//----------------------------------------------------------------------------- // Copyright (c) 2012 GarageGames, LLC // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. //----------------------------------------------------------------------------- #ifndef _MMATRIX_H_ #define _MMATRIX_H_ #include #ifndef _MPLANE_H_ #include "math/mPlane.h" #endif #ifndef _MBOX_H_ #include "math/mBox.h" #endif #ifndef _MPOINT4_H_ #include "math/mPoint4.h" #endif #ifndef _ENGINETYPEINFO_H_ #include "console/engineTypeInfo.h" #endif /// 4x4 Matrix Class /// /// This runs at F32 precision. class MatrixF { friend class MatrixFEngineExport; private: F32 m[16]; ///< Note: Torque uses row-major matrices public: /// Create an uninitialized matrix. /// /// @param identity If true, initialize to the identity matrix. explicit MatrixF(bool identity=false); /// Create a matrix to rotate about origin by e. /// @see set explicit MatrixF( const EulerF &e); /// Create a matrix to rotate about p by e. /// @see set MatrixF( const EulerF &e, const Point3F& p); /// Get the index in m to element in column i, row j /// /// This is necessary as we have m as a one dimensional array. /// /// @param i Column desired. /// @param j Row desired. static U32 idx(U32 i, U32 j) { return (i + j*4); } /// Initialize matrix to rotate about origin by e. MatrixF& set( const EulerF &e); /// Initialize matrix to rotate about p by e. MatrixF& set( const EulerF &e, const Point3F& p); /// Initialize matrix with a cross product of p. MatrixF& setCrossProduct( const Point3F &p); /// Initialize matrix with a tensor product of p. MatrixF& setTensorProduct( const Point3F &p, const Point3F& q); operator F32*() { return (m); } ///< Allow people to get at m. operator const F32*() const { return (F32*)(m); } ///< Allow people to get at m. bool isAffine() const; ///< Check to see if this is an affine matrix. bool isIdentity() const; ///< Checks for identity matrix. /// Make this an identity matrix. MatrixF& identity(); /// Invert m. MatrixF& inverse(); /// Copy the inversion of this into out matrix. void invertTo( MatrixF *out ); /// Take inverse of matrix assuming it is affine (rotation, /// scale, sheer, translation only). MatrixF& affineInverse(); /// Swap rows and columns. MatrixF& transpose(); /// M * Matrix(p) -> M MatrixF& scale( const Point3F &s ); MatrixF& scale( F32 s ) { return scale( Point3F( s, s, s ) ); } /// Return scale assuming scale was applied via mat.scale(s). Point3F getScale() const; EulerF toEuler() const; /// Compute the inverse of the matrix. /// /// Computes inverse of full 4x4 matrix. Returns false and performs no inverse if /// the determinant is 0. /// /// Note: In most cases you want to use the normal inverse function. This method should /// be used if the matrix has something other than (0,0,0,1) in the bottom row. bool fullInverse(); /// Reverse depth for projection matrix /// Simplifies reversal matrix mult to 4 subtractions void reverseProjection(); /// Swaps rows and columns into matrix. void transposeTo(F32 *matrix) const; /// Normalize the matrix. void normalize(); /// Copy the requested column into a Point4F. void getColumn(S32 col, Point4F *cptr) const; Point4F getColumn4F(S32 col) const { Point4F ret; getColumn(col,&ret); return ret; } /// Copy the requested column into a Point3F. /// /// This drops the bottom-most row. void getColumn(S32 col, Point3F *cptr) const; Point3F getColumn3F(S32 col) const { Point3F ret; getColumn(col,&ret); return ret; } /// Set the specified column from a Point4F. void setColumn(S32 col, const Point4F& cptr); /// Set the specified column from a Point3F. /// /// The bottom-most row is not set. void setColumn(S32 col, const Point3F& cptr); /// Copy the specified row into a Point4F. void getRow(S32 row, Point4F *cptr) const; Point4F getRow4F(S32 row) const { Point4F ret; getRow(row,&ret); return ret; } /// Copy the specified row into a Point3F. /// /// Right-most item is dropped. void getRow(S32 row, Point3F *cptr) const; Point3F getRow3F(S32 row) const { Point3F ret; getRow(row,&ret); return ret; } /// Set the specified row from a Point4F. void setRow(S32 row, const Point4F& cptr); /// Set the specified row from a Point3F. /// /// The right-most item is not set. void setRow(S32 row, const Point3F& cptr); /// Get the position of the matrix. /// /// This is the 4th column of the matrix. Point3F getPosition() const; /// Set the position of the matrix. /// /// This is the 4th column of the matrix. void setPosition( const Point3F &pos ) { setColumn( 3, pos ); } /// Add the passed delta to the matrix position. void displace( const Point3F &delta ); /// Get the x axis of the matrix. /// /// This is the 1st column of the matrix and is /// normally considered the right vector. VectorF getRightVector() const; /// Get the y axis of the matrix. /// /// This is the 2nd column of the matrix and is /// normally considered the forward vector. VectorF getForwardVector() const; /// Get the z axis of the matrix. /// /// This is the 3rd column of the matrix and is /// normally considered the up vector. VectorF getUpVector() const; MatrixF& mul(const MatrixF &a); ///< M * a -> M MatrixF& mulL(const MatrixF &a); ///< a * M -> M MatrixF& mul(const MatrixF &a, const MatrixF &b); ///< a * b -> M // Scalar multiplies MatrixF& mul(const F32 a); ///< M * a -> M MatrixF& mul(const MatrixF &a, const F32 b); ///< a * b -> M void mul( Point4F& p ) const; ///< M * p -> p (full [4x4] * [1x4]) void mulP( Point3F& p ) const; ///< M * p -> p (assume w = 1.0f) void mulP( const Point3F &p, Point3F *d) const; ///< M * p -> d (assume w = 1.0f) void mulV( VectorF& p ) const; ///< M * v -> v (assume w = 0.0f) void mulV( const VectorF &p, Point3F *d) const; ///< M * v -> d (assume w = 0.0f) void mul(Box3F& b) const; ///< Axial box -> Axial Box MatrixF& add( const MatrixF& m ); /// Convenience function to allow people to treat this like an array. F32& operator ()(S32 row, S32 col) { return m[idx(col,row)]; } F32 operator ()(S32 row, S32 col) const { return m[idx(col,row)]; } void dumpMatrix(const char *caption=NULL) const; // Math operator overloads //------------------------------------ friend MatrixF operator * ( const MatrixF &m1, const MatrixF &m2 ); MatrixF& operator *= ( const MatrixF &m ); MatrixF &operator = (const MatrixF &m); bool isNaN(); // Static identity matrix const static MatrixF Identity; }; class MatrixFEngineExport { public: static EngineFieldTable::Field getMatrixField(); }; //-------------------------------------- // Inline Functions inline MatrixF::MatrixF(bool _identity) { if (_identity) identity(); else std::fill_n(m, 16, 0); } inline MatrixF::MatrixF( const EulerF &e ) { set(e); } inline MatrixF::MatrixF( const EulerF &e, const Point3F& p ) { set(e,p); } inline MatrixF& MatrixF::set( const EulerF &e) { m_matF_set_euler( e, *this ); return (*this); } inline MatrixF& MatrixF::set( const EulerF &e, const Point3F& p) { m_matF_set_euler_point( e, p, *this ); return (*this); } inline MatrixF& MatrixF::setCrossProduct( const Point3F &p) { m[1] = -(m[4] = p.z); m[8] = -(m[2] = p.y); m[6] = -(m[9] = p.x); m[0] = m[3] = m[5] = m[7] = m[10] = m[11] = m[12] = m[13] = m[14] = 0.0f; m[15] = 1; return (*this); } inline MatrixF& MatrixF::setTensorProduct( const Point3F &p, const Point3F &q) { m[0] = p.x * q.x; m[1] = p.x * q.y; m[2] = p.x * q.z; m[4] = p.y * q.x; m[5] = p.y * q.y; m[6] = p.y * q.z; m[8] = p.z * q.x; m[9] = p.z * q.y; m[10] = p.z * q.z; m[3] = m[7] = m[11] = m[12] = m[13] = m[14] = 0.0f; m[15] = 1.0f; return (*this); } inline bool MatrixF::isIdentity() const { return m[0] == 1.0f && m[1] == 0.0f && m[2] == 0.0f && m[3] == 0.0f && m[4] == 0.0f && m[5] == 1.0f && m[6] == 0.0f && m[7] == 0.0f && m[8] == 0.0f && m[9] == 0.0f && m[10] == 1.0f && m[11] == 0.0f && m[12] == 0.0f && m[13] == 0.0f && m[14] == 0.0f && m[15] == 1.0f; } inline MatrixF& MatrixF::identity() { m[0] = 1.0f; m[1] = 0.0f; m[2] = 0.0f; m[3] = 0.0f; m[4] = 0.0f; m[5] = 1.0f; m[6] = 0.0f; m[7] = 0.0f; m[8] = 0.0f; m[9] = 0.0f; m[10] = 1.0f; m[11] = 0.0f; m[12] = 0.0f; m[13] = 0.0f; m[14] = 0.0f; m[15] = 1.0f; return (*this); } inline MatrixF& MatrixF::inverse() { m_matF_inverse(m); return (*this); } inline void MatrixF::invertTo( MatrixF *out ) { m_matF_invert_to(m,*out); } inline MatrixF& MatrixF::affineInverse() { // AssertFatal(isAffine() == true, "Error, this matrix is not an affine transform"); m_matF_affineInverse(m); return (*this); } inline MatrixF& MatrixF::transpose() { m_matF_transpose(m); return (*this); } inline MatrixF& MatrixF::scale(const Point3F& p) { m_matF_scale(m,p); return *this; } inline Point3F MatrixF::getScale() const { Point3F scale; scale.x = mSqrt(m[0]*m[0] + m[4] * m[4] + m[8] * m[8]); scale.y = mSqrt(m[1]*m[1] + m[5] * m[5] + m[9] * m[9]); scale.z = mSqrt(m[2]*m[2] + m[6] * m[6] + m[10] * m[10]); return scale; } inline void MatrixF::normalize() { m_matF_normalize(m); } inline MatrixF& MatrixF::mul( const MatrixF &a ) { // M * a -> M AssertFatal(&a != this, "MatrixF::mul - a.mul(a) is invalid!"); MatrixF tempThis(*this); m_matF_x_matF(tempThis, a, *this); return (*this); } inline MatrixF& MatrixF::mulL( const MatrixF &a ) { // a * M -> M AssertFatal(&a != this, "MatrixF::mulL - a.mul(a) is invalid!"); MatrixF tempThis(*this); m_matF_x_matF(a, tempThis, *this); return (*this); } inline MatrixF& MatrixF::mul( const MatrixF &a, const MatrixF &b ) { // a * b -> M AssertFatal((&a != this) && (&b != this), "MatrixF::mul - a.mul(a, b) a.mul(b, a) a.mul(a, a) is invalid!"); m_matF_x_matF(a, b, *this); return (*this); } inline MatrixF& MatrixF::mul(const F32 a) { for (U32 i = 0; i < 16; i++) m[i] *= a; return *this; } inline MatrixF& MatrixF::mul(const MatrixF &a, const F32 b) { *this = a; mul(b); return *this; } inline void MatrixF::mul( Point4F& p ) const { Point4F temp; m_matF_x_point4F(*this, &p.x, &temp.x); p = temp; } inline void MatrixF::mulP( Point3F& p) const { // M * p -> d Point3F d; m_matF_x_point3F(*this, &p.x, &d.x); p = d; } inline void MatrixF::mulP( const Point3F &p, Point3F *d) const { // M * p -> d m_matF_x_point3F(*this, &p.x, &d->x); } inline void MatrixF::mulV( VectorF& v) const { // M * v -> v VectorF temp; m_matF_x_vectorF(*this, &v.x, &temp.x); v = temp; } inline void MatrixF::mulV( const VectorF &v, Point3F *d) const { // M * v -> d m_matF_x_vectorF(*this, &v.x, &d->x); } inline void MatrixF::mul(Box3F& b) const { m_matF_x_box3F(*this, &b.minExtents.x, &b.maxExtents.x); } inline MatrixF& MatrixF::add( const MatrixF& a ) { for( U32 i = 0; i < 16; ++ i ) m[ i ] += a.m[ i ]; return *this; } inline void MatrixF::getColumn(S32 col, Point4F *cptr) const { cptr->x = m[col]; cptr->y = m[col+4]; cptr->z = m[col+8]; cptr->w = m[col+12]; } inline void MatrixF::getColumn(S32 col, Point3F *cptr) const { cptr->x = m[col]; cptr->y = m[col+4]; cptr->z = m[col+8]; } inline void MatrixF::setColumn(S32 col, const Point4F &cptr) { m[col] = cptr.x; m[col+4] = cptr.y; m[col+8] = cptr.z; m[col+12]= cptr.w; } inline void MatrixF::setColumn(S32 col, const Point3F &cptr) { m[col] = cptr.x; m[col+4] = cptr.y; m[col+8] = cptr.z; } inline void MatrixF::getRow(S32 col, Point4F *cptr) const { col *= 4; cptr->x = m[col++]; cptr->y = m[col++]; cptr->z = m[col++]; cptr->w = m[col]; } inline void MatrixF::getRow(S32 col, Point3F *cptr) const { col *= 4; cptr->x = m[col++]; cptr->y = m[col++]; cptr->z = m[col]; } inline void MatrixF::setRow(S32 col, const Point4F &cptr) { col *= 4; m[col++] = cptr.x; m[col++] = cptr.y; m[col++] = cptr.z; m[col] = cptr.w; } inline void MatrixF::setRow(S32 col, const Point3F &cptr) { col *= 4; m[col++] = cptr.x; m[col++] = cptr.y; m[col] = cptr.z; } inline Point3F MatrixF::getPosition() const { return Point3F( m[3], m[3+4], m[3+8] ); } inline void MatrixF::displace( const Point3F &delta ) { m[3] += delta.x; m[3+4] += delta.y; m[3+8] += delta.z; } inline VectorF MatrixF::getForwardVector() const { VectorF vec; getColumn( 1, &vec ); return vec; } inline VectorF MatrixF::getRightVector() const { VectorF vec; getColumn( 0, &vec ); return vec; } inline VectorF MatrixF::getUpVector() const { VectorF vec; getColumn( 2, &vec ); return vec; } //------------------------------------ // Math operator overloads //------------------------------------ inline MatrixF operator * ( const MatrixF &m1, const MatrixF &m2 ) { // temp = m1 * m2 MatrixF temp; m_matF_x_matF(m1, m2, temp); return temp; } inline MatrixF& MatrixF::operator *= ( const MatrixF &m1 ) { MatrixF tempThis(*this); m_matF_x_matF(tempThis, m1, *this); return (*this); } inline MatrixF &MatrixF::operator = (const MatrixF &m1) { for (U32 i=0;i<16;i++) this->m[i] = m1.m[i]; return (*this); } inline bool MatrixF::isNaN() { bool isaNaN = false; for (U32 i = 0; i < 16; i++) if (mIsNaN_F(m[i])) isaNaN = true; return isaNaN; } //------------------------------------ // Non-member methods //------------------------------------ inline void mTransformPlane(const MatrixF& mat, const Point3F& scale, const PlaneF& plane, PlaneF * result) { m_matF_x_scale_x_planeF(mat, &scale.x, &plane.x, &result->x); } //------------------------------------ // Templatized matrix class to replace MATRIXF above // row-major for now, since torque says it uses that // but in future could cut down on transpose calls if // we switch to column major. //------------------------------------ template class Matrix { friend class MatrixTemplateExport; private: DATA_TYPE data[rows * cols]; public: static_assert(rows >= 2 && cols >= 2, "Matrix must have at least 2 rows and 2 cols."); // ------ Setters and initializers ------ explicit Matrix(bool identity = false) { std::fill(data, data + (rows * cols), DATA_TYPE(0)); if (identity) { for (U32 i = 0; i < rows; i++) { for (U32 j = 0; j < cols; j++) { // others already get filled with 0 if (j == i) (*this)(i, j) = static_cast(1); } } } } explicit Matrix(const EulerF& e); /// Make this an identity matrix. Matrix& identity(); Matrix& set(const EulerF& e); Matrix(const EulerF& e, const Point3F p); Matrix& set(const EulerF& e, const Point3F p); Matrix& inverse(); Matrix& transpose(); void invert(); Matrix& setCrossProduct(const Point3F& p); Matrix& setTensorProduct(const Point3F& p, const Point3F& q); /// M * Matrix(p) -> M Matrix& scale(const Point3F& s); Matrix& scale(DATA_TYPE s) { return scale(Point3F(s, s, s)); } void setColumn(S32 col, const Point4F& cptr); void setColumn(S32 col, const Point3F& cptr); void setRow(S32 row, const Point4F& cptr); void setRow(S32 row, const Point3F& cptr); // ------ Getters ------ bool isAffine() const; bool isIdentity() const; Point3F getScale() const; EulerF toEuler() const; Point3F getPosition() const; void getColumn(S32 col, Point4F* cptr) const; Point4F getColumn4F(S32 col) const { Point4F ret; getColumn(col, &ret); return ret; } void getColumn(S32 col, Point3F* cptr) const; Point3F getColumn3F(S32 col) const { Point3F ret; getColumn(col, &ret); return ret; } void getRow(S32 row, Point4F* cptr) const; Point4F getRow4F(S32 row) const { Point4F ret; getRow(row, &ret); return ret; } void getRow(S32 row, Point3F* cptr) const; Point3F getRow3F(S32 row) const { Point3F ret; getRow(row, &ret); return ret; } DATA_TYPE* getData() { return data; } const DATA_TYPE* getData() const { return data; } void dumpMatrix(const char* caption = NULL) const; // Static identity matrix static const Matrix Identity; // ------ Operators ------ operator DATA_TYPE* () { return (data); } operator const DATA_TYPE* () const { return (DATA_TYPE*)(data); } DATA_TYPE& operator()(U32 row, U32 col) { if (row >= rows || col >= cols) AssertFatal(false, "Matrix indices out of range"); return data[col * rows + row]; } const DATA_TYPE& operator()(U32 row, U32 col) const { if (row >= rows || col >= cols) AssertFatal(false, "Matrix indices out of range"); return data[col * rows + row]; } }; //-------------------------------------------- // INLINE FUNCTIONS //-------------------------------------------- template inline Matrix& Matrix::transpose() { // square matrices can just swap, non square requires a temp mat. if (rows == cols) { for (U32 i = 0; i < rows; i++) { for (U32 j = 0; j < cols; j++) { std::swap((*this)(j, i), (*this)(i, j)); } } } else { Matrix result; for (U32 i = 0; i < rows; i++) { for (U32 j = 0; j < cols; j++) { result(j, i) = (*this)(i, j); } } std::copy(std::begin(result.data), std::end(result.data), std::begin(data)); } return (*this); } template inline Matrix& Matrix::identity() { for (U32 i = 0; i < rows; i++) { for (U32 j = 0; j < cols; j++) { if (j == i) (*this)(i, j) = static_cast(1); else (*this)(i, j) = static_cast(0); } } return (*this); } template inline Matrix& Matrix::scale(const Point3F& s) { // torques scale applies directly, does not create another matrix to multiply with the translation matrix. AssertFatal(rows >= 3 && cols >= 3, "Scale can only be applied 3x3 or more"); for (U32 i = 0; i < 3; i++) { for (U32 j = 0; j < 3; j++) { DATA_TYPE scale = (i == 0) ? s.x : (i == 1) ? s.y : s.z; (*this)(i, j) *= scale; } } return (*this); } template inline bool Matrix::isIdentity() const { for (U32 i = 0; i < rows; i++) { for (U32 j = 0; j < cols; j++) { if (j == i) { if((*this)(i, j) != static_cast(1)) { return false; } } else { if((*this)(i, j) != static_cast(0)) { return false; } } } } return true; } template inline Point3F Matrix::getScale() const { // this function assumes the matrix has scale applied through the scale(const Point3F& s) function. // for now assume float since we have point3F. AssertFatal(rows >= 3 && cols >= 3, "Scale can only be applied 3x3 or more"); Point3F scale; scale.x = mSqrt((*this)(0, 0) * (*this)(0, 0) + (*this)(1, 0) * (*this)(1, 0) + (*this)(2, 0) * (*this)(2, 0)); scale.y = mSqrt((*this)(0, 1) * (*this)(0, 1) + (*this)(1, 1) * (*this)(1, 1) + (*this)(2, 1) * (*this)(2, 1)); scale.z = mSqrt((*this)(0, 2) * (*this)(0, 2) + (*this)(1, 2) * (*this)(1, 2) + (*this)(2, 2) * (*this)(2, 2)); return scale; } template inline Point3F Matrix::getPosition() const { Point3F pos; getColumn(3, &pos); return pos; } template inline void Matrix::getColumn(S32 col, Point4F* cptr) const { if (rows >= 2) { cptr->x = (*this)(0, col); cptr->y = (*this)(1, col); } if (rows >= 3) cptr->z = (*this)(2, col); else cptr->z = 0.0f; if (rows >= 4) cptr->w = (*this)(3, col); else cptr->w = 0.0f; } template inline void Matrix::getColumn(S32 col, Point3F* cptr) const { if (rows >= 2) { cptr->x = (*this)(0, col); cptr->y = (*this)(1, col); } if (rows >= 3) cptr->z = (*this)(2, col); else cptr->z = 0.0f; } template inline void Matrix::setColumn(S32 col, const Point4F &cptr) { if(rows >= 2) { (*this)(0, col) = cptr.x; (*this)(1, col) = cptr.y; } if(rows >= 3) (*this)(2, col) = cptr.z; if(rows >= 4) (*this)(3, col) = cptr.w; } template inline void Matrix::setColumn(S32 col, const Point3F &cptr) { if(rows >= 2) { (*this)(0, col) = cptr.x; (*this)(1, col) = cptr.y; } if(rows >= 3) (*this)(2, col) = cptr.z; } template inline void Matrix::getRow(S32 row, Point4F* cptr) const { if (cols >= 2) { cptr->x = (*this)(row, 0); cptr->y = (*this)(row, 1); } if (cols >= 3) cptr->z = (*this)(row, 2); else cptr->z = 0.0f; if (cols >= 4) cptr->w = (*this)(row, 3); else cptr->w = 0.0f; } template inline void Matrix::getRow(S32 row, Point3F* cptr) const { if (cols >= 2) { cptr->x = (*this)(row, 0); cptr->y = (*this)(row, 1); } if (cols >= 3) cptr->z = (*this)(row, 2); else cptr->z = 0.0f; } template inline void Matrix::setRow(S32 row, const Point4F& cptr) { if(cols >= 2) { (*this)(row, 0) = cptr.x; (*this)(row, 1) = cptr.y; } if(cols >= 3) (*this)(row, 2) = cptr.z; if(cols >= 4) (*this)(row, 3) = cptr.w; } template inline void Matrix::setRow(S32 row, const Point3F& cptr) { if(cols >= 2) { (*this)(row, 0) = cptr.x; (*this)(row, 1) = cptr.y; } if(cols >= 3) (*this)(row, 2) = cptr.z; } //-------------------------------------------- // INLINE FUNCTIONS END //-------------------------------------------- typedef Matrix Matrix4F; class MatrixTemplateExport { public: template static EngineFieldTable::Field getMatrixField(); }; template inline EngineFieldTable::Field MatrixTemplateExport::getMatrixField() { typedef Matrix ThisType; return _FIELD_AS(T, data, data, rows * cols, ""); } #endif //_MMATRIX_H_