath); scriptPathDSO.setExtension("cs.dso"); if (Torque::FS::IsFile(scriptPathDSO) || Torque::FS::IsFile(scriptPath)) { String evalCmd = "exec(\"" + scriptPath + "\");"; String instantGroup = Con::getVariable("InstantGroup"); Con::setIntVariable("InstantGroup", RootGroupId); Con::evaluate((const char*)evalCmd.c_str(), false, scriptPath.getFullPath()); Con::setVariable("InstantGroup", instantGroup.c_str()); } } // Attempt to load the shape TSShape * ret = 0; bool readSuccess = false; const String extension = path.getExtension(); if ( extension.equal( "dts", String::NoCase ) ) { FileStream stream; stream.open( path.getFullPath(), Torque::FS::File::Read ); if ( stream.getStatus() != Stream::Ok ) { Con::errorf( "Resource::create - Could not open '%s'", path.getFullPath().c_str() ); return NULL; } ret = new TSShape; readSuccess = ret->read(&stream); } else if ( extension.equal( "dae", String::NoCase ) || extension.equal( "kmz", String::NoCase ) ) { #ifdef TORQUE_COLLADA // Attempt to load the DAE file ret = loadColladaShape(path); readSuccess = (ret != NULL); #else // No COLLADA support => attempt to load the cached DTS file instead Torque::Path cachedPath = path; cachedPath.setExtension("cached.dts"); FileStream stream; stream.open( cachedPath.getFullPath(), Torque::FS::File::Read ); if ( stream.getStatus() != Stream::Ok ) { Con::errorf( "Resource::create - Could not open '%s'", cachedPath.getFullPath().c_str() ); return NULL; } ret = new TSShape; readSuccess = ret->read(&stream); #endif } else { Con::errorf( "Resource::create - '%s' has an unknown file format", path.getFullPath().c_str() ); delete ret; return NULL; } if( !readSuccess ) { Con::errorf( "Resource::create - Error reading '%s'", path.getFullPath().c_str() ); delete ret; ret = NULL; } return ret; } template<> ResourceBase::Signature Resource::signature() { return MakeFourCC('t','s','s','h'); } TSShape::ConvexHullAccelerator* TSShape::getAccelerator(S32 dl) { AssertFatal(dl < details.size(), "Error, bad detail level!"); if (dl == -1) return NULL; AssertFatal( detailCollisionAccelerators.size() == details.size(), "TSShape::getAccelerator() - mismatched array sizes!" ); if (detailCollisionAccelerators[dl] == NULL) computeAccelerator(dl); AssertFatal(detailCollisionAccelerators[dl] != NULL, "This should be non-null after computing it!"); return detailCollisionAccelerators[dl]; } void TSShape::computeAccelerator(S32 dl) { AssertFatal(dl < details.size(), "Error, bad detail level!"); // Have we already computed this? if (detailCollisionAccelerators[dl] != NULL) return; // Create a bogus features list... ConvexFeature cf; MatrixF mat(true); Point3F n(0, 0, 1); const TSDetail* detail = &details[dl]; S32 ss = detail->subShapeNum; S32 od = detail->objectDetailNum; S32 start = subShapeFirstObject[ss]; S32 end = subShapeNumObjects[ss] + start; if (start < end) { // run through objects and collide // DMMNOTE: This assumes that the transform of the collision hulls is // identity... U32 surfaceKey = 0; for (S32 i = start; i < end; i++) { const TSObject* obj = &objects[i]; if (obj->numMeshes && od < obj->numMeshes) { TSMesh* mesh = meshes[obj->startMeshIndex + od]; if (mesh) mesh->getFeatures(0, mat, n, &cf, surfaceKey); } } } Vector fixedVerts; VECTOR_SET_ASSOCIATION(fixedVerts); S32 i; for (i = 0; i < cf.mVertexList.size(); i++) { S32 j; bool found = false; for (j = 0; j < cf.mFaceList.size(); j++) { if (cf.mFaceList[j].vertex[0] == i || cf.mFaceList[j].vertex[1] == i || cf.mFaceList[j].vertex[2] == i) { found = true; break; } } if (!found) continue; found = false; for (j = 0; j < fixedVerts.size(); j++) { if (fixedVerts[j] == cf.mVertexList[i]) { found = true; break; } } if (found == true) { // Ok, need to replace any references to vertex i in the facelists with // a reference to vertex j in the fixed list for (S32 k = 0; k < cf.mFaceList.size(); k++) { for (S32 l = 0; l < 3; l++) { if (cf.mFaceList[k].vertex[l] == i) cf.mFaceList[k].vertex[l] = j; } } } else { for (S32 k = 0; k < cf.mFaceList.size(); k++) { for (S32 l = 0; l < 3; l++) { if (cf.mFaceList[k].vertex[l] == i) cf.mFaceList[k].vertex[l] = fixedVerts.size(); } } fixedVerts.push_back(cf.mVertexList[i]); } } cf.mVertexList.setSize(0); cf.mVertexList = fixedVerts; // Ok, so now we have a vertex list. Lets copy that out... ConvexHullAccelerator* accel = new ConvexHullAccelerator; detailCollisionAccelerators[dl] = accel; accel->numVerts = cf.mVertexList.size(); accel->vertexList = new Point3F[accel->numVerts]; dMemcpy(accel->vertexList, cf.mVertexList.address(), sizeof(Point3F) * accel->numVerts); accel->normalList = new Point3F[cf.mFaceList.size()]; for (i = 0; i < cf.mFaceList.size(); i++) accel->normalList[i] = cf.mFaceList[i].normal; accel->emitStrings = new U8*[accel->numVerts]; dMemset(accel->emitStrings, 0, sizeof(U8*) * accel->numVerts); for (i = 0; i < accel->numVerts; i++) { S32 j; Vector faces; VECTOR_SET_ASSOCIATION(faces); for (j = 0; j < cf.mFaceList.size(); j++) { if (cf.mFaceList[j].vertex[0] == i || cf.mFaceList[j].vertex[1] == i || cf.mFaceList[j].vertex[2] == i) { faces.push_back(j); } } AssertFatal(faces.size() != 0, "Huh? Vertex unreferenced by any faces"); // Insert all faces that didn't make the first cut, but share a plane with // a face that's on the short list. for (j = 0; j < cf.mFaceList.size(); j++) { bool found = false; S32 k; for (k = 0; k < faces.size(); k++) { if (faces[k] == j) found = true; } if (found) continue; found = false; for (k = 0; k < faces.size(); k++) { if (mDot(accel->normalList[faces[k]], accel->normalList[j]) > 0.999) { found = true; break; } } if (found) faces.push_back(j); } Vector vertRemaps; VECTOR_SET_ASSOCIATION(vertRemaps); for (j = 0; j < faces.size(); j++) { for (U32 k = 0; k < 3; k++) { U32 insert = cf.mFaceList[faces[j]].vertex[k]; bool found = false; for (S32 l = 0; l < vertRemaps.size(); l++) { if (insert == vertRemaps[l]) { found = true; break; } } if (!found) vertRemaps.push_back(insert); } } Vector edges; VECTOR_SET_ASSOCIATION(edges); for (j = 0; j < faces.size(); j++) { for (U32 k = 0; k < 3; k++) { U32 edgeStart = cf.mFaceList[faces[j]].vertex[(k + 0) % 3]; U32 edgeEnd = cf.mFaceList[faces[j]].vertex[(k + 1) % 3]; U32 e0 = getMin(edgeStart, edgeEnd); U32 e1 = getMax(edgeStart, edgeEnd); bool found = false; for (S32 l = 0; l < edges.size(); l++) { if (edges[l].x == e0 && edges[l].y == e1) { found = true; break; } } if (!found) edges.push_back(Point2I(e0, e1)); } } //AssertFatal(vertRemaps.size() < 256 && faces.size() < 256 && edges.size() < 256, // "Error, ran over the shapebase assumptions about convex hulls."); U32 emitStringLen = 1 + vertRemaps.size() + 1 + (edges.size() * 2) + 1 + (faces.size() * 4); accel->emitStrings[i] = new U8[emitStringLen]; U32 currPos = 0; accel->emitStrings[i][currPos++] = vertRemaps.size(); for (j = 0; j < vertRemaps.size(); j++) accel->emitStrings[i][currPos++] = vertRemaps[j]; accel->emitStrings[i][currPos++] = edges.size(); for (j = 0; j < edges.size(); j++) { S32 l; U32 old = edges[j].x; bool found = false; for (l = 0; l < vertRemaps.size(); l++) { if (vertRemaps[l] == old) { found = true; accel->emitStrings[i][currPos++] = l; break; } } AssertFatal(found, "Error, couldn't find the remap!"); old = edges[j].y; found = false; for (l = 0; l < vertRemaps.size(); l++) { if (vertRemaps[l] == old) { found = true; accel->emitStrings[i][currPos++] = l; break; } } AssertFatal(found, "Error, couldn't find the remap!"); } accel->emitStrings[i][currPos++] = faces.size(); for (j = 0; j < faces.size(); j++) { accel->emitStrings[i][currPos++] = faces[j]; for (U32 k = 0; k < 3; k++) { U32 old = cf.mFaceList[faces[j]].vertex[k]; bool found = false; for (S32 l = 0; l < vertRemaps.size(); l++) { if (vertRemaps[l] == old) { found = true; accel->emitStrings[i][currPos++] = l; break; } } AssertFatal(found, "Error, couldn't find the remap!"); } } AssertFatal(currPos == emitStringLen, "Error, over/underflowed the emission string!"); } }