/* * HRTF utility for producing and demonstrating the process of creating an * OpenAL Soft compatible HRIR data set. * * Copyright (C) 2011-2019 Christopher Fitzgerald * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html */ #include "loaddef.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "albit.h" #include "almalloc.h" #include "alnumeric.h" #include "alspan.h" #include "alstring.h" #include "filesystem.h" #include "fmt/core.h" #include "makemhr.h" #include "polyphase_resampler.h" #include "sofa-support.h" #include "mysofa.h" namespace { using namespace std::string_view_literals; // Constants for accessing the token reader's ring buffer. constexpr uint TRRingBits{16}; constexpr uint TRRingSize{1 << TRRingBits}; constexpr uint TRRingMask{TRRingSize - 1}; // The token reader's load interval in bytes. constexpr uint TRLoadSize{TRRingSize >> 2}; // Token reader state for parsing the data set definition. struct TokenReaderT { std::istream &mIStream; std::string mName; uint mLine{}; uint mColumn{}; std::array mRing{}; std::streamsize mIn{}; std::streamsize mOut{}; explicit TokenReaderT(std::istream &istream) noexcept : mIStream{istream} { } TokenReaderT(const TokenReaderT&) = default; }; // The limits for the listener's head 'radius' in the data set definition. constexpr double MinRadius{0.05}; constexpr double MaxRadius{0.15}; // The maximum number of channels that can be addressed for a WAVE file // source listed in the data set definition. constexpr uint MaxWaveChannels{65535}; // The limits to the byte size for a binary source listed in the definition // file. enum : uint { MinBinSize = 2, MaxBinSize = 4 }; // The limits to the number of significant bits for an ASCII source listed in // the data set definition. enum : uint { MinASCIIBits = 16, MaxASCIIBits = 32 }; // The four-character-codes for RIFF/RIFX WAVE file chunks. enum : uint { FOURCC_RIFF = 0x46464952, // 'RIFF' FOURCC_RIFX = 0x58464952, // 'RIFX' FOURCC_WAVE = 0x45564157, // 'WAVE' FOURCC_FMT = 0x20746D66, // 'fmt ' FOURCC_DATA = 0x61746164, // 'data' FOURCC_LIST = 0x5453494C, // 'LIST' FOURCC_WAVL = 0x6C766177, // 'wavl' FOURCC_SLNT = 0x746E6C73, // 'slnt' }; // The supported wave formats. enum : uint { WAVE_FORMAT_PCM = 0x0001, WAVE_FORMAT_IEEE_FLOAT = 0x0003, WAVE_FORMAT_EXTENSIBLE = 0xFFFE, }; enum ByteOrderT { BO_NONE, BO_LITTLE, BO_BIG }; // Source format for the references listed in the data set definition. enum SourceFormatT { SF_NONE, SF_ASCII, // ASCII text file. SF_BIN_LE, // Little-endian binary file. SF_BIN_BE, // Big-endian binary file. SF_WAVE, // RIFF/RIFX WAVE file. SF_SOFA // Spatially Oriented Format for Accoustics (SOFA) file. }; // Element types for the references listed in the data set definition. enum ElementTypeT { ET_NONE, ET_INT, // Integer elements. ET_FP // Floating-point elements. }; // Source reference state used when loading sources. struct SourceRefT { SourceFormatT mFormat; ElementTypeT mType; uint mSize; int mBits; uint mChannel; double mAzimuth; double mElevation; double mRadius; uint mSkip; uint mOffset; std::string mPath; }; /* Whitespace is not significant. It can process tokens as identifiers, numbers * (integer and floating-point), strings, and operators. Strings must be * encapsulated by double-quotes and cannot span multiple lines. */ // Setup the reader on the given file. The filename can be NULL if no error // output is desired. void TrSetup(const al::span startbytes, const std::string_view filename, TokenReaderT *tr) { std::string_view namepart; if(!filename.empty()) { const auto fslashpos = filename.rfind('/'); const auto bslashpos = filename.rfind('\\'); const auto slashpos = (bslashpos >= filename.size()) ? fslashpos : (fslashpos >= filename.size()) ? bslashpos : std::max(fslashpos, bslashpos); if(slashpos < filename.size()) namepart = filename.substr(slashpos+1); } tr->mName = namepart; tr->mLine = 1; tr->mColumn = 1; tr->mIn = 0; tr->mOut = 0; if(!startbytes.empty()) { assert(startbytes.size() <= tr->mRing.size()); std::copy(startbytes.cbegin(), startbytes.cend(), tr->mRing.begin()); tr->mIn += std::streamsize(startbytes.size()); } } // Prime the reader's ring buffer, and return a result indicating that there // is text to process. auto TrLoad(TokenReaderT *tr) -> int { std::istream &istream = tr->mIStream; auto toLoad = std::streamsize{TRRingSize} - (tr->mIn - tr->mOut); if(toLoad >= TRLoadSize && istream.good()) { // Load TRLoadSize (or less if at the end of the file) per read. toLoad = TRLoadSize; const auto in = tr->mIn & std::streamsize{TRRingMask}; const auto count = std::streamsize{TRRingSize} - in; if(count < toLoad) { istream.read(al::to_address(tr->mRing.begin() + in), count); tr->mIn += istream.gcount(); istream.read(tr->mRing.data(), toLoad-count); tr->mIn += istream.gcount(); } else { istream.read(al::to_address(tr->mRing.begin() + in), toLoad); tr->mIn += istream.gcount(); } if(tr->mOut >= TRRingSize) { tr->mOut -= TRRingSize; tr->mIn -= TRRingSize; } } if(tr->mIn > tr->mOut) return 1; return 0; } // Error display routine. Only displays when the base name is not NULL. // Used to display an error at a saved line/column. template void TrErrorAt(const TokenReaderT *tr, uint line, uint column, fmt::format_string fmt, Args&& ...args) { if(tr->mName.empty()) return; fmt::print(stderr, "\nError ({}:{}:{}): ", tr->mName, line, column); fmt::println(stderr, fmt, std::forward(args)...); } // Used to display an error at the current line/column. template void TrError(const TokenReaderT *tr, fmt::format_string fmt, Args&& ...args) { TrErrorAt(tr, tr->mLine, tr->mColumn, fmt, std::forward(args)...); } // Skips to the next line. void TrSkipLine(TokenReaderT *tr) { char ch; while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TRRingMask]; tr->mOut++; if(ch == '\n') { tr->mLine++; tr->mColumn = 1; break; } tr->mColumn ++; } } // Skips to the next token. auto TrSkipWhitespace(TokenReaderT *tr) -> int { while(TrLoad(tr)) { char ch{tr->mRing[tr->mOut&TRRingMask]}; if(isspace(ch)) { tr->mOut++; if(ch == '\n') { tr->mLine++; tr->mColumn = 1; } else tr->mColumn++; } else if(ch == '#') TrSkipLine(tr); else return 1; } return 0; } // Get the line and/or column of the next token (or the end of input). void TrIndication(TokenReaderT *tr, uint *line, uint *column) { TrSkipWhitespace(tr); if(line) *line = tr->mLine; if(column) *column = tr->mColumn; } // Checks to see if a token is (likely to be) an identifier. It does not // display any errors and will not proceed to the next token. auto TrIsIdent(TokenReaderT *tr) -> int { if(!TrSkipWhitespace(tr)) return 0; char ch{tr->mRing[tr->mOut&TRRingMask]}; return ch == '_' || isalpha(ch); } // Checks to see if a token is the given operator. It does not display any // errors and will not proceed to the next token. auto TrIsOperator(TokenReaderT *tr, const std::string_view op) -> int { if(!TrSkipWhitespace(tr)) return 0; auto out = tr->mOut; size_t len{0}; while(len < op.size() && out < tr->mIn) { if(tr->mRing[out&TRRingMask] != op[len]) break; ++len; ++out; } if(len == op.size()) return 1; return 0; } /* The TrRead*() routines obtain the value of a matching token type. They * display type, form, and boundary errors and will proceed to the next * token. */ // Reads and validates an identifier token. auto TrReadIdent(TokenReaderT *tr) -> std::string { auto ret = std::string{}; auto col = tr->mColumn; if(TrSkipWhitespace(tr)) { col = tr->mColumn; auto ch = char{tr->mRing[tr->mOut&TRRingMask]}; if(ch == '_' || isalpha(ch)) { do { ret += ch; tr->mColumn += 1; tr->mOut += 1; if(!TrLoad(tr)) break; ch = tr->mRing[tr->mOut&TRRingMask]; } while(ch == '_' || std::isdigit(ch) || std::isalpha(ch)); return ret; } } TrErrorAt(tr, tr->mLine, col, "Expected an identifier."); ret.clear(); return ret; } // Reads and validates (including bounds) an integer token. auto TrReadInt(TokenReaderT *tr, const int loBound, const int hiBound, int *value) -> int { uint col{tr->mColumn}; if(TrSkipWhitespace(tr)) { col = tr->mColumn; uint len{0}; std::array temp{}; char ch{tr->mRing[tr->mOut&TRRingMask]}; if(ch == '+' || ch == '-') { temp[len] = ch; len++; tr->mOut++; } uint digis{0}; while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TRRingMask]; if(!isdigit(ch)) break; if(len < 64) temp[len] = ch; len++; digis++; tr->mOut++; } tr->mColumn += len; if(digis > 0 && ch != '.' && !isalpha(ch)) { if(len > 64) { TrErrorAt(tr, tr->mLine, col, "Integer is too long."); return 0; } temp[len] = '\0'; *value = static_cast(strtol(temp.data(), nullptr, 10)); if(*value < loBound || *value > hiBound) { TrErrorAt(tr, tr->mLine, col, "Expected a value from {} to {}.", loBound, hiBound); return 0; } return 1; } } TrErrorAt(tr, tr->mLine, col, "Expected an integer."); return 0; } // Reads and validates (including bounds) a float token. auto TrReadFloat(TokenReaderT *tr, const double loBound, const double hiBound, double *value) -> int { uint col{tr->mColumn}; if(TrSkipWhitespace(tr)) { col = tr->mColumn; std::array temp{}; uint len{0}; char ch{tr->mRing[tr->mOut&TRRingMask]}; if(ch == '+' || ch == '-') { temp[len] = ch; len++; tr->mOut++; } uint digis{0}; while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TRRingMask]; if(!isdigit(ch)) break; if(len < 64) temp[len] = ch; len++; digis++; tr->mOut++; } if(ch == '.') { if(len < 64) temp[len] = ch; len++; tr->mOut++; } while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TRRingMask]; if(!isdigit(ch)) break; if(len < 64) temp[len] = ch; len++; digis++; tr->mOut++; } if(digis > 0) { if(ch == 'E' || ch == 'e') { if(len < 64) temp[len] = ch; len++; digis = 0; tr->mOut++; if(ch == '+' || ch == '-') { if(len < 64) temp[len] = ch; len++; tr->mOut++; } while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TRRingMask]; if(!isdigit(ch)) break; if(len < 64) temp[len] = ch; len++; digis++; tr->mOut++; } } tr->mColumn += len; if(digis > 0 && ch != '.' && !isalpha(ch)) { if(len > 64) { TrErrorAt(tr, tr->mLine, col, "Float is too long."); return 0; } temp[len] = '\0'; *value = strtod(temp.data(), nullptr); if(*value < loBound || *value > hiBound) { TrErrorAt(tr, tr->mLine, col, "Expected a value from {:f} to {:f}.", loBound, hiBound); return 0; } return 1; } } else tr->mColumn += len; } TrErrorAt(tr, tr->mLine, col, "Expected a float."); return 0; } // Reads and validates a string token. auto TrReadString(TokenReaderT *tr) -> std::optional { auto ret = std::string{}; auto col = tr->mColumn; if(TrSkipWhitespace(tr)) { col = tr->mColumn; if(char ch{tr->mRing[tr->mOut&TRRingMask]}; ch == '\"') { tr->mOut++; size_t len{0}; while(TrLoad(tr)) { ch = tr->mRing[tr->mOut&TRRingMask]; tr->mOut++; if(ch == '\"') break; if(ch == '\n') { TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of line."); return std::nullopt; } ret += ch; len++; } if(ch != '\"') { tr->mColumn += static_cast(1 + len); TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of input."); return std::nullopt; } tr->mColumn += static_cast(2 + len); return std::optional{std::move(ret)}; } } TrErrorAt(tr, tr->mLine, col, "Expected a string."); return std::nullopt; } // Reads and validates the given operator. auto TrReadOperator(TokenReaderT *tr, const std::string_view op) -> int { uint col{tr->mColumn}; if(TrSkipWhitespace(tr)) { col = tr->mColumn; size_t len{0}; while(len < op.size() && TrLoad(tr)) { if(tr->mRing[tr->mOut&TRRingMask] != op[len]) break; ++len; tr->mOut += 1; } tr->mColumn += static_cast(len); if(len == op.size()) return 1; } TrErrorAt(tr, tr->mLine, col, "Expected '{}' operator.", op); return 0; } /************************* *** File source input *** *************************/ // Read a binary value of the specified byte order and byte size from a file, // storing it as a 32-bit unsigned integer. auto ReadBin4(std::istream &istream, const std::string_view filename, const ByteOrderT order, const uint bytes, uint32_t *out) -> int { std::array in{}; istream.read(reinterpret_cast(in.data()), static_cast(bytes)); if(istream.gcount() != bytes) { fmt::println(stderr, "\nError: Bad read from file '{}'.", filename); return 0; } uint32_t accum{0}; switch(order) { case BO_LITTLE: for(uint i = 0;i < bytes;i++) accum = (accum<<8) | in[bytes - i - 1]; break; case BO_BIG: for(uint i = 0;i < bytes;i++) accum = (accum<<8) | in[i]; break; default: break; } *out = accum; return 1; } // Read a binary value of the specified byte order from a file, storing it as // a 64-bit unsigned integer. auto ReadBin8(std::istream &istream, const std::string_view filename, const ByteOrderT order, uint64_t *out) -> int { std::array in{}; istream.read(reinterpret_cast(in.data()), 8); if(istream.gcount() != 8) { fmt::println(stderr, "\nError: Bad read from file '{}'.", filename); return 0; } uint64_t accum{}; switch(order) { case BO_LITTLE: for(uint i{0};i < 8;++i) accum = (accum<<8) | in[8 - i - 1]; break; case BO_BIG: for(uint i{0};i < 8;++i) accum = (accum<<8) | in[i]; break; default: break; } *out = accum; return 1; } /* Read a binary value of the specified type, byte order, and byte size from * a file, converting it to a double. For integer types, the significant * bits are used to normalize the result. The sign of bits determines * whether they are padded toward the MSB (negative) or LSB (positive). * Floating-point types are not normalized. */ auto ReadBinAsDouble(std::istream &istream, const std::string_view filename, const ByteOrderT order, const ElementTypeT type, const uint bytes, const int bits, double *out) -> int { *out = 0.0; if(bytes > 4) { uint64_t val{}; if(!ReadBin8(istream, filename, order, &val)) return 0; if(type == ET_FP) *out = al::bit_cast(val); } else { uint32_t val{}; if(!ReadBin4(istream, filename, order, bytes, &val)) return 0; if(type == ET_FP) *out = al::bit_cast(val); else { if(bits > 0) val >>= (8*bytes) - (static_cast(bits)); else val &= (0xFFFFFFFF >> (32+bits)); if(val&static_cast(1<<(std::abs(bits)-1))) val |= (0xFFFFFFFF << std::abs(bits)); *out = static_cast(val) / static_cast(1<<(std::abs(bits)-1)); } } return 1; } /* Read an ascii value of the specified type from a file, converting it to a * double. For integer types, the significant bits are used to normalize the * result. The sign of the bits should always be positive. This also skips * up to one separator character before the element itself. */ auto ReadAsciiAsDouble(TokenReaderT *tr, const std::string_view filename, const ElementTypeT type, const uint bits, double *out) -> int { if(TrIsOperator(tr, ",")) TrReadOperator(tr, ","); else if(TrIsOperator(tr, ":")) TrReadOperator(tr, ":"); else if(TrIsOperator(tr, ";")) TrReadOperator(tr, ";"); else if(TrIsOperator(tr, "|")) TrReadOperator(tr, "|"); if(type == ET_FP) { if(!TrReadFloat(tr, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), out)) { fmt::println(stderr, "\nError: Bad read from file '{}'.", filename); return 0; } } else { int v; if(!TrReadInt(tr, -(1<<(bits-1)), (1<<(bits-1))-1, &v)) { fmt::println(stderr, "\nError: Bad read from file '{}'.", filename); return 0; } *out = v / static_cast((1<<(bits-1))-1); } return 1; } // Read the RIFF/RIFX WAVE format chunk from a file, validating it against // the source parameters and data set metrics. auto ReadWaveFormat(std::istream &istream, const ByteOrderT order, const uint hrirRate, SourceRefT *src) -> int { uint32_t fourCC, chunkSize; uint32_t format, channels, rate, dummy, block, size, bits; chunkSize = 0; do { if(chunkSize > 0) istream.seekg(static_cast(chunkSize), std::ios::cur); if(!ReadBin4(istream, src->mPath, BO_LITTLE, 4, &fourCC) || !ReadBin4(istream, src->mPath, order, 4, &chunkSize)) return 0; } while(fourCC != FOURCC_FMT); if(!ReadBin4(istream, src->mPath, order, 2, &format) || !ReadBin4(istream, src->mPath, order, 2, &channels) || !ReadBin4(istream, src->mPath, order, 4, &rate) || !ReadBin4(istream, src->mPath, order, 4, &dummy) || !ReadBin4(istream, src->mPath, order, 2, &block)) return 0; block /= channels; if(chunkSize > 14) { if(!ReadBin4(istream, src->mPath, order, 2, &size)) return 0; size = std::max(size/8, block); } else size = block; if(format == WAVE_FORMAT_EXTENSIBLE) { istream.seekg(2, std::ios::cur); if(!ReadBin4(istream, src->mPath, order, 2, &bits)) return 0; if(bits == 0) bits = 8 * size; istream.seekg(4, std::ios::cur); if(!ReadBin4(istream, src->mPath, order, 2, &format)) return 0; istream.seekg(static_cast(chunkSize - 26), std::ios::cur); } else { bits = 8 * size; if(chunkSize > 14) istream.seekg(static_cast(chunkSize - 16), std::ios::cur); else istream.seekg(static_cast(chunkSize - 14), std::ios::cur); } if(format != WAVE_FORMAT_PCM && format != WAVE_FORMAT_IEEE_FLOAT) { fmt::println(stderr, "\nError: Unsupported WAVE format in file '{}'.", src->mPath); return 0; } if(src->mChannel >= channels) { fmt::println(stderr, "\nError: Missing source channel in WAVE file '{}'.", src->mPath); return 0; } if(rate != hrirRate) { fmt::println(stderr, "\nError: Mismatched source sample rate in WAVE file '{}'.", src->mPath); return 0; } if(format == WAVE_FORMAT_PCM) { if(size < 2 || size > 4) { fmt::println(stderr, "\nError: Unsupported sample size in WAVE file '{}'.", src->mPath); return 0; } if(bits < 16 || bits > (8*size)) { fmt::println(stderr, "\nError: Bad significant bits in WAVE file '{}'.", src->mPath); return 0; } src->mType = ET_INT; } else { if(size != 4 && size != 8) { fmt::println(stderr, "\nError: Unsupported sample size in WAVE file '{}'.", src->mPath); return 0; } src->mType = ET_FP; } src->mSize = size; src->mBits = static_cast(bits); src->mSkip = channels; return 1; } // Read a RIFF/RIFX WAVE data chunk, converting all elements to doubles. auto ReadWaveData(std::istream &istream, const SourceRefT *src, const ByteOrderT order, const al::span hrir) -> int { auto pre = static_cast(src->mSize * src->mChannel); auto post = static_cast(src->mSize * (src->mSkip - src->mChannel - 1)); auto skip = 0; for(size_t i{0};i < hrir.size();++i) { skip += pre; if(skip > 0) istream.seekg(skip, std::ios::cur); if(!ReadBinAsDouble(istream, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i])) return 0; skip = post; } if(skip > 0) istream.seekg(skip, std::ios::cur); return 1; } // Read the RIFF/RIFX WAVE list or data chunk, converting all elements to // doubles. auto ReadWaveList(std::istream &istream, const SourceRefT *src, const ByteOrderT order, const al::span hrir) -> int { uint32_t fourCC, chunkSize, listSize, count; uint block, skip, offset, i; double lastSample; for(;;) { if(!ReadBin4(istream, src->mPath, BO_LITTLE, 4, &fourCC) || !ReadBin4(istream, src->mPath, order, 4, &chunkSize)) return 0; if(fourCC == FOURCC_DATA) { block = src->mSize * src->mSkip; count = chunkSize / block; if(count < (src->mOffset + hrir.size())) { fmt::println(stderr, "\nError: Bad read from file '{}'.", src->mPath); return 0; } using off_type = std::istream::off_type; istream.seekg(off_type(src->mOffset) * off_type(block), std::ios::cur); if(!ReadWaveData(istream, src, order, hrir)) return 0; return 1; } if(fourCC == FOURCC_LIST) { if(!ReadBin4(istream, src->mPath, BO_LITTLE, 4, &fourCC)) return 0; chunkSize -= 4; if(fourCC == FOURCC_WAVL) break; } if(chunkSize > 0) istream.seekg(static_cast(chunkSize), std::ios::cur); } listSize = chunkSize; block = src->mSize * src->mSkip; skip = src->mOffset; offset = 0; lastSample = 0.0; while(offset < hrir.size() && listSize > 8) { if(!ReadBin4(istream, src->mPath, BO_LITTLE, 4, &fourCC) || !ReadBin4(istream, src->mPath, order, 4, &chunkSize)) return 0; listSize -= 8 + chunkSize; if(fourCC == FOURCC_DATA) { count = chunkSize / block; if(count > skip) { using off_type = std::istream::off_type; istream.seekg(off_type(skip) * off_type(block), std::ios::cur); chunkSize -= skip * block; count -= skip; skip = 0; if(count > (hrir.size() - offset)) count = static_cast(hrir.size() - offset); if(!ReadWaveData(istream, src, order, hrir.subspan(offset, count))) return 0; chunkSize -= count * block; offset += count; lastSample = hrir[offset - 1]; } else { skip -= count; count = 0; } } else if(fourCC == FOURCC_SLNT) { if(!ReadBin4(istream, src->mPath, order, 4, &count)) return 0; chunkSize -= 4; if(count > skip) { count -= skip; skip = 0; if(count > (hrir.size() - offset)) count = static_cast(hrir.size() - offset); for(i = 0; i < count; i ++) hrir[offset + i] = lastSample; offset += count; } else { skip -= count; count = 0; } } if(chunkSize > 0) istream.seekg(static_cast(chunkSize), std::ios::cur); } if(offset < hrir.size()) { fmt::println(stderr, "\nError: Bad read from file '{}'.", src->mPath); return 0; } return 1; } // Load a source HRIR from an ASCII text file containing a list of elements // separated by whitespace or common list operators (',', ';', ':', '|'). auto LoadAsciiSource(std::istream &istream, const SourceRefT *src, const al::span hrir) -> int { TokenReaderT tr{istream}; TrSetup({}, {}, &tr); for(uint i{0};i < src->mOffset;++i) { double dummy{}; if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast(src->mBits), &dummy)) return 0; } for(size_t i{0};i < hrir.size();++i) { if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast(src->mBits), &hrir[i])) return 0; for(uint j{0};j < src->mSkip;++j) { double dummy{}; if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, static_cast(src->mBits), &dummy)) return 0; } } return 1; } // Load a source HRIR from a binary file. auto LoadBinarySource(std::istream &istream, const SourceRefT *src, const ByteOrderT order, const al::span hrir) -> int { istream.seekg(static_cast(src->mOffset), std::ios::beg); for(size_t i{0};i < hrir.size();++i) { if(!ReadBinAsDouble(istream, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i])) return 0; if(src->mSkip > 0) istream.seekg(static_cast(src->mSkip), std::ios::cur); } return 1; } // Load a source HRIR from a RIFF/RIFX WAVE file. auto LoadWaveSource(std::istream &istream, SourceRefT *src, const uint hrirRate, const al::span hrir) -> int { uint32_t fourCC, dummy; ByteOrderT order; if(!ReadBin4(istream, src->mPath, BO_LITTLE, 4, &fourCC) || !ReadBin4(istream, src->mPath, BO_LITTLE, 4, &dummy)) return 0; if(fourCC == FOURCC_RIFF) order = BO_LITTLE; else if(fourCC == FOURCC_RIFX) order = BO_BIG; else { fmt::println(stderr, "\nError: No RIFF/RIFX chunk in file '{}'.", src->mPath); return 0; } if(!ReadBin4(istream, src->mPath, BO_LITTLE, 4, &fourCC)) return 0; if(fourCC != FOURCC_WAVE) { fmt::println(stderr, "\nError: Not a RIFF/RIFX WAVE file '{}'.", src->mPath); return 0; } if(!ReadWaveFormat(istream, order, hrirRate, src)) return 0; if(!ReadWaveList(istream, src, order, hrir)) return 0; return 1; } struct SofaEasyDeleter { void operator()(gsl::owner sofa) { if(sofa->neighborhood) mysofa_neighborhood_free(sofa->neighborhood); if(sofa->lookup) mysofa_lookup_free(sofa->lookup); if(sofa->hrtf) mysofa_free(sofa->hrtf); delete sofa; } }; using SofaEasyPtr = std::unique_ptr; struct SofaCacheEntry { std::string mName; uint mSampleRate{}; SofaEasyPtr mSofa; }; std::vector gSofaCache; // Load a Spatially Oriented Format for Accoustics (SOFA) file. auto LoadSofaFile(SourceRefT *src, const uint hrirRate, const uint n) -> MYSOFA_EASY* { const std::string_view srcname{src->mPath}; auto iter = std::find_if(gSofaCache.begin(), gSofaCache.end(), [srcname,hrirRate](SofaCacheEntry &entry) -> bool { return entry.mName == srcname && entry.mSampleRate == hrirRate; }); if(iter != gSofaCache.end()) return iter->mSofa.get(); SofaEasyPtr sofa{new(std::nothrow) MYSOFA_EASY{}}; if(!sofa) { fmt::println(stderr, "\nError: Out of memory."); return nullptr; } sofa->lookup = nullptr; sofa->neighborhood = nullptr; int err; sofa->hrtf = mysofa_load(src->mPath.c_str(), &err); if(!sofa->hrtf) { fmt::println(stderr, "\nError: Could not load source file '{}': {} ({}).", src->mPath, SofaErrorStr(err), err); return nullptr; } /* NOTE: Some valid SOFA files are failing this check. */ err = mysofa_check(sofa->hrtf); if(err != MYSOFA_OK) fmt::println(stderr, "\nWarning: Supposedly malformed source file '{}': {} ({}).", src->mPath, SofaErrorStr(err), err); if((src->mOffset + n) > sofa->hrtf->N) { fmt::println(stderr, "\nError: Not enough samples in SOFA file '{}'.", src->mPath); return nullptr; } if(src->mChannel >= sofa->hrtf->R) { fmt::println(stderr, "\nError: Missing source receiver in SOFA file '{}'.", src->mPath); return nullptr; } mysofa_tocartesian(sofa->hrtf); sofa->lookup = mysofa_lookup_init(sofa->hrtf); if(sofa->lookup == nullptr) { fmt::println(stderr, "\nError: Out of memory."); return nullptr; } gSofaCache.emplace_back(SofaCacheEntry{std::string{srcname}, hrirRate, std::move(sofa)}); return gSofaCache.back().mSofa.get(); } // Copies the HRIR data from a particular SOFA measurement. void ExtractSofaHrir(const MYSOFA_HRTF *hrtf, const size_t index, const size_t channel, const size_t offset, const al::span hrir) { const auto irValues = al::span{hrtf->DataIR.values, hrtf->DataIR.elements} .subspan((index*hrtf->R + channel)*hrtf->N + offset); std::copy_n(irValues.cbegin(), hrir.size(), hrir.begin()); } // Load a source HRIR from a Spatially Oriented Format for Accoustics (SOFA) // file. auto LoadSofaSource(SourceRefT *src, const uint hrirRate, const al::span hrir) -> int { MYSOFA_EASY *sofa{LoadSofaFile(src, hrirRate, static_cast(hrir.size()))}; if(sofa == nullptr) return 0; /* NOTE: At some point it may be beneficial or necessary to consider the various coordinate systems, listener/source orientations, and directional vectors defined in the SOFA file. */ std::array target{ static_cast(src->mAzimuth), static_cast(src->mElevation), static_cast(src->mRadius) }; mysofa_s2c(target.data()); int nearest{mysofa_lookup(sofa->lookup, target.data())}; if(nearest < 0) { fmt::println(stderr, "\nError: Lookup failed in source file '{}'.", src->mPath); return 0; } al::span coords = al::span{sofa->hrtf->SourcePosition.values, sofa->hrtf->M*3_uz} .subspan(static_cast(nearest)*3_uz).first<3>(); if(std::abs(coords[0] - target[0]) > 0.001 || std::abs(coords[1] - target[1]) > 0.001 || std::abs(coords[2] - target[2]) > 0.001) { fmt::println(stderr, "\nError: No impulse response at coordinates ({:.3f}r, {:.1f}ev, {:.1f}az) in file '{}'.", src->mRadius, src->mElevation, src->mAzimuth, src->mPath); target[0] = coords[0]; target[1] = coords[1]; target[2] = coords[2]; mysofa_c2s(target.data()); fmt::println(stderr, " Nearest candidate at ({:.3f}r, {:.1f}ev, {:.1f}az).", target[2], target[1], target[0]); return 0; } ExtractSofaHrir(sofa->hrtf, static_cast(nearest), src->mChannel, src->mOffset, hrir); return 1; } // Load a source HRIR from a supported file type. auto LoadSource(SourceRefT *src, const uint hrirRate, const al::span hrir) -> int { auto istream = fs::ifstream{}; if(src->mFormat != SF_SOFA) { if(src->mFormat == SF_ASCII) istream.open(fs::u8path(src->mPath)); else istream.open(fs::u8path(src->mPath), std::ios::binary); if(!istream.good()) { fmt::println(stderr, "\nError: Could not open source file '{}'.", src->mPath); return 0; } } switch(src->mFormat) { case SF_ASCII: return LoadAsciiSource(istream, src, hrir); case SF_BIN_LE: return LoadBinarySource(istream, src, BO_LITTLE, hrir); case SF_BIN_BE: return LoadBinarySource(istream, src, BO_BIG, hrir); case SF_WAVE: return LoadWaveSource(istream, src, hrirRate, hrir); case SF_SOFA: return LoadSofaSource(src, hrirRate, hrir); case SF_NONE: break; } return 0; } // Match the channel type from a given identifier. auto MatchChannelType(const std::string_view ident) -> ChannelTypeT { if(al::case_compare(ident, "mono"sv) == 0) return CT_MONO; if(al::case_compare(ident, "stereo"sv) == 0) return CT_STEREO; return CT_NONE; } // Process the data set definition to read and validate the data set metrics. auto ProcessMetrics(TokenReaderT *tr, const uint fftSize, const uint truncSize, const ChannelModeT chanMode, HrirDataT *hData) -> int { int hasRate = 0, hasType = 0, hasPoints = 0, hasRadius = 0; int hasDistance = 0, hasAzimuths = 0; uint line, col; double fpVal; uint points; int intVal; std::array distances{}; uint fdCount = 0; std::array evCounts{}; auto azCounts = std::vector>(MAX_FD_COUNT); for(auto &azs : azCounts) azs.fill(0u); TrIndication(tr, &line, &col); while(TrIsIdent(tr)) { TrIndication(tr, &line, &col); const auto ident = TrReadIdent(tr); if(ident.empty()) return 0; if(al::case_compare(ident, "rate"sv) == 0) { if(hasRate) { TrErrorAt(tr, line, col, "Redefinition of 'rate'."); return 0; } if(!TrReadOperator(tr, "=")) return 0; if(!TrReadInt(tr, MIN_RATE, MAX_RATE, &intVal)) return 0; hData->mIrRate = static_cast(intVal); hasRate = 1; } else if(al::case_compare(ident, "type"sv) == 0) { if(hasType) { TrErrorAt(tr, line, col, "Redefinition of 'type'."); return 0; } if(!TrReadOperator(tr, "=")) return 0; const auto type = TrReadIdent(tr); if(type.empty()) return 0; hData->mChannelType = MatchChannelType(type); if(hData->mChannelType == CT_NONE) { TrErrorAt(tr, line, col, "Expected a channel type."); return 0; } if(hData->mChannelType == CT_STEREO) { if(chanMode == CM_ForceMono) hData->mChannelType = CT_MONO; } hasType = 1; } else if(al::case_compare(ident, "points"sv) == 0) { if(hasPoints) { TrErrorAt(tr, line, col, "Redefinition of 'points'."); return 0; } if(!TrReadOperator(tr, "=")) return 0; TrIndication(tr, &line, &col); if(!TrReadInt(tr, MIN_POINTS, MAX_POINTS, &intVal)) return 0; points = static_cast(intVal); if(fftSize > 0 && points > fftSize) { TrErrorAt(tr, line, col, "Value exceeds the overridden FFT size."); return 0; } if(points < truncSize) { TrErrorAt(tr, line, col, "Value is below the truncation size."); return 0; } hData->mIrPoints = points; hData->mFftSize = fftSize; hData->mIrSize = std::max(points, 1u + (fftSize/2u)); hasPoints = 1; } else if(al::case_compare(ident, "radius"sv) == 0) { if(hasRadius) { TrErrorAt(tr, line, col, "Redefinition of 'radius'."); return 0; } if(!TrReadOperator(tr, "=")) return 0; if(!TrReadFloat(tr, MinRadius, MaxRadius, &fpVal)) return 0; hData->mRadius = fpVal; hasRadius = 1; } else if(al::case_compare(ident, "distance"sv) == 0) { auto count = uint{0}; if(hasDistance) { TrErrorAt(tr, line, col, "Redefinition of 'distance'."); return 0; } if(!TrReadOperator(tr, "=")) return 0; for(;;) { if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal)) return 0; if(count > 0 && fpVal <= distances[count - 1]) { TrError(tr, "Distances are not ascending."); return 0; } distances[count++] = fpVal; if(!TrIsOperator(tr, ",")) break; if(count >= MAX_FD_COUNT) { TrError(tr, "Exceeded the maximum of {} fields.", MAX_FD_COUNT); return 0; } TrReadOperator(tr, ","); } if(fdCount != 0 && count != fdCount) { TrError(tr, "Did not match the specified number of {} fields.", fdCount); return 0; } fdCount = count; hasDistance = 1; } else if(al::case_compare(ident, "azimuths"sv) == 0) { auto count = uint{0}; if(hasAzimuths) { TrErrorAt(tr, line, col, "Redefinition of 'azimuths'."); return 0; } if(!TrReadOperator(tr, "=")) return 0; evCounts[0] = 0; for(;;) { if(!TrReadInt(tr, MIN_AZ_COUNT, MAX_AZ_COUNT, &intVal)) return 0; azCounts[count][evCounts[count]++] = static_cast(intVal); if(TrIsOperator(tr, ",")) { if(evCounts[count] >= MAX_EV_COUNT) { TrError(tr, "Exceeded the maximum of {} elevations.", MAX_EV_COUNT); return 0; } TrReadOperator(tr, ","); } else { if(evCounts[count] < MIN_EV_COUNT) { TrErrorAt(tr, line, col, "Did not reach the minimum of {} azimuth counts.", MIN_EV_COUNT); return 0; } if(azCounts[count][0] != 1 || azCounts[count][evCounts[count] - 1] != 1) { TrError(tr, "Poles are not singular for field {}.", count - 1); return 0; } count++; if(!TrIsOperator(tr, ";")) break; if(count >= MAX_FD_COUNT) { TrError(tr, "Exceeded the maximum number of %d fields.", MAX_FD_COUNT); return 0; } evCounts[count] = 0; TrReadOperator(tr, ";"); } } if(fdCount != 0 && count != fdCount) { TrError(tr, "Did not match the specified number of %d fields.", fdCount); return 0; } fdCount = count; hasAzimuths = 1; } else { TrErrorAt(tr, line, col, "Expected a metric name."); return 0; } TrSkipWhitespace(tr); } if(!(hasRate && hasPoints && hasRadius && hasDistance && hasAzimuths)) { TrErrorAt(tr, line, col, "Expected a metric name."); return 0; } if(distances[0] < hData->mRadius) { TrError(tr, "Distance cannot start below head radius."); return 0; } if(hData->mChannelType == CT_NONE) hData->mChannelType = CT_MONO; const auto azs = al::span{azCounts}.first(); if(!PrepareHrirData(al::span{distances}.first(fdCount), evCounts, azs, hData)) { fmt::println(stderr, "Error: Out of memory."); exit(-1); } return 1; } // Parse an index triplet from the data set definition. auto ReadIndexTriplet(TokenReaderT *tr, const HrirDataT *hData, uint *fi, uint *ei, uint *ai)->int { int intVal; if(hData->mFds.size() > 1) { if(!TrReadInt(tr, 0, static_cast(hData->mFds.size()-1), &intVal)) return 0; *fi = static_cast(intVal); if(!TrReadOperator(tr, ",")) return 0; } else { *fi = 0; } if(!TrReadInt(tr, 0, static_cast(hData->mFds[*fi].mEvs.size()-1), &intVal)) return 0; *ei = static_cast(intVal); if(!TrReadOperator(tr, ",")) return 0; if(!TrReadInt(tr, 0, static_cast(hData->mFds[*fi].mEvs[*ei].mAzs.size()-1), &intVal)) return 0; *ai = static_cast(intVal); return 1; } // Match the source format from a given identifier. auto MatchSourceFormat(const std::string_view ident) -> SourceFormatT { if(al::case_compare(ident, "ascii"sv) == 0) return SF_ASCII; if(al::case_compare(ident, "bin_le"sv) == 0) return SF_BIN_LE; if(al::case_compare(ident, "bin_be"sv) == 0) return SF_BIN_BE; if(al::case_compare(ident, "wave"sv) == 0) return SF_WAVE; if(al::case_compare(ident, "sofa"sv) == 0) return SF_SOFA; return SF_NONE; } // Match the source element type from a given identifier. auto MatchElementType(const std::string_view ident) -> ElementTypeT { if(al::case_compare(ident, "int"sv) == 0) return ET_INT; if(al::case_compare(ident, "fp"sv) == 0) return ET_FP; return ET_NONE; } // Parse and validate a source reference from the data set definition. auto ReadSourceRef(TokenReaderT *tr, SourceRefT *src) -> int { uint line, col; double fpVal; int intVal; TrIndication(tr, &line, &col); auto ident = TrReadIdent(tr); if(ident.empty()) return 0; src->mFormat = MatchSourceFormat(ident); if(src->mFormat == SF_NONE) { TrErrorAt(tr, line, col, "Expected a source format."); return 0; } if(!TrReadOperator(tr, "(")) return 0; if(src->mFormat == SF_SOFA) { if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal)) return 0; src->mRadius = fpVal; if(!TrReadOperator(tr, ",")) return 0; if(!TrReadFloat(tr, -90.0, 90.0, &fpVal)) return 0; src->mElevation = fpVal; if(!TrReadOperator(tr, ",")) return 0; if(!TrReadFloat(tr, -360.0, 360.0, &fpVal)) return 0; src->mAzimuth = fpVal; if(!TrReadOperator(tr, ":")) return 0; if(!TrReadInt(tr, 0, MaxWaveChannels, &intVal)) return 0; src->mType = ET_NONE; src->mSize = 0; src->mBits = 0; src->mChannel = static_cast(intVal); src->mSkip = 0; } else if(src->mFormat == SF_WAVE) { if(!TrReadInt(tr, 0, MaxWaveChannels, &intVal)) return 0; src->mType = ET_NONE; src->mSize = 0; src->mBits = 0; src->mChannel = static_cast(intVal); src->mSkip = 0; } else { TrIndication(tr, &line, &col); ident = TrReadIdent(tr); if(ident.empty()) return 0; src->mType = MatchElementType(ident); if(src->mType == ET_NONE) { TrErrorAt(tr, line, col, "Expected a source element type."); return 0; } if(src->mFormat == SF_BIN_LE || src->mFormat == SF_BIN_BE) { if(!TrReadOperator(tr, ",")) return 0; if(src->mType == ET_INT) { if(!TrReadInt(tr, MinBinSize, MaxBinSize, &intVal)) return 0; src->mSize = static_cast(intVal); if(!TrIsOperator(tr, ",")) src->mBits = static_cast(8*src->mSize); else { TrReadOperator(tr, ","); TrIndication(tr, &line, &col); if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal)) return 0; if(std::abs(intVal) < int{MinBinSize}*8 || static_cast(std::abs(intVal)) > (8*src->mSize)) { TrErrorAt(tr, line, col, "Expected a value of (+/-) {} to {}.", MinBinSize*8, 8*src->mSize); return 0; } src->mBits = intVal; } } else { TrIndication(tr, &line, &col); if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal)) return 0; if(intVal != 4 && intVal != 8) { TrErrorAt(tr, line, col, "Expected a value of 4 or 8."); return 0; } src->mSize = static_cast(intVal); src->mBits = 0; } } else if(src->mFormat == SF_ASCII && src->mType == ET_INT) { if(!TrReadOperator(tr, ",")) return 0; if(!TrReadInt(tr, MinASCIIBits, MaxASCIIBits, &intVal)) return 0; src->mSize = 0; src->mBits = intVal; } else { src->mSize = 0; src->mBits = 0; } if(!TrIsOperator(tr, ";")) src->mSkip = 0; else { TrReadOperator(tr, ";"); if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal)) return 0; src->mSkip = static_cast(intVal); } } if(!TrReadOperator(tr, ")")) return 0; if(TrIsOperator(tr, "@")) { TrReadOperator(tr, "@"); if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal)) return 0; src->mOffset = static_cast(intVal); } else src->mOffset = 0; if(!TrReadOperator(tr, ":")) return 0; auto srcpath = TrReadString(tr); if(!srcpath) return 0; src->mPath = std::move(*srcpath); return 1; } // Parse and validate a SOFA source reference from the data set definition. auto ReadSofaRef(TokenReaderT *tr, SourceRefT *src) -> int { uint line, col; int intVal; TrIndication(tr, &line, &col); const auto ident = TrReadIdent(tr); if(ident.empty()) return 0; src->mFormat = MatchSourceFormat(ident); if(src->mFormat != SF_SOFA) { TrErrorAt(tr, line, col, "Expected the SOFA source format."); return 0; } src->mType = ET_NONE; src->mSize = 0; src->mBits = 0; src->mChannel = 0; src->mSkip = 0; if(TrIsOperator(tr, "@")) { TrReadOperator(tr, "@"); if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal)) return 0; src->mOffset = static_cast(intVal); } else src->mOffset = 0; if(!TrReadOperator(tr, ":")) return 0; auto srcpath = TrReadString(tr); if(!srcpath) return 0; src->mPath = std::move(*srcpath); return 1; } // Match the target ear (index) from a given identifier. auto MatchTargetEar(const std::string_view ident) -> std::optional { if(al::case_compare(ident, "left"sv) == 0) return 0u; if(al::case_compare(ident, "right"sv) == 0) return 1u; return std::nullopt; } // Calculate the onset time of an HRIR and average it with any existing // timing for its field, elevation, azimuth, and ear. constexpr int OnsetRateMultiple{10}; auto AverageHrirOnset(PPhaseResampler &rs, al::span upsampled, const uint rate, const al::span hrir, const double f, const double onset) -> double { rs.process(hrir, upsampled); auto abs_lt = [](const double lhs, const double rhs) -> bool { return std::abs(lhs) < std::abs(rhs); }; auto iter = std::max_element(upsampled.cbegin(), upsampled.cend(), abs_lt); return Lerp(onset, static_cast(std::distance(upsampled.cbegin(), iter))/(10*rate), f); } // Calculate the magnitude response of an HRIR and average it with any // existing responses for its field, elevation, azimuth, and ear. void AverageHrirMagnitude(const uint fftSize, const al::span hrir, const double f, const al::span mag) { const uint m{1 + (fftSize/2)}; std::vector h(fftSize); std::vector r(m); auto hiter = std::copy(hrir.cbegin(), hrir.cend(), h.begin()); std::fill(hiter, h.end(), 0.0); forward_fft(h); MagnitudeResponse(h, r); for(uint i{0};i < m;++i) mag[i] = Lerp(mag[i], r[i], f); } // Process the list of sources in the data set definition. auto ProcessSources(TokenReaderT *tr, HrirDataT *hData, const uint outRate) -> int { const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u}; hData->mHrirsBase.resize(size_t{channels} * hData->mIrCount * hData->mIrSize); const auto hrirs = al::span{hData->mHrirsBase}; auto hrir = std::vector(hData->mIrSize); uint line, col, fi, ei, ai; std::vector onsetSamples(size_t{OnsetRateMultiple} * hData->mIrPoints); PPhaseResampler onsetResampler; onsetResampler.init(hData->mIrRate, OnsetRateMultiple*hData->mIrRate); std::optional resampler; if(outRate && outRate != hData->mIrRate) resampler.emplace().init(hData->mIrRate, outRate); const double rateScale{outRate ? static_cast(outRate) / hData->mIrRate : 1.0}; const uint irPoints{outRate ? std::min(static_cast(std::ceil(hData->mIrPoints*rateScale)), hData->mIrPoints) : hData->mIrPoints}; fmt::print("Loading sources..."); fflush(stdout); int count{0}; while(TrIsOperator(tr, "[")) { std::array factor{1.0, 1.0}; TrIndication(tr, &line, &col); TrReadOperator(tr, "["); if(TrIsOperator(tr, "*")) { TrReadOperator(tr, "*"); if(!TrReadOperator(tr, "]") || !TrReadOperator(tr, "=")) return 0; TrIndication(tr, &line, &col); SourceRefT src{}; if(!ReadSofaRef(tr, &src)) return 0; if(hData->mChannelType == CT_STEREO) { const auto type = TrReadIdent(tr); if(type.empty()) return 0; switch(MatchChannelType(type)) { case CT_NONE: TrErrorAt(tr, line, col, "Expected a channel type."); return 0; case CT_MONO: src.mChannel = 0; break; case CT_STEREO: src.mChannel = 1; break; } } else { const auto type = TrReadIdent(tr); if(type.empty()) return 0; if(MatchChannelType(type) != CT_MONO) { TrErrorAt(tr, line, col, "Expected a mono channel type."); return 0; } src.mChannel = 0; } MYSOFA_EASY *sofa{LoadSofaFile(&src, hData->mIrRate, hData->mIrPoints)}; if(!sofa) return 0; const auto srcPosValues = al::span{sofa->hrtf->SourcePosition.values, sofa->hrtf->M*3_uz}; for(uint si{0};si < sofa->hrtf->M;++si) { fmt::print("\rLoading sources... {} of {}", si+1, sofa->hrtf->M); fflush(stdout); std::array aer{srcPosValues[3_uz*si], srcPosValues[3_uz*si + 1], srcPosValues[3_uz*si + 2]}; mysofa_c2s(aer.data()); if(std::fabs(aer[1]) >= 89.999f) aer[0] = 0.0f; else aer[0] = std::fmod(360.0f - aer[0], 360.0f); auto field = std::find_if(hData->mFds.cbegin(), hData->mFds.cend(), [&aer](const HrirFdT &fld) -> bool { return (std::abs(aer[2] - fld.mDistance) < 0.001); }); if(field == hData->mFds.cend()) continue; fi = static_cast(std::distance(hData->mFds.cbegin(), field)); const double evscale{180.0 / static_cast(field->mEvs.size()-1)}; double ef{(90.0 + aer[1]) / evscale}; ei = static_cast(std::round(ef)); ef = (ef - ei) * evscale; if(std::abs(ef) >= 0.1) continue; const double azscale{360.0 / static_cast(field->mEvs[ei].mAzs.size())}; double af{aer[0] / azscale}; ai = static_cast(std::round(af)); af = (af - ai) * azscale; ai %= static_cast(field->mEvs[ei].mAzs.size()); if(std::abs(af) >= 0.1) continue; HrirAzT *azd = &field->mEvs[ei].mAzs[ai]; if(!azd->mIrs[0].empty()) { TrErrorAt(tr, line, col, "Redefinition of source [ {}, {}, {} ].", fi, ei, ai); return 0; } const auto hrirPoints = al::span{hrir}.first(hData->mIrPoints); ExtractSofaHrir(sofa->hrtf, si, 0, src.mOffset, hrirPoints); azd->mIrs[0] = hrirs.subspan(size_t{hData->mIrSize}*azd->mIndex, hData->mIrSize); azd->mDelays[0] = AverageHrirOnset(onsetResampler, onsetSamples, hData->mIrRate, hrirPoints, 1.0, azd->mDelays[0]); if(resampler) resampler->process(hrirPoints, hrir); AverageHrirMagnitude(hData->mFftSize, al::span{hrir}.first(irPoints), 1.0, azd->mIrs[0]); if(src.mChannel == 1) { ExtractSofaHrir(sofa->hrtf, si, 1, src.mOffset, hrirPoints); azd->mIrs[1] = hrirs.subspan( (size_t{hData->mIrCount}+azd->mIndex) * hData->mIrSize, hData->mIrSize); azd->mDelays[1] = AverageHrirOnset(onsetResampler, onsetSamples, hData->mIrRate, hrirPoints, 1.0, azd->mDelays[1]); if(resampler) resampler->process(hrirPoints, hrir); AverageHrirMagnitude(hData->mFftSize, al::span{hrir}.first(irPoints), 1.0, azd->mIrs[1]); } // TODO: Since some SOFA files contain minimum phase HRIRs, // it would be beneficial to check for per-measurement delays // (when available) to reconstruct the HRTDs. } continue; } if(!ReadIndexTriplet(tr, hData, &fi, &ei, &ai)) return 0; if(!TrReadOperator(tr, "]")) return 0; HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; if(!azd->mIrs[0].empty()) { TrErrorAt(tr, line, col, "Redefinition of source."); return 0; } if(!TrReadOperator(tr, "=")) return 0; while(true) { SourceRefT src{}; if(!ReadSourceRef(tr, &src)) return 0; // TODO: Would be nice to display 'x of y files', but that would // require preparing the source refs first to get a total count // before loading them. ++count; fmt::print("\rLoading sources... {} file{}", count, (count==1)?"":"s"); fflush(stdout); if(!LoadSource(&src, hData->mIrRate, al::span{hrir}.first(hData->mIrPoints))) return 0; auto ti = uint{0}; if(hData->mChannelType == CT_STEREO) { const auto ident = TrReadIdent(tr); if(ident.empty()) return 0; if(auto earopt = MatchTargetEar(ident)) ti = *earopt; else { TrErrorAt(tr, line, col, "Expected a target ear."); return 0; } } const auto hrirPoints = al::span{hrir}.first(hData->mIrPoints); azd->mIrs[ti] = hrirs.subspan((ti*size_t{hData->mIrCount}+azd->mIndex)*hData->mIrSize, hData->mIrSize); azd->mDelays[ti] = AverageHrirOnset(onsetResampler, onsetSamples, hData->mIrRate, hrirPoints, 1.0/factor[ti], azd->mDelays[ti]); if(resampler) resampler->process(hrirPoints, hrir); AverageHrirMagnitude(hData->mFftSize, al::span{hrir}.first(irPoints), 1.0/factor[ti], azd->mIrs[ti]); factor[ti] += 1.0; if(!TrIsOperator(tr, "+")) break; TrReadOperator(tr, "+"); } if(hData->mChannelType == CT_STEREO) { if(azd->mIrs[0].empty()) { TrErrorAt(tr, line, col, "Missing left ear source reference(s)."); return 0; } if(azd->mIrs[1].empty()) { TrErrorAt(tr, line, col, "Missing right ear source reference(s)."); return 0; } } } fmt::println(""); hrir.clear(); if(resampler) { hData->mIrRate = outRate; hData->mIrPoints = irPoints; resampler.reset(); } for(fi = 0;fi < hData->mFds.size();fi++) { for(ei = 0;ei < hData->mFds[fi].mEvs.size();ei++) { for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++) { HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; if(!azd->mIrs[0].empty()) break; } if(ai < hData->mFds[fi].mEvs[ei].mAzs.size()) break; } if(ei >= hData->mFds[fi].mEvs.size()) { TrError(tr, "Missing source references [ {}, *, * ].", fi); return 0; } hData->mFds[fi].mEvStart = ei; for(;ei < hData->mFds[fi].mEvs.size();ei++) { for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++) { HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; if(azd->mIrs[0].empty()) { TrError(tr, "Missing source reference [ {}, {}, {} ].", fi, ei, ai); return 0; } } } } for(uint ti{0};ti < channels;ti++) { for(fi = 0;fi < hData->mFds.size();fi++) { for(ei = 0;ei < hData->mFds[fi].mEvs.size();ei++) { for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++) { HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai]; azd->mIrs[ti] = hrirs.subspan( (ti*size_t{hData->mIrCount} + azd->mIndex) * hData->mIrSize, hData->mIrSize); } } } } if(!TrLoad(tr)) { gSofaCache.clear(); return 1; } TrError(tr, "Errant data at end of source list."); gSofaCache.clear(); return 0; } } /* namespace */ bool LoadDefInput(std::istream &istream, const al::span startbytes, const std::string_view filename, const uint fftSize, const uint truncSize, const uint outRate, const ChannelModeT chanMode, HrirDataT *hData) { TokenReaderT tr{istream}; TrSetup(startbytes, filename, &tr); if(!ProcessMetrics(&tr, fftSize, truncSize, chanMode, hData) || !ProcessSources(&tr, hData, outRate)) return false; return true; }