//----------------------------------------------------------------------------- // Copyright (c) 2012 GarageGames, LLC // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. //----------------------------------------------------------------------------- #ifndef _MMATRIX_H_ #define _MMATRIX_H_ #include #ifndef _MPLANE_H_ #include "math/mPlane.h" #endif #ifndef _MBOX_H_ #include "math/mBox.h" #endif #ifndef _MPOINT4_H_ #include "math/mPoint4.h" #endif #ifndef _ENGINETYPEINFO_H_ #include "console/engineTypeInfo.h" #endif #ifndef _FRAMEALLOCATOR_H_ #include "core/frameAllocator.h" #endif #ifndef _STRINGFUNCTIONS_H_ #include "core/strings/stringFunctions.h" #endif #ifndef _CONSOLE_H_ #include "console/console.h" #endif #ifndef USE_TEMPLATE_MATRIX /// 4x4 Matrix Class /// /// This runs at F32 precision. class MatrixF { friend class MatrixFEngineExport; private: F32 m[16]; ///< Note: Torque uses row-major matrices public: /// Create an uninitialized matrix. /// /// @param identity If true, initialize to the identity matrix. explicit MatrixF(bool identity=false); /// Create a matrix to rotate about origin by e. /// @see set explicit MatrixF( const EulerF &e); /// Create a matrix to rotate about p by e. /// @see set MatrixF( const EulerF &e, const Point3F& p); /// Get the index in m to element in column i, row j /// /// This is necessary as we have m as a one dimensional array. /// /// @param i Column desired. /// @param j Row desired. static U32 idx(U32 i, U32 j) { return (i + j*4); } /// Initialize matrix to rotate about origin by e. MatrixF& set( const EulerF &e); /// Initialize matrix to rotate about p by e. MatrixF& set( const EulerF &e, const Point3F& p); /// Initialize matrix with a cross product of p. MatrixF& setCrossProduct( const Point3F &p); /// Initialize matrix with a tensor product of p. MatrixF& setTensorProduct( const Point3F &p, const Point3F& q); operator F32*() { return (m); } ///< Allow people to get at m. operator const F32*() const { return (F32*)(m); } ///< Allow people to get at m. bool isAffine() const; ///< Check to see if this is an affine matrix. bool isIdentity() const; ///< Checks for identity matrix. /// Make this an identity matrix. MatrixF& identity(); /// Invert m. MatrixF& inverse(); /// Copy the inversion of this into out matrix. void invertTo( MatrixF *out ); /// Take inverse of matrix assuming it is affine (rotation, /// scale, sheer, translation only). MatrixF& affineInverse(); /// Swap rows and columns. MatrixF& transpose(); /// M * Matrix(p) -> M MatrixF& scale( const Point3F &s ); MatrixF& scale( F32 s ) { return scale( Point3F( s, s, s ) ); } /// Return scale assuming scale was applied via mat.scale(s). Point3F getScale() const; EulerF toEuler() const; F32 determinant() const { return m_matF_determinant(*this); } /// Compute the inverse of the matrix. /// /// Computes inverse of full 4x4 matrix. Returns false and performs no inverse if /// the determinant is 0. /// /// Note: In most cases you want to use the normal inverse function. This method should /// be used if the matrix has something other than (0,0,0,1) in the bottom row. bool fullInverse(); /// Reverse depth for projection matrix /// Simplifies reversal matrix mult to 4 subtractions void reverseProjection(); /// Swaps rows and columns into matrix. void transposeTo(F32 *matrix) const; /// Normalize the matrix. void normalize(); /// Copy the requested column into a Point4F. void getColumn(S32 col, Point4F *cptr) const; Point4F getColumn4F(S32 col) const { Point4F ret; getColumn(col,&ret); return ret; } /// Copy the requested column into a Point3F. /// /// This drops the bottom-most row. void getColumn(S32 col, Point3F *cptr) const; Point3F getColumn3F(S32 col) const { Point3F ret; getColumn(col,&ret); return ret; } /// Set the specified column from a Point4F. void setColumn(S32 col, const Point4F& cptr); /// Set the specified column from a Point3F. /// /// The bottom-most row is not set. void setColumn(S32 col, const Point3F& cptr); /// Copy the specified row into a Point4F. void getRow(S32 row, Point4F *cptr) const; Point4F getRow4F(S32 row) const { Point4F ret; getRow(row,&ret); return ret; } /// Copy the specified row into a Point3F. /// /// Right-most item is dropped. void getRow(S32 row, Point3F *cptr) const; Point3F getRow3F(S32 row) const { Point3F ret; getRow(row,&ret); return ret; } /// Set the specified row from a Point4F. void setRow(S32 row, const Point4F& cptr); /// Set the specified row from a Point3F. /// /// The right-most item is not set. void setRow(S32 row, const Point3F& cptr); /// Get the position of the matrix. /// /// This is the 4th column of the matrix. Point3F getPosition() const; /// Set the position of the matrix. /// /// This is the 4th column of the matrix. void setPosition( const Point3F &pos ) { setColumn( 3, pos ); } /// Add the passed delta to the matrix position. void displace( const Point3F &delta ); /// Get the x axis of the matrix. /// /// This is the 1st column of the matrix and is /// normally considered the right vector. VectorF getRightVector() const; /// Get the y axis of the matrix. /// /// This is the 2nd column of the matrix and is /// normally considered the forward vector. VectorF getForwardVector() const; /// Get the z axis of the matrix. /// /// This is the 3rd column of the matrix and is /// normally considered the up vector. VectorF getUpVector() const; MatrixF& mul(const MatrixF &a); ///< M * a -> M MatrixF& mulL(const MatrixF &a); ///< a * M -> M MatrixF& mul(const MatrixF &a, const MatrixF &b); ///< a * b -> M // Scalar multiplies MatrixF& mul(const F32 a); ///< M * a -> M MatrixF& mul(const MatrixF &a, const F32 b); ///< a * b -> M void mul( Point4F& p ) const; ///< M * p -> p (full [4x4] * [1x4]) void mulP( Point3F& p ) const; ///< M * p -> p (assume w = 1.0f) void mulP( const Point3F &p, Point3F *d) const; ///< M * p -> d (assume w = 1.0f) void mulV( VectorF& p ) const; ///< M * v -> v (assume w = 0.0f) void mulV( const VectorF &p, Point3F *d) const; ///< M * v -> d (assume w = 0.0f) void mul(Box3F& b) const; ///< Axial box -> Axial Box MatrixF& add( const MatrixF& m ); /// /// Turns this matrix into a view matrix that looks at target. /// /// The eye position. /// The target position/direction. /// The up direction. void LookAt(const VectorF& eye, const VectorF& target, const VectorF& up); /// Convenience function to allow people to treat this like an array. F32& operator ()(S32 row, S32 col) { return m[idx(col,row)]; } F32 operator ()(S32 row, S32 col) const { return m[idx(col,row)]; } void dumpMatrix(const char *caption=NULL) const; // Math operator overloads //------------------------------------ friend MatrixF operator * ( const MatrixF &m1, const MatrixF &m2 ); MatrixF& operator *= ( const MatrixF &m ); MatrixF &operator = (const MatrixF &m); bool isNaN(); // Static identity matrix const static MatrixF Identity; }; class MatrixFEngineExport { public: static EngineFieldTable::Field getMatrixField(); }; //-------------------------------------- // Inline Functions inline MatrixF::MatrixF(bool _identity) { if (_identity) identity(); else std::fill_n(m, 16, 0); } inline MatrixF::MatrixF( const EulerF &e ) { set(e); } inline MatrixF::MatrixF( const EulerF &e, const Point3F& p ) { set(e,p); } inline MatrixF& MatrixF::set( const EulerF &e) { m_matF_set_euler( e, *this ); return (*this); } inline MatrixF& MatrixF::set( const EulerF &e, const Point3F& p) { m_matF_set_euler_point( e, p, *this ); return (*this); } inline MatrixF& MatrixF::setCrossProduct( const Point3F &p) { m[1] = -(m[4] = p.z); m[8] = -(m[2] = p.y); m[6] = -(m[9] = p.x); m[0] = m[3] = m[5] = m[7] = m[10] = m[11] = m[12] = m[13] = m[14] = 0.0f; m[15] = 1; return (*this); } inline MatrixF& MatrixF::setTensorProduct( const Point3F &p, const Point3F &q) { m[0] = p.x * q.x; m[1] = p.x * q.y; m[2] = p.x * q.z; m[4] = p.y * q.x; m[5] = p.y * q.y; m[6] = p.y * q.z; m[8] = p.z * q.x; m[9] = p.z * q.y; m[10] = p.z * q.z; m[3] = m[7] = m[11] = m[12] = m[13] = m[14] = 0.0f; m[15] = 1.0f; return (*this); } inline bool MatrixF::isIdentity() const { return m[0] == 1.0f && m[1] == 0.0f && m[2] == 0.0f && m[3] == 0.0f && m[4] == 0.0f && m[5] == 1.0f && m[6] == 0.0f && m[7] == 0.0f && m[8] == 0.0f && m[9] == 0.0f && m[10] == 1.0f && m[11] == 0.0f && m[12] == 0.0f && m[13] == 0.0f && m[14] == 0.0f && m[15] == 1.0f; } inline MatrixF& MatrixF::identity() { m[0] = 1.0f; m[1] = 0.0f; m[2] = 0.0f; m[3] = 0.0f; m[4] = 0.0f; m[5] = 1.0f; m[6] = 0.0f; m[7] = 0.0f; m[8] = 0.0f; m[9] = 0.0f; m[10] = 1.0f; m[11] = 0.0f; m[12] = 0.0f; m[13] = 0.0f; m[14] = 0.0f; m[15] = 1.0f; return (*this); } inline MatrixF& MatrixF::inverse() { m_matF_inverse(m); return (*this); } inline void MatrixF::invertTo( MatrixF *out ) { m_matF_invert_to(m,*out); } inline MatrixF& MatrixF::affineInverse() { // AssertFatal(isAffine() == true, "Error, this matrix is not an affine transform"); m_matF_affineInverse(m); return (*this); } inline MatrixF& MatrixF::transpose() { m_matF_transpose(m); return (*this); } inline MatrixF& MatrixF::scale(const Point3F& p) { m_matF_scale(m,p); return *this; } inline Point3F MatrixF::getScale() const { Point3F scale; scale.x = mSqrt(m[0]*m[0] + m[4] * m[4] + m[8] * m[8]); scale.y = mSqrt(m[1]*m[1] + m[5] * m[5] + m[9] * m[9]); scale.z = mSqrt(m[2]*m[2] + m[6] * m[6] + m[10] * m[10]); return scale; } inline void MatrixF::normalize() { m_matF_normalize(m); } inline MatrixF& MatrixF::mul( const MatrixF &a ) { // M * a -> M AssertFatal(&a != this, "MatrixF::mul - a.mul(a) is invalid!"); MatrixF tempThis(*this); m_matF_x_matF(tempThis, a, *this); return (*this); } inline MatrixF& MatrixF::mulL( const MatrixF &a ) { // a * M -> M AssertFatal(&a != this, "MatrixF::mulL - a.mul(a) is invalid!"); MatrixF tempThis(*this); m_matF_x_matF(a, tempThis, *this); return (*this); } inline MatrixF& MatrixF::mul( const MatrixF &a, const MatrixF &b ) { // a * b -> M AssertFatal((&a != this) && (&b != this), "MatrixF::mul - a.mul(a, b) a.mul(b, a) a.mul(a, a) is invalid!"); m_matF_x_matF(a, b, *this); return (*this); } inline MatrixF& MatrixF::mul(const F32 a) { for (U32 i = 0; i < 16; i++) m[i] *= a; return *this; } inline MatrixF& MatrixF::mul(const MatrixF &a, const F32 b) { *this = a; mul(b); return *this; } inline void MatrixF::mul( Point4F& p ) const { Point4F temp; m_matF_x_point4F(*this, &p.x, &temp.x); p = temp; } inline void MatrixF::mulP( Point3F& p) const { // M * p -> d Point3F d; m_matF_x_point3F(*this, &p.x, &d.x); p = d; } inline void MatrixF::mulP( const Point3F &p, Point3F *d) const { // M * p -> d m_matF_x_point3F(*this, &p.x, &d->x); } inline void MatrixF::mulV( VectorF& v) const { // M * v -> v VectorF temp; m_matF_x_vectorF(*this, &v.x, &temp.x); v = temp; } inline void MatrixF::mulV( const VectorF &v, Point3F *d) const { // M * v -> d m_matF_x_vectorF(*this, &v.x, &d->x); } inline void MatrixF::mul(Box3F& b) const { m_matF_x_box3F(*this, &b.minExtents.x, &b.maxExtents.x); } inline MatrixF& MatrixF::add( const MatrixF& a ) { for( U32 i = 0; i < 16; ++ i ) m[ i ] += a.m[ i ]; return *this; } inline void MatrixF::LookAt(const VectorF& eye, const VectorF& target, const VectorF& up) { // Calculate the forward vector (camera direction). VectorF zAxis = target; // Camera looks towards the target zAxis.normalize(); // Calculate the right vector. VectorF xAxis = mCross(up, zAxis); xAxis.normalize(); // Recalculate the up vector. VectorF yAxis = mCross(zAxis, xAxis); // Set the rotation part of the matrix (camera axes). setColumn(0, xAxis); // Right setColumn(1, zAxis); // Forward setColumn(2, yAxis); // Up // Set the translation part (camera position). setPosition(eye); } inline void MatrixF::getColumn(S32 col, Point4F *cptr) const { cptr->x = m[col]; cptr->y = m[col+4]; cptr->z = m[col+8]; cptr->w = m[col+12]; } inline void MatrixF::getColumn(S32 col, Point3F *cptr) const { cptr->x = m[col]; cptr->y = m[col+4]; cptr->z = m[col+8]; } inline void MatrixF::setColumn(S32 col, const Point4F &cptr) { m[col] = cptr.x; m[col+4] = cptr.y; m[col+8] = cptr.z; m[col+12]= cptr.w; } inline void MatrixF::setColumn(S32 col, const Point3F &cptr) { m[col] = cptr.x; m[col+4] = cptr.y; m[col+8] = cptr.z; } inline void MatrixF::getRow(S32 col, Point4F *cptr) const { col *= 4; cptr->x = m[col++]; cptr->y = m[col++]; cptr->z = m[col++]; cptr->w = m[col]; } inline void MatrixF::getRow(S32 col, Point3F *cptr) const { col *= 4; cptr->x = m[col++]; cptr->y = m[col++]; cptr->z = m[col]; } inline void MatrixF::setRow(S32 col, const Point4F &cptr) { col *= 4; m[col++] = cptr.x; m[col++] = cptr.y; m[col++] = cptr.z; m[col] = cptr.w; } inline void MatrixF::setRow(S32 col, const Point3F &cptr) { col *= 4; m[col++] = cptr.x; m[col++] = cptr.y; m[col] = cptr.z; } inline Point3F MatrixF::getPosition() const { return Point3F( m[3], m[3+4], m[3+8] ); } inline void MatrixF::displace( const Point3F &delta ) { m[3] += delta.x; m[3+4] += delta.y; m[3+8] += delta.z; } inline VectorF MatrixF::getForwardVector() const { VectorF vec; getColumn( 1, &vec ); return vec; } inline VectorF MatrixF::getRightVector() const { VectorF vec; getColumn( 0, &vec ); return vec; } inline VectorF MatrixF::getUpVector() const { VectorF vec; getColumn( 2, &vec ); return vec; } //------------------------------------ // Math operator overloads //------------------------------------ inline MatrixF operator * ( const MatrixF &m1, const MatrixF &m2 ) { // temp = m1 * m2 MatrixF temp; m_matF_x_matF(m1, m2, temp); return temp; } inline MatrixF& MatrixF::operator *= ( const MatrixF &m1 ) { MatrixF tempThis(*this); m_matF_x_matF(tempThis, m1, *this); return (*this); } inline MatrixF &MatrixF::operator = (const MatrixF &m1) { for (U32 i=0;i<16;i++) this->m[i] = m1.m[i]; return (*this); } inline bool MatrixF::isNaN() { bool isaNaN = false; for (U32 i = 0; i < 16; i++) if (mIsNaN_F(m[i])) isaNaN = true; return isaNaN; } //------------------------------------ // Non-member methods //------------------------------------ inline void mTransformPlane(const MatrixF& mat, const Point3F& scale, const PlaneF& plane, PlaneF * result) { m_matF_x_scale_x_planeF(mat, &scale.x, &plane.x, &result->x); } #else // !USE_TEMPLATE_MATRIX //------------------------------------ // Templatized matrix class to replace MATRIXF above //------------------------------------ template class Matrix { friend class MatrixTemplateExport; private: DATA_TYPE data[rows * cols]; public: static_assert(rows >= 2 && cols >= 2, "Matrix must have at least 2 rows and 2 cols."); // ------ Setters and initializers ------ explicit Matrix(bool identity = false) { std::fill(data, data + (rows * cols), DATA_TYPE(0)); if (identity) { for (U32 i = 0; i < rows; i++) { for (U32 j = 0; j < cols; j++) { // others already get filled with 0 if (j == i) (*this)(i, j) = static_cast(1); } } } } explicit Matrix(const EulerF& e) { set(e); } ~Matrix() = default; /// Make this an identity matrix. Matrix& identity(); void reverseProjection(); void normalize(); Matrix& set(const EulerF& e); Matrix(const EulerF& e, const Point3F p); Matrix& set(const EulerF& e, const Point3F p); Matrix& inverse(); Matrix& transpose(); void invert(); Matrix& setCrossProduct(const Point3F& p); Matrix& setTensorProduct(const Point3F& p, const Point3F& q); /// M * Matrix(p) -> M Matrix& scale(const Point3F& s); Matrix& scale(DATA_TYPE s) { return scale(Point3F(s, s, s)); } void setColumn(S32 col, const Point4F& cptr); void setColumn(S32 col, const Point3F& cptr); void setRow(S32 row, const Point4F& cptr); void setRow(S32 row, const Point3F& cptr); void displace(const Point3F& delta); bool fullInverse(); void setPosition(const Point3F& pos) { setColumn(3, pos); } DATA_TYPE determinant() const { AssertFatal(rows == cols, "Determinant is only defined for square matrices."); // For simplicity, only implement for 3x3 matrices AssertFatal(rows >= 3 && cols >= 3, "Determinant only for 3x3 or more"); // Ensure the matrix is 3x3 return (*this)(0, 0) * ((*this)(1, 1) * (*this)(2, 2) - (*this)(1, 2) * (*this)(2, 1)) + (*this)(1, 0) * ((*this)(0, 2) * (*this)(2, 1) - (*this)(0, 1) * (*this)(2, 2)) + (*this)(2, 0) * ((*this)(0, 1) * (*this)(1, 2) - (*this)(0, 2) * (*this)(1, 1)); } ///< M * a -> M Matrix& mul(const Matrix& a) { return *this = *this * a; } ///< a * M -> M Matrix& mulL(const Matrix& a) { return *this = a * *this; } ///< a * b -> M Matrix& mul(const Matrix& a, const Matrix& b) { return *this = a * b; } ///< M * a -> M Matrix& mul(const F32 a) { return *this = *this * a; } ///< a * b -> M Matrix& mul(const Matrix& a, const F32 b) { return *this = a * b; } Matrix& add(const Matrix& a) { return *this = *this += a; } ///< M * p -> p (full [4x4] * [1x4]) void mul(Point4F& p) const { p = *this * p; } ///< M * p -> p (assume w = 1.0f) void mulP(Point3F& p) const { Point3F result; result.x = (*this)(0, 0) * p.x + (*this)(0, 1) * p.y + (*this)(0, 2) * p.z + (*this)(0, 3); result.y = (*this)(1, 0) * p.x + (*this)(1, 1) * p.y + (*this)(1, 2) * p.z + (*this)(1, 3); result.z = (*this)(2, 0) * p.x + (*this)(2, 1) * p.y + (*this)(2, 2) * p.z + (*this)(2, 3); p = result; } ///< M * p -> d (assume w = 1.0f) void mulP(const Point3F& p, Point3F* d) const { *d = *this * p; } ///< M * v -> v (assume w = 0.0f) void mulV(VectorF& v) const { AssertFatal(rows == 4 && cols == 4, "Multiplying VectorF with matrix requires 4x4"); VectorF result( (*this)(0, 0) * v.x + (*this)(0, 1) * v.y + (*this)(0, 2) * v.z, (*this)(1, 0) * v.x + (*this)(1, 1) * v.y + (*this)(1, 2) * v.z, (*this)(2, 0) * v.x + (*this)(2, 1) * v.y + (*this)(2, 2) * v.z ); v = result; } ///< M * v -> d (assume w = 0.0f) void mulV(const VectorF& v, Point3F* d) const { AssertFatal(rows == 4 && cols == 4, "Multiplying VectorF with matrix requires 4x4"); VectorF result( (*this)(0, 0) * v.x + (*this)(0, 1) * v.y + (*this)(0, 2) * v.z, (*this)(1, 0) * v.x + (*this)(1, 1) * v.y + (*this)(1, 2) * v.z, (*this)(2, 0) * v.x + (*this)(2, 1) * v.y + (*this)(2, 2) * v.z ); d->x = result.x; d->y = result.y; d->z = result.z; } ///< Axial box -> Axial Box (too big a function to be inline) void mul(Box3F& box) const; // ------ Getters ------ bool isNaN() { for (U32 i = 0; i < rows; i++) { for (U32 j = 0; j < cols; j++) { if (mIsNaN_F((*this)(i, j))) return true; } } return false; } // row + col * cols static U32 idx(U32 i, U32 j) { return (i + j * cols); } bool isAffine() const; bool isIdentity() const; /// Take inverse of matrix assuming it is affine (rotation, /// scale, sheer, translation only). Matrix& affineInverse(); Point3F getScale() const; EulerF toEuler() const; Point3F getPosition() const; void getColumn(S32 col, Point4F* cptr) const; Point4F getColumn4F(S32 col) const { Point4F ret; getColumn(col, &ret); return ret; } void getColumn(S32 col, Point3F* cptr) const; Point3F getColumn3F(S32 col) const { Point3F ret; getColumn(col, &ret); return ret; } void getRow(S32 row, Point4F* cptr) const; Point4F getRow4F(S32 row) const { Point4F ret; getRow(row, &ret); return ret; } void getRow(S32 row, Point3F* cptr) const; Point3F getRow3F(S32 row) const { Point3F ret; getRow(row, &ret); return ret; } VectorF getRightVector() const; VectorF getForwardVector() const; VectorF getUpVector() const; DATA_TYPE* getData() { return data; } const DATA_TYPE* getData() const { return data; } void transposeTo(Matrix& matrix) const { for (U32 i = 0; i < rows; ++i) { for (U32 j = 0; j < cols; ++j) { matrix(j, i) = (*this)(i, j); } } } void swap(DATA_TYPE& a, DATA_TYPE& b) { DATA_TYPE temp = a; a = b; b = temp; } void invertTo(Matrix* matrix) const; void dumpMatrix(const char* caption = NULL) const; // Static identity matrix static const Matrix Identity; // ------ Operators ------ friend Matrix operator*(const Matrix& m1, const Matrix& m2) { Matrix result; for (U32 i = 0; i < rows; ++i) { for (U32 j = 0; j < cols; ++j) { result(i, j) = static_cast(0); for (U32 k = 0; k < cols; ++k) { result(i, j) += m1(i, k) * m2(k, j); } } } return result; } Matrix operator *= (const Matrix& other) { *this = *this * other; return *this; } Matrix operator+(const Matrix& m2) { Matrix result; for (U32 i = 0; i < rows; ++i) { for (U32 j = 0; j < cols; ++j) { result(i, j) = 0; // Initialize result element to 0 result(i, j) = (*this)(i, j) + m2(i, j); } } return result; } Matrix operator+=(const Matrix& m2) { for (U32 i = 0; i < rows; ++i) { for (U32 j = 0; j < cols; ++j) { (*this)(i, j) += m2(i, j); } } return (*this); } Matrix operator * (const DATA_TYPE scalar) const { Matrix result; for (U32 i = 0; i < rows; i++) { for (U32 j = 0; j < cols; j++) { result(i, j) = (*this)(i, j) * scalar; } } return result; } Matrix& operator *= (const DATA_TYPE scalar) { for (U32 i = 0; i < rows; i++) { for (U32 j = 0; j < cols; j++) { (*this)(i, j) *= scalar; } } return *this; } Point3F operator*(const Point3F& point) const { AssertFatal(rows == 4 && cols == 4, "Multiplying point3 with matrix requires 4x4"); Point3F result; result.x = (*this)(0, 0) * point.x + (*this)(0, 1) * point.y + (*this)(0, 2) * point.z + (*this)(0, 3); result.y = (*this)(1, 0) * point.x + (*this)(1, 1) * point.y + (*this)(1, 2) * point.z + (*this)(1, 3); result.z = (*this)(2, 0) * point.x + (*this)(2, 1) * point.y + (*this)(2, 2) * point.z + (*this)(2, 3); return result; } Point4F operator*(const Point4F& point) const { AssertFatal(rows == 4 && cols == 4, "Multiplying point4 with matrix requires 4x4"); return Point4F( (*this)(0, 0) * point.x + (*this)(0, 1) * point.y + (*this)(0, 2) * point.z + (*this)(0, 3) * point.w, (*this)(1, 0) * point.x + (*this)(1, 1) * point.y + (*this)(1, 2) * point.z + (*this)(1, 3) * point.w, (*this)(2, 0) * point.x + (*this)(2, 1) * point.y + (*this)(2, 2) * point.z + (*this)(2, 3) * point.w, (*this)(3, 0) * point.x + (*this)(3, 1) * point.y + (*this)(3, 2) * point.z + (*this)(3, 3) * point.w ); } Matrix& operator = (const Matrix& other) { if (this != &other) { std::copy(other.data, other.data + rows * cols, this->data); } return *this; } bool operator == (const Matrix& other) const { for (U32 i = 0; i < rows; i++) { for (U32 j = 0; j < cols; j++) { if ((*this)(i, j) != other(i, j)) return false; } } return true; } bool operator != (const Matrix& other) const { return !(*this == other); } operator DATA_TYPE* () { return (data); } operator const DATA_TYPE* () const { return (DATA_TYPE*)(data); } DATA_TYPE& operator () (U32 row, U32 col) { if (row >= rows || col >= cols) AssertFatal(false, "Matrix indices out of range"); return data[idx(col,row)]; } DATA_TYPE operator () (U32 row, U32 col) const { if (row >= rows || col >= cols) AssertFatal(false, "Matrix indices out of range"); return data[idx(col, row)]; } }; //-------------------------------------------- // INLINE FUNCTIONS //-------------------------------------------- template inline Matrix& Matrix::transpose() { AssertFatal(rows == cols, "Transpose can only be performed on square matrices."); swap((*this)(0, 1), (*this)(1, 0)); swap((*this)(0, 2), (*this)(2, 0)); swap((*this)(0, 3), (*this)(3, 0)); swap((*this)(1, 2), (*this)(2, 1)); swap((*this)(1, 3), (*this)(3, 1)); swap((*this)(2, 3), (*this)(3, 2)); return (*this); } template inline Matrix& Matrix::identity() { for (U32 i = 0; i < rows; i++) { for (U32 j = 0; j < cols; j++) { if (j == i) (*this)(i, j) = static_cast(1); else (*this)(i, j) = static_cast(0); } } return (*this); } template inline void Matrix::normalize() { AssertFatal(rows >= 3 && cols >= 3, "Normalize can only be applied 3x3 or more"); Point3F col0, col1, col2; getColumn(0, &col0); getColumn(1, &col1); mCross(col0, col1, &col2); mCross(col2, col0, &col1); col0.normalize(); col1.normalize(); col2.normalize(); setColumn(0, col0); setColumn(1, col1); setColumn(2, col2); } template inline Matrix& Matrix::scale(const Point3F& s) { // torques scale applies directly, does not create another matrix to multiply with the translation matrix. AssertFatal(rows >= 4 && cols >= 4, "Scale can only be applied 4x4 or more"); (*this)(0, 0) *= s.x; (*this)(0, 1) *= s.y; (*this)(0, 2) *= s.z; (*this)(1, 0) *= s.x; (*this)(1, 1) *= s.y; (*this)(1, 2) *= s.z; (*this)(2, 0) *= s.x; (*this)(2, 1) *= s.y; (*this)(2, 2) *= s.z; (*this)(3, 0) *= s.x; (*this)(3, 1) *= s.y; (*this)(3, 2) *= s.z; return (*this); } template inline bool Matrix::isIdentity() const { for (U32 i = 0; i < rows; i++) { for (U32 j = 0; j < cols; j++) { if (j == i) { if((*this)(i, j) != static_cast(1)) { return false; } } else { if((*this)(i, j) != static_cast(0)) { return false; } } } } return true; } template inline Point3F Matrix::getScale() const { // this function assumes the matrix has scale applied through the scale(const Point3F& s) function. // for now assume float since we have point3F. AssertFatal(rows >= 4 && cols >= 4, "Scale can only be applied 4x4 or more"); Point3F scale; scale.x = mSqrt((*this)(0, 0) * (*this)(0, 0) + (*this)(1, 0) * (*this)(1, 0) + (*this)(2, 0) * (*this)(2, 0)); scale.y = mSqrt((*this)(0, 1) * (*this)(0, 1) + (*this)(1, 1) * (*this)(1, 1) + (*this)(2, 1) * (*this)(2, 1)); scale.z = mSqrt((*this)(0, 2) * (*this)(0, 2) + (*this)(1, 2) * (*this)(1, 2) + (*this)(2, 2) * (*this)(2, 2)); return scale; } template inline Point3F Matrix::getPosition() const { Point3F pos; getColumn(3, &pos); return pos; } template inline void Matrix::getColumn(S32 col, Point4F* cptr) const { if (rows >= 2) { cptr->x = (*this)(0, col); cptr->y = (*this)(1, col); } if (rows >= 3) cptr->z = (*this)(2, col); else cptr->z = 0.0f; if (rows >= 4) cptr->w = (*this)(3, col); else cptr->w = 0.0f; } template inline void Matrix::getColumn(S32 col, Point3F* cptr) const { if (rows >= 2) { cptr->x = (*this)(0, col); cptr->y = (*this)(1, col); } if (rows >= 3) cptr->z = (*this)(2, col); else cptr->z = 0.0f; } template inline void Matrix::setColumn(S32 col, const Point4F &cptr) { if(rows >= 2) { (*this)(0, col) = cptr.x; (*this)(1, col) = cptr.y; } if(rows >= 3) (*this)(2, col) = cptr.z; if(rows >= 4) (*this)(3, col) = cptr.w; } template inline void Matrix::setColumn(S32 col, const Point3F &cptr) { if(rows >= 2) { (*this)(0, col) = cptr.x; (*this)(1, col) = cptr.y; } if(rows >= 3) (*this)(2, col) = cptr.z; } template inline void Matrix::getRow(S32 row, Point4F* cptr) const { if (cols >= 2) { cptr->x = (*this)(row, 0); cptr->y = (*this)(row, 1); } if (cols >= 3) cptr->z = (*this)(row, 2); else cptr->z = 0.0f; if (cols >= 4) cptr->w = (*this)(row, 3); else cptr->w = 0.0f; } template inline void Matrix::getRow(S32 row, Point3F* cptr) const { if (cols >= 2) { cptr->x = (*this)(row, 0); cptr->y = (*this)(row, 1); } if (cols >= 3) cptr->z = (*this)(row, 2); else cptr->z = 0.0f; } template inline VectorF Matrix::getRightVector() const { VectorF vec; getColumn(0, &vec); return vec; } template inline VectorF Matrix::getForwardVector() const { VectorF vec; getColumn(1, &vec); return vec; } template inline VectorF Matrix::getUpVector() const { VectorF vec; getColumn(2, &vec); return vec; } template inline void Matrix::invertTo(Matrix* matrix) const { Matrix invMatrix; for (U32 i = 0; i < rows; ++i) { for (U32 j = 0; j < cols; ++j) { invMatrix(i, j) = (*this)(i, j); } } invMatrix.inverse(); for (U32 i = 0; i < rows; ++i) { for (U32 j = 0; j < cols; ++j) { (*matrix)(i, j) = invMatrix(i, j); } } } template inline void Matrix::setRow(S32 row, const Point4F& cptr) { if(cols >= 2) { (*this)(row, 0) = cptr.x; (*this)(row, 1) = cptr.y; } if(cols >= 3) (*this)(row, 2) = cptr.z; if(cols >= 4) (*this)(row, 3) = cptr.w; } template inline void Matrix::setRow(S32 row, const Point3F& cptr) { if(cols >= 2) { (*this)(row, 0) = cptr.x; (*this)(row, 1) = cptr.y; } if(cols >= 3) (*this)(row, 2) = cptr.z; } template inline void Matrix::displace(const Point3F& delta) { (*this)(0, 3) += delta.x; (*this)(1, 3) += delta.y; (*this)(2, 3) += delta.z; } template inline void Matrix::reverseProjection() { AssertFatal(rows == 4 && cols == 4, "reverseProjection requires a 4x4 matrix."); (*this)(2, 0) = (*this)(3, 0) - (*this)(2, 0); (*this)(2, 1) = (*this)(3, 1) - (*this)(2, 1); (*this)(2, 2) = (*this)(3, 2) - (*this)(2, 2); (*this)(2, 3) = (*this)(3, 3) - (*this)(2, 3); } template const Matrix Matrix::Identity = []() { Matrix identity(true); return identity; }(); template inline Matrix& Matrix::set(const EulerF& e) { // when the template refactor is done, euler will be able to be setup in different ways AssertFatal(rows >= 3 && cols >= 3, "EulerF can only initialize 3x3 or more"); static_assert(std::is_same::value, "Can only initialize eulers with floats for now"); F32 cosPitch, sinPitch; mSinCos(e.x, sinPitch, cosPitch); F32 cosYaw, sinYaw; mSinCos(e.y, sinYaw, cosYaw); F32 cosRoll, sinRoll; mSinCos(e.z, sinRoll, cosRoll); enum { AXIS_X = (1 << 0), AXIS_Y = (1 << 1), AXIS_Z = (1 << 2) }; U32 axis = 0; if (e.x != 0.0f) axis |= AXIS_X; if (e.y != 0.0f) axis |= AXIS_Y; if (e.z != 0.0f) axis |= AXIS_Z; switch (axis) { case 0: (*this) = Matrix(true); break; case AXIS_X: (*this)(0, 0) = 1.0f; (*this)(0, 1) = 0.0f; (*this)(0, 2) = 0.0f; (*this)(1, 0) = 0.0f; (*this)(1, 1) = cosPitch; (*this)(1, 2) = sinPitch; (*this)(2, 0) = 0.0f; (*this)(2, 1) = -sinPitch; (*this)(2, 2) = cosPitch; break; case AXIS_Y: (*this)(0, 0) = cosYaw; (*this)(1, 0) = 0.0f; (*this)(2, 0) = sinYaw; (*this)(0, 1) = 0.0f; (*this)(1, 1) = 1.0f; (*this)(2, 1) = 0.0f; (*this)(0, 2) = -sinYaw; (*this)(1, 2) = 0.0f; (*this)(2, 2) = cosYaw; break; case AXIS_Z: (*this)(0, 0) = cosRoll; (*this)(0, 1) = sinRoll; (*this)(0, 2) = 0.0f; (*this)(1, 0) = -sinRoll; (*this)(1, 1) = cosRoll; (*this)(1, 2) = 0.0f; (*this)(2, 0) = 0.0f; (*this)(2, 1) = 0.0f; (*this)(2, 2) = 1.0f; break; default: F32 r1 = cosYaw * cosRoll; F32 r2 = cosYaw * sinRoll; F32 r3 = sinYaw * cosRoll; F32 r4 = sinYaw * sinRoll; // the matrix looks like this: // r1 - (r4 * sin(x)) r2 + (r3 * sin(x)) -cos(x) * sin(y) // -cos(x) * sin(z) cos(x) * cos(z) sin(x) // r3 + (r2 * sin(x)) r4 - (r1 * sin(x)) cos(x) * cos(y) // // where: // r1 = cos(y) * cos(z) // r2 = cos(y) * sin(z) // r3 = sin(y) * cos(z) // r4 = sin(y) * sin(z) // init the euler 3x3 rotation matrix. (*this)(0, 0) = r1 - (r4 * sinPitch); (*this)(0, 1) = r2 + (r3 * sinPitch); (*this)(0, 2) = -cosPitch * sinYaw; (*this)(1, 0) = -cosPitch * sinRoll; (*this)(1, 1) = cosPitch * cosRoll; (*this)(1, 2) = sinPitch; (*this)(2, 0) = r3 + (r2 * sinPitch); (*this)(2, 1) = r4 - (r1 * sinPitch); (*this)(2, 2) = cosPitch * cosYaw; break; } if (rows == 4) { (*this)(3, 0) = 0.0f; (*this)(3, 1) = 0.0f; (*this)(3, 2) = 0.0f; } if (cols == 4) { (*this)(0, 3) = 0.0f; (*this)(1, 3) = 0.0f; (*this)(2, 3) = 0.0f; } if (rows == 4 && cols == 4) { (*this)(3, 3) = 1.0f; } return(*this); } template Matrix::Matrix(const EulerF& e, const Point3F p) { set(e, p); } template inline Matrix& Matrix::set(const EulerF& e, const Point3F p) { AssertFatal(rows >= 3 && cols >= 4, "Euler and Point can only initialize 3x4 or more"); // call set euler, this already sets the last row if it exists. set(e); // does this need to multiply with the result of the euler? or are we just setting position. (*this)(0, 3) = p.x; (*this)(1, 3) = p.y; (*this)(2, 3) = p.z; return (*this); } template inline Matrix& Matrix::inverse() { #if 1 // NOTE: Gauss-Jordan elimination is yielding unpredictable results due to precission handling and // numbers near 0.0 // AssertFatal(rows == cols, "Can only perform inverse on square matrices."); const U32 size = rows - 1; const DATA_TYPE pivot_eps = static_cast(1e-20); // Smaller epsilon to handle numerical precision // Create augmented matrix [this | I] Matrix augmentedMatrix; for (U32 i = 0; i < size; i++) { for (U32 j = 0; j < size; j++) { augmentedMatrix(i, j) = (*this)(i, j); augmentedMatrix(i, j + size) = (i == j) ? static_cast(1) : static_cast(0); } } // Apply gauss-joran elimination for (U32 i = 0; i < size; i++) { U32 pivotRow = i; DATA_TYPE pivotValue = std::abs(augmentedMatrix(i, i)); for (U32 k = i + 1; k < size; k++) { DATA_TYPE curValue = std::abs(augmentedMatrix(k, i)); if (curValue > pivotValue) { pivotRow = k; pivotValue = curValue; } } // Swap if needed. if (i != pivotRow) { for (U32 j = 0; j < 2 * size; j++) { DATA_TYPE temp = augmentedMatrix(i, j); augmentedMatrix(i, j) = augmentedMatrix(pivotRow, j); augmentedMatrix(pivotRow, j) = temp; } } // Early out if pivot is 0, return identity matrix. if (std::abs(augmentedMatrix(i, i)) < pivot_eps) { return *this; } DATA_TYPE pivotVal = static_cast(1.0) / augmentedMatrix(i, i); // scale the pivot for (U32 j = 0; j < 2 * size; j++) { augmentedMatrix(i, j) *= pivotVal; } // Eliminate the current column in all other rows for (U32 k = 0; k < size; k++) { if (k != i) { DATA_TYPE factor = augmentedMatrix(k, i); for (U32 j = 0; j < 2 * size; j++) { augmentedMatrix(k, j) -= factor * augmentedMatrix(i, j); } } } } for (U32 i = 0; i < size; i++) { for (U32 j = 0; j < size; j++) { (*this)(i, j) = augmentedMatrix(i, j + size); } } #else AssertFatal(rows == cols, "Can only perform inverse on square matrices."); AssertFatal(rows >= 3 && cols >= 3, "Must be at least a 3x3 matrix"); DATA_TYPE det = determinant(); // Check if the determinant is non-zero if (std::abs(det) < static_cast(1e-10)) { this->identity(); // Return the identity matrix if the determinant is zero return *this; } DATA_TYPE invDet = DATA_TYPE(1) / det; Matrix temp; // Calculate the inverse of the 3x3 upper-left submatrix using Cramer's rule temp(0, 0) = ((*this)(1, 1) * (*this)(2, 2) - (*this)(1, 2) * (*this)(2, 1)) * invDet; temp(0, 1) = ((*this)(2, 1) * (*this)(0, 2) - (*this)(2, 2) * (*this)(0, 1)) * invDet; temp(0, 2) = ((*this)(0, 1) * (*this)(1, 2) - (*this)(0, 2) * (*this)(1, 1)) * invDet; temp(1, 0) = ((*this)(1, 2) * (*this)(2, 0) - (*this)(1, 0) * (*this)(2, 2)) * invDet; temp(1, 1) = ((*this)(2, 2) * (*this)(0, 0) - (*this)(2, 0) * (*this)(0, 2)) * invDet; temp(1, 2) = ((*this)(0, 2) * (*this)(1, 0) - (*this)(0, 0) * (*this)(1, 2)) * invDet; temp(2, 0) = ((*this)(1, 0) * (*this)(2, 1) - (*this)(1, 1) * (*this)(2, 0)) * invDet; temp(2, 1) = ((*this)(2, 0) * (*this)(0, 1) - (*this)(2, 1) * (*this)(0, 0)) * invDet; temp(2, 2) = ((*this)(0, 0) * (*this)(1, 1) - (*this)(0, 1) * (*this)(1, 0)) * invDet; // Copy the 3x3 inverse back into this matrix for (U32 i = 0; i < 3; ++i) { for (U32 j = 0; j < 3; ++j) { (*this)(i, j) = temp(i, j); } } #endif Point3F pos = -this->getPosition(); mulV(pos); this->setPosition(pos); return (*this); } template inline bool Matrix::fullInverse() { #if 1 // NOTE: Gauss-Jordan elimination is yielding unpredictable results due to precission handling and // numbers near 0.0 AssertFatal(rows == cols, "Can only perform inverse on square matrices."); const U32 size = rows; const DATA_TYPE pivot_eps = static_cast(1e-20); // Smaller epsilon to handle numerical precision // Create augmented matrix [this | I] Matrix augmentedMatrix; for (U32 i = 0; i < size; i++) { for (U32 j = 0; j < size; j++) { augmentedMatrix(i, j) = (*this)(i, j); augmentedMatrix(i, j + size) = (i == j) ? static_cast(1) : static_cast(0); } } // Apply gauss-joran elimination for (U32 i = 0; i < size; i++) { U32 pivotRow = i; DATA_TYPE pivotValue = std::abs(augmentedMatrix(i, i)); for (U32 k = i + 1; k < size; k++) { DATA_TYPE curValue = std::abs(augmentedMatrix(k, i)); if (curValue > pivotValue) { pivotRow = k; pivotValue = curValue; } } // Swap if needed. if (i != pivotRow) { for (U32 j = 0; j < 2 * size; j++) { DATA_TYPE temp = augmentedMatrix(i, j); augmentedMatrix(i, j) = augmentedMatrix(pivotRow, j); augmentedMatrix(pivotRow, j) = temp; } } // Early out if pivot is 0, return identity matrix. if (std::abs(augmentedMatrix(i, i)) < pivot_eps) { return false; } DATA_TYPE pivotVal = static_cast(1.0) / augmentedMatrix(i, i); // scale the pivot for (U32 j = 0; j < 2 * size; j++) { augmentedMatrix(i, j) *= pivotVal; } // Eliminate the current column in all other rows for (U32 k = 0; k < size; k++) { if (k != i) { DATA_TYPE factor = augmentedMatrix(k, i); for (U32 j = 0; j < 2 * size; j++) { augmentedMatrix(k, j) -= factor * augmentedMatrix(i, j); } } } } for (U32 i = 0; i < size; i++) { for (U32 j = 0; j < size; j++) { (*this)(i, j) = augmentedMatrix(i, j + size); } } #else AssertFatal(rows == cols, "Can only perform inverse on square matrices."); AssertFatal(rows >= 4 && cols >= 4, "Can only perform fullInverse on minimum 4x4 matrix"); Point4F a, b, c, d; getRow(0, &a); getRow(1, &b); getRow(2, &c); getRow(3, &d); F32 det = a.x * b.y * c.z * d.w - a.x * b.y * c.w * d.z - a.x * c.y * b.z * d.w + a.x * c.y * b.w * d.z + a.x * d.y * b.z * c.w - a.x * d.y * b.w * c.z - b.x * a.y * c.z * d.w + b.x * a.y * c.w * d.z + b.x * c.y * a.z * d.w - b.x * c.y * a.w * d.z - b.x * d.y * a.z * c.w + b.x * d.y * a.w * c.z + c.x * a.y * b.z * d.w - c.x * a.y * b.w * d.z - c.x * b.y * a.z * d.w + c.x * b.y * a.w * d.z + c.x * d.y * a.z * b.w - c.x * d.y * a.w * b.z - d.x * a.y * b.z * c.w + d.x * a.y * b.w * c.z + d.x * b.y * a.z * c.w - d.x * b.y * a.w * c.z - d.x * c.y * a.z * b.w + d.x * c.y * a.w * b.z; if (mFabs(det) < 0.00001f) return false; Point4F aa, bb, cc, dd; aa.x = b.y * c.z * d.w - b.y * c.w * d.z - c.y * b.z * d.w + c.y * b.w * d.z + d.y * b.z * c.w - d.y * b.w * c.z; aa.y = -a.y * c.z * d.w + a.y * c.w * d.z + c.y * a.z * d.w - c.y * a.w * d.z - d.y * a.z * c.w + d.y * a.w * c.z; aa.z = a.y * b.z * d.w - a.y * b.w * d.z - b.y * a.z * d.w + b.y * a.w * d.z + d.y * a.z * b.w - d.y * a.w * b.z; aa.w = -a.y * b.z * c.w + a.y * b.w * c.z + b.y * a.z * c.w - b.y * a.w * c.z - c.y * a.z * b.w + c.y * a.w * b.z; bb.x = -b.x * c.z * d.w + b.x * c.w * d.z + c.x * b.z * d.w - c.x * b.w * d.z - d.x * b.z * c.w + d.x * b.w * c.z; bb.y = a.x * c.z * d.w - a.x * c.w * d.z - c.x * a.z * d.w + c.x * a.w * d.z + d.x * a.z * c.w - d.x * a.w * c.z; bb.z = -a.x * b.z * d.w + a.x * b.w * d.z + b.x * a.z * d.w - b.x * a.w * d.z - d.x * a.z * b.w + d.x * a.w * b.z; bb.w = a.x * b.z * c.w - a.x * b.w * c.z - b.x * a.z * c.w + b.x * a.w * c.z + c.x * a.z * b.w - c.x * a.w * b.z; cc.x = b.x * c.y * d.w - b.x * c.w * d.y - c.x * b.y * d.w + c.x * b.w * d.y + d.x * b.y * c.w - d.x * b.w * c.y; cc.y = -a.x * c.y * d.w + a.x * c.w * d.y + c.x * a.y * d.w - c.x * a.w * d.y - d.x * a.y * c.w + d.x * a.w * c.y; cc.z = a.x * b.y * d.w - a.x * b.w * d.y - b.x * a.y * d.w + b.x * a.w * d.y + d.x * a.y * b.w - d.x * a.w * b.y; cc.w = -a.x * b.y * c.w + a.x * b.w * c.y + b.x * a.y * c.w - b.x * a.w * c.y - c.x * a.y * b.w + c.x * a.w * b.y; dd.x = -b.x * c.y * d.z + b.x * c.z * d.y + c.x * b.y * d.z - c.x * b.z * d.y - d.x * b.y * c.z + d.x * b.z * c.y; dd.y = a.x * c.y * d.z - a.x * c.z * d.y - c.x * a.y * d.z + c.x * a.z * d.y + d.x * a.y * c.z - d.x * a.z * c.y; dd.z = -a.x * b.y * d.z + a.x * b.z * d.y + b.x * a.y * d.z - b.x * a.z * d.y - d.x * a.y * b.z + d.x * a.z * b.y; dd.w = a.x * b.y * c.z - a.x * b.z * c.y - b.x * a.y * c.z + b.x * a.z * c.y + c.x * a.y * b.z - c.x * a.z * b.y; setRow(0, aa); setRow(1, bb); setRow(2, cc); setRow(3, dd); mul(1.0f / det); #endif return true; } template inline void Matrix::invert() { (*this) = inverse(); } template inline Matrix& Matrix::setCrossProduct(const Point3F& p) { AssertFatal(rows == 4 && cols == 4, "Cross product only supported on 4x4 for now"); (*this)(0, 0) = 0; (*this)(0, 1) = -p.z; (*this)(0, 2) = p.y; (*this)(0, 3) = 0; (*this)(1, 0) = p.z; (*this)(1, 1) = 0; (*this)(1, 2) = -p.x; (*this)(1, 3) = 0; (*this)(2, 0) = -p.y; (*this)(2, 1) = p.x; (*this)(2, 2) = 0; (*this)(2, 3) = 0; (*this)(3, 0) = 0; (*this)(3, 1) = 0; (*this)(3, 2) = 0; (*this)(3, 3) = 1; return (*this); } template inline Matrix& Matrix::setTensorProduct(const Point3F& p, const Point3F& q) { AssertFatal(rows == 4 && cols == 4, "Tensor product only supported on 4x4 for now"); (*this)(0, 0) = p.x * q.x; (*this)(0, 1) = p.x * q.y; (*this)(0, 2) = p.x * q.z; (*this)(0, 3) = 0; (*this)(1, 0) = p.y * q.x; (*this)(1, 1) = p.y * q.y; (*this)(1, 2) = p.y * q.z; (*this)(1, 3) = 0; (*this)(2, 0) = p.z * q.x; (*this)(2, 1) = p.z * q.y; (*this)(2, 2) = p.z * q.z; (*this)(2, 3) = 0; (*this)(3, 0) = 0; (*this)(3, 1) = 0; (*this)(3, 2) = 0; (*this)(3, 3) = 1; return (*this); } template inline void Matrix::mul(Box3F& box) const { AssertFatal(rows == 4 && cols == 4, "Multiplying Box3F with matrix requires 4x4"); // Extract the min and max extents const Point3F& originalMin = box.minExtents; const Point3F& originalMax = box.maxExtents; // Array to store transformed corners Point3F transformedCorners[8]; // Compute all 8 corners of the box Point3F corners[8] = { {originalMin.x, originalMin.y, originalMin.z}, {originalMax.x, originalMin.y, originalMin.z}, {originalMin.x, originalMax.y, originalMin.z}, {originalMax.x, originalMax.y, originalMin.z}, {originalMin.x, originalMin.y, originalMax.z}, {originalMax.x, originalMin.y, originalMax.z}, {originalMin.x, originalMax.y, originalMax.z}, {originalMax.x, originalMax.y, originalMax.z} }; // Transform each corner for (U32 i = 0; i < 8; ++i) { const Point3F& corner = corners[i]; transformedCorners[i].x = (*this)(0, 0) * corner.x + (*this)(0, 1) * corner.y + (*this)(0, 2) * corner.z + (*this)(0, 3); transformedCorners[i].y = (*this)(1, 0) * corner.x + (*this)(1, 1) * corner.y + (*this)(1, 2) * corner.z + (*this)(1, 3); transformedCorners[i].z = (*this)(2, 0) * corner.x + (*this)(2, 1) * corner.y + (*this)(2, 2) * corner.z + (*this)(2, 3); } // Initialize min and max extents to the transformed values Point3F newMin = transformedCorners[0]; Point3F newMax = transformedCorners[0]; // Compute the new min and max extents from the transformed corners for (U32 i = 1; i < 8; ++i) { const Point3F& corner = transformedCorners[i]; if (corner.x < newMin.x) newMin.x = corner.x; if (corner.y < newMin.y) newMin.y = corner.y; if (corner.z < newMin.z) newMin.z = corner.z; if (corner.x > newMax.x) newMax.x = corner.x; if (corner.y > newMax.y) newMax.y = corner.y; if (corner.z > newMax.z) newMax.z = corner.z; } // Update the box with the new min and max extents box.minExtents = newMin; box.maxExtents = newMax; } template inline bool Matrix::isAffine() const { if ((*this)(3, 3) != 1.0f) { return false; } for (U32 col = 0; col < cols - 1; ++col) { if ((*this)(3, col) != 0.0f) { return false; } } Point3F one, two, three; getColumn(0, &one); getColumn(1, &two); getColumn(2, &three); // check columns { if (mDot(one, two) > 0.0001f || mDot(one, three) > 0.0001f || mDot(two, three) > 0.0001f) return false; if (mFabs(1.0f - one.lenSquared()) > 0.0001f || mFabs(1.0f - two.lenSquared()) > 0.0001f || mFabs(1.0f - three.lenSquared()) > 0.0001f) return false; } getRow(0, &one); getRow(1, &two); getRow(2, &three); // check rows { if (mDot(one, two) > 0.0001f || mDot(one, three) > 0.0001f || mDot(two, three) > 0.0001f) return false; if (mFabs(1.0f - one.lenSquared()) > 0.0001f || mFabs(1.0f - two.lenSquared()) > 0.0001f || mFabs(1.0f - three.lenSquared()) > 0.0001f) return false; } return true; } template inline Matrix& Matrix::affineInverse() { AssertFatal(rows >= 4 && cols >= 4, "affineInverse requires at least 4x4"); Matrix temp = *this; // Transpose rotation part (*this)(0, 1) = temp(1, 0); (*this)(0, 2) = temp(2, 0); (*this)(1, 0) = temp(0, 1); (*this)(1, 2) = temp(2, 1); (*this)(2, 0) = temp(0, 2); (*this)(2, 1) = temp(1, 2); // Adjust translation part (*this)(0, 3) = -(temp(0, 0) * temp(0, 3) + temp(1, 0) * temp(1, 3) + temp(2, 0) * temp(2, 3)); (*this)(1, 3) = -(temp(0, 1) * temp(0, 3) + temp(1, 1) * temp(1, 3) + temp(2, 1) * temp(2, 3)); (*this)(2, 3) = -(temp(0, 2) * temp(0, 3) + temp(1, 2) * temp(1, 3) + temp(2, 2) * temp(2, 3)); return *this; } template inline EulerF Matrix::toEuler() const { AssertFatal(rows >= 3 && cols >= 3, "Euler rotations require at least a 3x3 matrix."); // like all others assume float for now. EulerF r; r.x = mAsin(mClampF((*this)(1,2), -1.0, 1.0)); if (mCos(r.x) != 0.0f) { r.y = mAtan2(-(*this)(0, 2), (*this)(2, 2)); // yaw r.z = mAtan2(-(*this)(1, 0), (*this)(1, 1)); // roll } else { r.y = 0.0f; r.z = mAtan2((*this)(0, 1), (*this)(0, 0)); // this rolls when pitch is +90 degrees } return r; } template inline void Matrix::dumpMatrix(const char* caption) const { U32 size = (caption == NULL) ? 0 : dStrlen(caption); FrameTemp spacer(size + 1); char* spacerRef = spacer; // is_floating_point should return true for floats and doubles. const char* formatSpec = std::is_floating_point_v ? " %-8.4f" : " %d"; dMemset(spacerRef, ' ', size); // null terminate. spacerRef[size] = '\0'; /*Con::printf("%s = | %-8.4f %-8.4f %-8.4f %-8.4f |", caption, m[idx(0, 0)], m[idx(0, 1)], m[idx(0, 2)], m[idx(0, 3)]); Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(1, 0)], m[idx(1, 1)], m[idx(1, 2)], m[idx(1, 3)]); Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(2, 0)], m[idx(2, 1)], m[idx(2, 2)], m[idx(2, 3)]); Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(3, 0)], m[idx(3, 1)], m[idx(3, 2)], m[idx(3, 3)]);*/ StringBuilder str; str.format("%s = |", caption); for (U32 i = 0; i < rows; i++) { if (i > 0) { str.append(spacerRef); } for (U32 j = 0; j < cols; j++) { str.format(formatSpec, (*this)(i, j)); } str.append(" |\n"); } Con::printf("%s", str.end().c_str()); } //------------------------------------ // Non-member methods //------------------------------------ inline void mTransformPlane( const MatrixF& mat, const Point3F& scale, const PlaneF& plane, PlaneF* result ) { // Create the inverse scale matrix MatrixF invScale(true); invScale(0, 0) = 1.0f / scale.x; invScale(1, 1) = 1.0f / scale.y; invScale(2, 2) = 1.0f / scale.z; const Point3F shear(mat(0, 3), mat(1, 3), mat(2, 3)); const Point3F row0 = mat.getRow3F(0); const Point3F row1 = mat.getRow3F(1); const Point3F row2 = mat.getRow3F(2); const F32 A = -mDot(row0, shear); const F32 B = -mDot(row1, shear); const F32 C = -mDot(row2, shear); // Compute the inverse transpose of the matrix MatrixF invTrMatrix(true); invTrMatrix(0, 0) = mat(0, 0); invTrMatrix(0, 1) = mat(0, 1); invTrMatrix(0, 2) = mat(0, 2); invTrMatrix(1, 0) = mat(1, 0); invTrMatrix(1, 1) = mat(1, 1); invTrMatrix(1, 2) = mat(1, 2); invTrMatrix(2, 0) = mat(2, 0); invTrMatrix(2, 1) = mat(2, 1); invTrMatrix(2, 2) = mat(2, 2); invTrMatrix(3, 0) = A; invTrMatrix(3, 1) = B; invTrMatrix(3, 2) = C; invTrMatrix.mul(invScale); // Transform the plane normal Point3F norm(plane.x, plane.y, plane.z); invTrMatrix.mulP(norm); norm.normalize(); // Transform the plane point Point3F point = norm * -plane.d; MatrixF temp = mat; point.x *= scale.x; point.y *= scale.y; point.z *= scale.z; temp.mulP(point); // Recompute the plane distance PlaneF resultPlane(point, norm); result->x = resultPlane.x; result->y = resultPlane.y; result->z = resultPlane.z; result->d = resultPlane.d; } //-------------------------------------------- // INLINE FUNCTIONS END //-------------------------------------------- typedef Matrix MatrixF; class MatrixTemplateExport { public: template static EngineFieldTable::Field getMatrixField(); }; template inline EngineFieldTable::Field MatrixTemplateExport::getMatrixField() { typedef Matrix ThisType; return _FIELD_AS(T, data, data, rows * cols, ""); } #endif // !USE_TEMPLATE_MATRIX #endif //_MMATRIX_H_